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A MACROSCOPIC MODEL INCLUDING MEMBRANE EXCHANGE FOR

DIFFUSION MRI

JULIEN COATLÉVEN∗, HOUSSEM HADDAR* , AND JING-REBECCA LI*

Abstract. Diffusion Magnetic Resonance Imaging is a promising tool to obtain useful information on the micro-
scopic structure and has been extensively applied to biological tissues. We establish a new macroscopic model from
homogenization theory for the complex transverse water proton magnetization in a voxel due to diffusion-encoding
magnetic field gradient pulses in the case of intermediate water exchange across biological cellular membranes. Based
on a particular scaling of the permeability condition modeling cellular membranes, this macroscopic model reproduces
the memory effects often observed in experiments. Explicit formulae given by homogenization for the coefficients of
this model emphasize their link to the relevant physiological quantities. In addition, we explicitly solve the macro-
scopic model to obtain an ODE model for the dMRI signal. This ODE model is numerically easy to invert, and the
inverse problem of retrieving model coefficients from synthetic dMRI signal data is considered.

1. Introduction. The image contrast in diffusion Magnetic Resonance Imaging (dMRI) comes
from the differing water diffusion characteristics in the imaged tissue at different spatial positions.
DMRI can be used to detect, for example, cerebral ischemia [46], demyelinating disorders[19], and
tumors [37, 41, 44]. For a survey, see [24].

The signal measured by the MRI scanner is a mean-value measurement in a physical volume,
called a voxel, whose size is much larger than the scale of the microscopic variations of the cellular
structure. The resolution of dMRI is on the order of 1 mm3, meaning the dMRI signal combines
the diffusion characteristics of a tissue volume (voxel) of 1 mm3. This is very large compared to cell
features, which vary from sub-µm (diameter of neurites) to tens of µm (diameter of neuronal bodies
and glial cells) in the brain (see for example, [18]). In other words, dMRI is used to show the averaged
characteristics of the microscopic structure on a macroscopic scale. Another very important spatial
scale to consider for this work is the diffusion distance, which gives an indication of the displacement
of water molecules during the measured diffusion time. At physically realistic dMRI diffusion times of
10-100 ms, the average diffusion distance is, assuming an average diffusivity of 10−3mm2/s, between
8-25 µm. Thus, from the point of view of diffusing water molecules, the cellular structure beyond
tens of µm from their starting positions do not contribute to their displacements.

Most of the macroscopic models for the dMRI signal were obtained in the limit of long diffusion
time. For example, if the diffusion time is long enough that all the water molecules experience
the same Gaussian diffusion environment, the macroscopic model is simply described by a single
effective diffusion tensor. In the presence of permeable cell memebranes, various analytical formulae
for the effective diffusion tensor for special geometries such as cubes and spheres can be found in
[17, 42, 23]. For general cell shapes, while assuming no contiguous extra-cellular space, an analytical
formula for the effective diffusion tensor can be found in [31], where the time dependence of the
average diffusion distance is considered. In [8] the effective diffusion tensor for general cell shapes
and allowing a contiguous extra-cellular space was formulated based on the solution of a set of
Laplace PDEs.

There is ample experimental evidence that the diffusion in brain tissue at diffusion times relevant
to dMRI is not Gaussian: the dMRI signal has been fitted as multiple compartmental Gaussian
[30, 29, 10, 27], or by including a Kurtosis term to quantify the non-Gaussianness [7, 20], or by
fitting with fractional order diffusion [26].

There have been many works on formulating macroscopic models based on multiple compartment
diffusion. For example, the no-exchange models of [38, 4, 21] separate the cylindrical-shaped neurites
from the space outside them to make different diffusion compartments. When there is no water
exchange between the compartments, the total dMRI signal is just the sum of the signals from each
of the compartments. We note that in these no-exchange models, one can in fact easily allow non-
Gaussian diffusion in each compartment, and this flexibility can potentially result in the applicability
of the models at shorter diffusion times. However, the weakness of the no-exchange models is that
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water is assumed to stay (mostly) in a single compartment during the diffusion time. Even though
no-exchange models may be appropriate for the brain white matter, where the myelin around axons
prevents significant water exchange between the axons and the extra-cellular space, it is not clear
that in the gray matter, where the cell membranes are permeable, one can neglect the water exchange
between cells and the extra-cellular space.

In this paper, we develop a macroscopic model based on multiple diffusion compartments, where
the diffusion within each compartment is considered Gaussian. To our knowledge, up to the present,
there has been only one multiple compartment macroscopic model for dMRI in heterogeneous media
that allows exchange between the compartments. That model is the Karger model [22], which was
originally developed for micro-porous crystallites. The Karger model was obtained on the basis of
phenomenological modeling of the experimentally obtained signal curves and only works under a
strong and often unrealistic assumption on the applied diffusion-encoding magnetic field gradient
sequence. This assumption is that the duration of the gradient pulse is very short compared to the
diffusion time and is called the narrow pulse assumption. Nevertheless, the Karger model has been
used in biological tissue imaging [45, 39, 32, 25, 35, 28, 36, 3] to invert for model parameters.

In this paper, starting from a microscopic model of the complex transverse water proton mag-
netization due to diffusion-encoding magnetic field gradient pulses in a spatial volume on the order
of a voxel, which mathematically takes the form of a Bloch-Torrey partial differential equation
(PDE) in a heterogeneous medium with barriers, varying at the scale of the biological cell features,
we will provide a macroscopic limit model, through homogenization, that is applicable to general
diffusion-encoding magnetic field gradients, i.e., not subject to the narrow pulse assumption.

The main difficulty in the modeling of diffusion at the microscopic level is the choice of the
membrane law. We adopted here the so-called two compartment model where the membrane is
infinitesimally thin and induces a discontinuity of the field proportional to the flux. The nature of
the homogenized model then would depend on the scaling for the proportionality coefficient with
respect to the periodicity size parameter. A comprehensive presentation as well as a fully rigorous
mathematical justification of all the possible limit models is the subject of a forthcoming work [11].

We will concentrate in this article on the scaling that provides the limit model that is closest to
the Karger model. We shall restrict ourselves to only a formal derivation of the homogenized model
and put more emphasis on obtaining the simplest possible expression of the dMRI signal, which is
the spatial integral of the complex transverse magnetization over the voxel at one time point called
the echo time. The signal associated to the new macroscopic (and homogeneous) model that we
derive in this paper, being the limit, when the size of biological cells tends to zero, of the signal of
the microscopic model, is thus expected to be an approximation of the non-homogenized one at long
diffusion times. The equations governing the magnetization are of course much simpler than those
involving the microscopic description of the medium. Their coefficients can be explicitly linked, in
the context of periodic homogenization, to relevant properties of the underlying biological tissue.

In addition, if we enforce periodic boundary conditions on the voxel to be modeled, we can
explicitly solve the macroscopic (PDE) model to obtain an ODE model for the dMRI signal. The
Karger model can be seen as an approximate version of our ODE model in the narrow pulse limit.
The main interest of this ODE model is indeed to solve the inverse problem of identifying the
model coefficients that make our approximate signal fit best the measured signal. Some preliminary
inversion tests are performed on synthetic examples.

We plan a thorough numerical study of the macroscopic model we obtained here in the context
of biological tissue dMRI, using more complex geometries than those shown in this paper, and will
conduct a study of the convergence properties of our model as well as a comparison with the Karger
model. Thus, these aspects are not included in this paper.

The paper is organized as follows. In Section 2, we review the Bloch-Torrey PDE with barriers
that describes the complex transverse water proton magnetization due to diffusion-encoding magnetic
field gradient pulses at the microscopic scale. For simplicity, we then make the hypothesis that the
domain to be modeled is periodic, to allow us to apply periodic homogenization theory. In Section 3,
we make the formal homogenization of our model problem in the periodic context, using a particular
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scaling for the permeability condition on the cellular membranes. In Section 4, we provide an ODE
description of the dMRI signal. We then show with a few numerical experiments that the signal
from the homogenized model accurately approximates the signal of the microscopic model at long
diffusion times. In Section 5 we solve numerically the inverse problem of finding the coefficients
of our ODE model from the signal obtained without homogenization, and show that through these
coefficients we can recover some relevant biological properties of the tissue. In Section 6 we discuss
some issues regarding the use of periodic homogenization and the periodic extension of the voxel to
R

d, where d is the spatial dimension, in the context of the spatial and time scales of dMRI. Section
7 contains our conclusions.

2. Model Problem. Biological tissues contain abundant water and are composed of cells of
various sizes and shapes surrounded by the extra-cellular space. The cells can be represented, at the
scale of interest for our problem, as a bounded domain surrounded by a very thin membrane (see
Figure 2.1 left). The diffusion coefficients for water in the interior part of the cells, in the membrane,

ΓI

Ωe

Ωc

Fig. 2.1. Schematic of a biological cell, with its membrane (left) and an idealized two-compartment cell (right).

and in the extra-cellular space may be different from each other.
While the diffusion coefficients in the interior part of the cells and in the extra-cellular space

remain of the same order of magnitude, it is much smaller inside the membranes. It is in fact
very difficult to obtain direct measurements of this coefficient inside the cellular membranes, as the
membranes are extremely thin. This is why the membranes are most of the time spatially neglected
and replaced by a permeability condition between the extra-cellular and intra-cellular parts [34].
Consequently, we replace the realistic, ”three-compartment” biological cell by the idealized ”two-
compartment” cell displayed in Figure 2.1 (right).

For a volume Ω of biological tissue, we denote by ΓI the union of the boundaries of all the
”two-compartment” cells included in Ω. ΓI thus delimits two subdomains: the extracellular domain
Ωe (e standing for extra-cellular) and the intra-cellular domain Ωc (c standing for cellular) . The
domain Ωext then represents the union of the open extra-cellular and open intra-cellular domains,
i.e.

Ωext = Ω \ ΓI = Ωe ∪ Ωc.

A classic dMRI experiment consists of applying two pulsed (meaning short duration in time) gradient
(meaning linearly varying in space) magnetic fields with a 180 degree spin reversal in between the
two in order to mark the positions of the water molecules between the two pulses [40].

The complex transverse water proton magnetizationM is modeled by the following Bloch-Torrey
PDE [43] with jump:

∂M(x, t)

∂t
+ ıq · xf(t)M(x, t)− div (σ(x)∇M(x, t)) = 0 in Ωext×]0, T [,

σ∇M · ν|ΓI

= κ [M ]|ΓI

on ΓI ,

[σ∇M · ν]|ΓI

= 0 on ΓI ,

M(·, 0) =Minit in Ωext,
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where ν is the normal exterior to the intra-cellular domains, [.]|ΓI

is the jump (extra-cellular minus

intra-cellular) on ΓI for a quantity defined on both parts of the domain, κ is the permeability
coefficient, ı =

√
−1, Minit is the initial magnetization. The constant vector in R

d, q, contains
the amplitude and direction information of the applied diffusion-encoding magnetic field gradient
multiplied by the gyro-magnetic ratio of the water proton, and f , where maxt f(t) = 1, is the
normalized time profile of the diffusion-encoding magnetic field gradient sequence. The coefficient
σ is the intrinsic diffusion coefficient. The time profile of the classic Pulsed Gradient Spin Echo
(PGSE) [40] sequence (simplified to include only the parameters relevant to diffusion, i.e., the imaging
gradients are ignored) is the following:





f(t) = 1, 0 < t ≤ δ,

f(t) = −1, ∆ < t ≤ ∆+ δ,

f(t) = 0, elsewhere,

(2.1)

where we made f(t) negative in the second pulse to include the effect of the 180 degree spin rever-
sal between the pulses. The time at which the signal is measured is called the echo time TE > δ+∆.

For simplicity and in order to be able to apply a well known theoretical framework, we will
assume that the volume to be modeled, Ω, can be described as a periodic domain. More precisely,
we will assume that there exists a period ε, which represents the average size of a ”representative”
volume of Ω, and which is small compared to the size of Ω. We will discuss in Section 6 this choice
of periodic homogenization and the applicability of our obtained model to non-periodic geometries.

We now define the unit periodicity cell Y =]0, 1[d such that Y = Ye ∪ Yc, where Yc is the
intracellular domain and is an open set which can be made of several connected parts (i.e it is the
union of the interiors of the selection of biological cells that are included in the periodicity cell).

Let Nc be the number of connected components of Yc. Then we write Yc =
⋃Nc

i=1 Yc,i. In the same

way, for the extracellular domain Ye, we write Ye =
⋃Ne

i=1 Ye,i where Ne is the number of connected
components of Ye. If some cells touch each other and isolate a part of Ye, then Ne 6= 1. We assume for
simplicity that the boundary ∂Yc of Yc does not crosses ∂Y and we denote it Γm = ∂Yc = ∂Ye \ ∂Y .
The general case can be treated in exactly the same way, but the geometrical description is more
complicated: indeed, if Γm crosses ∂Y , then the biological cell must be periodically closed by another
component of Yc on the opposite side of ∂Y , so that the periodized domain only contains biological
cells completely surrounded by membranes.

Yc

Yc

Ye

Fig. 2.2. A periodicity cell Y , containing simplified biological cells with an infinitely thin interface for membrane

Now, we denote

Ξε =
{
ξ ∈ Z

d | ε(ξ + Y ) ∩ Ω 6= ∅
}
,
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so that Ω will contain almost ♯(Ξε) periodicity cells. Finally, we denote

Ωε
e =

⋃

ξ∈Ξε

ε(ξ + Ye) ∩ Ω, Ωε
c =

⋃

ξ∈Ξε

ε(ξ + Yc) ∩ Ω, Ωε
ext = Ωε

e ∪ Ωε
c. (2.2)

Notice that

∂Ωε
c ∩ ∂Ωε

e = ∂Ωε
e \ ∂Ω =

⋃

ξ∈Ξε

Γε,ξ
m where Γε,ξ

m = ε(ξ + Γm) ∩ Ω.

Of course, the diffusion coefficient will be assumed to be periodic as well, i.e., there exists σ̂ ∈ L∞(Y )
such that σ(x) = σ̂

(
x
ε

)
, with

σ̂ =

∣∣∣∣∣
σc in Yc,

σe in Ye.
(2.3)

The most common practical choice for σe and σc is to take them constant, so that σ̂ is piecewise
constant. For both physical and technical reasons, we will further assume that there exists two
constants 0 < σ− < σ+ < +∞ such that, for almost every y ∈ Y :

σ− ≤ σc ≤ σ+ and σ− ≤ σe ≤ σ+.

With these more precise description of the domain, our model problem can be rewritten as:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Mε(x, t)

∂t
+ ıq · xf(t)Mε(x, t)− div (σ̂ε(x)∇Mε(x, t)) = 0 in Ωε

ext×]0, T [,

σ̂ε∇Mε · ν|
Γ
ε,ξ
m

= κε [Mε]|
Γ
ε,ξ
m

∀ ξ ∈ Ξε,

[σ̂ε∇Mε · ν]|
Γ
ε,ξ
m

= 0 ∀ ξ ∈ Ξε,

Mε(·, 0) =Minit in Ωε
ext,

(2.4)

where σ̂ε = σ̂
(
x
ε

)
. Finally, we will assume that the time profile f belongs to L∞(]0, T [) and that

the initial data Minit is defined on Ω independently of ε and belongs to L2(Ω)∩L1(Ω). For notation
convenience we set Q(x) := q · x.

It only remains to choose the volume to be modeled, Ω. Obviously, it should be on the order of
a voxel. However, in the derivation of the macroscopic model that follows, to avoid complications
associated with imposing boundary conditions on Ω, we make the simplification that Ω = R

d, where d
is the space dimension. This is a reasonable simplification in context of the mathematical derivation
that follows because we develop the macroscopic model in the limit of a period ε that is small
compared to the size of Ω. Thus, from the point of view of the “representative” volume, the error
associated with replacing the true Ω with R

d is small. This choice of Ω also allows the formulation
of a system of ODEs for the dMRI signal, which is the spatial integral of the magnetization. If we
had chosen a finite Ω, with associated boundary conditions, the form of the macroscopic PDE model
for the magnetization would not change, only the associated boundary conditions would have to be
added to the macroscopic PDE. However, in that case, there would not be a simple ODE model for
the dMRI signal. A discussion of the boundary condition on Ω in the context of dMRI is included
in Section 6.

Finally, we conclude this section by explaining our choice for the permeability coefficient κε.
As usual in homogenization, the choice of a scaling for this coefficient, driven by the fact that it is
experimentally a very small parameter, will be determinant with regard to the limit model. More
precisely, the dependence of κε on ε→ 0 will influence the nature of the limit macroscopic model. A
comprehensive presentation as well as a fully rigorous mathematical justification of all the possible
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limit models corresponding to a scaling κε = σmε
m, for all m ∈ Z, is the subject of a forthcoming

work [11]. We will concentrate in this article on the relevant case for dMRI, i.e., the scaling that
provides the limit model that shows a “memory” effect, which corresponds with m = 1. We shall
restrict ourselves to only a formal derivation of the homogenized model and put more emphasis on
obtaining results on the integral of the magnetization, which approximates the dMRI signal.

3. A macroscopic model through two scale asymptotic expansions. In this section, we
derive our macroscopic model through formal homogenization from the two compartment model.
We note here that Mε does not satisfy the Bloch-Torrey equation in all Ωε

ext, but separately in Ωε
c

and Ωε
e, with jump conditions on the Γε,ξ

m ’s. This remark will be important to our formal derivation
of the macroscopic models.

3.1. Formal derivation of the macroscopic models through two-scale asymptotic ex-

pansions. Using classical periodic homogenization techniques [5], we are going to developMε using
two-scale asymptotic expansions. According to our previous remark, we are not going to introduce
a unique expansion in all Ωε

ext, but two expansions, one for each phase Ωε
c and Ωε

e. Consequently,
we write

∣∣∣∣∣∣∣∣∣∣

Mε(x, t) =Me
ε (x, t) =

+∞∑

i=0

εiMi,e

(
x,

x

ε
, t
)

in Ωε
e,

Mε(x, t) =M c
ε (x, t) =

+∞∑

i=0

εiMi,c

(
x,

x

ε
, t
)

in Ωε
c,

(3.1)

where the functions Mi,e(x, y, t) and Mi,c(x, y, t) are defined respectively on Ω × Ye×]0, T [ and
Ω × Yc×]0, T [, and the Mi,e(x, y, t) are assumed Y -periodic in y. The aim of such an ansatz is to
separate the ”macroscopic” variations (the x variable) form the ”microscopic” ones (the y variable),
and then try to obtain a new problem involving only the macroscopic one.

3.1.1. Periodic cell equations and jump conditions. To get the equations for each of the
Mi,e’s and the Mi,c’s, we start by noticing that, α ∈ {c, e},

∇Mi,α(x,
x

ε
, t) = ∇xMi,α(x,

x

ε
, t) + ε−1∇yMi,α(x,

x

ε
, t),

and therefore

div
(
σα

(x
ε

)
∇Mi,α(x,

x

ε
, t)
)
= divx

(
σα

(x
ε

)
∇xMi,α(x,

x

ε
, t)
)
+ ε−2divy

(
σα

(x
ε

)
∇yMi,α(x,

x

ε
, t)
)

+ε−1divx

(
σα

(x
ε

)
∇yMi,α(x,

x

ε
, t)
)
+ ε−1divy

(
σα

(x
ε

)
∇xMi,α(x,

x

ε
, t)
)
.

Substituting these formulae into the two compartment model, using the asymptotic expansions (3.1)
then matching the terms in front of the same power of ε, one gets for the three first orders,

−divy (σα∇yM0,α) = 0 in Ω× Yα×]0, T [, (3.2)

−divy (σα∇yM1,α) = divy (σα∇xM0,α) + divx (σα∇yM0,α) in Ω× Yα×]0, T [, (3.3)

−divy (σα∇yM2,α) = divy (σα∇xM1,α) + divx (σα (∇yM1,α +∇xM0,α))

−∂M0,α

∂t
− ıQf(t)M0,α in Ω× Yα×]0, T [.

(3.4)

Notice that the equations have been formally expanded to all Ω for the macroscopic variable x.
Next, we make the following ansatz for the jumps of Mε and its fluxes, for x ∈ Γε

m,

[Mε]|Γε
m
(x, t) =

∞∑

i=0

εi
(
Mi,e(x,

x

ε
, t)−Mi,c(x,

x

ε
, t)
)
, (3.5)
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[σ̂ε∇Mε · ν]|Γε
m

=

∞∑

i=0

εi
(
σe∇Mi,e(x,

x

ε
, t) · ν − σc∇Mi,c(x,

x

ε
, t) · ν

)
. (3.6)

Then, the no-jump relation for the fluxes becomes

ε−1 (σe∇yM0,e · ν − σc∇yM0,c · ν)

+

∞∑

i=0

εi (σe∇yMi+1,e · ν + σe∇xMi,e · ν −σc∇yMi+1,c · ν − σc∇xMi,c · ν) = 0,

which gives, after identifying each power of ε and expanding to all (x, y) ∈ Ω× Γm

σe∇yM0,e · ν = σc∇yM0,c · ν in Ω× Γm×]0, T [, (3.7)

and for i ≥ 1,

σe∇yMi,e · ν + σe∇xMi−1,e · ν = σc∇yMi,c · ν + σc∇xMi−1,c · ν in Ω× Γm×]0, T [. (3.8)

To write the equivalent condition for the traces, recall that we have assumed that κε = εσm, where
σm > 0 is a constant independent on ε. Now we write the jump relations for traces, using (3.5) and
(3.6) as

+∞∑

i=0

εi+1σm (Mi,e −Mi,c) = ε−1σα∇yM0,α · ν + ε0σα(∇yM1,α · ν +∇xM0,α · ν)

+ε1σα(∇yM2,α · ν +∇xM1,α · ν) +
+∞∑

i=2

εiσα(∇yMi+1,α · ν +∇xMi,α · ν).

3.1.2. Formal limit problem. As usual when performing formal homogenization through
two-scale asymptotic expansions, we only need (as we shall see) to obtain the equations for the first
three terms, M0,α, M1,α and M2,α. The problem for M0,α is then given by

∣∣∣∣∣∣∣

−divy(σα∇yM0,α) = 0 in Yα,

σα∇yM0,α · ν = 0 on Γm,

M0,e is Y − periodic.

(3.9)

Let us recall the following classical lemma (see for instance [5, 6]) on solutions to this type of
problems that will also be useful to derive the macroscopic model.

Lemma 1. Let fc ∈ L2(Yc), fe ∈ L2(Ye), ψc and ψe ∈ H−1/2(Γm). Then, there exists a unique
solution uc ∈ H1(Yc), up to a constant, to

∣∣∣∣∣∣

−divy(σc∇yuc) = fc in Yc,

σc∇yuc · ν = ψc on Γm,

if and only if, for any i ∈ J1, NcK,

∫

Yc,i

fc+ < ψc, 1 >H−1/2(Γm∩∂Yc,i),H1/2(Γm∂Yc,i)= 0,and there

exists a unique solution ue ∈ H1
♯ (Ye), up to a constant, to

∣∣∣∣∣∣∣

−divy(σe∇yue) = fe in Ye,

σe∇yue · ν = ψe on Γm,

ue Y − periodic,
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if and only if, for any i ∈ J1, NeK,

∫

Ye,i

fe− < ψe, 1 >H−1/2(Γm∩∂Ye,i),H1/2(Γm∩∂Ye,i)= 0, where

H1
♯ (Ye) is the space of H1 and Y -periodic functions on Ye.

The above lemma tells us that neither M0,e nor M0,c depend on y. The problem for M1,α is
consequently

∣∣∣∣∣∣∣

−divy(σα(∇yM1,α +∇xM0,α)) = 0 in Yα,

σα∇yM1,α · ν + σα∇xM0,α · ν = 0 on Γm,

M1,e is Y − periodic in the y variable.

(3.10)

Thus, introducing for i = 1, d the cell problems

∣∣∣∣∣∣∣

−divy(σα(∇ywi,α + ei)) = 0 in Yα

σα∇ywi,α · ν + σαei · ν = 0 on Γm

wi,e is Y − periodic,

(3.11)

which are well posed (in appropriate H1 spaces) according to Lemma 1 since, using the divergence
theorem,

∫

Yc

divyσceidy −
∫

Γm

σcei · νds =
∫

Yc

divyσeeidy +

∫

Γm

σeei · νds = 0, (3.12)

one can express the solutions to (3.10) as

M1,α =
d∑

i=1

wi,α
∂M0,α

∂xi
in Yα. (3.13)

Now, we consider the equations satisfied by M2,α where the variables x and t are treated as param-
eters.
∣∣∣∣∣∣∣∣∣∣∣

−divy(σα(∇yM2,α +∇xM1,α)) = divx(σα(∇yM1,α +∇xM0,α))−
∂M0,α

∂t
− ıQf(t)M0,α in Yα,

σe∇yM2,e · ν + σe∇xM1,e · ν = σm(M0,e −M0,c) on Γm,

σc∇yM2,c · ν + σc∇xM1,c · ν = σm(M0,e −M0,c) on Γm,

M2,e is Y − periodic in the y variable.
(3.14)

Using lemma 1, it is easy to see that the compatibility condition for M2,e implies
∫

Ye

divx(σe(∇yM1,e +∇xM0,e))−
∂M0,e

∂t
− ıQf(t)M0,e −

∫

Γm

σm(M0,e −M0,c) = 0, (3.15)

while the compatibility condition for M2,c implies
∫

Yc

divx(σc(∇yM1,c +∇xM0,c))−
∂M0,c

∂t
− ıQf(t)M0,c +

∫

Γm

σm(M0,e −M0,c) = 0. (3.16)

We define the homogenized tensors Dα through

Dα,ij :=
1

|Yα|

∫

Yα

σα∇wj,α · ei + σαej · ei,

i, j = 1, d which can be also expressed in a symmetric form

Dα,ij =
1

|Yα|

∫

Yα

σα(∇wj,α + ej) · (∇wi,α + ei), (3.17)
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since using (3.11),

∫

Yα

σα(∇wj,α + ej) · ∇wi,α = −
∫

Yα

divy(σα(∇wj,α + ej))wi,α = 0.

We also define the two coefficients

ηc :=
σm|Γm|
|Yc|

and ηe :=
σm|Γm|
|Ye|

. (3.18)

Then, using the fact that M0,e and M0,c does not depend on y, we obtain from (3.15) and (3.16)
the macroscopic model

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M0,e

∂t
+ ıQf(t)M0,e − divx(De∇xM0,e) + ηe(M0,e −M0,c) = 0 in Ω×]0, T [,

M0,e(·, 0) =Minit in Ω,

∂M0,c

∂t
+ ıQf(t)M0,c − divx(Dc∇xM0,c) + ηc(M0,c −M0,e) = 0, in Ω×]0, T [,

M0,c(·, 0) =Minit in Ω,

(3.19)

which is a coupled system of modified Bloch-Torrey equations with homogeneous diffusion tensors.

3.2. A simplified macroscopic model. For our setting of the problem where we assumed
that Yc does not touch the boundary of Y the homogenized system (3.19) can be simplified since in
that case Dc = 0. This can be easily seen by checking that wi,c = −yi and therefore ∇ywi,c+ei = 0.
Consequently our model simplifies to

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M0,e

∂t
+ ıQf(t)M0,e − divx(De∇xM0,e) + ηe(M0,e −M0,c) = 0 in Ω×]0, T [,

M0,e(·, 0) =Minit in Ω,

∂M0,c

∂t
+ ıQf(t)M0,c + ηc(M0,c −M0,e) = 0 in Ω×]0, T [,

M0,c(·, 0) =Minit in Ω.

(3.20)

Remark that the equation for M0,c can be solved in terms of M0,e

M0,c(x, t) =MinitGc(x, t, 0) +

∫ t

0

Gc(x, t, s)M0,e(x, s)ds, (3.21)

where we have set

Gc(x, t, s) := exp

(
−
∫ t

s

(ıq · xf(r) + ηc)dr

)
. (3.22)

Thus, we can decouple the system (3.20) into

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M0,e

∂t
+ (ıQf(t) + ηe)M0,e − divx(De∇xM0,e)− ηe

∫ t

0

Gc(t, s)M0,e(s)ds

= ηeMinitGc(t, 0) in Ω×]0, T [,

M0,e(·, 0) =Minit in Ω,

M0,c =MinitGc(t, 0) +

∫ t

0

Gc(t, s)M0,e(s)ds in Ω×]0, T [.

(3.23)

The first equation of (3.23) emphasizes the fact that this macroscopic model will behave quite
differently from a classical Bloch-Torrey equation. In particular, the presence of the integral with
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respect to time gives birth to memory effects for M0,e. Let us also remark that since the boundary
of Y is contained in the boundary of Ye, then the homogenized tensor De is positive definite as
soon as σc is also positive definite [5]. Then we can expect some well posedness of the homogenized
problem. We recall that for simplicity we take Ω = R

d. With this choice, problem (3.20) involves
an unbounded coefficient, namely Q(x), and therefore its analysis is not classical. In particular, it is
not clear in which sense problem (3.20) is to be understood. To make it more precise, we set q = qn,

where n is a unitary vector of Rd, and define M̃α almost everywhere on R
d×]0, T [, for α ∈ {e, c} by

M̃0,α(x, t) =M0,α(x, t)e
iqx·n

∫ t

0

f(s)ds
, (3.24)

denoting q = qn where n is a unitary vector. Then, at least formally, and with F (t) :=
∫ t

0
f(s)ds,

∂M̃0,α

∂t
=

(
∂M0,α

∂t
+ ıqn · xf(t)M0,α

)
eıqn·xF (t),

∇M̃0,α = (∇M0,α + ıqnM0,αF (t)) e
ıqn·xF (t),

div(Dα∇M̃0,α) = (div(Dα∇M0,α) + ıqDα∇M0,α · nF (t)) eıqn·xF (t) + div
(
ıqDαM̃0,α · nF (t)

)
.

Then, since

ıqDα∇M0,α · nF (t)eıqn·xF (t) = ıqDα∇M̃0,α · nF (t) + q2DαM̃0,αF (t)
2,

we get

div(Dα∇M̃0,α) = div(Dα∇M0,α)e
ıqn·xF (t)+ıqDα∇M̃0,α·nF (t)+q2DαF (t)

2M̃0,α+div
(
ıqDαM̃0,α · nF (t)

)
,

and finally obtain

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂M̃0,e

∂t
− div

(
De

(
∇M̃0,e − ıqnF (t)M̃0,e

))
+ ıqDe∇M̃0,e · nF (t) + q2DeF (t)

2M̃0,e

+ηe(M̃0,e − M̃0,c) = 0 in R
d×]0, T [,

∂M̃0,c

∂t
+ ηc(M̃0,c − M̃0,e) = 0 in R

d×]0, T [,

M̃0,e(·, 0) =Minit and M̃0,c(·, 0) =Minit in R
d.

(3.25)

While it may seem a more complicated problem, notice that it does not involve any unbounded
coefficients, and its analysis enters a well-known theoretical framework.

Theorem 1. Let f ∈ L∞(0, T ) and Minit ∈ L2(Ω). We denote H = L2(Ω) × L2(Ω), X =
H1(Ω)× L2(Ω), X

′

= H−1(Ω)× L2(Ω) and

W (0, T,X) =
{
U ∈ L2(0, T,X) | ∂tU ∈ L2(0, T,X

′

)
}

There exists a unique solution M̃ = (M̃e, M̃c) ∈ W (0, T,X) ∩ C0(0, T, L2(Rd))2 to problem (3.25)
which moreover satisfies for some C,C

′

> 0,

||M̃ ||L∞(0,T,H) ≤
√
2eCT ||Minit||H , (3.26)
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and

||M̃ ||L2(0,T,X) ≤ C
′

(1 + eCT )||Minit||H . (3.27)

Proof. We denote < ·, · >H−1,H1 the duality product between H−1(Rd) and H1(Rd) and (·, ·)L2

the scalar product on L2(Rd). If there exists a solution M̃ ∈ W (0, T,X), we can use any function
V ∈ X as a test function for problem (3.25), and we get after formally integrating by parts

∣∣∣∣∣∣∣∣∣∣∣∣

〈
∂tM̃0,e, Ve

〉
H−1,H1

+
(
De∇M̃0,e,∇Ve

)
L2

+
(
ηe(M̃0,e − M̃0,c), Ve

)
L2

−
(
ıqF (t)DeM̃0,en,∇Ve

)
L2

+
(
ıqF (t)De∇M̃0,e · n, Ve

)
L2

+
(
q2F (t)2Den · nM̃0,e, Ve

)
L2

= 0 in D′

(]0, T [),

(
∂tM̃0,c, Vc

)
L2

+
(
ηc(M̃0,c − M̃0,e), Vc

)
L2

= 0 in D′

(]0, T [),

We introduce for almost every t ∈]0, T [, the bilinear form a(·; ·, ·) defined, for every (U, V ) ∈ X2 by

a(t;U, V ) = (De∇Ue,∇Ve)L2 + (ηe(Ue − Uc), Ve)L2 − (ıqF (t)DeUen,∇Ve)L2

+(ıqF (t)De∇Ue · n, Ve)L2 +
(
q2F (t)2Den · nUe, Ve

)
L2

+ (ηc(Uc − Ue, Vc)L2 .

As f ∈ L∞(]0, T [) (and consequently F ∈ L∞(]0, T [)), for every (U, V ) ∈ X2, t 7−→ a(t;U, V ) is
measurable. Moreover, using the Cauchy-Schwarz inequality,

|a(t;U, V )| ≤ ||De|| ||∇Ue||L2 ||∇Ve||L2 + ||De||q||F ||L∞(]0,T [)||Ue||L2 ||∇Ve||L2

+||De||q||F ||L∞(]0,T [)||∇Ue||L2 ||Ve||L2 ||De||q2||F ||2L∞(]0,T [)||Ue||L2 ||Ve||L2

+ηe (||Ue||L2 + ||Uc||L2) ||Ve||L2 + ηc (||Ue||L2 + ||Uc||L2) ||Vc||L2 ,

which globally gives

|a(t;U, V )| ≤ C(ηe, ηc, ||De||, q, F )||U ||X ||V ||X ,

for some constant C(ηe, ηc, ||De||, q, F ) > 0 where X is endowed with its natural Hilbert space norm

||U ||2X := ||Ue||2H1 + ||Uc||2L2 .

Next, we have

a(t;U,U) = (De∇Ue,∇Ue)L2 − ıqF (t) (UeDen,∇Ue)L2 + ıqF (t) (De∇Ue · n, Ue)L2

+q2F (t)2Den · n (U,U)L2 + ηe (Ue − Uc, Ue)L2 + ηc (Uc − Ue, Uc)L2 .

Then,

ℜ(a(t;U,U)) ≥ σ−||∇Ue||2L2 + q2F (t)2σ−||Ue||2L2 − 2q|F (t)|||De||||∇U ||L2 ||U ||L2

+ηe (Ue − Uc, Ue)L2 + ηc (Uc − Ue, Uc)L2 ,

where σ− is such that Deξ ·ξ ≥ σ−||ξ||2 for any ξ ∈ R
d, which exists as De is positive definite. Using

Young’s inequality, we get

ℜ(a(t;U,U)) ≥ σ−

2 ||∇Ue||2L2 + q2F (t)2
(
σ− − 2||De||

2

σ−

)
||Ue||2L2

+
(
ηe − ηe+ηc

2

)
||Ue||2L2 +

(
ηc − ηe+ηc

2

)
||Uc||2L2 .

Then, for any λ > 0, such that for some fixed δ > 0 and almost every t ∈]0, T [,

λ+ q2F (t)2
(
σ− − 2||De||2

σ−

)
− ηe + ηc

2
≥ δ > 0,

11



(such a λ exists as f ∈ L∞(]0, T [),

ℜ(a(t;U,U)) + λ||U ||2L2 ≥ min

(
σ−

2
, δ

)
||U ||2X .

Then, Lion’s theorem (see for instance [14, Chapter XVIII]) ensures the existence and uniqueness
of the solution of the variational problem

∣∣∣∣∣∣∣

d

dt
< M̃(t), V >X′ ,X +a(t; M̃(t), V ) = 0 in D′

(]0, T [), ∀V ∈ X,

M̃(0) =Minit.

(3.28)

Now, in order to get estimates (3.26) and (3.27), we use V = M̃(t) as a test function, which is

possible since M̃ ∈W (0, T,X). We integrate over time, and get

1

2
||M̃0,e(t)||2L2 +

1

2
||M̃0,c(t)||2L2 − ||Minit||2L2 +

∫ t

0

a(s; M̃(s), M̃(s))ds = 0.

Proceeding as the proof of coercivity and using Young’s inequality,

1

2
||M̃0,e(t)||2L2 +

1

2
||M̃0,c(t)||2L2 +

σ−

2

∫ t

0

||∇M̃0,e(s)||2L2ds+ q2σ−

∫ t

0

F (s)2||M̃0,e(s)||2L2ds

+ηe

∫ t

0

||M̃0,e(s)||2L2ds+ ηc

∫ t

0

||M̃0,c(s)||2L2ds ≤ ||Minit||2L2 +
2||De||2q2

σ−

∫ t

0

F (s)2||M̃0,e(s)||2L2ds

+
ηe + ηc

2

∫ t

0

||M̃0,e(s)||2L2ds+
ηe + ηc

2

∫ t

0

||M̃0,c(s)||2L2ds.

(3.29)
In particular,

||M̃(t)||2H ≤ 2||Minit||2L2 +

∫ t

0

(
4||De||2q2

σ−
F (s)2 + (ηe + ηc)

)
||M̃(s)||2Hds.

Then, using Gronwall’s lemma,

||M̃(t)||H ≤
√
2||Minit||L2exp

(
2||De||2q2

σ−

∫ t

0

F (s)2ds+ (ηe + ηc)t

)

≤ 2||Minit||L2exp

(
2||De||2q2||F ||2L∞(]0,T [)

σ−
+ ηe + ηc

)
t,

which implies (3.26). To prove (3.27), we notice that (3.29) yields

∫ t

0

||∇M̃(s)||2Hds ≤
2

σ−
||Minit||2L2 +

∫ t

0

(
4||De||2q2

σ−
F (s)2 + (ηe + ηc)

)
||M̃(s)||2Hds.

Using (3.26), we deduce

∫ t

0

||∇M̃(s)||2Hds ≤
2

σ−
||Minit||2L2

(
1 + exp

[(
4||De||2q2||F ||2L∞(]0,T [)

σ−
+ ηe + ηc

)
t

])
,

which corresponds with(3.27). Finally, using the well-known injection W (0, T,H1) →֒ C0(0, T, L2),
it is now a classical exercise to prove rigorously the equivalence between problems (3.28) and (3.25).
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Now, the multiplication by eıqn·xF (t) and its inverse e−ıqn·xF (t) clearly defines a bijection between
W (0, T,X) with its natural norm

||U ||2W (0,T,X) := ||U ||2L2(0,T,X) + ||∂tU ||2
L2(0,T,X′ )

and the space

W q,f (0, T,X) =
{
U ∈ L2(0, T,X) | ∂q,ft U ∈ L2(0, T,X

′

)
}
,

where ∂q,ft denotes the operator ∂q,ft = ∂t + ıqn · xf(t), if we endow W q,f (0, T,X) with the norm

||U ||2W q,f (0,T,X) = ||U ||2L2(0,T,X) + ||∂q,ft U ||2
L2(0,T,X′ )

.

Thus, the previous result dictates the following notion of solution for problem (3.20):

A variational solution of problem (3.20) is an element M0 = (M0,e,M0,c) of W q,f (0, T,X) ∩
C0(0, T, L2(Rd))2 such that, for any V ∈ X, we have

∣∣∣∣∣∣∣∣

〈
∂q,ft M0,e, Ve

〉
H−1,H1

+ (De∇M0,e, Ve)L2(Rd) + (ηe(M0,e −M0,c), V )L2(Rd) = 0 in D′

(]0, T [),
(
∂q,ft M0,c, Vc

)
L2

+ (ηc(M0,c −M0,e), V )L2(Rd) = 0 in D′

(]0, T [),

M0,e(0) =Minit and M0,c(0) =Minit in R
d.

(3.30)
We immediately deduce from Theorem 1 .

Theorem 2. Let f ∈ L∞(0, T ) and Minit ∈ L2(Ω). There exists a unique variational solution
M = (M0,e,M0,c) ∈W q,f (0, T,X) ∩ C0(0, T, L2(Rd))2 to problem (3.20).

If Ω is bounded, then the previous result also holds true if we replace H1(Ω) by H1
0 (Ω) and we

supplement equations (3.20) by homogeneous Dirichlet boundary conditions forM0,e on ∂Ω. In that
case, the proof can be be conducted directly on M0, as the problem on a bounded domain does not
involve unbounded coefficients anymore.

Remark 1. In the cases where Dc is also positive definite matrix (which corresponds to the
presence of elongated cells or axons), one has to rather consider system (3.19) and Theorem 2 holds
true in this case with H = L2(Ω)× L2(Ω) and X = H1(Ω)×H1(Ω).

From the solution to (3.20) one can built an approximation of the magnetization as

Mε ≈
|Ye|
|Y |M0,e +

|Yc|
|Y |M0,c

This formally account for

Mε ≃M0,e in Ωε
e and Mε ≃M0,c in Ωε

c.

More precisely one can prove that under the hypothesis of Theorem 2,

Mε ⇀
|Ye|
|Y |M0,e +

|Yc|
|Y |M0,c weakly in L2(0, T, L2(Rd)). (3.31)

The proof is given in [11] and uses the periodic unfolding method [9], extended to the time dependent
cases.
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4. An ODE model for the dMRI signal. In this section, we give more details about the
measured signal in a dMRI experiment and we explain how to use the model introduced in the
previous section to obtain an approximation to the signal in a simple manner. In practice, the
diffusion-encoding magnetic field gradient has a time profile that satisfies, at the echo time TE ,

∫ TE

0

f(t)dt = 0, (4.1)

and the signal is measured at t = TE . The measured signal is given by

Sε(q,n) =

∫

Rd

Mε(x, TE) dx.

Then, it is natural to define the approximate signal by:

S(q,n) =

∫

Rd

Me(x, TE) +Mc(x, TE) dx,

where we have set

Me :=
|Ye|
|Y |M0,e and Mc :=

|Yc|
|Y |M0,c. (4.2)

4.1. A coupled ODE model for dMRI’s signals. Let us denote

m0
e =

∫

Rd

Me(x, 0) dx, m0
c =

∫

Rd

Mc(x, 0) dx and m0 =

∫

Rd

Me(x, 0) +Mc(x, 0) dx.

These initial moments will naturally appear in the following and are of great interest for the inverse
problem since

θe =
m0

e

m0
=

|Ye|
|Y | and θc =

m0
c

m0
=

|Yc|
|Y |

represents respectively the extra-cellular volume fraction and the intra-cellular volume fraction. We
now establish that the signal obtained from solving (3.20) can be equivalently obtained by solving
a simpler system of coupled ODEs.

Theorem 3. Under the hypothesis of Theorem 2, if we assume in addition that f satisfies (4.1)
and assume that the Fourier transform of Minit is continuous in the neighborhood of the origin, then
the signal S(q,n) is well defined and can computed as

S(q,n) = m(TE),

where m = me +mc, and (me,mc) ∈ C1(0, TE)
2 is the unique solution of

∣∣∣∣∣∣∣∣∣∣

dme

dt
+ q2σe

(∫ t

0

f(s)ds

)2

me + ηeme − ηcmc = 0,

dmc

dt
+ ηcmc − ηeme = 0,

me(0) = m0
e and mc(0) = m0

c ,

(4.3)

where σe := Den · n.
Proof. Let (M0,e,M0,c) be the unique solution of (3.20) in C0(0, TE , H) ∩W q,f (0, TE , X). We

set again

M̃e(x, t) =Me(x, t)e
ıqn·x

∫ t

0

f(s)ds
and M̃c(x, t) =Mc(x, t)e

ıqn·x

∫ t

0

f(s)ds
.
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Then, as we have seen before, we obtain the system of equations for M̃e and M̃c,

∣∣∣∣∣∣∣∣∣∣∣∣

∂M̃e

∂t
− div(De∇M̃e) + 2ıqDe∇M̃e · n

(∫ t

0

f(s)ds

)

+q2Den · n
(∫ t

0

f(s)ds

)2

M̃e + ηeM̃e − ηcM̃c = 0 in Ω×]0, TE [,

∂M̃c

∂t
+ ηcM̃c − ηeM̃e = 0 in Ω×]0, TE [,

(note that we used here the identity ηeθe = ηcθc) with the initial conditions

M̃e(·, 0) = θeMinit, M̃c(·, 0) = θcMinit in Ω.

We denote byMe andMc the Fourier transform with respect to the space variable of respectively M̃e

and M̃c and denote the dual variable ξ. Applying the Fourier transform to the system of equations
satisfied by M̃e and M̃c yields

∣∣∣∣∣∣∣∣∣∣∣∣

∂Me

∂t
+Deξ · ξMe − 2qDeξ · nMe

(∫ t

0

f(s)ds

)

+q2Den · n
(∫ t

0

f(s)ds

)2

Me + ηeMe − ηcMc = 0 in Ω×]0, TE [,

∂Mc

∂t
+ ηcMc − ηeMe = 0 in Ω×]0, TE [.

From our hypothesis, Me(·, 0) and Mc(·, 0) are continuous functions. We therefore deduce from
classical standard results on parametric first order linear differential systems that Me and Mc

belong to C1([0, TE ], C
0(Ω)). We set

me(t) := Me(0, t) and mc := Mc(0, t),

which can be formally written as

me(t) =

∫

Rd

M̃e(x, t) dx and mc(t) =

∫

Rd

M̃c(x, t) dx (4.4)

where the integrals has to be understood as duality pairing in the distributional sense. We observe
that, for ξ = 0, the above system of equations directly implies

∣∣∣∣∣∣∣∣

dme

dt
+ q2σe

(∫ t

0

f(s)ds

)2

me + ηeme − ηcmc = 0,

dmc

dt
+ ηcmc − ηeme = 0,

with σe = Den · n. Finally, for the signal we have for α = e, c, using

∫ TE

0

f(s)ds = 0,

∫

Rd

Mα(x, TE)dx =

∫

Rd

M̃α(x, TE)e
−ıqn·x

∫ TE

0

f(s)ds
dx =

∫

Rd

M̃α(x, TE) = mα(TE)

which concludes the proof.
Our ODE model is reminiscent of the so-called Karger model [22]. In fact, the latter can be

seen as a special case of our model when the pulse duration δ is very small compared to the interval
between the two pulses, in other words, δ ≪ ∆. However, this assumption is not always true in
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dMRI experiments due to safety concerns and/or hardware limitations. In addition, the Karger
model is obtained heuristically, whereas we derived the ODE model of (4.3) more rigorously from
the microscopic Bloch-Torrey PDE.

Remark 2. Indeed, for the general case where Dc 6= 0, the system (4.3) has to be replaced with

∣∣∣∣∣∣∣∣∣∣∣

dme

dt
+ q2σe

(∫ t

0

f(s)ds

)2

me + ηeme − ηcmc = 0,

dmc

dt
+ q2σc

(∫ t

0

f(s)ds

)2

mc + ηcmc − ηeme = 0,

me(0) = m0
e and mc(0) = m0

c ,

(4.5)

where σc = Dcn · n.

4.2. Analytic expansion of the ODE model solution. We extend the definition of our
ODE model for any complex number z as

∣∣∣∣∣∣∣∣∣∣

dme(z, ·)
dt

(t) + zσe

(∫ t

0

f(s)ds

)2

me(z, t) + ηeme(z, t)− ηcmc(z, t) = 0,

dmc(z, ·)
dt

(t) + ηcmc(z, t)− ηeme(z, t) = 0,

me(z, 0) = m0
e and mc(z, 0) = m0

c .

(4.6)

The solutions (me(z),mc(z)) belong to C1(0, TE) and thus to L∞(0, TE). It is quite easy to see that
(me(·, t),mc(·, t)) can be differentiated with respect to z for any z ∈ C. Then me(·, t) and mc(·, t)
are holomorphic on all C and admit an expansion of the form

me(z, t) =
+∞∑

n=0

znme,n(t) and mc(z, t) =
+∞∑

n=0

znmc,n(t).

Inserting these expansions in (4.3), straightforward calculations lead to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

me,0(t) =
ηc(m

0
e +m0

c)

ηe + ηc
+
ηem

0
e − ηcm

0
c

ηe + ηc
e−(ηe+ηc)t,

mc,0(t) =
ηe(m

0
e +m0

c)

ηe + ηc
− ηem

0
e − ηcm

0
c

ηe + ηc
e−(ηe+ηc)t,

me,n(t) = − σe
ηe + ηc

∫ t

0

(∫ s

0

f

)2 (
ηee

−(ηe+ηc)(s+t) + ηc

)
me,n−1(s)ds,

mc,n(t) = − σeηe
ηe + ηc

∫ t

0

(∫ s

0

f

)2 (
1− e−(ηe+ηc)(s+t)

)
me,n−1(s)ds.

(4.7)

This allows us to obtain an expansion of the measured signal with respect to z as

S(
√
z,n) = m0 −

+∞∑

n=1

σez
n

∫ TE

0

(∫ t

0

f

)2

me,n−1(t)dt. (4.8)

It is difficult to use this expression to get explicit links between measured signals and tissue properties
in the general case. For instance, the first term of this expansion leads to, using S(0,n) = m0,

log
S(q,n)

S(0,n)
= −σeq

2

m0

∫ TE

0

(∫ t

0

f

)2

me,0(t)dt+O(q4).
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If we use the relation ηem
0
e−ηcm0

c = 0 (verified by the homogenized coefficients due to (3.18)), then
we simply have

log
S(q,n)

S(0,n)
= −σeθeq2

∫ TE

0

(∫ t

0

f

)2

+O(q4).

The product σeθe can then be estimated directly by computing the slope of the log of the measured
signal. The higher order terms give much more involved relations and we do not pursue this.

4.3. Numerical validation of the ODE model. Now we will compare our macroscopic
model to the two compartments microscopic model, using very simple geometries and biologically
reasonable parameters for the intrinsic diffusion coefficients and the membrane permeability. Simu-
lations on more complex cellular geometries will be the subject of a future paper.

We will take the commonly used PGSE diffusion-encoding sequence in (2.1). By construction, we
have:

∫ TE

0

f(t)dt = 0,

and for simplicity we will take TE = δ +∆.
The dMRI signal can be measured for several values of q, δ, ∆ and directions n. We will

consequently denote by S(q, δ,∆,n) the signal to emphasize this dependency and also normalize
this signal by dividing it by

∫
Rd Minitdx. It is common in the dMRI community not to display

S(q, δ,∆,n) as a function of q, but as a function of the so called b-value:

b(q) := q2
∫ ∆+δ

0

(∫ t

0

f(s)ds

)2

dt = q2δ2
(
∆− δ

3

)
.

To understand why this quantity is used, notice that in the case of a single Bloch-Torrey equation
in R

d with a constant diffusion tensor D,
∣∣∣∣∣∣

∂M

∂t
+ iqn · xf(t)M − divx(D∇xM) = 0 in R

d×]0, TE [,

M(·, 0) =Minit in R
d,

the Fourier transform M̂ is the solution of:
∣∣∣∣∣∣

∂M̂

∂t
− f(t)qn · ∇ξM̂ + ξTDξM̂ = 0 in R

d×]0, TE [,

M̂(·, 0) = M̂init in R
d.

This problem can easily be solved using the method of characteristics, and we obtain:

M̂(ξ, t) = M̂init

(
ξ + qn

∫ t

0

f(s)ds

)
exp

(
−
∫ t

0

D

(
ξ + qn

∫ t

s

f(µ)dµ

)
·
(
ξ + qn

∫ t

s

f(µ)dµ

)
ds

)
.

Then, since
∫
Rd M(x,∆+ δ)dx = M̂(0,∆+ δ), we can get, in this particular case, an expression for

the corresponding normalized signal:

S̃(q, δ,∆,n) := (
∫
Rd M(x,∆+ δ)dx)/(

∫
Rd Minit(x)dx) = M̂(0,∆+ δ)/M̂init(0),

that simplifies to, using
∫∆+δ

0
f(s)ds = 0,

S̃(q, δ,∆,n) = exp

(
−q2Dn · n

∫ ∆+δ

0

(∫ s

0

f(µ)dµ

)2

ds

)
= exp (−(Dn · n)b(q)) .
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We then observe that log(S̃(q, δ,∆,n)) is a linear function of the b-value and the slope of this linear
function is −(Dn · n), which gives access to the coefficients of the tensor D by varying n.

We now provide some numerical results using biologically reasonable values for the intrinsic diffu-
sion coefficients and the membrane permeability on some simple geometries. We compare the signal
obtained using the system of ODEs (4.3) to the signal obtained by solving the two-compartment
periodic PDE model (2.4).

Since (2.4) is a problem on R
d, we cannot numerically solve it for arbitrary initial condition.

For the numerical simulations we will rather consider the case of constant Minit. It can be easily
shown that a solution of (2.4) is quasi-periodic in space, with period ε and quasi-periodic coefficient

exp(−ıεqi
∫ t

0
f(s)ds) in each direction ei. Thus, if we extend the definition of a normalized signal as

Sε = lim
N→∞

∫
ΩN

Mε(x, TE)dx∫
ΩN

Minit(x)dx
,

where ΩN denotes the union of N cells, one gets, for constant Minit,

Sε =
1

Minit|Yε|

∫

Yε

Mε(x, TE)dx,

where Yε denotes a given periodicity cell. Then one can reduce the computations to only one
periodicity cell with quasiperiodidicty condition. For the homogenized model we indeed equivalently
extend the definition of the normalized signal S similarly to Sε by replacingMε with the homogenized
field M . Even if the case of constant initial conditions does not enter into the previous theoretical
framework (initial conditions is not L2(Rd)) one can easily verify that if we denote (me,mc) the
solution of (4.3) associated with the initial conditions:

me(0) = θe and mc(0) = θc,

then

Me(x, t) =Minitme(t)e
−ıq·x

∫ t

0

f(s)ds
and Mc(x, t) =Minitmc(t)e

−ıq·x

∫ t

0

f(s)ds

correspond, through (4.2), with (M0,e,M0,c), solution of (3.20). One then easily check that the
normalized signal is still given by S(q, δ,∆,n) = me(TE) +mc(TE).

We test two situations in dimension 2, for simplicity. One is a single circular biological cell of radius
Rm placed at the center of the periodicity cell, for several values of ∆, in the gradient direction
ex. The second one is the case of several circular biological cells of variable radii, in two gradient
directions, ex and ey. We solve the ODE model (4.3), along with the periodic reference model (2.4)
on a very refined mesh. Both computations are performed using FreeFem++ [33].

A comparison of the signals obtained from the exact and approximate models is displayed on
Figures 4.1 and 4.2, where the values of the model parameters are indicated. These values are chosen
close to the values used often in the literature [47, 16] for dMRI numerical simulations. We can see
on these figures that the ODE model (4.3) provides an excellent approximation when modeling the
dMRI signal at all four diffusion times: ∆ = 5, 15, 25, 35 ms. In particular, this approximate model
accurately reproduces the ’curvature’ of the signal: the obtained signals with the two models are
indeed not a single exponential (the log is not a straight line), as it would be in the case of single
Bloch-Torrey equation without membranes. This phenomenon, well-known in the medical imaging
community, can be reinterpreted from the ODE model: it is the fact that we have two coupled
equations that induces this memory-like effect (see the end of Section 3).

5. The inverse problem : retrieving macroscopic properties of tissues from dMRI

measurements. Now that we have checked that our ODE model accurately reproduces the dMRI
signal in the example geometries, the natural idea is to check whether we can retrieve the coefficients
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(a) ∆ = 5ms. (b) ∆ = 15ms.

(c) ∆ = 25ms. (d) ∆ = 35ms.

Fig. 4.1. Normalized signals for a single circular biological cell of radius Rm = 0.49µm in a periodicity cell of
1µm3, with σe = 3× 10−3mm2/s, σc = 1.6× 10−3mm2/s, κ = 5× 10−5m/s, δ = 3.5ms, n = ex, for various ∆.

of our ODE model from the measured signals, i.e. if we can solve the inverse problem of finding the
unknown coefficients β = (ηe, ηc, De,me,0,mc,0). These coefficients are of great practical importance.
Indeed, from initial moments, we can recover the cellular volume fractions, thus giving information
on the concentration of cells, or their potential swelling. The coupling coefficients are also a way
to obtain information on the permeability of cellular membranes, which is a very difficult quantity
to measure in practice, while the homogenized diffusion tensor may give some information on the
orientation distribution of elongated cells, for instance.

Let (Si)1≤i≤Nexp
be a set of measures. For instance, we can take

Si = S(qi, δi,∆i,ni)

where S is the signal from the homogenized model, or

Si = Sε(qi, δi,∆i,ni)

where we use measures obtained from the two compartment microscopic model.
A natural way to formulate the inverse problem is to solve the least squares problem: find
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(a) n = ex (b) n = ey

(c) periodicity cell of 1µm3

containing 4 biological cells

Fig. 4.2. Normalized signals and the periodicity cell, with σe = 3 × 10−3mm2/s, σc = 1.6 × 10−3mm2/s,
κ = 5× 10−5m/s, δ = 3.5ms, ∆ = 5ms, n = ex and ey.

β = (ηe, ηc, De,me,0,mc,0) which minimizes the functional

G(β) =

Nexp∑

i=1

|S(qi, δi,∆i,ni)− Si|2.

This problem can be tackled numerically using one of the many methods in the literature for solving
inverse problems using least squares. As our purpose here is to illustrate the feasibility of this inverse
problem, we have chosen to use the well tested interior-reflective Newton method described in [13]
and [12] and implemented in Matlab under the name lsqnonlin. To generate the measures, we
have used the following values for the physical parameters,

σe = 3× 10−3mm2/s, σc = 1.6× 10−3mm2/s, κ = 5× 10−5m/s,

and computed the signals from the models (4.3) and (2.4) in the directions ex and ey, for qi =
0.000015×i×106(mm×ms)−1, i = 0, 1, · · · , 25, and for (δ,∆) = (3.5, 5), (3.25, 7.5), (3, 10), (2.75, 12.5)ms.
We now provide results for the two examples described in the previous section.

First, we consider the case of a single circular biological cell of radius Rm = 0.49µm. To solve our
minimization problem, we use a random starting set of parameters β0 that are at most 50% different
in the l∞ norm from the exact set of parameters β∗ we are looking for. We provide results for several
values of β0 on Table 5.1 (we display (ηe, ηc, θc, De(0, 0), De(0, 1), De(1, 0), De(1, 1)) in each entry of
the table, as it is equivalent in our case to knowing θc and m0 = S(0, δi,∆i,ni) or me,0 and mc,0).
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Type of data Initial guess Homogenization Inversion

Non-homogenized signal Sε

0.00073
0.00021
0.90

0.0011
2.3 10−9

2.18 10−9

0.0014

0.00062
0.00020
0.75
0.0009
3.3 10−9

3.3 10−9

0.0009

0.00083
0.00024
0.88
0.0011
2.3 10−9

2.1 10−9

0.0011

Non-homogenized signal Sε

0.00042
0.00011
0.80

0.0012
3.9 10−9

2.3 10−9

0.000785

0.00062
0.00020
0.75
0.0009
3.3 10−9

3.34 10−9

0.00090

0.00049
0.00021
0.72
0.0008
3.9 10−9

2.30 10−9

0.00084

Homogenized signal S

0.00076
0.00024
0.79

0.0007
2.8 10−9

4.1 10−9

0.00065

0.00062
0.00020
0.75
0.0009

3.34 10−9

3.34 10−9

0.00090

0.00067
0.00021
0.75

0.00095
2.82 10−9

4.11 10−9

0.00095

Homogenized signal S

0.00062
0.00016
0.97

0.0010
3.34 10−9

3.28 10−9

0.00066

0.00062
0.00020
0.75
0.0009

3.34 10−9

3.34 10−9

0.00090

0.00089
0.00022
0.90
0.0011

3.34 10−9

3.28 10−9

0.0011

Table 5.1

Numerical inversion for the case of a single circular biological cell, for two randomly chosen inital sets β0

We see from these results that, as can be expected, the estimated parameters are closer to the
real, homogenized values, when we use the signals from model (4.3) than when we use the non-
homogenized signal coming from model (2.4). Indeed, the modeling error, corresponding to the fact
that (4.3) is an approximation of (2.4) and thus the signals coming from these two models, while
being close, are not equal, can be reinterpreted as (2.4) providing ”noisy” data when we try to solve
the inverse problem for (4.3).

It can also be observed on Table 5.1 that the quality of the estimated coefficients seems to depend
on our initial guess. To limit the effect of this arbitrary choice, we have solved the inverse problem
for several initial guesses, and took the values of the estimated coefficients that correspond to the
smallest residual. Results are displayed on Table 5.2. We see on Table 5.2 that the results are in this
case more robust, and that we obtained a quite good approximation of our homogenized coefficients.
To further improve the results, we notice that:

ηe
ηc

=
θc
θe

=
θc

1− θc
and mc,0 = θcm0,
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Type of data Initial guesses Homogenization Inversion

Non-homogenized signal Sε 10

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00085
0.00023
0.60

0.00117
7.28 10−9

10.27 10−9

0.00117

Non-homogenized signal Sε 15

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00064
0.00022
0.69

0.00097
7.81 10−9

6.01 10−9

0.00097

Non-homogenized signal Sε 20

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00063
0.00022
0.70

0.00096
6.88 10−9

11.06 10−9

0.00096364

Homogenized signal S 10

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00081
0.00022
0.95

0.00106
7.37 10−9

10.35 10−9

0.00106

Homogenized signal S 15

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00063
0.00020
0.74

0.00091
9.36 10−9

9.96 10−9

0.00091

Table 5.2

Numerical inversion for the case of a single circular biological cell, using several initial sets β0.

and consequently:

mc,0 =
ηem0

ηe + ηc
.

Thus, we can eliminate mc,0 in our inversion process. We reproduce the above study after this
elimination. We display on Table 5.3 the inversion from one randomly chosen set of initial guesses,
while on Table 5.4 we again display the values of the estimated parameters that correspond to the
smallest residual from several randomly chosen initial guesses. We see on these two Tables that the
estimated parameters are much closer to the exact homogenized values when we use this constraint,
even when using a single randomly chosen initial guess (the results being of course still better when
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Type of data Initial guess Homogenization Inversion

Non-homogenized signal Sε

0.00060
0.00030

0.00059
4.52 10−9

3.82 10−9

0.00079

0.00062
0.00020
0.75

0.00090
3.34 10−9

3.34 10−9

0.00090

0.00056
0.00022
0.72

0.000897
4.52 10−9

3.82 10−9

0.000897

Non-homogenized signal Sε

0.00043
0.00019

0.000887
2.07 10−9

3.64 10−9

0.00066

0.00062
0.00020
0.75

0.00090
3.34 10−9

3.34 10−9

0.00090

0.00052
0.00021
0.71

0.00087
2.07 10−9

3.64 10−9

0.00087

Homogenized signal S

0.00074
0.00020

0.00087
3.40 10−9

2.5 10−9

0.00071

0.00062
0.00020
0.75

0.00090
3.34 10−9

3.34 10−9

0.00090

0.00070
0.00021
0.77

0.00096
3.99 10−9

2.5031 10−9

0.00096

Homogenized signal S

0.00032
0.00030

0.00060
2.02 10−9

2.91 10−9

0.00063

0.00062
0.00020
0.75

0.00090
3.34 10−9

3.34 10−9

0.00090

0.00055
0.00020
0.74

0.00084
2.02 10−9

2.91 10−9

0.00084

Table 5.3

Numerical inversion for the case of a single circular biological cell, for two randomly chosen inital sets β0, using
the constraint θc = ηe

ηe+ηc
.

we use several initial guesses). Thus, it seems that adding this constraint can improve parameter
estimation when solving the inverse problem.

Finally, we display on Table 5.5 the results obtained for the periodicity cell of Figure 4.2, where
there are 4 circular biological cells of different sizes, with the parameters :

σe = 3× 10−3mm2/s, σc = 1.6× 10−3mm2/s, κ = 5× 10−5m/s,

and obtained the dMRI signal for the same input parameters, q, n, δ, ∆, as previously. We use the
aforementioned constraint and several initial guesses, taking again the results corresponding to the
smallest residual. We see that even in this more complicated situation, the inverse problem can still
be solved to give good estimates of the model parameters.

6. Discussion of two assumptions made in the derivation of the macroscopic model.

Now we discuss two assumptions we made on the volume Ω for which we formulated our macroscopic
model in the context of biological tissue dMRI. One assumption is that Ω is periodic with a period
ε that is small compared to the size of Ω. The second is that Ω can be taken to be R

d. The first
assumption was made so that we could apply periodic homogenization theory, which is technically
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Type of data Initial guesses Homogenization Inversion

Non-homogenized signal Sε 10

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00055
0.00022
0.72

0.00089
8.13 10−9

4.97 10−9

0.00089

Homogenized signal S 10

0.00062
0.00020
0.75

0.00090
7.39 10−9

7.39 10−9

0.00090

0.00059
0.00020
0.745
0.00087

10.35 10−9

10.63 10−9

0.00087

Table 5.4

Numerical inversion for the case of a single circular biological cell, using several intial sets β0, under the
constraint θc = ηe

ηe+ηc
.

Type of data Initial guesses Homogenization Inversion

Non-homogenized signal Sε 10

0.00045
0.00046
0.51
0.0019

7.78 10−6

7.78 10−6

0.00175

0.00032
0.00038
0.45

0.0018
8.18 10−6

4.15 10−6

0.00159

Homogenized signal S 10

0.00048
0.00046
0.51
0.0019

7.78 10−6

7.78 10−6

0.00175

0.00046
0.00045
0.50

0.0019
9.55 10−6

6.64 10−6

0.0017

Table 5.5

Numerical inversion for the case of the periodicity cell of Figure 4.2, using several intial sets β0, under the
constraint θc = ηe

ηe+ηc

simpler than the generic case. The second assumption was made purely for the simplicity of pre-
sentation, and for obtaining an ODE system governing the dMRI signal of the macroscopic PDE
model. We discuss them in turn.

In this paper, we applied periodic homogenization theory, which technically simpler than the
generic (non-periodic) case. Clearly, biological tissue is not periodic with any period, however, it is
known in some similar contexts (see for instance [1] and [2] for the case of porous media) that even
for media that are not truly periodic, the homogenized limit obtained in the periodic case remains
formally relevant for describing generic (non periodic) cases, i.e. the obtained macroscopic equations
for both configurations have the same analytical form (only the exact values of the coefficients would
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change). We conjecture that this is also true for our model but showing this is beyond the scope
of this paper. We just note that the pheonomenologically derived macroscopic Karger model has
the same form (but different coefficients) as the macroscopic signal model we derive here, and has
been widely used by MR physicists already in tissue dMRI (references given in Section 1). In fact,
a validation of the Karger model by numerical simulations on a computational domain that is not
periodic was performed in [15].

Now, concerning taking Ω to be R
d, what is meant by this, in the case when Ω is not itself

periodic, is actually the periodic extension of Ω to R
d. To obtain the dMRI signal in a specific

voxel V one should sum the water proton magnetization inside V at the echo time. Thus it suffices
to consider the volume Ω to contain V and a buffer region around V . The buffer region contains
parts of the voxels close to V . The width of the buffer region should be a small multiple of the
diffusion distance. In this way, one would have accounted for essentially all the water molecules that
enter, exit, or stay in V during the diffusion time. The spatial integral for the dMRI signal should
be taken over V only. Then the boundary condition on ∂Ω: Dirichlet, Neumann, periodic, etc.,
has insignificant effect on the dMRI signal because we created a large enough buffer around V . At
physically realistic dMRI diffusion times of 10-100 ms, the average diffusion distance is, assuming
an average diffusivity of 10−3mm2/s [30], between 8-25 µm. Thus, the width of the buffer region is
much smaller than the side lengths of a voxel (around 1 mm), and there is very little influence on the
dMRI signal in V from adjacent voxels, all the more so if there is not a large tissue variation between
adjacent voxels. One can then simply place copies of V next to it rather than the true neighboring
voxels to get the signal in V , meaning: Ω can be taken to be exactly V , and periodic conditions can
be put on V . The error associated with a periodic extension of the voxel (instead of using the true
neighboring voxels) will be small. We illustrate this point below with a numerical example. Very
importantly, the choice of periodic boundary conditions on Ω = V has the advantage of enabling
the formulation of a system of ODEs for dMRI signal, which is not the case if we imposed Dirichlet
or Neumann boundary conditions on Ω ⊃ V .

Let V = [−500µm, 500µm]2 be a voxel, and let B = [−750µm, 750µm]2 contain V and a buffer
region around V . We placed 20000 circular biological cells in B whose centers are uniformly randomly
distributed in B. The radii of the circles were chosen randomly with uniform distribution between
1 and 5 µm. Thus, B itself is not a periodic domain. See Figure 6.1(a). We computed the dMRI
signal in V for the PGSE sequence, δ = 80 ms and ∆ = 80 ms, in two different ways. One is
solving the microscopic Bloch-Torrey PDE in B, with periodic conditions on ∂B. The second is
solving the microscopic PDE in V , with periodic conditions on ∂V . The spatial integral of the PDE
solutions was taken over V in both cases to produce the dMRI signal in V . The intrinsic diffusion
coefficient is 3× 10−3mm2/s inside and outside the biological cells. The membrane permeability is
κ = 10−5m/s. In Figure 6.1(b) we see that the two dMRI signals are indistinguishable at the diffusion
time simulated. The diffusion distance is bounded by

√
4× 3× 10−3mm2/s× 160ms ≈ 44µm, which

is small compared to 1 mm, the side length of V . This gives numerical support to our claim that
even though it is more strictly correct to use the domain B and sum the magnetization over V ,
the numerical difference compared with using the domain V with periodic conditions on ∂V is
insignificant, due to the fact that the diffusion distance is much smaller than the size of the voxel in
tissue dMRI.

7. Conclusion. We have formulated a new macroscopic model for the complex transverse
water proton magnetization in a voxel due to diffusion-encoding magnetic field gradient pulses for
diffusion MRI in biological tissue. This new model, derived through periodic homogenization of
the two-compartment Bloch-Torrey equation, reproduces the memory effects commonly observed
experimentally, and explains it as the influence of cellular membranes on the diffusion of water. In
addition, by choosing periodic boundary conditions on the boundary of the voxel, we showed that
the dMRI signal can be obtained after solving a system of ODEs. The advantage of formulating the
ODE model for the dMRI signal is that quantitative macroscopic information on the probed tissue
can be easily obtained through solving the inverse problem using the ODE model. We provided a
preliminary numerical investigation of the inverse problem and showed the feasibility and relative
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(a) Voxel and larger domain (b) DMRI signals

Fig. 6.1. (a) The voxel V = [−500µm, 500µm]2 and a larger domain B = [−750µm, 750µm]2 containing V
and a buffer region around V . There are 20000 circular biological cells in B whose centers are uniformly randomly
distributed in B. The radii of the circles were chosen randomly with uniform distribution between 1 and 5 µm.
(b) The dMRI signals in V obtained by solving the microscopic PDE in B and in V subject to periodic boundary
conditions are indisguishable. The signals are computed by integrating the PDE solutions over V . The intrinsic
diffusion coefficient is 3 × 10−3mm2/s both inside and outside the biological cells. The membrane permeability is
κ = 10−5m/s. The gradient direction is ex.

accuracy of this procedure for synthetically generated dMRI signal data.

We only considered the case where the biological cells are of a small size (which corresponds to
Dc = 0 in our model). Numerical investigations of this approach for more complex cell geometries
(including elongated cells) and three dimensional configurations will be the subject of a future work.
While the model we develop in this paper supposes Gaussian diffusion in each compartment, one
possible way of generalizing this model is to make the diffusion in each compartment non-Gaussian.

On the mathematical side, we only provided a formal justification of the periodic model. A
complete mathematical justification of the homogenization process is the object of a separate pub-
lication [11]. For the inverse problem, studying the uniqueness and robustness of determining the
coefficients of the ODE model from noisy data is another future direction of research.
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[6] H. Brezis, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983.
[7] Steren Chabert, Nicolas Molko, Yann Cointepas, Patrick Le Roux, and Denis Le Bihan, Diffusion

tensor imaging of the human optic nerve using a non-cpmg fast spin echo sequence, J. Magn. Reson.
Imaging, 22 (2005), pp. 307–310.

[8] H. Cheng and S. Torquato, Effective conductivity of periodic arrays of spheres with interfacial resistance,
Proceedings: Mathematical, Physical and Engineering Sciences, 453 (1997), pp. 145–161.

[9] D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, SIAM J.
Math. Anal. 40, pp. 1585-1620, (2012).

26



[10] Chris A. Clark and Denis Le Bihan, Water diffusion compartmentation and anisotropy at high b values in
the human brain, Magn. Reson. Med., 44 (2000), pp. 852–859.
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