
HAL Id: inria-00410932
https://hal.inria.fr/inria-00410932v4

Submitted on 31 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Lagrangian Method for Downscaling
Problems in Computational Fluid Dynamics

Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-Francois Jabir,
Antoine Rousseau

To cite this version:
Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-Francois Jabir, Antoine Rousseau. Stochastic
Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics. ESAIM: Mathe-
matical Modelling and Numerical Analysis, EDP Sciences, 2010, Special Issue on Probabilistic methods
and their applications, 44 (5), pp.885-920. �10.1051/m2an/2010050�. �inria-00410932v4�

https://hal.inria.fr/inria-00410932v4
https://hal.archives-ouvertes.fr


ESAIM: M2AN 44 (2010) 885–920 ESAIM: Mathematical Modelling and Numerical Analysis

DOI: 10.1051/m2an/2010046 www.esaim-m2an.org

STOCHASTIC LAGRANGIAN METHOD FOR DOWNSCALING PROBLEMS

IN COMPUTATIONAL FLUID DYNAMICS

Frédéric Bernardin1, Mireille Bossy2, Claire Chauvin3, Jean-François Jabir4

and Antoine Rousseau5

Abstract. This work aims at introducing modelling, theoretical and numerical studies related to a
new downscaling technique applied to computational fluid dynamics. Our method consists in building
a local model, forced by large scale information computed thanks to a classical numerical weather
predictor. The local model, compatible with the Navier-Stokes equations, is used for the small scale
computation (downscaling) of the considered fluid. It is inspired by Pope’s works on turbulence, and
consists in a so-called Langevin system of stochastic differential equations. We introduce this model and
exhibit its links with classical RANS models. Well-posedness, as well as mean-field interacting particle
approximations and boundary condition issues are addressed. We present the numerical discretiza-
tion of the stochastic downscaling method and investigate the accuracy of the proposed algorithm on
simplified situations.
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Introduction

In this paper we provide an overview of a new (and currently progressing) approach for the downscaling in
Computational Fluid Dynamics (CFD). For numerous practical reasons (computational cost, modelling consid-
erations, etc.), one may be interested in increasing the resolution in a given subdomain, from the simulation of
a flow on a larger domain.
Two main issues arise, namely the choice of a local model and its interaction with the largest scales, defining

a downscaling model in the considered subdomain. These issues have been widely studied by the community
of geophysicists and applied mathematicians as long as deterministic tools are used. Among others, let us
quote the Adaptative Mesh Refinement (AMR, [24]) and Large Eddy Simulations (LES, [32]) methods. In all
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Dcoarse

D

Figure 1. The domain of interest D is embedded in a wider domain Dcoarse.

the deterministic methods, the principal issue relies in the choice of the parameterization that simulates the
small scales.
In this work, we consider a new approach for the downscaling in CFD, although the authors are particularly

interested in applications to meteorology, in collaboration with physicists (see [1]). The local model that
we propose is inspired from Pope’s previous works on turbulence (see [25,28]): it consists in modelling the
fundamental equations of fluid motion by a stochastic Lagrangian model describing the behaviour of a fluid
particle. Because of the both Lagrangian and stochastic nature of our model, it is discretized thanks to an
interacting particle system, combining a time Euler scheme for stochastic differential equations and a Monte-
Carlo approximation method, as we will explain later on. The two main issues that were described above, namely
the choice of a local model and the large scale forcing, need to be revisited with the stochastic viewpoint. The
objective of this paper is to discuss them.
Let us set the framework: suppose that we have a large-scale model that is run over a wide domain Dcoarse

at a given (coarse) resolution (see Fig. 1). Suppose that we are particularly interested on the computation in
a subdomain D ⊂ Dcoarse, but that we want this simulation at a more precise resolution. The objective of a
downscaling technique is to use data provided by the large-scale model at the boundary of D, in order to force
a local model (to be defined) that will be used for the small-scale simulation in the subdomain D.
Instead of using the well-known Reynolds Averaged Navier Stokes model (1.8), we consider the stochastic

Lagrangian model (1.1). We want here to underline the Lagrangian nature of our model. Indeed, contrarily
to the deterministic model (1.8), the quantity of interest 〈U〉 is not computed as the solution of a (system of)
PDE(s), but as the average of particle velocities, the pseudo-fluid particles being subjected to the system of
SDEs (1.1). To the best of our knowledge, this approach has never been used as a downscaling technique; it
raises several original and difficult problems from the theoretical and numerical viewpoints. The objective of
this paper is to discuss them.
The paper is organized as follows. In Section 1, we present the particle model used for the stochastic

downscaling method. In particular, we justify the choice of this model thanks to a link with classical k − ε
models. We further discuss the theoretical and numerical issues related to the model: Section 2 is devoted to
the theoretical results obtained so far on the model, particularly as far as the boundary conditions are concerned
(confinement problem). Well-posedness, as well as mean-field interacting particle approximations and boundary
condition issues are addressed. We present in Section 3 the numerical discretization of the downscaling method,
and investigate in Section 4 the accuracy of the proposed algorithm on simplified situations.
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1. Foundations of the stochastic downscaling method (SDM)

This section is devoted to the description of the Stochastic Downscaling Method, denoted SDM in the sequel,
in the framework of turbulence modelling of an incompressible flow with constant mass density. Consider the
computational domain D as an open bounded subset of R

3. Along its boundary ∂D, we denote by Uext a
deterministic Eulerian velocity field provided by experimental measures, by statistics or by a numerical weather
predictor on a coarser grid. In order to model the flow in D, we consider a couple of stochastic processes (X,U)
that respectively describe the location and the velocity of a generic fluid-particle. The evolution of (X,U) is
governed by the following system of stochastic differential equations (SDEs):






Xt = X0 +
∫ t

0
Us ds,

Ut = U0 −
∫ t

0
1
̺∇x〈P〉(s,Xs) ds+

∫ t

0

(
1
2 +

3
4C0

) εL(s,Xs)
kL(s,Xs) (E [Us/Xs]− Us) ds

+
∫ t

0

√
C0εL(s,Xs) dWs + 2

∑

0<s≤t

(Uext(s,Xs)− Us−) {Xs∈∂D}, ∀ t ∈ [0, T ].
(1.1)

Here W is a standard Brownian motion valued on R
3, C0 is a prescribed positive constant, and (X0,U0) are

random variables whose probability law µ0 is given. The term E [Ut/Xt] denotes the expected velocity field Ut

of particles conditioned by position Xt. The parameter ̺ is the mass density of the fluid (which is assumed to
be constant).
We introduce in the Lagrangian modelling (1.1) the boundary forcing

∑
0<s≤t (Uext(s,Xs)− Us−) {Xs∈∂D}

for our downscaling purpose: first it maintains the particle inside D, second it forces the mean of Lagrangian
velocities to coincide with the Eulerian data Uext(t, x) at the boundary. Indeed, when the particle hits the
boundary of the computational domain D, its velocity is instantaneously reflected (see Sects. 3 and 4 below) in
such a way that the expected velocity satisfies the Dirichlet boundary condition on ∂D:

E [Ut / Xt = x] = Uext(t, x), for a.e. (t, x) ∈ (0, T ]× ∂D. (1.2)

We assume that the sum
∑

0<s≤t (Uext(s,Xs)− Us−) {Xs∈∂D} in (1.1) is countable; kL denotes the conditional
variance of the particle velocities:

kL(t, x) =
1

2

3∑

i=1

(
E

[
(U (i)

t )2
/
Xt = x

]
−

(
E

[
U (i)

t

/
Xt = x

])2
)
,

while εL is given by

εL(t, x) =
Cε

ℓm
(kL(t, x))

3
2 , (1.3)

and where Cε is a positive constant and ℓm is appropriately chosen6.
For every t > 0, we assume that the distribution of (Xt,Ut) admits a probability density with respect to

Lebesgue’s measure, that is there exists ρ ∈ L∞((0, T );L1(R3 × R
3)) such that

P ((Xt,Ut) ∈ (x, x+ dx)× (u, u+ du)) = ρ(t, x, u) dxdu, ∀ t ∈ (0, T ],

where P stands for the probability measure under which (X,U ,W ) are defined. The mass density is a priori
defined (up to a multiplicative constant) as the marginal distribution of the position of the fluid-particle:

̺(t, x) = C

∫

R3

ρ(t, x, u) du. (1.4)

6The so-called mixing length ℓm is a measure of the ability of turbulence to cause mixing. Since the turbulent eddies are limited
by the presence of the earth’s surface, ℓm may depend on the vertical variable (see [12,34] for more details).
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The constant mass density constraint compels the particles to be uniformly distributed in D; namely P(Xt ∈
(x, x+dx)) must be equal to dx/|D| where |D| stands for the Lebesgue measure of D, or equivalently we must
have: ∫

R3

ρ(t, x, u) du =
1

|D| , ∀ (t, x) ∈ (0, T ]×D, (1.5)

and we recover that ̺ is a constant. As explained in Section 1.2 below, equations (1.1) and (1.5) insure the
(mean) free divergence equation

(∇x · 〈U〉) = 0 on (0, T ]×D. (1.6)

The Eulerian quantity 〈P〉 may be characterized by the following Poisson equation:

− 1

̺
△x〈P〉(t, x) =

3∑

i,j=1

∂2
xi,xj

E

[
U (i)

t U (j)
t

/
Xt = x

]
on (0, T ]×D, (1.7)

with appropriate boundary condition. Let us notice that, in the case of periodic boundary conditions, equa-
tions (1.5) and (1.7) are equivalent (see [3]).
The complete system (1.1), (1.3), subjected to the constraints (1.5), (1.6), defines the SDM model.
Within the domain D and according to (1.1), the flow undergoes a Langevin based model.
Along the boundary ∂D, the velocity components are submitted to external forcing terms that characterize

the downscaling aspect of the model, see (1.2) above.
In the rest of this section, we give a short overview of the link between Eulerian turbulence modelling,

(especially the Reynolds Averaged Navier-Stokes (RANS) equations) and the stochastic Lagrangian modelling.
We aim to describe the turbulence closure equation in SDM with its equivalent formulation in the RANS
model. We highlight the physical meanings of the stochastic Lagrangian SDE’s coefficients, in particular kL

and εL that respectively refer to the turbulent kinetic energy of the system (defined as in (1.10)) and the
related (pseudo-)rate of dissipation (see (1.11)), while 〈P〉 stands for the mean pressure force acting on the fluid
particles.

1.1. Statistical description of turbulent flows

We consider an incompressible fluid with constant mass density, with three dimensional velocity U(t, x) and
pressure force P(t, x) acting on the fluid, evaluated at a time t and a location x. These quantities are governed by
the incompressible Navier-Stokes equations. The statistical description of turbulent flows introduces randomness
in the state variables. In this context, the Eulerian fields U(t, x) and P(t, x) are decomposed into averaged
(though macroscopic) fields 〈U〉(t, x) and 〈P〉(t, x), and fluctuating parts u(t, x) and p(t, x) (see e.g. [22]). The
averaged fields are governed by the so-called Reynolds Averaged Navier-Stokes equations:

∂t〈U (i)〉+ (〈U〉 · ∇x) 〈U (i)〉 = −1
̺
∂xi
〈P〉+ ν△x〈U (i)〉 − ∇x · 〈u(i)u〉, on (0, T )× R

3, 1 ≤ i ≤ 3, (1.8a)

(∇x · 〈U〉) = 0 on (0, T )× R
3, (1.8b)

〈U〉(0, x) = U0(x), (1.8c)

where ν stands for the viscosity. Note that SDM is more like an Euler system with an artificial viscous
dissipation, the value of ν being implicit in the closure relation (1.3).
These equations are obtained from the original Navier-Stokes system (that we do not recall here) by the

formal application of the Reynolds operator 〈·〉, which consists in computing the average (in the macroscopic
sense mentioned above) of the Navier-Stokes equations. Equation (1.8a) corresponds to the mean momentum
conservation, and (1.8b) features the mean incompressibility of the flow. The field U0(x) defines the initial
averaged state. The Reynolds stress tensor {〈u(i)u(j)〉}1≤i,j≤3 in (1.8a) denotes the covariance matrix of the
velocity field components,

〈u(i)u(j)〉 = 〈U (i)U (j)〉 − 〈U (i)〉〈U (j)〉,
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and models the stresses due to turbulence motions. As the tensor elements are unknown, the resulting sys-
tem (1.8) is unclosed. In the same manner, one may derive the equations of the Reynolds stress tensor

∂t〈u(i)u(j)〉+
(
〈U〉 · ∇x〈u(i)u(j)〉

)
+

3∑

l=1

∂xl
〈u(i)u(j)u(l)〉 = −

3∑

l=1

(
〈u(i)u(l)〉∂xl

〈U (j)〉+ 〈u(j)u(l)〉∂xl
〈U (i)〉

)

− 1

̺

(
∂xj
〈pu(i)〉+ ∂xi

〈pu(j)〉
)
+
1

̺

(
〈p∂xj

u(i)〉+ 〈p∂xi
u(j)〉

)

+ ν

3∑

l=1

∂2
xl
〈u(i)u(j)〉 − 2ν

3∑

l=1

〈∂xl
u(i)∂xl

u(j)〉, (1.9)

and so on. The complete description of mean flows (especially the velocity moments) requires to solve an
infinite cascade of equations. Through years, this closure problem, and the related statistical context, has led
to the investigation of turbulence models in order to parameterize the unresolved terms, thanks to laboratory
and phenomenological observations, together with physical principles; among them, let us quote Richardson’s
notion of energy cascade and Kolmogorov’s universality laws (see e.g. [28]). For instance, second order closure
models parameterize the unknown terms in (1.9) (see [28]). We mention also the general class of the turbulent
viscosity models, and the related k − ε-models which close directly the RANS equations (1.8) (see e.g. [22]),
introducing further description of turbulence mechanisms brought from the turbulent kinetic energy kE defined
by

kE(t, x) =
1

2

3∑

i=1

〈u(i)u(i)〉(t, x), (1.10)

and its (pseudo-)rate of dissipation εE defined by

εE(t, x) = ν

3∑

i,l=1

〈∂xl
u(i)∂xl

u(i)〉(t, x). (1.11)

An alternative viewpoint on the RANS equations is proposed by the Lagrangian Probability Density Function
(PDF) methods for the modelling and the simulation of turbulent flows. Initiated by Pope [25], the Lagrangian
modelling of turbulence flows consists in the description of a general stochastic process (X,U) given at time t,
the position Xt of a fluid particle and its velocity Ut.
These particle dynamics are usually referred to as Stochastic Lagrangian Models.
The meaningful point of this Lagrangian approach is that the Eulerian averaged fields are interpreted as the

expected velocity value issued from particles conditioned to be located at position x. Namely it holds that, for
all suitable mapping g : R

3 → R,

〈g(U)〉(t, x) ≃ E [g(Ut)/Xt = x] .

This relation writes, in terms of conditional distribution, as

〈g(U)〉(t, x) ≃

∫

R3

g(u)ρ(t, x, u) du
∫

R3

ρ(t, x, u) du
, (1.12)

where ρ stands for the probability density (assuming it exists) of the fluid particle at time t.
The Lagrangian equations are designed in order to fit with RANS turbulence models. Such a step is achieved

by formal developments on the related Fokker-Planck (or forward Kolmogorov) equation.
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1.2. Turbulence closure equations for SDM

We now come to the turbulent closure of our model. For (t, x, u) in (0,+∞) × D × R
3, the distribution

ρ(t, x, u) of (1.1) may satisfy the Fokker-Planck equation:

∂tρ(t, x, u) + (u · ∇xρ(t, x, u)) =
1

̺
(∇x〈P〉(t, x) · ∇uρ(t, x, u))−

(
1

2
+
3

4
C0

)
εL(t, x)

kL(t, x)
(∇u · (〈U〉(t, x) − u)

× ρ(t, x, u)) + C0εL(t, x)

2
△uρ(t, x, u).

For suitable g : R
3 → R, the function (t, x) 7→

∫
R3 g(u)ρ(t, x, u) du satisfies the following equation:

∂t

∫

R3

g(u)ρ(t, x, u) du+

(
∇x ·

∫

R3

(ug(u)ρ(t, x, u)) du

)
= −1

̺

(
∇x〈P〉(t, x) ·

∫

R3

∇ug(u)ρ(t, x, u) du

)

+

(
1

2
+
3

4
C0

)
εL(t, x)

kL(t, x)

∫

R3

∇ug(u) (〈U〉(t, x)− u) ρ(t, x, u) du

+
C0εL(t, x)

2

∫

R3

△ug(u)ρ(t, x, u) du. (1.13)

From this formal equation and the relationship (1.12), we recover the Reynolds turbulence equations. Indeed,
taking g(v) := 1 in (1.13), we get

∂t

(∫

R3

ρ(t, x, u) du

)
+

(
∇x ·

(∫

R3

ρ(t, x, u) du

)
〈U〉(t, x)

)
= 0 on (0, T )×D,

which, according to the uniform distribution of the particle position (1.5), writes the (mean) free divergence
equation (1.6). Next, considering g(v) := v(i) for 1 ≤ i ≤ 3, (1.13) yields:

∂t〈U (i)〉(t, x) +
(
∇x · 〈U (i)U 〉(t, x)

)
= −1

̺
∂xi
〈P〉(t, x) on (0, T )×D, (1.14)

and thus to the momentum equation (1.8a) when the viscous forces are neglected. Finally, for 1 ≤ i, j ≤ 3 and
g(v) := v(i)v(j), we obtain the equations for the covariance 〈U (i)U (j)〉 − 〈U (i)〉〈U (j)〉. Further using (1.14), we
derive the following model for the Reynolds stresses associated to (1.1):

∂t〈u(i)u(j)〉+
(
〈U〉 · ∇x〈u(i)u(j)〉

)
+

3∑

l=1

∂xl
〈u(i)u(j)u(l)〉 = −

3∑

l=1

〈u(j)u(l)〉∂xj
〈U (i)〉 −

3∑

l=1

〈u(i)u(l)〉∂xl
〈U (j)〉

− 2

(
1

2
+
3

4
C0

)
εL

kL
〈u(j)u(i)〉+ C0εLδij on (0, T )×D. (1.15)

Comparing equation (1.9) with (1.15), one may observe that (1.15) is close to the original Reynolds stress
equation. Moreover, this comparison suggests to identify (1.1) as a model for turbulent flows with no direct
viscous effects, negligible pressure diffusion ∂xj

〈pu(i)〉, and local isotropy. Indeed, in this situation the dissipation
tensor 2ν

∑3
l=1〈∂xl

u(i)∂xl
u(j)〉 is reduced to the relation

2ν
3∑

l=1

〈∂xl
u(i)∂xl

u(j)〉 = 2

3
εEδij ,
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where δij is Kronecker’s delta and εE(t, x) is the pseudo-rate of dissipation given as in (1.11). The remaining
terms due to turbulent pressure are closed according to the Rotta’s second order closure model (see [28]) which
writes

1

̺

(
〈p∂xj

u(i)〉+ 〈p∂xi
u(j)〉

)
= −CR

εE

kE
〈u(i)u(j)〉+ 2

3
CRεEδij ,

for CR denoting the prescribed Rotta’s constant. Then, since kE reads as kL, (1.9) and (1.15) lead to the
identification εE = εL, choosing C0 such that CR =

(
1 + 3

2C0

)
. Recalling (1.3), one recovers the Harlow-

Nakayama’s k − ε closure model

εE(t, x) =
Cε

ℓm
(kE(t, x))

3
2 . (1.16)

Lagrangian systems are Langevin type equations (see e.g. [13]) extended to the context of turbulent flows. In
equation (1.1), the term −∇x〈P〉(t,Xt)/̺ ensures that the mean incompressibility constraint (1.8b) and the
constant mass constraint are both satisfied. The coefficient (1/2 + 3C0/4) εL/kL models the characteristic time
of the drag force 〈U〉(t,Xt)− Ut. The diffusion part is designed to retrieve – at least heuristically – the steady
state predicted by Kolmogorov’s universality law (see [28] for further details).
The Lagrangian modelling of turbulent flows has been considered for several closures (see e.g. [26]) and

sophisticated turbulent situations (see e.g. [21,28], and references therein). The SDM model is equipped with
simple closure models, which nonetheless involve meaningful physical aspects.
Rotta’s closure lies in the range of return-to-isotropy model, and is meant to introduce the decay of anisotropy

observed in some experiments (see [28]). The Harlow-Nakayama closure model (see e.g. [15,30]) is a k – ε closure
model commonly used in meteorology. In particular, it introduces a characteristic mixing length scale ℓm, which,
in the specific case of near-surface turbulence, depends on the vertical coordinate z (see [12,34]).

2. On the well-posedness of stochastic Lagrangian models

In this section, we review some results obtained by some of the authors on the mathematical study of SDM
(see [2,16]), and more generally on generic problems inherent to Stochastic Lagrangian Models. As illustrated
above, equation (1.1) couples several difficulties. On the one hand, the Lagrangian dynamics genuinely stand as
SDEs endowing degenerated diffusion terms and singular McKean nonlinearities in the sense that the coefficients
depend on the conditional law of the solution. These nonlinearities appear in (1.1) in the form of velocity
moments conditioned by the particle position. The Poisson problem (1.7) adds further nonlinearities to the
particle dynamics. On the other hand, these difficulties are strengthen by the downscaling application which
imposes to introduce appropriate procedure to force boundary conditions of the form (1.2). These original
aspects raise the questions of well-posedness, and numerical approximation.
The Lagrangian models considered in this section are in simplified form. Here, the mean pressure term 〈P〉,

given as solution to (1.7), the mean incompressibility (1.8b) and mass uniformity constraints (1.5), are neglected
(these problems being investigated in [3]).
First, we focus on the problem of well-posedness of a Lagrangian system in the free boundary case (i.e. D = R

d

with d ≥ 1). Next, we address the introduction of boundary condition in the specific case of the mean no-
permeability boundary (see (2.10) below). Despite these simplifications, the results presented below set the
first mathematical bases for the numerical analysis of the particle method proposed for the computation of
SDM (1.1) in Section 3.

2.1. A propagation of chaos result for stochastic Lagrangian models

In this subsection, we focus on the conditional singularity involved by stochastic Lagrangian models for
turbulent flows. We give a well-posedness result for the simplified stochastic Lagrangian model. More pre-
cisely, by means of particle approximation, we prove that there exists a process (Xt,Ut; t ∈ [0, T ]) solution
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to the following SDE





Xt = X0 +
∫ t

0
Us ds,

Ut = U0 +
∫ t

0 B [Xs,Us; ρ(s)] ds+
∫ t

0 σ(s,Xs,Us) dWs,

ρ(t, x, u) is the probability density of (Xt,Ut) for all t ∈ (0, T ].
(2.1)

Here, T is a finite horizon time, (X0,U0) is distributed according to initial law µ0, and W is a R
d-valued

Brownian motion. The drift coefficient is the function B : (x, u, γ) ∈ R
d × R

d × L1(R2d)→ R
d, defined by

B [x, u; γ] =





∫

Rd

b(v, u)γ(x, v) dv
∫

Rd

γ(x, v) dv
if

∫
Rd γ(x, v) dv 6= 0,

0 elsewhere,

(2.2)

where b : R
d×R

d → R
d is a bounded continuous interaction kernel. By definition, the drift function B[x, u; ρ(s)]

in (2.1) is (at least formally) a measurable version of the conditional expectation

(x, u) 7→ E [b(Us, u)/Xs = x] ,

introduced in Section 1 (see (1.12)). Hypotheses on the diffusion coefficient σ : (0, T ) × R
2d → R

d × R
d are

specified below.
Hereafter a solution to (2.1) is understood in the weak sense: there exists a filtered probability space

(Ω,F , (Ft),P) under which a Brownian motion W , and a couple of processes (Xt,Ut; t ∈ [0, T ]) satisfy (2.1).
Note that the nonlinearity in the drift term (2.2) imposes to construct a solution which admits time-marginal
densities w.r.t. Lebesgue measure, this means that the measure P ◦ (Xt,Ut)

−1 on R
2d has a density ρ(t, x, u).

Equivalently, a weak solution to (2.1) can be formulated in terms of a martingale problem: we consider
(Ω,F) = (C([0, T ],R2d),B(C([0, T ],R2d))), ((Xt,Ut); t ∈ [0, T ]) the canonical processes of C([0, T ],R2d), and
(Ft) the related canonical filtration. A probability measure P on (Ω,F , (Ft)) is a solution to the martingale
problem related to (2.1) if P satisfies the following:

(P1) P◦ (X0,U0)
−1 = µ0, and for all t ∈ (0, T ], Pt := P◦ (Xt,Ut)

−1 admits a positive density ρ(t, x, u) w.r.t.
Lebesgue measure.

(P2) For all f ∈ C2
b (R

2d),

Mt := f(Xt,Ut)− f(X0,U0)−
∫ t

0

Aρ(f)(s,Xs,Us) ds is a P-martingale.

The operator Aρ above is the infinitesimal generator of (2.1):

Aρ(f)(t, x, u) := (u · ∇xf(x, u)) + (B [x, u; ρ(t)] · ∇uf(x, u)) +
1

2

d∑

i,j=1

a(i,j)(t, x, u)∂2
ui,uj

f(x, u), (2.3)

where a := σσ∗ for σ∗ denoting the transpose of σ. The martingale property (P2) equivalently writes:

∀ 0 ≤ s ≤ t ≤ T, EP [Ψs (Mt −Ms)] = 0,

for all Ψs =
∏n

j=1 Ψ
j(Xtj

,Utj
) given 0 ≤ t1 ≤ . . . ≤ tn ≤ s, and the Ψj ’s are bounded continuous functions

on R
2d. From appropriate choices of f , one can identify a Brownian motion W such that the canonical process

(X,U) solves (2.1) (we refer to [17,33] for a general description on martingale formulation of weak solution).
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Before specifying the hypotheses on the diffusion coefficient σ of (2.1), we consider the linear case where
b = 0. In this case, the Lagrangian model writes





Y s,y,v
t = y +

∫ t

s

V s,y,v
θ dθ,

V s,y,v
t = v +

∫ t

s

σ (θ, Y s,y,v
θ , V s,y,v

θ ) dWθ,

(2.4)

and its related backward Kolmogorov equation is

− ∂tψ(t, x, u) +
1

2

d∑

i,j=1

a(i,j)(t, x, u)∂2
ui,uj

ψ(t, x, u) + (u · ∇xψ(t, x, u)) = 0. (2.5)

Equation (2.5) belongs to the class of ultra-parabolic equations of Kolmogorov type which represents a particular
class of parabolic equations with hypoelliptic diffusions. When a = ηId for a positive constant η, the fundamental
solution Γη(s, y, v; t, x, u) of (2.5) is the explicit Gaussian probability transition density of the Brownian motion
and its primitive (Y s,y,v, V s,y,v) given by (2.4) with σ =

√
ηId. Solutions of ultra-parabolic equations and the

related properties have been studied in the literature (see [19] for a recent survey). Especially, it has been shown
in [10] that (2.5) admits a unique fundamental solution if a satisfies the following hypotheses:

(H1) The matrix a = σσ∗ is bounded and strongly elliptic: there exists λ > 0 such that

|v|2
λ
≤

d∑

i,j=1

a(i,j)(t, x, u)vivj ≤ λ |v|2 , ∀ t ∈ (0, T ], (x, u) ∈ R
2d, v ∈ R

d.

(H2) For all 1 ≤ i, j ≤ d, there exists α ∈ (0, 1] and K > 0 such that, for all (s, y, v), (t, x, u) ∈ (0, T ]×R
2d,

∣∣∣a(i,j)(t, x, u)− a(i,j)(s, y, v)
∣∣∣ ≤ K

(
|t− s|α2 + |x− y − (t− s)v|α

3 + |u− v|α
)
.

Some properties of the fundamental solution shown in [10,11], combined with the Feynman-Kac’s formula for
the backward Kolmogorov equation associated to (2.5), allow one to prove the following lemma.

Lemma 2.1. Under Assumptions (H1)−(H2), for all (s, y, v) ∈ [0, T )×R
2d there exists a solution (Y s,y,v, V s,y,v)

to (2.4). In addition, this solution admits a density Γ(s, y, v; t, x, u) w.r.t. Lebesgue measure, for all 0 ≤ s < t,
such that ∇vΓ(s, y, v; t, x, u) exists and is continuous. Moreover, there exist C, c > 0 and η > 0 such that

∫

R2d

|∇vΓ(s, y, v; t, x, u)| dxdu ≤
C√
t− s , ∀ 0 ≤ s < t ≤ T, (y, v) ∈ R

2d,

Γ(s, y, v; t, x, u) ≥ cΓη(s, y, v; t, x, u), ∀ 0 ≤ s < t ≤ T, (y, v) ∈ R
2d.

Coming back to the solution (X,U) to (2.1) (if it exists), the Girsanov theorem (removing the drift B in (2.1)
by a change of probability argument) allows one to prove the absolute continuity of the probability law of
(Xt,Ut) w.r.t. the Lebesgue measure and the a priori positivity of its density. Additionally, we identify the
time-marginal densities of the law of (X,U) as the unique solution of a mild equation. This further shows the
uniqueness of a solution to (2.1) (see [2] for details).
We construct a solution to the equation (2.1) using a particle approximation procedure, inspired from the

classical framework of nonlinear SDEs of McKean type and their approximation by a particle system in weak
and mean field interaction.
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Equation (2.1) is a singular case of nonlinear McKean equation. The nonlinearity is of conditional form,
and the diffusion coefficient is partially degenerated. Following the lines of the propagation of chaos theory, we
introduce the following interacting particle system {(X i,δ,Np,U i,δ,Np); 1 ≤ i ≤ Np} satisfying:






X
i,δ,Np

t = X i
0 +

∫ t

0

U i,δ,Np
s ds,

U i,δ,Np

t = U i
0 +

∫ t

0

1
Np

Np∑

j=1

b(Uj,δ,Np
s ,U i,δ,Np

s )φδ(X
i,δ,Np
s −Xj,δ,Np

s )

1
Np

Np∑

j=1

φδ(X
i,δ,Np
s −Xj,δ,Np

s ) + δ

ds+

∫ t

0

σ(s,X i,δ,Np
s ,U i,δ,Np

s ) dW i
s ,

(2.6)
where {(X i

0,U i
0),W

i; i ≥ 1} are independent copies of ((X0,U0),W ), and where {φδ := 1/δdφ(x/δ); δ > 0} is
a family of mollifiers.
Roughly speaking, a particle system like (2.6) propagates chaos (or is P -chaotic) if, when the number of

particles Np goes to infinity, any finite subsystem of particles tends to behave like a system of independent
particles, each one having the same law P (we refer to [35] for details).
We define the smoothed kernel Bδ[x, u; γ], for all (x, u) ∈ R

2d and for all nonnegative γ ∈ L1(R2d), by

Bδ [x, u; γ] =

∫
Rd b(v, u)φδ ⋆ γ(x, v) dv∫

Rd φδ ⋆ γ(x, v) dv + δ
,

with φδ ⋆ γ denoting the convolution product between φδ, and γ along x-variable: φδ ⋆ γ(x, u) =
∫

R
φδ(x −

y)γ(y, u)dy. Considering the empirical measure µ
δ,Np

· := 1/Np

∑Np

j=1 δ{Xj,δ,Np
·

, U
j,δ,Np
·

}
(for δ{·} the Dirac mea-

sure) of the particle system, one can equivalently write equation (2.6) as





X
i,δ,Np

t = X i
0 +

∫ t

0

U i,δ,Np
s ds,

U i,δ,Np

t = U i
0 +

∫ t

0

Bδ

[
X i,δ,Np

s ,U i,δ,Np
s ;µδ,Np

s

]
ds+

∫ t

0

σ(s,X i,δ,Np
s ,U i,δ,Np

s ) dW i
s ,

where we have naturally extended the definition of the kernel Bδ to the (time-marginal) measures (µ
δ,Np

t ,
t ∈ [0, T ]).
Under Assumptions (H1)−(H2) and owing to the boundedness of b, the well-posedness of a particle system

solution to (2.6), defined on some filtered probability space (Ω,F , (Ft),P), is derived from the case b = 0
via a change of probability argument and the Girsanov theorem. The asymptotic behavior of the Np-particle
system (2.6) yields to the following result.

Theorem 2.2. Assume that (H1)−(H2) hold true, and that the law µ0 of (X0,U0) satisfies

∫

R2d

(
|x|+ |u|2

)
µ0(dxdu) < +∞. (2.7)

Then, for fixed δ > 0, the particle system (2.6) is Pδ-chaotic: for φ1, . . . , φk ∈ Cb

(
Cb([0, T ];R

2d);R
)
, k > 1,

lim
Np→+∞

EP

[
φ1(X

1,δ,Np ,U1,δ,Np) . . . φk(X
k,δ,Np ,Uk,δ,Np)

]
=

k∏

i=1

EPδ [φi(X,U)] ,

where ((Xt,Ut); t ∈ [0, T ]) are the canonical processes of C([0, T ],R2d) and Pδ is the unique probability measure
solution to the following martingale problem:
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(P1δ) Pδ◦(X0,U0)
−1 = µ0, and, for all t ∈ (0, T ], Pδ

t := Pδ◦(Xt,Ut)
−1 admits a (Lebesgue) density ρδ(t, x, u).

(P2δ) For all f ∈ C2
b (R

2d),

M δ
t := f(Xt,Ut)− f(X0,U0)−

∫ t

0

Aδ
ρδ (f)(s,Xs,Us) ds is a Pδ-martingale.

The operator Aδ
ρδ is defined by

Aδ
ρδ (f)(t, x, u) := (u · ∇xf(x, u)) + (Bδ

[
x, u; ρδ(t)

]
· ∇uf(x, u)) +

1

2

d∑

i,j=1

a(i,j)(t, x, u)∂2
ui,uj

f(x, u).

The probability measure Pδ resulting from the particle limit provides a weak solution (Xδ
t ,Uδ

t ; t ∈ [0, T ]) to





Xδ
t = X0 +

∫ t

0 Uδ
s ds,

Uδ
t = U0 +

∫ t

0 Bδ

[
Xδ

s ,Uδ
s ; ρ

δ(s)
]
ds+

∫ t

0 σ(s,X
δ
s ,Uδ

s ) dWs,

ρδ(t, x, u) is the density of (Xδ
t ,Uδ

t ) for all t ∈ (0, T ].
(2.8)

The proof of Theorem 2.2 proceeds in two main steps: first, for fixed δ > 0 and owing to (2.7), we prove

a tightness result for the laws {Pδ,Np
:= P ◦ (µδ,Np)−1; Np > 0} ensuring its relative compactness (w.r.t. the

weak topology). Next, we show that the limit of every converging subsequence only charges solutions to the
martingale problem related to (2.8). We identify the time-marginal densities (ρδ(t, ·, ·); t ∈ [0, T ]) of Pδ as the
unique solution of a mild equation related to Bδ. This implies the uniqueness of the solution to (2.8).
It remains to decrease δ to 0.

Theorem 2.3. When δ tends to 0, the probability measure Pδ solution to the martingale problem related to (2.8)
converges weakly to the unique solution to the martingale problem related to (2.1).

In addition, we have the following:

Theorem 2.4. For all t ∈ (0, T ], the time-marginals ρδ(t) converge towards ρ(t) in L1(R2d).

The detailed proofs of the above theorems can be found in [2]. The proof of Theorem 2.4 follows and adapts
to our case the general ideas of [33] on the convergence of martingale problems related to strong elliptic diffusion
processes.
The propagation of chaos stated in Theorem 2.2 is equivalent to the weak convergence of the random empirical

measure µδ,Np to the deterministic measure Pδ (see [35]). We then obtain the convergence of the conditional
expectation estimator by combining the propagation of chaos with the convergences of Theorems 2.3 and 2.4:
P-a.s., for a.e. (t, x) ∈ (0, T ]× R

d,

lim
δ→0

lim
Np→+∞

1
Np

∑Np

j=1 g(U
j,δ,Np

t )φδ(X
j,δ,Np

t − x)
1

Np

∑Np

j=1 φδ(X
j,δ,Np

t − x) + δ
=

∫
Rd g(u)ρ(t, x, u) du∫

Rd ρ(t, x, u) du
, (2.9)

for any bounded continuous function g. With the notation of Section 1, the right-hand side of the above rewrites
as the Eulerian averaged 〈g(U)〉(t, x).

2.2. Confined Lagrangian process with no-permeability condition

As mentioned in Section 1, the jumps in the dynamics of SDM in (1.1) are meant to ensure the confinement
of particles in D, and further to force the boundary conditions (1.2) in the Lagrangian dynamics. Hereafter,
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we detail the confinement of the simplified Lagrangian system (2.1) in the case of the mean no-permeability
condition:

E [(Ut · nD(Xt))/Xt = x] = 0 for t ∈ (0, T ], x ∈ ∂D. (2.10)

Here, D is assumed to be a smooth open subset of R
d (not necessary bounded), and nD denotes the outward

unit vector of D. According to (1.12), the condition (2.10) reads as nil flux for the outward Eulerian velocity:
(〈U〉(t, x) · nD(x)) = 0. This boundary condition provides an example of limit condition to the averaged Euler
equation (1.14).
Considering an appropriate notion of trace γ(ρ)(t, x, u) of the density ρ(t, x, u) of (Xt,Ut), the condition (2.10)

writes: ∫

Rd

(u · nD(x))γ(ρ)(t, x, u) du
∫

Rd

γ(ρ)(t, x, u) du

= 0 for t ∈ (0, T ], x ∈ ∂D. (2.11)

Moreover, when D = R
d we observe that the time-marginal densities (ρ(t, ·, ·), t ∈ (0, T ]) of the solution to (2.1)

satisfies the following Fokker-Planck equation in the sense of distributions

∂tρ(t, x, u) +A∗ρ(ρ)(t, x, u) = 0 for (t, x, u) ∈ (0, T )×D × R
d,

where A∗ρ denotes the formal adjoint of Aρ defined in (2.3). Here D 6= R
d and the notion of trace γ(ρ) shall be

defined through the following Green formula: for all t ∈ [0, T ], for all functions ψ ∈ C∞([0, t]×D × R
d),

∫

(0,t)×D×Rd

ρ(s, x, u) (∂sψ(s, x, u) +Aρ(ψ)(s, x, u)) ds dxdu =

∫

D×Rd

ρ(t, x, u)ψ(t, x, u) dxdu

−
∫

D×Rd

ψ(0, x, u)µ0(dxdu) +

∫

(0,t)×∂D×Rd

(u · nD(x))γ(ρ)(s, x, u)ψ(s, x, u) dλΣ(s, x, u), (2.12)

where dλΣ denotes the product measure ds dσD(x) du, dσD being the surface measure of ∂D. We shall also
impose that ∫

Rd

|(u · nD(x))γ(ρ)(t, x, v)| dv 〈+∞, and
∫

Rd

|γ(ρ)(t, x, v)| dv〉0, (2.13)

so that the left member of (2.11) is well defined.
Now we observe that a sufficient condition for the trace γ(ρ) to satisfy the mean no-permeability condi-

tion (2.10) is

γ(ρ)(t, x, u) = γ(ρ)(t, x, u − 2(u · nD(x))nD(x)) for (t, x, u) ∈ (0, T )× ∂D × R
d. (2.14)

This (spatial) boundary condition, called specular reflection boundary condition, belongs to the range of
Maxwell’s boundary conditions introduced for kinetic equations such as Boltzmann and Vlasov-Fokker-Planck
equations. These conditions model the reflexion/diffusion processes of gas particles in the presence of solid
boundaries (see e.g. [5]).
Following this preliminary idea, we now discuss the well-posedness of the related simplified Lagrangian

system: 



Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

B [Xs,Us; ρ(s)] ds+

∫ t

0

σ(s,Xs,Us) dWs +Kt,

ρ(t, x, u) is the density distribution of (Xt,Ut) for all t ∈ (0, T ],

(2.15)
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where the confining process K is defined by

Kt = −2
∑

0<s≤t

(Us− · nD(Xs))nD(Xs) {Xs∈∂D}. (2.16)

The kernel B is unchanged, defined as in (2.2).
The existence of a solution to (2.15) is subjected to the existence and the growth to infinity of the sequence

of hitting times {τn}n∈N defined by

{
τ0 = inf{t ≥ 0 s.t. Xt ∈ ∂D},
τn = inf{t > τn−1 s.t. Xt ∈ ∂D}, for n ≥ 1.

(2.17)

The martingale problem related to (2.15)–(2.17) is formulated as follows: consider Ω := C([0, T ];Rd) ×
D([0, T ];Rd) ×D([0, T ];Rd) (where D([0, T ];Rd) is the space of càdlàg functions defined on [0, T ], and taking
values in R

d), and (Xt,Ut,Kt; t ∈ [0, T ]) the related canonical processes. A probability measure P is said to
be a solution to the martingale problem related to (2.15)–(2.17) if the following conditions hold:

(P1) P ◦ (X0,U0)
−1 = µ0, and, for all t ∈ (0, T ], Pt := P ◦ (Xt,Ut)

−1 admits a positive density ρ(t, x, u)
w.r.t. Lebesgue measure.

(P2) For all f ∈ C2
b (R

2d),

Mt := f(Xt,Ut −Kt)− f(X0,U0)−
∫ t

0

Aρ(f)(s,Xs,Us −Ks) ds is a P-martingale,

where Aρ is defined as in (2.3).

(P3) P-a.s. t 7→ Xt hits at most countably many times the boundary ∂D, and (Kt; t ∈ [0, T ]) is given
by (2.16).

Consider a weak solution (in the sense of the martingale problem) to (2.15)–(2.17). Itô’s formula applied
to (X,U), we show that, for all t > 0, f ∈ Cc([0, t]× ∂D × R

d),

∑

n∈N

EP

[(
f(τn, Xτn

,Uτn
)− f(τn, Xτn

,Uτ−

n
)
)

 {τn≤t}

]

=

∫

(0,t)×∂D×Rd

(u · nD(x))γ(ρ)(s, x, u)f(s, x, u) dλΣ(s, x, u). (2.18)

Hence, (u · nD(x))γ(ρ)(t, x, u) is the density of
∑

n∈N
P ◦ (τn, Xτn

,Uτn
)−1 with respect to the measure dλΣ.

From (2.18), one can deduce the positivity and integrability properties (2.13) of the trace γ(ρ). Moreover, the
density and trace (ρ, γ(ρ)) satisfy the Green formula (2.12). Then, a straightforward computation shows that, as
long as the specular boundary condition is fulfilled, the solution to (2.15)–(2.17) satisfies the constraint (2.10).
The main difficulty remains the existence of a solution to (2.15)–(2.17).
In Section 2.2.1, we take profit of the particular choice of an hyperplane forD to construct a solution to (2.15)–

(2.17). In this situation, we are able to extend the results of well-posedness and particle approximation developed
in the previous section.
In Section 2.2.2, we consider a more general domain. A first well-posedness result for the time-marginals

related to (2.15) is then obtained.
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2.2.1. Confinement in an hyperplane

We consider the domain D = R
d−1 × (0,+∞). The confinement procedure in (2.15) only concerns the

dth component of the velocity. Thus one can focus on the study of the solution to






Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

B[Xs,Us; ρ(s)] ds+Wt − 2
∑

0<s≤t

Us− {Xs=0}.
(2.19)

We preliminary investigate the properties of the solution to (2.19) when b = 0. In this situation, we have an
explicit solution thanks to the following simple construction (see [16]): considering (Y x0,u0

t , V u0

t ; t ∈ [0, T ])
solution to 




Y x0,u0

t = x0 +

∫ t

0

V u0

s ds,

V u0

t = u0 +Wt,

we construct (Xx0,u0

t ,Ux0,u0

t ; t ∈ [0, T ]) as the trajectorial transformation of (Y x0,u0

t , V x0,u0

t ; t ∈ [0, T ]) reflecting
the velocity each time the particle position reaches zero. We proceed by defining

Xx0,u0

t = |Y x0,u0

t | ,
Ux0,u0

t = Sx0,u0

t V u0

t for all t ∈ (0, T ], (2.20)

where Sx0,u0

t := sign(Y x0,u0

t )+ denotes the càdlàg version of sign(Y x0,u0

t ).
This construction requires to estimate the excursion times at 0 of the primitive of the Brownian motion.

In [18,20], the authors prove that, starting from x0 > 0, the 1D-Brownian’s primitive has only countably many
excursions from 0, they also explicit the law of the related hitting sequence.
As a result, the density ρc(0, x0, u0; t, x, u) of (X

x0,u0

t ,Ux0,u0

t ) can be written in terms of the distribution
ρ(0, x0, u0; t, x, u) of (Y

x0,u0

t , V x0,u0

t ):

ρc(0, x0, u0; t, x, u) = (ρ(0, x0, u0; t, x, u) + ρ(0, x0, u0; t,−x,−u)) {x≥0}. (2.21)

As ρc(0, x0, u0; t, x, u) is explicitly known, we further check that the properties stated in Lemma 2.1 hold, and
thus ensure the existence of the particle system






X
i,δ,Np

t = X i
0 +

∫ t

0

U i,δ,Np
s ds,

U i,δ,Np

t = U i
0 +

∫ t

0

Np∑

j=1

b(Uj,δ,Np
s ,U i,δ,Np

s )φδ(X
i,δ,Np
s −Xj,δ,Np

s )

Np∑

j=1

(
φδ(X

i,δ,Np
s −Xj,δ,Np

s ) + δ
)

ds+W i
t − 2

∑

0<s≤t

U i,δ,Np
s  

{X
i,δ,Np
s =0}

.

(2.22)
Replicating the arguments introduced in Section 2.2, we are able to prove the following theorem (see [16]).

Theorem 2.5. Suppose D = R
d−1×(0,+∞), and assume that (X0,U0) are distributed according to a probability

measure µ0 satisfying (2.7), and having no support on {0} × R. Then, as Np grows to +∞, and δ tends to 0,

the empirical measure µδ,Np := 1/Np

∑Np

j=1 δ{Xj,δ,Np ,Uj,δ,Np} of the particle system (2.22) converges in the weak

sense to the unique solution P to the martingale problem related to (2.19), (2.17).
Moreover, the time marginal density ρ(t, x, u) of P admits a trace and satisfies the specular condition (2.14).

The corresponding processes (X,U) fulfill the mean no-permeability condition (2.10).
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Remark 2.6. In the particular case where the one-dimensional model (2.19) endows a “linear” drift B(t, x, u),
the explicit construction (2.20) and the corresponding relation (2.21) remain valid. Given the drift B(t, x, u),
the associated free process (Y x0,u0 , V x0,u0) to consider in (2.21) is the solution to





Y x0,u0

t = x0 +

∫ t

0

V x0,u0

s ds,

V x0,u0

t = u0 +

∫ t

0

B̃(s, Y x0,u0

s , V x0,u0

s )ds+Wt,

where B̃ is defined by

(t, x, u) 7→ B̃(t, x, u) = sign(x)B(t, |x|, sign(x)u). (2.23)

2.2.2. A PDE approach

Compared to the case of the hyperplane, the well-posedness of the confined Lagrangian models (2.15) in a
smooth bounded domain, submitted to (2.10) is far more difficult to handle. A first attempt on this prob-
lem, considered in [16], is to look at the McKean-Vlasov-Fokker-Planck equation describing the time-marginal
densities related to a confined Lagrangian system of the form (2.15). As we have seen, this equation may write:





∂tρ+ (u · ∇xρ) + (B[· ; ρ] · ∇uρ)−
σ2

2
△uρ = 0 on (0, T )× D × R

d,

ρ(0, x, u) = ρ0(x, u) in D × R
d,

γ(ρ)(t, x, u) = γ(ρ)(t, x, u− 2(u · nD(x))nD(x)) on (0, T ]× ∂D × R
d,

(2.24)

where ρ0 stands for the initial distribution. Here, the coefficient B is a mapping from (0, T )×D×L1((0, T )×D)
to R

d defined as

B [t, x; γ] =






∫

Rd

b(v)γ(t, x, v) dv
∫

Rd

γ(t, x, v) dv

if

∫

Rd

γ(t, x, v) dv 6= 0,

0 elsewhere,

where b : R
d → R

d is bounded and Borel measurable. Again, γ(ρ) denotes the trace of ρ, defined through the
Green formula to (2.12), and has to satisfy the conditions (2.13).
Equation (2.24) belongs to the class of linear Vlasov-Fokker-Planck equations. Well-posedness of a non-

negative weak solution (with ρ ∈ L2((0, T ) × D;H2(Rd)) where H2 denotes the usual L2-Sobolev space), and
theorem on the existence of trace have been proved for linear version of (2.24) (see e.g. [4,8,9]). We prove an
energy inequality which provides an uniqueness result to (2.24) in the set V of solutions:

V :=

{
ρ ∈ L2

w((0, T )×D;H2
w(R

d)); sup
(t,x)

∫

Rd

w(u)|ρ(t, x, u)|2du < +∞ and

∫

Rd

ρ(t, x, u)du > 0

}
.

Here H2
w denotes the weighted Sobolev space endowing the weight w(u) = (1 + |u|2)α

2 for α > d.
In order to handle the singularity in the nonlinear coefficient B[·, ·; ρ], a suitable tool is provided by the

construction of upper and lower Gaussian bounds resulting from the existence of Maxwellian super- and sub-
solutions for equation (2.24). The considered Maxwellian functions have the following form:

M(t, u) = exp (−at) (m(t, u))β ,
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where β > 0, and m(t, u) is the solution to the heat equation:





∂tm−
σ2

2
△um = 0 on (0, T ]× R

d,

m(0, u) = m0(u).

Assuming the following a priori bounds on ρ0,

m0(u) ≤ ρ0(x, u) ≤ m0(u), (x, u) ∈ D × R
d, (2.25)

we choose appropriately the parameters β and a in terms of σ and ‖b‖∞ and by means of comparison arguments,
similar lower and upper bounds M , M are found for the solution ρ to equation (2.24).
Using a fixed point method, together with compactness and contraction arguments, one obtains the well-

posedness of a weak solution to the nonlinear equation (2.24):

Theorem 2.7. Assume (2.25) with m0 > 0 and m0 ∈ L2
w. There exists a unique weak solution ρ to (2.24),

and a couple of Maxwellian functions (M,M) depending on m0, m0, σ, and ‖b‖∞ such that

M(t, u) ≤ ρ ≤M(t, u) on (0, T )×D × R
d,

M(t, u) ≤ γ(ρ) ≤M(t, u) on (0, T )× ∂D × R
d.

An important corollary of Theorem 2.7 is the uniqueness of the solution to (2.15). The construction of the
Lagrangian process solution to (2.15) is a work under progress.
The results outlined in this section deal with well-posedness and particle approximation issues for simplified

versions of stochastic Lagrangian model for downscaling methods. Their extensions to SDM and other stochastic
Lagrangian models (see [27,28]) call for deeper developments, as they feature unbounded drift terms (as in (1.1)
and (1.3)), and diffusion coefficients involving non-linearity of conditional type which is a hard topic in the
general framework of non-linear SDEs.

3. Numerical description of SDM

We present in this section the numerical discretization of SDM. We apply a splitting scheme in which the
pressure gradient effects (the constant mass and mean free divergence constraints (1.5) and (1.6)) are taken into
account thanks to a projection step (see details in Sect. 3.2 below).
The stochastic differential equations that we consider here are





Xt = X0 +

∫ t

0

Us ds,

Ut = U0 −
(
1

2
+
3

4
C0

)
Cε

ℓm

∫ t

0

(kL(s,Xs))
1/2

(Us − 〈U〉(s,Xs)) ds+

√
C0Cε

ℓm

∫ t

0

(kL(s,Xs))
3/4

dWs

+2
∑

0<s≤t

(Uext(s,Xs)− Us−) {Xs∈∂D}.

(3.1)
In comparison with equation (1.1), the reader will notice that we omit the pressure gradient term in equa-
tion (3.1). We consider a particle discretization of the Lagrangian equation (3.1), using the Particle in Cell
method for the computation of Eulerian quantities such as 〈U〉(t, x). As shown in Section 2, an interacting par-
ticle system associated to (3.1) allows to approximate its Eulerian quantities. In particular, using the notations
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of Section 2, for any bounded smooth function Q, the quantity

1
Np

Np∑

j=1

Q(Uj,δ,Np

t )φδ(x−Xj,δ,Np

t )

1
Np

∑Np

j=1 φδ(x−Xj,δ,Np

t ) + δ
(3.2)

is a converging estimator of E(Q(Ut)/Xt = x), as Np goes to ∞ and δ goes to 0 (see (2.9)). In the class of
such Nadaraya-Watson estimators, we are interested in the Nearest Grid Point estimator (see Sect. 3.1 below),
particularly well adapted to SDM.
As far as the time discretization is concerned, we use an explicit Euler method, for which an exponential

scheme is considered in order to ensure long time stability (see Sect. 3.2). Each time iteration consists in a
sequence of three sub-steps: the first step updates the particle properties without taking the pressure term into
account.
The second step only concerns the particles hitting the boundary. It consists in a reflection on both velocity

and position. The jump applied on the velocity is determined in terms of the Dirichlet condition (1.2). The
reflection carried out in Section 3.2 is original and allows to transfer the Eulerian boundary conditions to the
local Lagrangian model.
In order to avoid local numerical instabilities created by a stiff treatment of the particles at the boundary,

we introduce a regularization of (3.1), for which the first equation is replaced by





Xt = X0 +

∫ t

0

Vs ds,

Vt = Ut − hδ(Xt)Uext(t,Xt),
(3.3)

where hδ is the indicator function of Bδ = {x ∈ D; |x− ∂D| < δ}. The process (Vt, t ∈ [0, T ]) above represents
the Lagrangian velocity field (see the first equation of (3.3)), which is shifted by −Uext (see second equation)
for any particle that moves inside the boundary neighborhood Bδ.
Finally, the third step projects the unknowns onto the constraint space (constant mass density and divergence-

free velocity).

3.1. The Particle in Cell method

We briefly present in this section the Particle in Cell (PIC) method, that is very well described and analysed
in [29]. Given a Lagrangian field, the PIC method aims at computing local averages of the particle properties
in order to obtain the corresponding Eulerian variables, such as the three-dimensional velocity.
From a numerical point of view, it is classical to carry out such approximations by using the Nearest Grid

Point (NGP) method. In this way, we drop Np fluid particles in the domain D and mesh D into Nc disjoint

cells (Ci, i = 1, . . . , Nc) so that D = ∪Nc

i=1Ci. Let us denote by
(
X

k,Np

t ,Uk,Np

t

)
the position and velocity at

time t, of the kth particle among Np. For all x ∈ D, we denote by ix the cell number such that x ∈ Cix
, and

 {· ∈Cix}
is the indicator function of Cix

. Then the quantity E(Q(Ut)/Xt = x), involved in (3.1) with ad hoc
expressions of Q, is approximated by :

〈Q(U)〉(t, x) = E(Q(Ut)/Xt = x)

≃





Np∑

k=1

Q
(
Uk,Np

t

)

 

{X
k,Np
t ∈Cix}

#{Xk,Np

t ∈ Cix
, k = 1, . . . , Np}

if #{Xj,Np

t ∈ Cix
, j = 1, . . . , Np} 6= 0,

0 elsewhere,

(3.4)
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which is closed to (3.2) if we define the function φδ thanks to the above indicator functions. In the SDM
approach (3.1), x is always the center of a cell Ci. Moreover, due to the uniform distribution of the particles as
expressed in (1.5), the estimator (3.4) is reduced to

E(Q(Ut)/Xt = x) ≃ 1

Npc

Np∑

k=1

Q
(
Uk,Np

t

)

 

{X
k,Np
t ∈Cix}

, (3.5)

where Npc denotes the constant number of particles per cell.
Note that it is possible to replace the NGP method by higher order methods (based on smoother splines) that

take into account more particles in the cell neighborhood. These methods increase the numerical complexity
and require a particular treatment for the computation of Eulerian quantities in the boundary cells.
By then, any statistics on the Eulerian velocity U (mean components, variances, turbulent kinetic energy k)

is evaluated in a cell Ci by an average over the Npc particles present in Ci.
The convergence speed of the first and second moment estimators should behave (at least asymptotically)

as a Monte Carlo method (independent sampling). Thus, we expect the 95% confidence interval for the mean
wind components to be driven by the local turbulent variance σ̄2 = (〈u2〉, 〈v2〉, 〈w2〉). The error between the
numerical velocity 〈U〉SDM and the reference solution 〈U〉 in each cell Ci may be quantified with the help of the
law of large numbers and the central limit theorem as:

P

(
〈U〉 − 〈U〉SDM ∈

[
− 2σ̄√

Npc

,
2σ̄√
Npc

])
≥ 95%. (3.6)

3.2. The numerical time-scheme

We present hereafter the numerical discretization of (3.1). For robustness considerations (see [23]), we
consider the exponential version of the explicit Euler scheme for the prediction step (Step 1). We propose
in Step 2 an original method to confine particles in D according to the following downscaling principle: the
inferred Eulerian velocity field satisfies the Dirichlet condition (1.2).

At time tn−1 = (n− 1)∆t, the Np Lagrangian variables
(
Xk

n−1,Uk
n−1

)
:=
(
X

k,Np

n−1 ,U
k,Np

n−1

)
are known, as well

as the statistics kn−1 and 〈Un−1〉 in each cell C of the partition of D = ∪Nc

i=1Ci. At time tn, for each particle k:

Step 1. Prediction: We compute the following quantities:
• The particle velocity Vk

n−1 = Uk
n−1 − Uext(tn−1, X

k
n−1)hδ(X

k
n−1);

• The particle position X̃k
n = Xk

n−1 +∆tVk
n−1;

• The velocity Ũk
n is calculated applying an exponential scheme to the equation

dŨk
t = −C1k

1/2
n−1

(
Ũk

t − 〈Un−1〉
)
dt+ C2k

3/4
n−1dWt, t ∈ [tn−1, tn], (3.7)

where 〈Un−1〉, kn−1 and εn−1 are evaluated in the cell containing X
k
n−1.

If X̃k
n ∈ D, then set Xk

n = X̃k
n and Uk

n = Ũk
n .

Step 2. Reflection: When X̃k
n /∈ D; let tout be the boundary hitting time after tn−1, and xout = Xk

n−1 + (tout −
tn−1)Vk

n−1 be the hitting position, then the reflected position is set to

Xk
n = xout − (tn − tout)Vk

n−1. (3.8)

In concern of the velocity, we simulate equation (3.7) between tn−1 and tout with an exponential scheme
to obtain the velocity Uk

tout−
. Then, in order to match the boundary conditions, we impose a jump
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on the velocity at t = tout:

Uk
t
out+

= 2Uext(tn−1, xout)− Uk
t
out−

. (3.9)

We finally compute Uk
n thanks to the simulation of equation (3.7) between tout and tn.

Remark 3.1. In a three-dimensional domain, it may happen that Xk
n written in (3.8) remains outside the

computational domain after the reflection, for instance in the neighborhood of the corners. In this case, new
hitting coordinates xout2 are computed, and the new particle position is set to

Xk
n = xout2 + γ,

where γ is a small vector pushing xout2 inside D. The new velocity Uk
n is unchanged.

Step 3. Conservation constraints: Once the Np particles are advanced at time tn,
• Move the particles such that there is exactly the same number Npc of particles per cell to fulfill
the mass density constraint. The interested reader is referred to [6,7] for further details.

• Compute the new Eulerian quantities 〈Ũn〉, and project the new Eulerian velocity field on the
divergence free space. This may be done thanks to the classical resolution of a Poisson equation
for the pressure, with homogeneous Neumann boundary conditions, see [14].

Remark 3.2. The projection method that is classically used to set the divergence of a given (Eulerian) velocity
field to zero can not guarantee the boundary conditions to fully match the Dirichlet conditions. Indeed, provided

a predicted velocity field Ṽ , the projection method consists in solving the following Poisson problem




−∆Φ = 1

∆tdivṼ ,

∂Φ
∂n

= 0.
(3.10)

Then, the corrected velocity V is computed thanks to

V = Ṽ −∆t∇Φ. (3.11)

In our case, Ṽ is 〈Ũn〉 and V is 〈Un〉. After computing Φ as in (3.10), we actually modify the Lagrangian
quantities

Uk
n = Ũk

n −∆t∇Φ(Xk
n), k = 1, . . .Np, (3.12)

and finally, it is easy to check that our corrected Eulerian velocity 〈Un〉 is such that:

∇x · 〈Un〉 = 0, (3.13a)

〈Un〉 · −→n = Uext · −→n , (3.13b)

and possibly 〈Un〉 · −→τ 6= Uext · −→τ . (3.13c)

Because of (3.13c), we may prefer not to correct the velocity when its divergence is small enough, instead of
introducing errors at the boundary. This problem occurs in the resolution of every numerical methods that
discretizes the equations of divergence-free fluids. However, one can show that this error reduces with ∆t.

4. Numerical validation of the confinement scheme

The reflection scheme, detailed in Section 3 above, is aimed to confine the particles inside the domain D,
and to transfer information on Eulerian quantities available at an upper scale to the Lagrangian system in D.
The former is transmitted by means of a Dirichlet condition (1.2) on the velocity field. On a linear Lagrangian
process, we first validate this downscaling method, and then study the impact of this scheme on the statistics
of the process inside D, more particularly the turbulent kinetic energy.
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Here, we consider a linear one dimensional Lagrangian model, namely an Ornstein-Uhlenbeck process for
one component of the velocity field, and its primitive for the position. The corresponding free process (Y,V) in
R× R reads: {

Yt = X0 +
∫ t

0
Vsds,

Vt = U0 − c
∫ t

0
(Vs −m)ds+ σWt,

(4.1)

on some probability space (Ω,F ,P), equipped with a one-dimensional Brownian motion W . In the sequel, we
refer to the process (Y,V) as the Langevin-Ornstein-Uhlenbeck (LOU) process. The velocity component of this
free process is spatially homogeneous. The velocity equation admits a Gaussian stationary solution. Moreover,
the solution of equation (4.1) confined in [0,+∞), as well as its periodized version in the torus T = R/LZ for
a fixed L > 0, may be explicitly written, providing analytical expressions for the first and second conditional
moments, that will allow us to study numerically the impact of the confinement terms in the first conditional
moments.
For the sake of simplicity, we keep the same notation for the one dimensional confined Lagrangian process

than for the SDM process, (X,U).
In Section 4.1, we consider the case where the mean-revert parameter m is zero and we use the analytical

solution of equation (4.1) confined in [0,+∞) for a first numerical validation of both Dirichlet boundary con-
ditions and variance behaviour, the latter corresponding to the turbulent kinetic energy in SDM. Using the
one-dimensional version of the SDM scheme for confinement, we compare the asymptotic long-time behaviour
of statistics with numerical simulations performed in a bounded interval [0, L], where the confinement scheme
is applied at both ends of the interval.
Next we investigate in Section 4.2 the case where the mean-revert m is non-zero. This is of interest for the

validation of SDM, since the mean-revert parameter m is the analogous of the Eulerian velocity field 〈U〉 and
must be compatible with the (non-zero) boundary conditions. Moreover the case m 6= 0 imposes to work with
the pressure correction (corresponding to the optimal transport step correction in the SDM scheme) in the
confined version of (4.1). We compare this case with the periodized version of (4.1) in the interval [0, L], the
solution of this later case having its space-marginal uniformly distributed in [0, L].
In all this section, we consider the initial variables (X0,U0) as a couple of independent random variables

where X0 is uniformly distributed in the interval [0, L] (L > 0 given), and U0 is a centered Gaussian variable
with standard deviation σ0. The parameters L and σ0 are respectively fixed to 10 and 0.1 in all the numerical
simulations presented below.

4.1. One dimensional SDM with zero Eulerian velocity field (m = 0)

As discussed in Remark 2.6, Section 2.2, the process (X,U), confined in [0,+∞), solution of





Xt = X0 +

∫ t

0

Usds,

Ut = U0 − c
∫ t

0

Usds+ σWt −
∑

0<s≤t

2Us− ll {Xs=0},
(4.2)

can be constructed from the free process (Y,V) solution of




Yt = X0 +

∫ t

0

Vsds,

Vt = U0 − c
∫ t

0

Vsds+ σWt.

Contrarily to SDM (see (1.1), (1.3) and (1.7) in Sect. 1), the model (4.2) does not carry any kind of pressure
correction. As a consequence, the mass density (equivalent here to the space marginal of the probability density)
associated with (4.2) has no more reason to be constant.
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We consider a rate of mean reversion c > 0, and σ > 0. As discussed in Section 2.2, the jump term in
equation (4.2) models the confinement: the position Xt is reflected with velocity Ut = −Ut− when hitting the
boundary {x = 0}. It induces the Dirichlet condition E [Ut/Xt = 0] = 0, also called the mean no-permeability
condition (see eq. (2.10)).
The probability density ρc(t, x, u) of the confined particle (Xt,Ut) solution to (4.2) is derived from the

probability density ρ(t, y, v) of the free process by identity (2.21). The n-conditional moments on the velocity
are then deduced from the free ones: for a.e. (t, x) ∈ (0,+∞)× (0,+∞),

E [(Ut)
n
/Xt = x] =

̺(t, x)E [(Vt)
n
/Yt = x] + (−1)n̺(t,−x)E [(Vt)

n
/Yt = −x]

̺c(t, x)
,

where ̺(t, x) and ̺c(t, x) are respectively the mass density of the free process and the mass density of the
confined process: ̺(t, x) :=

∫
R
ρ(t, x, v)dv and ̺c(t, x) :=

∫
R
ρc(t, x, v)dv = ̺(t, x) + ̺(t,−x).

From identities (A.12) and (A.13) in Appendix A.2.1, we have the following analytical expressions for
E[Vt/Yt = x] and E[V2

t /Yt = x]: for all t > 0,

E [Vt/Yt = x] =
µ(t)

ν1(t)
x+

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
E
[
(x−X0)gσ1(t)(x−X0)

]

̺(t, x)
,

E
[
V2

t /Yt = x
]
=
|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(
exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

+

(
γ(t)σ2

0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2

)2 E

[
(x−X0)

2 gσ1(t)(x−X0)
]

̺(t, x)
,

where gσ denotes the one dimensional Gaussian function with standard deviation σ, the functions γ(t), Σ(t),
ν(t), µ(t) are defined in the beginning of Appendix A.1 in (A.2), and σ1(t) in the beginning of Section A.2.
A straightforward calculation leads to

E [Ut/Xt = x] =
µ(t)

ν1(t)
x+

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
x+

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2

× E
[
X0

(
gσ1(t)(x−X0)− gσ1(t)(x+X0)

)]

̺c(t, x)
,

and

E
[
U2

t /Xt = x
]
=
|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(
exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

+

(
γ(t)σ2

0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2

)2
E
[
(x −X0)

2gσ1(t)(x−X0)
]

̺c(t, x)
,

from which we can easily compute the long-time statistics E [Ut/Xt = x] and E
[
U2

t /Xt = x
]
, as long as we

consider a bounded conditional position 0 ≤ x ≤ L and the initial variable |X0| bounded P almost everywhere.
We identify two constants C1 and C2, depending on x such that

〈U〉(t, x) =
C1

2t
+ o

(
1

t

)
, (4.3)

〈u2〉(t, x)− σ2

2c
=

C2

t
+ o

(
1

t

)
· (4.4)
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For the first and second conditional moments E [Ut/Xt = x] and E
[
U2

t /Xt = x
]
, the long-time behaviour of the

confined process (Xt,Ut) is equivalent with the free process (Yt,Vt) (see Rem. A.2 in the Appendix). The limit

values are the mean and variance of the equilibrium Gaussian law N (0, σ2

2c ) of the free velocity Vt.

4.1.1. First numerical reference and validation

The numerical computation of conditional moments of the confined model (4.2) is difficult to achieve because
the support of the law of the particles is the unbounded half-line. When L is sufficiently large, the two end
confinement points of [0, L] behave (almost) independently, as a superposition of two half-line confinements.
Hence, the following process confined in [0, L]





Xt = X0 +

∫ t

0

Usds,

Ut = U0 − c
∫ t

0

Usds+ σWt −
∑

0<s≤t

2Us−

(
ll {Xs=0} + ll {Xs=L}

)
,

(4.5)

appears to be the nearest model numerically solvable that can reproduce the asymptotic behaviours (4.3)
and (4.4).
We simulated particles with an adapted one dimensional version of SDM’s algorithm (see Sect. 3.2). We use

an explicit exponential Euler scheme (see (3.7)), and apply the confinement procedure (3.8), (3.9) with Uext = 0.
We smooth the confinement effect with the regularization function hδ as described in (3.3).
Comparisons are made on the first moment 〈U〉 and its variance 〈u2〉 and their asymptotic long-time analytical

expressions, equivalent to (4.3) and (4.4). The final time simulation T is taken equal to T = 100. At time t = 0,
Np = NcNpc particles are uniformly distributed in the interval [0, L], with velocity randomly generated with a
Gaussian law N (0, σ0). The initial variance σ

2
0 = 0.01 is chosen smaller than the expected asymptotic variance

σ2/2c, where σ and c are O(1).
In all the figures below, mean values are shown in each cell center. Except in Figure 4 where several Nc

and δ are compared, we fix Nc = 200 and δ = L/Nc = 0.05. The smoothing parameter δ of the confinement
corresponds then to the size of the boundary cell. The time step ∆t = 0.01 is chosen sufficiently small so
that particles do not cross more than one cell during a time step. The number of particles per cell is fixed to
Npc = 10 000, in order the Monte Carlo error (3.6) to be small enough.
As we can observe in Figure 2 with Uext(0) = Uext(L) = 0, the numerical first and second conditional

moments provided by our scheme match the analytical results given in (4.3) and (4.4). The particle reflection
at the boundaries affects neither the first moment nor the variance, and these values are in agreement with the
theoretical prediction: the variance 〈u2〉(T, x) is almost constant in [0, L] and matches the value σ2/2c. The
Monte Carlo noise on 〈U〉 remains in the asymptotic confident interval of 〈u2〉

P

(
〈U〉 − 〈U〉SDM ∈

[
−
√
2σ√
cNpc

,

√
2σ√
cNpc

])
≥ 95%.

4.1.2. Effect of non-homogeneous boundary conditions

In order to test the behaviour of the confinement scheme on an irregular case, we have simulated the confined
Langevin system when the boundary conditions are no more compatible with the mean revert parameter m.
The corresponding equation should be typically,





Xt = X0 +

∫ t

0

Usds,

Ut = U0 − c
∫ t

0

Usds+ σWt +
∑

0<s≤t

2 (Uext(Xs)− Us−)
(
ll {Xs=0} + ll {Xs=L}

)
,

(4.6)
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Figure 2. The homogeneous case m = Uext(0) = Uext(L) = 0. The 〈U〉(T, ·) and 〈u2〉(T, ·)
behaviour in the confined interval [0, L] from the simulation of system (4.5). The theoretical
asymptotic values are plotted in continuous lines.

with non zero Uext(0), Uext(L). Even if the well-posedness of (4.6) is unclear, such an experiment gives an
idea of the variance perturbation due to the forcing. We let unchanged the set of numerical parameters
{T,∆t,Nc, Npc, δ}. As Figure 3 evidences for two given sets of non-zero boundary conditions, the numeri-
cal first moment fails to return with precision the boundary forcing, although this can be modulated with the
choice of Npc and δ. Even for T = 100, the size of the computational domain L is clearly large enough to
separate the left and right forcing effects. The perturbation of the variance depends strongly on the rarefaction
effect or the concentration effect the forcing locally produces on the particle distribution.
In the next section, we pursue our analysis, by introducing the pressure correction term (and hence the

constant mass density constraint) in the confining equation.

4.2. One dimensional SDM with non-zero Eulerian velocity field (m 6= 0)

Consider now the LOU type process (4.1) with a non zero mean revert parameter m. In that case, as pointed
out in Remark A.1, the Eulerian velocity of the free process behaves like E [Vt/Yt = y] ≃ m/2 as t→ +∞, that
prevents from interpreting equation (4.1) as the linearized version of





Yt = X0 +

∫ t

0

Vsds,

Vt = U0 − c
∫ t

0

(Vs − E[Vs/Ys]) ds+ σWt,

(4.7)

where we want to replace E [Vt/Yt = y] by m as a numerical test case. Moreover, the simulation of confined
version of (4.1) is difficult to achieve as the forcing and m 6= 0 may produce a concentration of particles at
a boundary. For those reasons, we modify equation (4.1) with the pressure correction term. A mathematical
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Figure 3. Inhomogeneous Dirichlet conditions and m = 0. The 〈U〉(T, ·) and 〈u2〉(T, ·) be-
haviour in the confined interval [0, L] from the simulation of system (4.6). Three sets of bound-
ary forcing are applied at x = 0 and x = L.

analysis of the Poisson equation’s role coupled with (4.7) is proposed in [3]. The authors study equations of
type 




Y T

t =

[
X0 +

∫ t

0

Vsds

]
mod L,

Vt = U0 +

∫ t

0

(
E[Vs/Y

T

s ]− Vs −∇P (s, Y T

s )
)
ds+ σWt,

with

−△xP (t, x) =

d∑

i,j=1

∂2
ij

(
E

(
V(i)

t V(j)
t

/
Y T

t = x
))

, (t, x) ∈ (0,+∞)× T.

Here, T is the torus R/LZ and [x]mod L := x− L⌊x/L⌋ where ⌊x⌋ is the integer part of x ∈ R. In particular,
it is shown that Y T

t stays uniformly distributed in [0, L] as soon as X0 is.
As show in Appendix B, the periodic-LOU process





Y T

t =

[
X0 +

∫ t

0

Vsds

]
mod L,

Vt = U0 − c
∫ t

0

(Vs −m)ds+ σWt,

(4.8)

is also stationary in its space variable: Y T
t is uniformly distributed in [0, L] for all t ≥ 0. MoreoverE

[
Vt / Y

T
t = y

]

tends to m exponentially fast, and

E
[
V2

t /Y
T

t = y
]
→ m2 +

σ2

2c
when t→ +∞.
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Figure 4. For m = Uext(0) = Uext(L) = 1, 〈U〉 and 〈u2〉 for various number of cells, with a
constant number of particles per cell, and σ = c = 1.

4.2.1. Numerical validation for a non-zero mean-revert m 6= 0

In this section, we study the effect of the forcing confinement combined with the pressure correction. For
this purpose, we have simulated the confined system






Xt = X0 +

∫ t

0

Usds,

Ut = U0 +

∫ t

0

[c(m− Us)−∇P (s,Xs)] ds+ σWt +
∑

0<s≤t

2 (Uext(Xs)− Us−)
(
ll {Xs=0} + ll {Xs=L}

)
,

(4.9)
coupled with

−△xP (t, x) =

d∑

i,j=1

∂2
ij

(
E

(
U (i)

t U (j)
t

/
Xt = x

))
, (t, x) ∈ (0,+∞)× [0, L].

We compare it with the simulations of (4.8) in order to try to discriminate between the effects of the boundary
conditions and the effect of the constant mass density constraint.
As previously, we simulated particles using an adapted version of SDM’s algorithm for the one dimensional

case. It has to be underlined here that at each time step, the constant mass density constraint (see Step 3 of
the numerical scheme in Sect. 3.2), is applied to overcome the Poisson equation. In one dimension, the optimal
transport scheme resulting from this constraint is solved exactly, using a sorting procedure [31].
In the numerical simulations, the size of each cell is equal to δ: Ncδ = L, each cell containing Npc = 10 000

particles.
Results are shown in Figure 4, near the boundaries, for x ∈ [0, 1] (left), and [9, 10] (right), for several values

of δ. In all the interval [0, L], the variance behaves accordingly to equation (4.4). Zooming at the two boundaries
reveals a singular behaviour of the mean velocity, depending on the sign of Uext.
Here, we point out that, with our numerical scheme, variances (or equivalently the turbulent kinetic energy)

are barely influenced by the boundaries. This tends to show that our numerical algorithm is well adapted



910 F. BERNARDIN ET AL.

to a downscaling method (with boundary forcing): the confinement leads to a rather little perturbation of the
turbulent kinetic energy k, which is a central physical variable.
For the first velocity moment, a rather sharp variation of 〈U〉 appears near the boundary (see Fig. 4). For

instance, in top right figure, the first blue cross value on the right returns rather goodly the Dirichlet condition
〈U〉 = 1, the blue cross values inside the interval are coherent with the value m = 1. But the second blue cross
value on the right reveals the jump for reflected particles: one can assimilate the peaks observed numerically
as a stronger impact of the characteristic function hδ on 〈U〉. Indeed, in the top right figure, the outgoing flow
(since m = Uext = 1) accumulates the particles at the boundary x = 10 in the delta-zone, and the optimal
transport pushes the particle inside, with boundary information that are less meaningful inside the domain. At
the opposite boundary x = 0 (top left figure), the entering flow brings particles naturally out the delta-zone.
Next, we deduced from a fine simulation (Nc = 200) a coarser one (Nc = 50), for the same size of confining

zone δ = 0.05. This coarse simulation, plotted with red circles in Figure 4, aims to show the smoothing effect
when the δ-zone of the confining numerical scheme is chosen smaller than the cell size at the boundary. The
computation of the Eulerian velocity at the boundary involves all the particles in the boundary cell, and not
only the ones in the δ-zone. We compute the coarse estimation in the following way: given the simulated
particles at time T = 100 for Nc = 200 (corresponding to a cell’s size of 0.05), we consider a four times bigger
cell discretization of [0, L]: for j = 1 to 50, at the center of coarse cell x̄j = L(j − 0.5)/50, we compute:

〈U〉Nc=50(x̄j) =
4

Nc

Np∑

k=1

〈U〉Nc=200(Xk
T ){Xk

T
∈Cj}.

The coarser simulation then leads to a rather regular mean velocity 〈U〉. Obviously, when the peak is sharp, as in
top right figure, the mean between Dirichlet condition and mean velocity inside the interval remains important
too.
In the next paragraph, another set of simulations goes into further details on the impact of the optimal

transport procedure at the boundary.

4.2.2. Impact of the forcing Uext on 〈U〉 and 〈u2〉 at the boundary

Let us now investigate the impact of the boundary conditions Uext on the first and second moments of the
velocity at the boundary of the domain. In the simple case of a one-way coupling in which the information only
goes from the large scales to the small ones, the forcing terms Uext really impose their value to 〈U〉 computed
at the boundary. In this case, the numerical values of Uext and m should thus be compatible. However, when
one considers a two-way coupling in which the local model is not only a refinement, but also a correction of the
large scale information, then there might be (or should be) a difference between the external (coarse) velocity
Uext and the computed values of 〈U〉 at the boundary. This suggests the study (at least numerically) of (4.9)
when Uext and m have different values.
Figure 5 shows the final value (at T = 100) at the right boundary of the mean velocity and its variance

when Uext(L) takes values from −3 to 3, with different values for the parameter m. The values of σ and c
are unchanged, so that the expected variance is σ2/2c = 0.5. One can see that the second moment is well
approximated by the numerical scheme when Uext(L) > 0 (outgoing velocity). This can be explained by
the fact that a sufficient number of particles are carried in the boundary neighborhood for the Monte-Carlo
approximation to converge. When Uext(L) < 0 (incoming velocity), the particles are chased from the boundary
to the interior of the domain and the second moments are poorly approximated (except when m < 0).
More generally, looking both at the first and second moments, we notice that the numerical scheme behaves

pretty well when Uext(L) = m, which was expected, but that the results are also satisfactory when Uext(L)
and m have compatible (though different) values: for example Uext(L) = 2 and m = 1. However, mean value
and/or variance at the boundary is not correct for incompatible values of Uext(L) and m: see the cases (−3, 1)
or (3,−1).
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Figure 5. For m = −1, 0 or m = 1, behaviour of the boundary value of 〈U〉 and 〈u2〉 respec-
tively to the guidance Uext at x = L.

4.3. Conclusion

Let us now conclude with some numerical results for the complete 3D-SDM model. The simulations presented
in Figure 6 correspond to equations (1.1), (1.3), (1.7), discretized thanks to the numerical scheme introduced
in Section 3. The external forcing terms used for the computations of Figure 6 correspond to the (idealized)
case where the external field Uext depends neither on t > 0, nor on x ∈ ∂D. As a consequence, the equation for
the production of turbulent kinetic energy

∂k

∂t
= thermal production + transport + shear – dissipation ε

reduces (thanks to eq. (1.3)) to

∂k

∂t
= −Cε

ℓm
k3/2. (4.10)

The numerical behaviour for the turbulent kinetic energy in Figure 6 is thus the one expected from equa-
tion (4.10). We also notice that, as it was diagnosed for the 1D case (see Sect. 4), the numerical scheme does
take the boundary conditions into account, as evidenced in Figure 6.
Naturally, these first very encouraging results only insure a partial validation of our model: they will have

to be combined with numerical simulations in more realistic cases (e.g. with vertical shearing). Our model will
also have to be improved, in particular for the stratification effects. This will be presented in further studies.
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(a)

(b)

Figure 6. Idealized simulation of SDM with constant boundary forcing terms. (a) Time
evolution of the space-averaged turbulent kinetic energy ||k||L1(D). (b) Time evolution of the

L2 norm of the zonal velocity boundary error ||Uext − 〈U〉SDM ||L2(∂D).

A. The free Langevin-Ornstein-Uhlenbeck process

The free Langevin-Ornstein-Uhlenbeck process (Y,V) on R × R is the solution to the following system of
stochastic differential equations





Yt = Y0 +

∫ t

0

Vsds,

Vt = V0 − c
∫ t

0

(Vs −m)ds+ σWt.

(A.1)
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On a probability space (Ω,F ,P), given a one dimensional Brownian motion W and initial random variables
(Y0, V0) for the position and velocity, the solution of system (A.1) writes

Yt = Y0 +
V0 −m

c
(1− exp(−ct)) +mt+

σ

c

∫ t

0

(1− exp(−c(t− s))) dWs,

Vt = m+ (V0 −m) exp(−ct) + σ

∫ t

0

exp(−c(t− s))dWs.

In this appendix section, we derive explicit expressions for the conditional moments E [Vt/Yt = y] and
E
[
V2

t /Yt = y
]
, for t > 0. We assume that the initial condition (Y0, V0) is a couple of independent random

variables having finite second moments.

A.1. General initial conditions

As a preliminary computation, we consider the following degenerate case where (Y0, V0) is deterministic,
equal to (y0, v0). Denoting by (Y (t, y0, v0), V (t, y0, v0)) the means (E(y0,v0) [Yt] ,E(y0,v0) [Vt]), we have

Y (t, y0, v0) = y0 + v0γ(t) +m(t− γ(t)),

V (t, v0) = v0 exp(−ct) +mcγ(t), for γ(t) :=
1

c
(1 − exp(−ct)),

and denoting by Σ(t) the covariance matrix of this Gaussian vector (Yt,Vt), which is positive definite and
invertible for all t > 0,

Σ(t) =

(
ν1(t) µ(t)
µ(t) ν2(t)

)
=

(
σ2

c2 t+
σ2

2c3 (4(exp(−ct)− 1) + 1− exp(−2ct)) σ2

2c2 (1 − exp(−ct))2
σ2

2c2 (1− exp(−ct))2 σ2

2c (1− exp(−2ct))

)
, (A.2)

the joint probability density ρ for the vector (Yt,Vt) at time t starting from (y0, v0) at times 0, writes

ρ(0, y0, v0; t, y, v) =
1

2π|Σ(t)|1/2
exp

(
− 1

2|Σ(t)|
(

ν2(t)(y − Y (t, y0, v0))2 − 2µ(t)(y − Y (t, y0, v0))

×(v − V (t, v0)) + ν1(t)(v − V (t, v0))2
)

)

. (A.3)

Its space-marginals ̺(0, y0, v0; t, x) =
∫

R
ρ(0, y0, v0; t, y, v)dv writes, for all t > 0,

̺(0, y0, v0; t, y) =
1

√

2πν1(t)
exp

(

− 1

2ν1(t)
(y − Y (t, y0, v0))2

)

, (A.4)

so that

ρ(0, y0, v0; t, y, v) = ̺(0, y0, v0; t, y)

√

ν1(t)
√

2π|Σ(t)|
exp

(

− ν1(t)

2|Σ(t)|

(

(v − V (t, v0))−
µ(t)

ν1(t)
(y − Y (t, y0, v0))

)2
)

.
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From this last expression, we immediately get the conditional moments E(y0,v0) [Vt/Yt = y] and E(y0,v0)

[

V2
t /Yt = y

]

:
for all t > 0,

E(y0,v0) [Vt/Yt = y] =

∫

R

vρ(0, y0, v0; t, y, v)dv

̺(0, y0, v0; t, y)
= V (t, v0) +

µ(t)

ν1(t)

(
y − Y (t, y0, v0)

)
,

E(y0,v0)

[
V2

t /Yt = y
]
=

∫

R

v2ρ(0, y0, v0; t, y, v)dv

̺(0, y0, v0; t, y)
=
|Σ|(t)
ν1(t)

+
(
E(y0,v0) [Vt/Yt = y]

)2
.

Note that the conditional variance of the Langevin-Ornstein-Uhlenbeck velocity, starting from (y0, v0) at times 0,
in other words the second moment of the turbulent velocity of this Lagrangian model, is spatially homogeneous:

Var(y0,v0)(Vt/Yt = y) =
|Σ|(t)
ν1(t)

·

We consider now the case where the initial conditions (Y0, V0) are distributed with the initial law µ0. The
expression for E [Vt/Yt = y] becomes

E [Vt/Yt = y] =

∫

R2

∫

R

vρ(0, y0, v0; t, y, v)dvµ0(dy0, dv0)
∫

R2 ̺(0, y0, v0; t, y)µ0(dy0, dv0)

=

∫

R2

(
V (t, v0) +

µ(t)

ν1(t)

(
y − Y (t, y0, v0)

))
̺(0, y0, v0; t, y)µ0(dy0, dv0)

∫
R2 ̺(0, y0, v0; t, y)µ0(dy0, dv0)

=

E

[(
V (t, V0) +

µ(t)

ν1(t)

(
y − Y (t, Y0, V0)

))
̺(0, Y0, V0; t, y)

]

̺(t, y)

=
µ(t)

ν1(t)
y +

E

[(
V (t, V0)−

µ(t)

ν1(t)
Y (t, Y0, V0)

)
̺(0, Y0, V0; t, y)

]

̺(t, y)
, (A.5)

where we have set

̺(t, y) =

∫

R2

̺(0, y0, v0; t, y)µ0(dy0, dv0)·

Similarly, for E
[
V2

t /Yt = y
]
, we have

E
[
V2

t /Yt = y
]
=

∫

R2

∫

R

v2ρ(0, y0, v0; t, y, v)dvµ0(dy0, dv0)
∫

R2 ̺(0, y0, v0; t, y)µ0(dy0, dv0)

=

∫

R2

[
|Σ|(t)
ν1(t)

+

(
V (t, v0) +

µ(t)

ν1(t)

(
y − Y (t, y0, v0)

))2
]
̺(0, y0, v0; t, y)µ0(dy0, dv0)

∫
R2 ̺(0, y0, v0; t, y)µ0(dy0, dv0)

=
|Σ|(t)
ν1(t)

+

E

[(
V (t, V0) +

µ(t)

ν1(t)

(
y − Y (t, Y0, V0)

))2

̺(0, Y0, V0; t, y)

]

̺(t, y)
· (A.6)
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A.2. The case of the Gaussian initial velocity law

We denote by gσ(·) the one dimensional centred Gaussian density with given standard deviation σ.
For the purpose of Section 4, we compute

E

([

V (t, V0) +
µ(t)

ν1(t)

(
y − Y (t, Y0, V0)

)]
̺(0, Y0, V0; t, y)

)

and E

([
V (t, V0) +

µ(t)

ν1(t)

(
y − Y (t, Y0, V0)

)]2

̺(0, Y0, V0; t, y)

)

,

when Y0 and V0 are independent, and V0 is normally distributed according to gσ0
(v0)dv0.

We note that, in view of (A.4), for all (y0, v0) ∈ R
2,

̺(0, y0, v0; t, y)gσ0
(v0) = gσ1(t) (y − y0 −m(t− γ(t))) gσ2(t)

(

v0 −
γ(t)σ2

0

ν1(t) + (γ(t)σ0)2
(y − y0 −m(t− γ(t)))

)

,

with

σ1(t) :=
√

ν1(t) + (γ(t)σ0)2 and σ2(t) :=
σ0

√

ν1(t)
√

ν1(t) + (γ(t)σ0)2
·

We then immediately obtain that

∫

R

̺(0, y0, v0; t, y)gσ0
(v0)dv0 = gσ1(t)(y − y0 −m(t− γ(t))),

and hence

̺(t, y) = E
(

gσ1(t)(y − Y0 −m(t− γ(t)))
)

. (A.7)

Moreover,

E

[(

V (t, V0) +
µ(t)

ν1(t)

(

y − Y (t, Y0, V0)
)

)

̺(0, Y0, V0; t, y)

]

= E

[(

V0 exp(−ct) +mcγ(t) +
µ(t)

ν1(t)
(y − Y0 − V0γ(t)−m(t− γ(t)))

)

̺(0, Y0, V0; t, y)

]

=
γ(t)σ2

0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
E
[

(y − Y0 −m(t− γ(t)))gσ1(t)(y − Y0 −m(t− γ(t)))
]

+mcγ(t)̺(t, y) (A.8)

and

E

[

(

V (t, V0) +
µ(t)

ν1(t)

(

y − Y (t, Y0, V0)
)

)2

̺(0, Y0, V0; t, y)

]

= E

[

(

V0 exp(−ct) +mcγ(t) +
µ(t)

ν1(t)
[y − Y0 − V0γ(t)−m(t− γ(t))]

)2

̺(0, Y0, V0; t, y)

]

=
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(

exp(−ct)
γ(t)

+
µ(t)

ν1(t)

)2

̺(t, y) + E

[

(

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
[y − Y0 −m(t− γ(t))] +mcγ(t)

)2

× gσ1(t)(y − Y0 −m(t− γ(t)))
]

. (A.9)
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Coming back to (A.5) and (A.6), this leads to the following semi-explicit expressions for E [Vt/Yt = y] and
E
[

V2
t /Yt = y

]

:

E [Vt/Yt = y] =
µ(t)

ν1(t)
y +mcγ(t)− (γ(t)σ2

0 exp(−ct) + µ(t))

ν1(t) + (γ(t)σ0)2
m(t− γ(t))

+
(γ(t)σ2

0 exp(−ct) + µ(t))

ν1(t) + (γ(t)σ0)2
E
[

(y − Y0)gσ1(t)(y − Y0 −m(t− γ(t)))
]

̺(t, y)
, (A.10)

E
[

V2
t /Yt = y

]

=
|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(

exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

+

(

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2

)2

×
E

[

(

y − Y0 −m(t− γ(t)) + ν1(t)+(γ(t)σ0)
2

γ(t)σ2
0

exp(−ct)+µ(t)
mcγ(t)

)2

gσ1(t)(y − Y0 −m(t− γ(t)))
]

̺(t, y)
·

(A.11)

Remark A.1. Consider the case where the conditional position y is in a compact set and Y0 has a compact

support. When t tends to infinity, observe that cγ(t) ≃ 1,
µ(t)

ν1(t)
≃ 1

2t
and σ1(t) ≃ σ

c

√
t. Then the Eulerian

velocity of the free Langevin-Ornstein-Uhlenbeck convergences to the homogeneous value m
2 , as t→ +∞:

E [Vt/Yt = y]→ m

2

E
[

V2
t /Yt = y

]

→ m2

4
+
σ2

2c
, when t→ +∞.

A.2.1. The case of zero Eulerian velocity field (m = 0)

For the reader convenience, we give the expression (A.10) and (A.11) when m = 0:

E [Vt/Yt = y] =
µ(t)

ν1(t)
y +

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
E
[

(y − Y0)gσ1(t)(y − Y0)
]

̺(t, y)
, (A.12)

E
[

V2
t /Yt = y

]

=
|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(

exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

+

(

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2

)2 E

[

(y − Y0)
2
gσ1(t)(y − Y0)

]

̺(t, y)
· (A.13)

Remark A.2. Consider again the case where the conditional position y is in a compact set and Y0 has a
compact support. When t tends to infinity, we easily identify two constants C′1 and C

′
2, depending on y such

that

E [Vt/Yt = y] =
C′1
2t

+ o

(

1

t

)

,

E
[

V2
t /Yt = y

]

− σ2

2c
=

C′2
t
+ o

(

1

t

)

·
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Appendix B. The periodic-Langevin-Ornstein-Uhlenbeck process

For a fixed L > 0, we define the torus T := R/LZ. Hereafter, we consider the periodic Langevin-Ornstein-
Uhlenbeck process (Y T,V) on T× R which is the solution to the following SDEs:















Y T

t =

[

Y T

0 +

∫ t

0

Vsds

]

mod L,

Vt = V0 − c
∫ t

0

(Vs −m)ds+ σWt,

(B.14)

for [x]mod L := x − L⌊x/L⌋ where ⌊x⌋ is the integer part of x ∈ R. Equation (B.14) is considered on a
probability space (Ω,F ,P), equipped with a one dimensional Brownian motion W and initial position and
velocity condition (Y T

0 , V0) µ0-distributed in [0, L]×R. We now compute the explicit expressions for the space
marginal law of (Y T

t ,Vt), and for the conditional moments E
[

Vt/Y
T
t = y

]

and E
[

V2
t /Y

T
t = y

]

. First, let us

notice that the process (Y T
t ,Vt) writes as

(Y T

t ,Vt) = ([Yt]mod L,Vt)

for (Yt,Vt) solution to (A.1). Hence, for all f ∈ Cb([0, L]× R),

E
[

f(Y T

t ,Ut)
]

= E [f([Yt]mod L,Ut)] = E [f(Yt − L⌊Yt/L⌋,Ut)] =
∑

k∈Z

EP

[

f(Yt − Lk,Ut) {Yt∈[Lk,L(k+1))}

]

.

Therefore, the density ρT(0, y0, v0; t, y, v), of the law of (Y T
t ,Vt) starting from (y0, v0) is given by

ρT(0, y0, v0; t, y, v) :=
∑

k∈Z

ρ(0, y0, v0; t, y + kL, v) for a.e. (y, v) ∈ [0, L]× R, (B.15)

where the density ρ(0, y0, v0; t, y+kL, v) of the law of (Yt,Vt) starting from (y0, v0) is explicitly written in (A.3).
Now we compute the conditional moments, for all (t, y) ∈ (0,+∞)× [0, L],

∫

[0,L]×R

∫

R

vαρT(0, y0, v0; t, y, v)dvµ0(dy0, dv0) =

∫

[0,L]×R

∑

k∈Z

(
∫

R

vαρ(0, y0, v0; t, y + kL, v)dv

)

× µ0(dy0, dv0), ∀ α > 0. (B.16)

Again, we assume that Y0 and V0 are independent, V0 is normally distributed according to gσ0
(v0)dv0, and we

denote by ζ0(dy0) the law of Y0.
Combining (B.15), (B.16) with the identities (A.5), (A.6), and (A.8), (A.9), we get

̺T(t, y) =

∫

R

ρT(0, y0, v0; t, y, v)µ0(dy0, dv0) =
∑

k∈Z

∫ L

0

gσ1(t)(y + kL− y0 −m(t− γ(t)))ζ0(dy0),
∫

[0,L]×R

∫

R

vρT(0, y0, v0; t, y, v)dvµ0(dy0, dv0) = mcγ(t)̺T(t, y) +
γ(t)σ2

0 exp(−ct) + µ(t))

ν1(t) + (γ(t)σ0)2

×
∑

k∈Z

∫ L

0

(y + kL− y0 −m(t− γ(t)))gσ1(t)(y + kL− y0 −m(t− γ(t)))ζ0(dy0),
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and

∫

[0,L]×R

∫

R

v2ρT(0, y0, v0; t, y, v)dvµ0(dy0, dv0) =
|Σ|(t)
ν1(t)

̺T(t, y)+
ν1(t)(γ(t)σ0)

2

ν1(t)+(γ(t)σ0)2

(

exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

̺T(t, y)

+
∑

k∈Z

∫ L

0

(

γ(t)σ2
0 exp(−ct)+µ(t)

ν1(t)+(γ(t)σ0)2
[y + kL− y0 −m(t− γ(t))]+mcγ(t)

)2

gσ1(t)(y+kL−y0−m(t−γ(t)))ζ0(dy0).

In the particular case where Y T
0 is uniformly distributed in [0, L] (i.e. ζ0(dy0) =

1
Ldy0), one has

∑

k∈Z

∫ L

0

gσ1(t)(y + kL− y0 −m(t− γ(t)))ζ0(dy0) =
1

L

∑

k∈Z

∫ L

0

gσ1(t)(y + kL− y0 −m(t− γ(t)))dy0 =
1

L
,

from which one deduces that for all t ∈ (0,+∞)

̺T(t, y) =
1

L
,

∫

[0,L]×R

∫

R

vρT(0, y0, v0; t, y, v)dvµ0(dy0, dv0) =
1

L
mcγ(t),

and hence

E
[

Vt/Y
T

t = y
]

= m(1− exp(−ct)).

Similarly

∫

[0,L]×R

∫

R

v2ρT(0, y0, v0; t, y, v)dvµ0(dy0, dv0) =
1

L

(

|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(

exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2
)

+
∑

k∈Z

1

L

∫ L

0

{

γ(t)σ2
0 exp(−ct) + µ(t)

ν1(t) + (γ(t)σ0)2
[y + kL− y0 −m(t− γ(t))]−mcγ(t)

}2

× gσ1(t)(y + kL− y0 −m(t− γ(t)))dy0,

and then

E
[

V2
t /Y

T

t = y
]

=
|Σ|(t)
ν1(t)

+
ν1(t)(γ(t)σ0)

2

ν1(t) + (γ(t)σ0)2

(

exp(−ct)
γ(t)

− µ(t)

ν1(t)

)2

+ (mcγ(t))2 +

(

γ(t)σ2
0 exp(−ct) + µ(t)

)2

ν1(t) + (γ(t)σ0)2
·

The asymptotic behaviour of the first and second conditional moments of velocity is then obvious: E[Vt/Y
T
t =y]

tends to m exponentially fast, and

E
[

V2
t /Y

T

t = y
]

→ m2 +
σ2

2c
when t→ +∞.

We end this subsection with some remarks on the asymptotic behaviour of the solution to (B.14). If it exists,
the invariant measure associated to this process is a solution to the stationary PDE

v∂yρ∞(y, v)− c∂v ((v −m)ρ∞(y, v))−
σ2

2
∂2

vρ∞(y, v) = 0, for (y, v) ∈ [0, L]× R (B.17)
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with periodic boundary condition, ρ∞(0, v) = ρ∞(L, v) in its position variable, and such that (1+|v|2)ρ∞(y, v)+
(1+ |v|)|∂vρ∞(y, v)| decays to zero when v tends to infinity, uniformly in y ∈ [0, L]. This limit equation admits
smooth solutions, and it is easy to check that any solution is such that

∫

R

vρ∞(y, v) dv =
m

L
·

Indeed, integrating (B.17) over the velocity space, one can check that y 7→
∫

R
vρ∞(y, v) dv is equal to some

constant C. Multiplying (B.17) by v and integrating the resulting equation over position and velocity spaces,
one gets

0 =

(
∫

R

|v|2ρ∞(L, v) dv −
∫

R

|v|2ρ∞(0, v) dv
)

+ c

(

CL−m
∫

[0,L]×R

ρ∞(y, v) dy dv

)

.

Using the periodic condition at the boundary, we identify C = m/L. We also note that an explicit solution to
equation (B.17) is

ρ∞(y, v) =

√
c

L
√
πσ2

exp

(

−c|v −m|
2

σ2

)

·
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