
HAL Id: hal-00941107
https://hal.inria.fr/hal-00941107

Submitted on 3 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Freeriders in Gossip-Based Content
Dissemination Systems

Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod,
Swagatika Prusty, Aline Roumy

To cite this version:
Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod, Swagatika Prusty, et al..
Tracking Freeriders in Gossip-Based Content Dissemination Systems. Computer Networks, Elsevier,
2014, 64, pp.322-338. �10.1016/j.comnet.2014.02.023�. �hal-00941107�

https://hal.inria.fr/hal-00941107
https://hal.archives-ouvertes.fr

Tracking Freeriders in Gossip-Based Content Dissemination SystemsI,II

Rachid Guerraouia, Kévin Huguenina,1,∗, Anne-Marie Kermarrecb, Maxime Monodc,2, Swagatika Prustyd,3, Aline Roumyb

aEPFL, School of Computer and Communication Systems, Lausanne, Switzerland.
bINRIA Rennes – Bretagne Atlantique, Campus de Beaulieu, Rennes, France.

cNXC, Lausanne, Switzerland.
dDepartment of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA.

Abstract

Gossip-based protocols have proven very efficient for disseminating high-bandwidth content such as video streams in a peer-to-peer
fashion. However, for the protocols to work, nodes are required to collaborate by devoting a fraction of their upload bandwidth,
a scarce resource for some of them, to forward the content they receive to other nodes. Consequently, such protocols suffer from
freeriding, a common phenomenon on the Internet, which consists in selfishly benefiting from the system without contributing its
fair share. Due to the dynamic nature and the inherent randomness of gossip protocols and to the high scalability requirements of
video streaming systems, detecting freeriders is a difficult challenge.

This paper presents LiFTinG, the first protocol for detecting freeriders, including colluding ones, in gossip-based content dis-
semination systems with asymmetric data exchanges. In addition, LiFTinG is still able to detect freeriders when network coding,
a widely used technique to improve the efficiency of content dissemination, is used. LiFTinG relies on nodes to track abnormal
behavior by cross-checking the history of their previous interactions and exploits the fact that nodes pick neighbors at random to
prevent colluding nodes from mutually covering up their bad actions.

We present a methodology for setting the parameters of LiFTinG to their optimal value, based on a theoretical analysis and we
quantify theoretically the performance of LiFTinG. We derive, based on simulations, the optimal strategy of freeriders by taking into
account, through a utility function, the benefit of freeriding and the probability of being detected. In addition to these simulations,
we report on the deployment of LiFTinG on PlanetLab. In a 300-node system, where a stream of 674 kbps is broadcasted, LiFTinG
incurs a maximum overhead of only 8% and provides good detection results: For instance, with 10% of freeriders decreasing their
contribution by up to 30%, LiFTinG detects 86% of the freeriders after only 30 seconds and wrongfully expels only a few honest
nodes (most of them actually being buggy).

Keywords: High-bandwidth content dissemination, Peer-to-Peer (P2P), Free riding, Distributed verifications.

1. Introduction

Gossip protocols have been successfully applied to decen-
tralize large-scale high-bandwidth content dissemination, such
as video streaming [12, 14, 15]. Such systems are asymmet-

IThis article is a revised and extended version of a paper that appears in the
Proceedings of the ACM/IFIP/USENIX 11th International Middleware Confer-
ence (Middleware ’10) [19].

IIThis work was partially supported by the ERC Starting Grant GOSSPLE
204742.
∗Corresponding author
Email addresses: rachid.guerraoui@epfl.ch (Rachid Guerraoui),

kevin.huguenin@epfl.ch (Kévin Huguenin),
anne-marie.kermarrec@inria.fr (Anne-Marie Kermarrec),
maxime.monod@nxc.ch (Maxime Monod), aline.roumy@inria.fr (Aline
Roumy)

1This research was partially carried out while Kévin Huguenin was working
for his PhD at Université de Rennes 1 / IRISA, France.

2This research was partially carried out while Maxime Monod was working
for his PhD at EPFL, Lausanne, Switzerland. Maxime Monod was partially
funded by the Swiss National Science Foundation with grant 20021-113825.

3Parts of this research were carried out while Swagatika Prusty was doing
an internship at EPFL, Lausanne, Switzerland.

ric4: nodes propose packet identifiers to a dynamically chang-
ing subset of random nodes. Packets can be either chunks of
the file or stream, or combinations of such chunks when coding
is used (e.g., random linear combinations in [9, 23, 56]). These
nodes, in turn, request packets of interest, that are subsequently
pushed by the proposer. In such a three-phase protocol, gos-
sip is used to disseminate content location, whereas the con-
tent itself is explicitly requested and served, in order to avoid
serving redundant content. These protocols are commonly used
for high-bandwidth content dissemination with gossip, e.g.,
[12, 14, 15, 36] (a similar scheme is also present in mesh-based
systems, e.g., [35, 39, 55, 58, 59] – see [60] for a comprehensive
survey of peer-to-peer live streaming protocols).

The efficiency of such protocols highly relies on the will-
ingness of participants to collaborate, i.e., to devote a frac-
tion of their resources, namely their upload bandwidth, to the
system. Yet, some of these participants might be tempted to
freeride [3, 25, 34], i.e., not contribute their fair share of work,

4Throughout the paper, asymmetry refers to the protocol, i.e., the fact that
nodes push content without expecting any content in return, not to the hetero-
geneity of the nodes’ capabilities. See [15] for a study on this latter topic.

Preprint submitted to Computer Networks February 3, 2014

especially if they could still benefit from the system. Freerid-
ing is common in large-scale systems deployed in the public
domain [1] and significantly degrades the overall performance
in bandwidth-demanding and delay-sensitive applications such
as streaming. In addition, freeriders might collude (e.g., as evi-
denced in the Maze peer-to-peer sharing system [37]), i.e., col-
laborate to decrease their individual contribution and the contri-
bution of the coalition and mutually cover up their misbehaviors
to circumvent detection mechanisms.

Although gossip protocols are almost not affected by
crashes [13, 31], high-bandwidth content dissemination with
gossip clearly suffers more from freeriders than from crashes.
Indeed, when content is pushed in a single phase, a freerider
is equivalent to a crashed node (if TCP, or a similar flow con-
trol protocol, is not used). Both crashed nodes and freeriders
consume bandwidth (as content is pushed to them) and they do
not provide upload bandwidth. In three-phase protocols, how-
ever, crashed nodes do not provide upload bandwidth anymore,
nor do they consume bandwidth, as they do not request con-
tent from proposers after they crash. On the contrary, freeriders
decrease their contribution, yet keep requesting content.

A widely used solution to counter freeriding is to use Tit-
for-Tat (TfT) incentives (inspired by the BitTorrent [10] file-
sharing system): TfT-based content dissemination solutions
(e.g., FlightPath [36]) make nodes contribute as much as they
benefit by enforcing balanced symmetric exchanges. However,
so-called symmetric systems do not perform as well as asym-
metric systems in terms of efficiency and scalability for live
streaming [5].

In practice, many proposals (e.g., [12, 35, 55, 59]) con-
sider, instead of symmetric exchanges, asymmetric exchanges
where nodes are supposed to altruistically serve content to other
nodes, i.e., without asking anything in return, where the benefit
of a node is not directly correlated to its contribution but rather
to the global health of the system. The correlation between the
benefit and the contribution is not immediate. However, such
correlation can be artificially established, in a punitive way, by
means of verification mechanisms that ensure that nodes that do
not contribute their fair share do not benefit anymore from the
system. Freeriders are by definition rational profit-maximizing
entities. Therefore, in the presence of punitive mechanisms,
they can then be defined as nodes that decrease their contribu-
tion as much as possible while keeping the probability of being
expelled low.

In this work, we consider a generic three-phase gossip pro-
tocol where data is disseminated following an asymmetric push
scheme. Data can be transmitted in a coded form, more specifi-
cally, random linear combinations [23]. In this context, we pro-
pose LiFTinG, a lightweight mechanism to track freeriders. To
the best of our knowledge, LiFTinG is the first protocol for se-
curing asymmetric gossip protocols (even when coding is used)
against possibly colluding freeriders. At the core of LiFTinG
lies a set of deterministic and randomized distributed verifica-
tion procedures based on accountability (i.e., each node main-
tains a digest of its past interactions). Deterministic procedures
check, by cross-checking nodes’ logs, that the content received
by a node is actually further propagated following the protocol

(i.e., to the right number of nodes within an acceptable delay).
By using statistical techniques, randomized procedures check
that the interactions of a node are evenly distributed in the sys-
tem. Interestingly enough, the strong randomness and the high
dynamics of gossip protocols, which might be considered at
first glance as a barrier to properly monitor nodes, happens to
help in tracking freeriders. Indeed, LiFTinG exploits the very
fact that nodes pick neighbors at random to prevent collusion:
As a node interacts with a large subset of the nodes chosen at
random, this drastically limits its opportunity to freeride with-
out being detected, because this prevents it from deterministi-
cally choosing colluding partners that would cover it up.

Designing such a system raises a number of challenges, in-
cluding scalability, bandwidth usage, and performance of de-
tection in the presence of message losses and untruthful reports
from nodes. LiFTinG is scalable and lightweight as it relies
neither on a (trusted) central authority (e.g., PKI, reputation
server) nor on heavyweight cryptography and incurs only very
low overhead in terms of bandwidth. In addition, LiFTinG is
fully decentralized as nodes are in charge of verifying each oth-
ers’ actions. Finally, LiFTinG provides a good probability of
detecting freeriders and keeps low the probability of false posi-
tives, i.e., inaccurately classifying a correct node as a freerider,
by using mechanisms which, based on the results of our analyt-
ical analysis, (i) de-incentivize nodes from reporting wrongful
accusations against other nodes and (ii) compensate the effect
of message losses.

We give analytical results backed up with simulations that
provide means to set the parameters of LiFTinG in a real envi-
ronment. Moreover, our theoretical results can be used as input
for a game-theoretical study of the system because they provide
expressions (or bounds) of the key performance metrics includ-
ing the probability of detection, the false positive rate, and the
expected benefit. In addition, we deployed LiFTinG over Plan-
etLab, where a stream of 674 kbps is broadcast to 300 Planet-
Lab nodes with their upload bandwidth capped at 1,000 kbps
for increased realism, and we report on LiFTinG’s performance
in practice. In order to illustrate the importance of countering
freeriders and the performance of LiFTinG, consider the follow-
ing high-level experimental results: In the presence of freerid-
ers, the health of the system (i.e., the proportion of nodes able to
receive the stream in function of the stream lag, i.e., cumulative
distribution function) degrades significantly, compared to a sys-
tem where all nodes follow the protocol. Figure 1 shows a clear
drop between the plain line (no freeriders) and the dashed line
(25% of freeriders). With LiFTinG, and assuming that freerid-
ers keep their probability of being expelled lower than 50%, the
performance is close to the baseline.

In this setting, LiFTinG incurs a maximum network overhead
of only 8%. When freeriders decrease their contribution by
30%, LiFTinG detects 86% of the freeriders and wrongly ex-
pels 12% of honest nodes, after only 30 seconds. Most of the
wrongly expelled nodes deserve it, in a sense, as their actual
contribution is smaller than required. However, this is due to
poor capabilities, as opposed to freeriders that deliberately de-
crease their contribution.

The rest of the paper is organized as follows. Section 2

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60fr
ac

ti
on

of
n
o
d
es

v
ie

w
in

g
a

cl
ea

r
st

re
am

stream lag (s)

No freeriders
25% freeriders

25% freeriders (LiFTinG)

Figure 1: System efficiency in the presence of freeriders.

describes our illustrative gossip protocol and Section 3 lists
and classifies the opportunities for nodes to freeride in such
a content-dissemination protocol. Section 4 presents LiFTinG
and Section 5 formally analyzes its performance backed up by
extensive simulations. Section 6 reports on the deployment of
LiFTinG over the PlanetLab testbed. Section 7 reviews related
work. Section 8 concludes the paper.

2. Model and Gossip Protocol

We consider a system of n nodes that communicate over lossy
links (e.g., UDP) and that can receive incoming data from any
other node in the system. More specifically, the nodes that are
behind a NAT or a firewall make use of the Internet Gateway
Device Protocol (through Universal Plug’n’Play) to dynami-
cally add translation rules at the router or implement UDP NAT
traversal techniques (“hole punching”) such as STUN [48].
Relay-based techniques can also be used [32]). In addition,
nodes can pick uniformly at random a set of nodes in the sys-
tem. This is achieved by using full membership (i.e., the nodes
know the list of all other nodes in the system) or a random peer
sampling protocol, e.g., [27, 33]. Such sampling protocols can
be made robust to byzantine attacks by using techniques such
as Brahms [6]. Indeed, a node might be tempted to tamper with
the peer sampling service in order to be chosen, and thus served
content, more frequently by other nodes.

A source broadcasts a data stream to all nodes by using a
three-phase gossip protocol (e.g., [12, 14]). The content is split
into multiple chunks uniquely identified by IDs. In short, each
node periodically proposes a set of chunks it receives to a set of
random nodes. Upon reception of a proposal, a node requests
the chunks it needs–essentially those it does not have already–
and the sender then serves them. All messages are sent over
UDP. The three phases are illustrated in Figure 2b.

Proposal phase. A node periodically, i.e., at every gossip pe-
riod Tg, picks uniformly at random a set of f nodes and pro-
poses to them (as depicted in Figure 2a) the set P of chunks it
has received since its last propose phase. The size f of the node
set, namely the fan-out, is the same for all nodes and kept con-
stant over time (the fan-out is typically set to a value slightly
larger than ln (n) [31], that is f = 12 for a 10, 000-node sys-
tem). Such a gossip protocol follows an infect-and-die process,

p0

p1

p8

p5

p6

f nodes

propose(3, 7, 9)

...

(a) Gossip dissemination

k · Tg propose(3, 7, 9)

request(3, 9)

serve(c3, c9)

serve(c3, c7)

serve(c9)
p0 p1

(b) Three phases

Figure 2: Three-phase generic gossip.

as once a node proposes a chunk to a set of nodes, it does not
propose it anymore.
Request phase. Upon reception of a proposal of a set P of
chunks, a node determines the subset of chunks R it needs and
requests these chunks.
Serving phase. When a proposing node receives a request cor-
responding to a proposal, it serves the chunks requested. If a
request does not correspond to a proposal, it is ignored. Simi-
larly, nodes only serve chunks that are effectively proposed, i.e.,
chunks in P ∩ R.
Network coding. To increase the efficiency of the dissemina-
tion, coding techniques can be used: by proposing combina-
tions of chunks instead of proposing chunks, the probability of
proposing, and thus of pushing, useful content increases. For
instance, random linear network coding [23] was successfully
used in Avalanche [18], in SPANC [9], and in R2 [56]. When
random linear network coding is used, nodes propose linear
combinations (i.e., bitwise XORs) of the chunks they receive
during the last period. A node proposes one linear combina-
tion for each chunk it received over the last gossip period to
each of the f nodes it contacts. The coefficients of the com-
bination are picked at random from a Galois field GF(2q). To
propose a linear combination of chunks, a node sends a set of
pairs (ID,coefficient) instead of a single ID. For instance, to pro-
pose the combination 2 · c3 ⊕ c5, a nodes sends {(3, 2), (5, 1)}.
To ensure an optimal utility of the proposed combinations, the
proposer makes sure they are linearly independent. Checking
linear independence and decoding the original data chunks of
the stream are achieved through Gauss elimination. For the re-
ceiver, the packets of interest are those that are linearly inde-
pendent with the packets it has received so far. The receiver
requests only such packets from the proposer.

3. The Freeriding Problem

Nodes are either honest or freeriders; we denote by m the
number of freeriders. Honest nodes strictly follow the proto-
col, including the verification procedures specified in LiFTinG.
Freeriders, however, allow themselves to deviate from the pro-
tocol in order to minimize their contribution while maximiz-
ing their utility. In addition, freeriders can adopt any behav-
ior in order to not be expelled, including lying to verifications,

3

or covering up colluding freeriders’ bad actions. More gen-
erally, freeriders are rational entities: They behave in such a
way that their utility is maximized; their utility being a decreas-
ing function of their upload bandwidth usage and an increasing
function of the quality of the stream they receive. Note that in
our model, we assume that freeriders do not wrongfully accuse
(honest) nodes (In [7], the authors propose techniques to deal
with such accusations). This is motivated by the fact that caus-
ing honest nodes to be expelled (i) does not increase the benefit
of freeriders, (ii) does not prevent them from being detected,
i.e., detection is based solely on the suspected node’s behavior
regardless of other nodes’ behaviors (details in Section 5.1), and
finally (iii) leads to an increased proportion of freeriders, de-
grading the benefit of all nodes (including freeriders). This phe-
nomenon is known as the tragedy of the commons [21]. Note
that there are still some advantages for freeriders to wrongfully
accuse other nodes, e.g., discredit the entire reputation system.
Existing solutions can be used to mitigate the effect of such dis-
honest behaviors. For instance, it can be enforced that nodes
accuse only the nodes they interact with. In addition, one can
limit the number of nodes a node can accuse (per minute); this
would have a limited effect on legitimate accusations provided
that the proportion of freeriders remains low. Other existing
solutions (e.g., [40], see [24] for a comprehensive survey) pro-
pose to modulate accusations by the credibility/trustworthiness
(which can be the reputation of the node itself) of the accus-
ing node. More complex solutions can be used; for instance in
SumUp [54], the nodes propagate their accusations (i.e., votes
in the original version) along the edges of a social network in
order to mitigate the effect of a coalition of related nodes that
try to jointly wrongfully accuse other nodes. Such solutions
however, often require some infrastructure and extra informa-
tion which do not match the requirements of LiFTinG in terms
of decentralization, scalability and reactivity.

Freeriders deviate from the gossip protocol in the following
ways: (i) decrease the number of partners to communicate with,
(ii) bias the partner selection, (iii) drop messages they are sup-
posed to send, or (iv) modify the content of the messages they
send. In the following section, we provide an exhaustive list of
all possible attacks in each phase of the protocol, we discuss
their motivations and effects, and then we extract and classify
those that can increase the individual utility of a freerider or the
common utility of colluding freeriders. Throughout the paper,
the attacks that require collusion between some nodes or profit
to colluding nodes are denoted with a ‘?’.

Proposal phase. During the first phase, a freerider can (i) com-
municate with less than f nodes, (ii) propose less chunks than
it should (less linear combinations, or linear combinations of
less received packets when network coding is used), (iii) select
as communication partners only a specific subset of nodes, and
(iv) reduce its proposing rate.

(i) Decreasing fan-out By proposing chunks to f̂ < f nodes
per gossip period, the freerider trivially reduces the poten-
tial number of requests and thus the probability of serving
chunks. Therefore, its contribution in terms of the amount
of data uploaded is decreased and its utility increases.

(ii) Invalid proposal A proposal is valid if it contains every
chunk received in the last gossip period. Proposing only
a subset of the chunks received in the last period obvi-
ously decreases the number of requested chunks. How-
ever, a freerider has no interest in proposing chunks it does
not have as, unlike with TfT-based protocols, uploading
chunks to a node does not imply that it sends chunks in re-
turn. In other words, proposing more (and possibly fake)
chunks does not increase the benefit of a node and thus
does not need to be considered.

(iii) Biasing the partners selection (?) Considering a group of
colluding nodes, a freerider might want to bias the random
selection of nodes to favor its colluding partners, so that
the group’s benefit increases.

(iv) Increasing the gossip period A freerider can increase its
gossip period, leading to less frequent proposals advertis-
ing more, but “older”, chunks per proposal. This implies
a decreased interest of the requesting nodes and thus a de-
creased contribution for the sender. This is due to the fact
that an old chunk has a lower probability of being of inter-
est as it becomes more replicated over time.

Pull-request phase. Nodes are expected to request only
chunks that have been proposed to them. A freerider would in-
crease its benefit by opportunistically requesting extra chunks
(even from nodes that did not propose these chunks). The dis-
semination protocol itself prevents this misbehavior by auto-
matically dropping such requests.

Serving phase. In the serving phase, freeriders can (i) send
only a subset of what was requested or (ii) send junk. The first
obviously decreases the freeriders’ contribution, as they serve
fewer chunks than they are supposed to. However, as we men-
tioned above, in the considered asymmetric protocol, a freerider
has no interest in sending junk data, because it does not receive
anything in return for what it sends.

Summary. Analyzing the basic gossip protocol in detail en-
ables us to identify the possible attacks. Interestingly enough,
these attacks share similar aspects and can thus be gathered into
three classes that dictate the rationale along which our verifica-
tion procedures are designed.

The first is quantitative correctness that characterizes the fact
that a node effectively proposes to the correct number of nodes
(f) at the correct rate (1/Tg). Assuming this first aspect is ver-
ified, two more aspects must be further considered: causality
that reflects the correctness of the deterministic part of the pro-
tocol, i.e., received chunks must be proposed in the next gossip
period (as depicted in Figure 2b); and statistical validity that
evaluates the fairness (with respect to the distribution specified
by the protocol) in the random selection of communication part-
ners.

4. Tracking Freeriders in Gossip

To address the problem of freeriders in epidemic protocols,
we propose LiFTinG, a lightweight protocol for freerider track-
ing in gossip, that encourages nodes, in a dissuasive way, to

4

contribute their fair share to the system, by means of distributed
verifications. LiFTinG consists of (i) direct verifications and (ii)
a posteriori verifications. Verifications, that require more in-
formation than what is available at the verifying node and the
inspected node, are referred to as cross-checking. This essen-
tially consists in several nodes grouping together their infor-
mation to effectively detect misbehaviors (that were committed
by the inspected node) that could not be detected solely based
on the information they hold individually. Cross-checking re-
quires nodes to communicate and therefore incurs communica-
tion overhead. In order to control the overhead of LiFTinG, the
frequency at which such verifications are triggered is controlled
by a parameter pcc ∈ [0, 1], as described in Section 4.2. Verifi-
cations can either lead to the emission of blames or directly to
expulsion, depending on the gravity of the misbehavior.

Direct verifications are performed regularly while the pro-
tocol is running: the nodes’ actions are directly checked. Di-
rect verifications aim at checking that all chunks requested are
served and that all chunks served are further proposed to a cor-
rect number of nodes, i.e, they check the quantitative correct-
ness and causality. Direct verifications are composed of (i) di-
rect checking and (ii) direct cross-checking.

A posteriori verifications are run sporadically. They require
each node to maintain a log of its past interactions, namely a
history. In practice, a node stores a digest of the events that
occurred in the last h seconds (i.e., a sliding window), corre-
sponding to the last nh = h/Tg gossip periods. The history is
audited to check the statistical validity of the random choices
made when selecting communication partners. In LiFTinG, an
entropic check is used as described in Section 4.4. The veracity
of the history is verified by cross-checking the involved nodes,
namely a posteriori cross-checking.

We present the blaming architecture in Section 4.1 and
present direct verifications in Section 4.2. As freeriders can col-
lude to not be detected, we expose how they can cover up each
other’s misbehaviors in Section 4.3 and address this breach in
Section 4.4. The different attacks and corresponding verifica-
tions are summarized in Table 1.

Attack Type Detection
fan-out decrease (f̂ < f) quantitative direct cross-check
partial propose (P) causality direct cross-check
partial serve (|S| < |R|) quantitative direct check
bias partners selection (?) entropy entropic check a pos-

teriori cross-check

Table 1: Summary of attacks and associated verifications.

4.1. System Architecture

In LiFTinG, the detection of freeriders is achieved by means
of a score assigned to each node. When a node detects that
some other node is freeriding, it emits a blame message con-
taining a blame value (i.e., essentially a real number) against
the suspected node. Summing up the blame values of a node re-
sults in a score. For scores to be meaningful, blames emitted by
different verifications should be comparable and homogeneous.

p

p’s managers (AVMON)

update/check p’s score

(LIFTING)

(3-PHASE GOSSIP)

push content

push content

check p’s actions

(LIFTING)

check p’s actions

(LIFTING)

blame

blame

blacklist pblacklist p

(GOSSIP REVOCATION)(GOSSIP REVOCATION)

Figure 3: Overview of LiFTinG’s architecture and functionning.

In order to collect blames targeted at a given node and to main-
tain its score, each node is monitored by a set of other nodes,
named managers, distributed among the participants. Blame
messages about a node are sent to its managers. When a man-
ager detects that the score of a node p it monitors drops beyond
a fixed threshold (the design choice of using a fixed threshold
is explained in Section 5.1), it spreads – through gossip – a re-
vocation message against p, thus making the nodes of the sys-
tem progressively remove p from their membership. A general
overview of the architecture of LiFTinG is given in Figure 3.

The blaming architecture of LiFTinG is built on top of the
AVMON [43] monitoring overlay5. In AVMON, nodes are as-
signed a fixed-size set of M random managers consistent over
time, which makes it very appealing in our setting, specifically
a dynamic peer-to-peer environment subject to churn with pos-
sibly colluding nodes. The fact that the number M of managers
is constant makes the protocol scalable, as the monitoring load
at each node is independent of the system size. Randomness
prevents colluding freeriders from covering each other up, and
consistency makes long-term blame history at the managers,
and thus long-term follow up, possible. The monitoring rela-
tionship is based on a hash function and can be advertised in
a gossip-fashion by piggybacking node’s monitors in the view
maintenance messages (e.g., exchanges of local views in the
distributed peer-sampling service). Doing so, nodes quickly
discover other nodes’ managers – and are therefore able to
blame the nodes if necessary – even in the presence of churn.
In addition, nodes can locally verify (i.e., without the need for
extra communication) whether the node-to-managers mapping
is correct by hashing the nodes’ IP addresses, thus preventing
freeriders from forging fake or colluding managers. If a man-
ager does not map correctly to a node, a revocation against the
concerned node is sent.

4.2. Direct Verifications
In LiFTinG, two direct verifications are used. The first aims

to ensure that every requested chunk is served. It is called di-
rect check. As detection can be done locally and thus does
not incur any bandwidth overhead, it is always performed. If

5Note that other monitoring systems, such as PeerMint which makes use of
a Distributed Hash Table (DHT) to store and maintain node profiles or Allia-
Trust [17], could be used.

5

some requested chunks are missing, the requesting node blames
the proposing node by f / |R| (where R is the set of requested
chunks) for each chunk that has not been delivered.

The second verification checks that received chunks are fur-
ther proposed to f nodes within the next gossip period. This is
achieved by a cross-checking procedure that works as follows:
a node p1 that received a chunk ci from p0 during the previous
gossip period acknowledges to p0 that it proposes ci to a set of
f nodes. Then, p0 sends confirm requests (with probability pcc)
to the set of f nodes to check whether they effectively received
a propose message from p1 containing ci. The f witnesses reply
to p0 with answer messages confirming whether p1’s acknowl-
edgment to p0.

propose(i)

request(i)

serve(ci)

serve(ci)

ack[i](p2, p3)

answer: yes/no

(pcc)? confirm[i](p1)

t

k · Tg

p0 p1 p2 p3

Figure 4: Cross-checking protocol.

Figure 4 depicts the message sequence that composes a direct
cross-checking verification (with a fan-out of 2 for the sake of
readability). The blaming mechanism works as follows: (i) if
the ack message is not received, the verifier p0 blames the veri-
fied node p1 by f , and (ii) for each missing or negative answer
message, p0 blames p1 by 1. In the case where network coding
is used, the linear combinations a node sends (more specifi-
cally, the coefficients) are specified by the nodes that served it
during the last gossip period, in order to prevent the proposing
node from misbehaving (e.g., carefully choosing and proposing
combinations that are not of interest to the receiver). For in-
stance, when p0 serves p1, it specifies a set of coefficients for
each packet it serves, e.g., {3, 4, . . . }. During the next gossip pe-
riod, p1 must propose the following combination: 3 times the
first packet it received during this gossip period, plus 4 times
the second one (if any), and so on and so forth. When p0 asks
for a confirmation from p2 and p3, it includes the list of packets
it served to p1 and the coefficients it specified to p1. Then, p2
and p3 can verify if the combinations proposed by p1 match the
specifications of p0.

As the verification messages (i.e., ack, confirm and confirm
responses) for the direct cross-checking are small and in or-
der to limit the subsequent overhead of LiFTinG, direct cross-
checking is done exclusively with UDP. The blames corre-
sponding to the different attacks are summarized in Table 2.

Blames emitted by the direct verification procedures of LiFT-

Attacks Blame values
fan-out decrease (f̂ < f) f − f̂ from each verifier
partial propose 1 (per invalid proposal) from each ver-

ifier
partial serve (|S| < |R|) f · (|R| − |S|)/ |R| from each requester

Table 2: Summary of attacks and associated blame values.

inG are summed into a score reflecting the nodes’ behaviors.
For this reason, blame values must be comparable and ho-
mogeneous. This means that two misbehaviors that reduce a
freerider’s contribution by the same amount should lead to the
same value of blame, regardless of the misbehaviors and the
verification.

We consider a freerider p f that received c chunks and wants
to reduce its contribution by a factor δ (0 ≤ δ ≤ 1). To achieve
this goal, p f can do one of the following: (i) propose the c
received chunks to only f̂ = (1 − δ) · f nodes, (ii) propose only
a proportion (1− δ) of the chunks it received, or (iii) serve only
(1 − δ) · |R| of the |R| chunks it was requested. For the sake of
simplicity, we assume that f̂ , c ·δ, c/ f and δ · |R| are all integers.
The number of verifiers, that is, the number of nodes that served
the c chunks to p f is called the fan-in (fin). On average, we have
fin ' f and each node serves c/ f chunks [16].

We now derive, for each of the three aforementioned misbe-
haviors, the blame value emitted by the direct verifications.

(i) Fan-out decrease (direct cross-check): If p f proposes all
the c chunks to only f̂ nodes, it is blamed by 1 by each
of the fin verifiers, for each of the f − f̂ missing “propose
target”. This results in a blame value of fin · (f − f̂) =

fin · δ · f ' δ f 2.

(ii) Partial propose (direct cross-check): If p f proposes only
(1 − δ) · c chunks to f nodes, it is blamed by f by each of
the nodes that provided at least one of the missing chunks.
A freerider therefore has interest in removing from its pro-
posal those chunks originating from the smallest subset of
nodes. In this case, its proposal is invalid from the stand-
point of δ · fin verifiers. This results in a blame value of
δ · fin · f ' δ · f 2.

(iii) Partial serve (direct check): If p f serves only (1 − δ) ·
|R| chunks, it is blamed by f / |R| for each of the δ · |R|
missing chunks by each of the f requesting nodes. This
again results in a blame value of f · (f / |R|) · δ · |R| = δ · f 2.

The blame values emitted by the different direct verifica-
tions are therefore homogeneous and comparable on average,
because all misbehaviors lead to the same amount of blame for
a given degree of freeriding δ. Thus, they result in a consistent
and meaningful score when summed up.

4.3. Fooling the Direct Cross-Check (?)

When a set of freeriders collude, they lie to verifications to
mutually cover up their misbehaviors. Consider the situation
depicted in Figure 5a, where p1 is a freerider. If p0 colludes
with p1, then it will not blame p1, regardless of p2’s answer.

6

Similarly, if p2 colludes with p1, then it will answer to p0 that
p1 sent a valid proposal, regardless of what p1 sent. Even when
neither p0 nor p2 collude with p1, p1 can still fool the direct
cross-checking – thanks to a colluding third party by imple-
menting a man-in-the-middle attack as depicted in Figure 5b.
Indeed, if a node p7 colludes with p1, then p1 can tell p0 it sent
a proposal to p7 and tell p2 that the chunk originated from p7.
Doing this, both p0 and p2 will not detect that p1 sent an invalid
proposal. The a posteriori verifications presented in the next
section address this issue.

p0 p1 p2
serve propose

confirm

yes/no

(a) Direct cross-checking

p
0

p
⋆

1

p
⋆

7

p
2

serve propose

confirm

yes

confirm

yes/no

(b) Man-in-the-middle attack

Figure 5: Direct cross-checking and attack. Colluding nodes are denoted with
a ‘?’.

4.4. A Posteriori Verifications
As stated in the analysis of the gossip protocol, the random

choices made in the partners selection must be checked. In ad-
dition, the example described in the previous section, where
freeriders collude to circumvent direct cross-checking, high-
lights the need for statistical verification of the nodes’ past com-
munication partners.

The history of a node that biased its partner selection contains
a relatively large proportion of colluding nodes. If only a small
fraction of colluding nodes is present in the system, they will
appear more frequently than honest nodes in each other’s his-
tories and can therefore be detected. Technically speaking, the
IDs of the nodes a node communicates with are a sequence of
realizations of independent identically distributed (i.i.d.) ran-
dom variables drawn from a uniform distribution (across the
whole set of nodes in the system). Determining if an observed
sequence of node ids is drawn from a given distribution can be
achieved through a statistical goodness-of-fit test [52]. Below,
we present three variants of such tests.

Statistical verifications operate as follow (see Figure 6): once
in a while, each node picks a random node (e.g., one of the
nodes it manages) and verifies its local history over the last h
seconds. When inspecting the history of p, the verifier com-
putes the number of occurrences of each node in the set of pro-
posals sent by p during the last h seconds. We denote by Fh

as the multiset of nodes to whom p sent a proposal during this
period (a node could indeed appear more than once in Fh) . The
distribution d̃h of nodes in Fh characterizes the randomness of
the partners selection. We denote by d̃h,i the number of occur-
rences of node i (i ∈ {1, . . . , n}) in Fh normalized by the size of
Fh. Then, a statistical test is run on the observed distribution.
The Kullback-Leibler divergence. Assessing the similarity
of two distributions, i.e., the distribution d̃ of p1’s history and
the uniform distribution, can be achieved with the Kullback-
Leibler divergence [11]. When the reference distribution is the

p1, p3, p5
p0, p4, p7
p2, p3, p5

nh entries

history

Fh = {p0, p1, p2, p3, p3, p4, p5, p5, p7}

d̃h =

fr
eq

u
en

cy

node0 1 2 3 4 5 6 7

H(d̃h)
?

> γ

stat. test
(e.g., entropy)

Figure 6: Entropic check on proposals (f = 3).

uniform distribution, this comes down to computing the Shan-
non entropy of the observed distribution and to comparing the
value obtained to a threshold γ (0 ≤ γ ≤ log2(nh f)).

H(d̃h) = −

nh f∑
i=1

d̃h,i log2(d̃h,i) (1)

The entropy is maximum when every node of the system ap-
pears at most once in Fh (assuming n > |Fh| = nh f). In this
case, it is equal to log2(nh f). As the peer selection service might
not be perfect, the threshold γ must be tolerant to a small de-
viation, with respect to the uniform distribution to avoid false
positives (i.e., honest nodes being blamed). In fact, entropic
and statistical tests similar to those presented in this section are
often used to assess the quality of random peer sampling algo-
rithms.
The χ2 and the Kolmogorov-Smirnov test. These tests eval-
uate the likelihood that an observed sample is drawn from a
specific distribution (here the uniform distribution). This is
achieved by computing a function, namely a statistic, of the
observed sample. Under the hypothesis that the observed sam-
ple is indeed drawn from the specific distribution, the statistics
follows a well-known distribution. For instance, for the χ2 test
for assessing the goodness of fit of the uniform distribution, the
statistic is Fχ2 (d̃h) =

∑nh f
i=1 (d̃h,i − 1/n)2 and Fχ2 follows a χ2 dis-

tribution with nh f −1 degrees of freedom. The likelihood of the
hypothesis is then evaluated by using the statistics table of the
χ2 distribution. For the Kolmogorov-Smirnov test, the statistics
(see [52]) follows a Kolmogorov distribution.

For the sake of simplicity, LiFTinG makes use of the entropic
check. Details on how to dimension the threshold γ are given
in Section 5.2.

The statistical check must be coupled with an a posteriori
cross-checking verification procedure to guarantee the validity
of the inspected node’s history. Cross-checking is achieved by
polling all or a subset of the nodes mentioned in the history
for an acknowledgment. The inspected node is blamed by 1
for each proposal in its history that is not acknowledged by the
alleged receiver. Hence, an inspected freerider replacing col-
luding nodes by honest nodes in its history in order to pass the
entropic check will not be covered by the honest nodes and will
thus be blamed accordingly.

Because of the man-in-the middle attack presented in Sec-
tion 4.2, a complementary entropic check is performed on the
multi-set of nodes F ′h that asked the nodes in Fh for a confir-
mation, i.e., direct cross-checking. On the one hand, for an
honest node p0, F ′h is composed of the nodes that sent chunks
to p0 – namely its fan-in. On the other hand, for a freerider p?0

7

that implemented the man-in-the-middle attack, the set F ′h of
p?0 contains a large proportion of colluding nodes – the nodes
that covered it up for the direct cross-checking – and thus fails
the entropic check. If the history of the inspected node does not
pass the entropic checks (i.e, fan-in and fan-out), the node is
expelled from the system.

Local-history auditing verifications are sporadically per-
formed by the nodes using TCP connections. The reasons for
using TCP are that (i) the overhead of establishing a connec-
tion is amortized because local history auditing happens spo-
radically and implies transferring a large amount of data, i.e.,
proportional to h, and that (ii) local auditing is very sensitive
to message losses as the potential blame is much larger than for
direct verifications and it can lead to expulsion from the system.

5. Parametrizing LiFTinG

This section provides a methodology to set LiFTinG’s param-
eters. With this aim, the performance of LiFTinG, with respect
to detection, is analyzed theoretically. Closed form expressions
of the detection and false positive probabilities as functions of
the system parameters are given. Theoretical results allow the
system designer to set the system parameters, e.g., detection
thresholds. The notations used throughout the section are sum-
marized in Table 3.

This section is split into three parts. First, the design of the
score-based detection mechanism is presented and analyzed by
taking into account message losses. Second, the entropy-based
detection mechanism is analyzed by taking into account the un-
derlying peer-sampling service. Both depend on the degree of
freeriding and on the favoring factor, i.e., how freeriders favor
colluding partners. Third, the message complexity of LiFTinG
is analyzed, as a function of the various system parameters, as
it constitutes an important factor when choosing the values of
the parameters.

Notations Descriptions
n,m number of nodes / freeriders
|R| number of chunks requested
f fan-out
nh size of history
Fh,F

′
h multi-set of fan-out / fan-in in history

pdcc probability to trigger direct cross-checking
pl probability of message loss (pr = 1 − pl)
b̃ average value of wrongful blames
σ(b) standard deviation of wrongful blames
r number of gossip periods spent in the system
s normalized score
∆ degree of freeriding (3-uple)
b̃(∆) average value of blames (freeriders)
σ(b′(δ)) standard deviation of blames (freeriders)
η detection threshold (blame-based detection)
α probability of detection (blame-based detection)
β probability of false positive (blame-based detection)
γ detection threshold (entropy-based detection)

Table 3: Summary of principal notations.

5.1. Score-Based Detection

Because of message losses, all nodes can be wrongfully
blamed, i.e., blamed even though they follow the protocol. In
addition, freeriders are blamed for their misbehaviors. There-
fore, the score distribution among the nodes is expected to be a
mixture of two components corresponding respectively to those
of honest nodes and freeriders. In this setting, likelihood max-
imization algorithms are traditionally used to decide whether
a node is a freerider. Such algorithms are based on the rela-
tive score of the nodes and are thus not sensitive to wrongful
blames. Effectively, wrongful blames have the same effect on
honest nodes and freeriders.

However, in the presence of freeriders, two problems arise
when using relative score-based detection: (i) freeriders are
able to decrease the probability of being detected by wrongfully
blaming honest nodes, and (ii) the score of a node joining the
system is not comparable to those of the nodes already in the
system. For these reasons, in LiFTinG, the effect of wrongful
blames, due to message losses, is automatically compensated,
and detection thus consists in comparing the nodes’ compen-
sated scores to a fixed threshold η. In short, when the compen-
sated score of a node drops below η, the managers of that node
broadcast a revocation message, thus expelling the node from
the system, by using gossip.

Considering message losses independently drawn from a
Bernoulli distribution of parameter pl (we denote by pr = 1− pl

the probability of reception), we derive a closed-form expres-
sion for the expected value of the blames applied to honest
nodes by direct verifications during a given timespan. Period-
ically increasing all scores accordingly (i.e., by a value corre-
sponding to the expected wrongful blames applied to the nodes
because of message loss) leads to an average score of 0 for hon-
est nodes. This way, the fixed threshold η can be used to dis-
tinguish between honest nodes and freeriders. The value of pr

used to compensate the wrongful blames in LiFTinG is the same
for all the nodes; it is evaluated once for all–or at least at a low
frequency (e.g., every month)–and hard-coded in the protocol,
independently from LiFTinG (e.g., by experimentally evaluat-
ing the average message loss rate between trusted nodes).

5.1.1. Wrongful Blames
We now compute the expected value of the wrongful blames

applied to honest nodes by direct verifications. To this end,
we analyze, for each verification, the situations where mes-
sage losses can cause wrongful blames, and we evaluate their
average impact. For the sake of the analysis, we assume that
(i) a node receives at least one chunk during every gossip pe-
riod (and therefore it will send proposals during the next gos-
sip period), and (ii) each node requests a constant number |R|
of chunks for each proposal it receives. We consider the case
where cross-checking is always performed, i.e., pcc = 1.

Direct check (dc). For each requested chunk that has not been
served, the node is blamed by f / |R|. If the proposal is received
but the request is lost (i.e., pr(1 − pr)), the node is blamed by
f ((a) in Equation 2). Otherwise, when both the proposal and
the request message are received (i.e., p2

r), the node is blamed

8

by f / |R| for each of the chunks lost (i.e., (1 − pr) |R|) ((b) in
Equation 2). The expected blame, applied to an honest node
(by its f partners), during one gossip period, due to message
losses is therefore

b̃dc = f ·
[(a)︷ ︸︸ ︷
pr(1 − pr) · f+

(b)︷ ︸︸ ︷
p2

r · (1 − pr) |R| ·
f
|R|

]
= pr(1 − p2

r) · f 2 (2)

Direct cross-checking (dcc). On average, a node receives f
proposals during each gossip period. Therefore a node is sub-
ject to f direct cross-checking verifications and each verifier
asks for a confirmation from the f partners of the inspected
node. Let p1 be the inspected node and p0 a verifier. First, note
that p0 verifies p1 only if it served chunks to p1, which requires
that its proposal and the associated request have been received
(i.e., p2

r). If at least one chunk served by p0 or the ack has been
lost (i.e., 1 − p|R|+1

r), p0 will blame p1 by f regardless of what
happens next, because all the f proposals sent by p1 are invalid
from the standpoint of p0 ((a) in Equation 3). Otherwise, that
is, if all the chunks served and the ack have been received (i.e.,
p|R|+1

r), p0 blames p1 by 1 for each negative or missing answer
from the f partners of p1. This situation occurs when the pro-
posal sent by p1 to a partner, the confirm message or the answer
is lost (i.e., 1 − p3

r) ((b) in Equation 3).

b̃cc = f · p2
r

[(a)︷ ︸︸ ︷
(1 − p|R|+1

r) · f +

(b)︷ ︸︸ ︷
f · p|R|+1

r (1 − p3
r)
]

= p2
r (1 − p|R|+4

r) · f 2 (3)

From the previous analysis, we obtain a closed-form expression
for the expected value of the blame b applied to an honest node
by direct verifications due to message losses:

b̃ = b̃dc + b̃cc = pr(1 + pr − p2
r − p|R|+5

r) · f 2 . (4)

5.1.2. Freeriding Blames
The blame value b′, applied to a freerider by direct verifica-

tions, depends on its degree of freeriding ∆ that characterizes
its deviation from the protocol. Formally, we define the degree
of freeriding as a 3-uple ∆ = (δ1, δ2, δ3), 0 ≤ δ1, δ2, δ3 ≤ 1, so
that a freerider contacts only (1−δ1) · f nodes per gossip period,
proposes the chunks received from a proportion (1 − δ2) of the
nodes that served it in the previous gossip period, and serves
(1 − δ3) · |R| chunks to each requesting node. With the same
methodology as for b̃, we get:

b̃′(∆) = (1 − δ1) · pr

(
1 − p2

r (1 − δ3)
)
· f 2 + δ2 · f 2 +

(1 − δ2) · p2
r ·

[
p|R|+1

r (1 − p3
r (1 − δ1))+

(1 − p|R|+1
r)

]
· f 2 (5)

Note that the gain in terms of the upload bandwidth saved by
a freerider is 1 − (1 − δ1)(1 − δ2)(1 − δ3). Following the same
line of reasoning, a closed-form expression of the standard de-
viation σ(b) (resp. σ(b′(∆))) of b (resp. b′(∆)) can be derived.
Note that, unlike for the computation of the expection, for the

standard deviation all the sources of blame must be considered
jointly as they are not independent (and the standard devia-
tion is therefore not additive). The analysis thus needs to be
more systematic than above, that is, building a binary decision
tree with all the messages exchanged during a gossip period
(each branch coding whether the corresponding message was
received or lost) and counting the total blame for each of the
cases at the leaves.

5.1.3. Scores
In order to enable the use of a fixed threshold η, the scores

are compensated with respect to message losses and normalized
by the number of gossip periods r the node spent in the system.
At the t-th gossip period, the score of a node writes

s = −
1
r

r∑
i=0

(bt−i − b̃), (6)

where bi is the value of the blames applied to the node during
the i-th gossip period.

Figure 7 depicts the distribution of compensated and normal-
ized scores (see Formula 6) in the presence of 1, 000 freeriders
of degree δ = δ1 = δ2 = δ3 = 0.1 in a 10, 000-node system
after r = 50 gossip periods. The message loss rate is set to
7%, the fan-out f to 12 and |R| = 4. The scores of the nodes
were increased by −b̃ = 72.95, according to Formula (4). We
plot separately the distribution of scores among honest nodes
and freeriders. As expected, the probability density function
(Figure 7a) is split into two disjoint modes separated by a gap:
the lowest (i.e., left most) mode corresponds to freeriders and
the highest one to honest nodes. We observe that the average
score (dotted line) is close to zero (< 0.01), which means that
the wrongful blames have been successfully compensated.

5.1.4. Detection
Now, we evaluate the ability of LiFTinG to detect freeriders

(probability of detection α) and the proportion of honest nodes
wrongfully expelled from the system (probability of false posi-
tives β). Figure 7b depicts the cumulative distribution function
of scores and illustrates the notion of detection and false posi-
tives for a given value of the detection threshold.

From the previous analysis, we obtained expressions of the
expectation and the standard deviation of the blames applied to
honest nodes at each round due to message losses. Therefore,
assuming that the bi are independent and identically distributed
(i.i.d.), we get E[s] = 0 and σ(s) = σ(b)/

√
r. Using Bienaymé-

Tchebychev’s inequality we get:

β = P (s < η) ≤
σ(b)2

r · η2 ; α(∆) ≥ 1 −
σ(b′(∆))2

r · (b̃′(∆) − η)2
(7)

In LiFTinG, we set the detection threshold η to −9.75 so that
the probability of false positive is lower than 1%; we assume
that freeriders perform all possible attacks with degree δ (i.e.,
δ1 = δ2 = δ3 = δ); and we observe the proportion of freeriders
detected by LiFTinG for several values of δ. Figure 8 plots α
as a function of δ. We observe that a node freeriding by 5%

9

0

0.025

0.05

0.075

0.1

-50 -40 -30 -20 -10 0 10

fr
ac
ti
on

of
n
o
d
es

score
av
er
ag
e
(h
on

es
t)

honest nodes
freeriders

(a) probability density function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10

fr
a
c
t
io
n
o
f
n
o
d
e
s

score

threshold

false positives (β)

detection (α)

honest nodes

freeriders

(b) cumulative distribution function

Figure 7: Distribution of normalized scores in the presence of freeriders (δ =

0.1)).

is detected with probability 0.65. Beyond 10% of freeriding, a
node is detected over 99% of the time. It is commonly assumed
that users are willing to use a modified version of the client ap-
plication only if it increases significantly their benefits (resp.
decreases their contribution). In FlightPath [36], this thresh-
old is assumed to be around 10%. With LiFTinG, a freerider
achieves a gain of 10% for δ = 0.035 which corresponds to a
probability of being detected of 50% (Figure 8).

5.1.5. Optimal freeriding strategy
From the previous analysis, we can extract expressions and

bounds of the key factors that affect a node’s utility – specifi-
cally the probability of detection (α), and the upload bandwidth
savings (1− (1−δ1)(1−δ2)(1−δ3)) – as functions of the degree
of freeriding. In addition, previous studies of epidemic high-
bandwidth content dissemination protocols derived expressions
of the global health of the system, which determines the ben-
efits of the nodes (i.e., the quality of service), as a function of
the contributions of the nodes (e.g., [5]). The coupling of LiFT-
inG’s detection and punishment mechanisms adds a feedback
loop from the nodes’ behavior to their benefits. Therefore, one
has all the ingredients to perform a game-theoretical study of a
gossip-based dissemination protocol secured with LiFTinG.

Although performing a complete study is out of the scope of

this paper, we consider a simple utility function to characterize
the behavior of the freeriders when LiFTinG is used. We define
the utility of a node as the benefit of seeing the stream, minus
its contribution in terms of the devoted upload bandwidth. For
the sake of simplicity, we assume that any node in the system
(i.e., not expelled) can see the stream, and in this case the ben-
efit is B > 0 (0 otherwise). For an honest node, the cost of
uploading content to the other nodes is denoted by C > 0. For
a freerider, the cost is C · (1 − δ1)(1 − δ2)(1 − δ3) and drops to
0 if it is expelled from the system. The utility of a node out
of the system is therefore 0 and necessarily B > C, otherwise
nodes would gain nothing by joining the system. We can now
express the expected utility u of a freerider as a function of its
degree of freeriding ∆: If the freerider is detected (which occurs
with probability α(∆)), its utility drops to 0, otherwise (proba-
bility 1 − α(∆)) its utility is the benefit of seeing the stream
(i.e., B) minus the cost of (partially) uploading the stream, i.e.,
C(1 − δ1)(1 − δ2)(1 − δ3). That is:

u(∆) = α(∆)×0+(1−α(∆))×(B−C(1−δ1)(1−δ2)(1−δ3))
= (1−α(∆))×(B−C(1−δ1)(1−δ2)(1−δ3)) (8)

As freeriders are utility-maximizing entity, they will choose the
value of ∆ that maximizes u.

In Figure 8, we also plot the freeriders’ utility to determine
their optimal strategy (i.e., their degree of freeriding) for dif-
ferent values of the benefit and of the cost (B/C). It can be
observed that for B/C = 1.1 (i.e., the freeriders care slightly
more about the stream than about their upload bandwidth) the
utility is maximized for a degree of freeriding around δ = 0.025,
which corresponds to a gain (i.e., the fraction of upload band-
width saved) of ∼7%. For B/C = 1.5 however, the optimal
strategy is to well-behave.

 0

 0.2

 0.4

 0.6

 0.8

 1

fr
ac

ti
o

n
 o

f
fr

ee
ri

d
er

s

detection

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

fr
ac

ti
o

n
 o

f
u

p
lo

ad
 b

an
d

w
id

th

degree of freeriding (δ)

gain

-0.5

 0

 0.5

u
ti

li
ty

B/C = 1.1
B/C = 1.5

Figure 8: Proportion of freeriders detected by LiFTinG.

10

5.2. Entropy-based detection

For the sake of fairness and in order to prevent colluding
nodes from covering each other up, LiFTinG includes an en-
tropic check thus assessing the statistical validity of the part-
ner selection. To this end, the entropy H of the distribution of
the inspected node’s former partners is compared to a thresh-
old γ. The distribution of the entropy of honest nodes’ histo-
ries depends on the peer sampling algorithm used and the ran-
dom numbers generator. It can be estimated by simulations.
Figure 9a depicts the distribution of entropy for a history of
nh f = 600 partners (nh = 50 and f = 12) of a 10, 000-
node system using a full membership-based partner selection.
The observed entropy ranges from 9.11 to 9.21 for a maximum
reachable value of log2 (nh f) = 9.23. Similarly, the entropy of
the fan-in multi-set F ′h , i.e., nodes that selected the inspected
node as partner, is depicted in Figure 9b. The observed entropy
ranges from 8.98 to 9.34.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 8.8 8.9 9 9.1 9.2 9.3 9.4

fr
ac

ti
o
n
 o

f
n
o
d
es

entropy

honest nodes

(a) entropy of fan-out

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 8.8 8.9 9 9.1 9.2 9.3 9.4

entropy

honest nodes

(b) entropy of fan-in

Figure 9: Entropy distribution (experimental pdf) of the nodes’ histories using
a full membership.

With γ = 8.95 the probability of wrongfully expelling a node
during local auditing is negligible.

We now analytically determine to what extent a freerider can
bias its partner selection without being detected by local audit-
ing, given a threshold γ and a number of colluding nodes6 m′.
Consider a freerider that biases partner selection in order to fa-
vor colluding freeriders by choosing a freerider as partner with
probability pm and an honest node with probability 1 − pm. We
seek the maximum value of pm a freerider can use without be-
ing detected, function of γ and m′. Defining the probability law
of the partner selection among honest nodes (resp. colluding
nodes) by X (resp. by Y), the entropy of its fan-out is expressed
as follows:

H(Fh) = −pm log2 pm − (1 − pm) log2 (1 − pm)
+pmH(X) + (1 − pm)H(Y) ,

as X and Y are independent. This quantity is maximized when
X and Y are the uniform distribution. Therefore, to maximize
the entropy of its history, a freerider must choose uniformly at

6Note that, as the length of a history is relatively small, we do not take into
account the number of nodes that join the system during this time interval.

random its partners in the chosen class, i.e., honest or colluding.
In this case, the entropy of its history writes (for m′ < nh f):

H(Fh) = −pm log2

(pm

m′

)
− (1 − pm) log2

(
1

nh · f

)
(9)

Inverting numerically Formula (9), we deduce that for γ = 8.95
a freerider colluding with 25 other nodes can serve its colluding
partners up to 15% of the time, without being detected.

In some cases, the random selection of nodes can be biased
and therefore deviates from the uniform distribution. For in-
stance, because inter-ISP traffic is expensive, ISPs sometime
block peer-to-peer traffic between their own clients and clients
of other ISPs [47, 50]. Also, nodes might prefer to commu-
nicate with close nodes (with respect to network distance) for
improved latencies and performance. Such optimizations are
considered as freeriding by LiFTinG and can make a node fail
the statistical test, thus leading to its expulsion from the sys-
tem. Provided that the size of the groups towards which the
nodes bias the selection are large enough (typically much larger
than the size of a coalition), LiFTinG can still distinguish be-
tween freeriders and honest nodes by relaxing the threshold of
the entropic test, at the expense of an increased tolerance to-
wards freeriders. This is achieved by calibrating the threshold
as explained above with the typical size of a group (i.e., the av-
erage number of nodes that are located in the same country or
that have the same ISP) instead of the system size n.

5.3. Communication Costs

In this section, we evaluate the overhead caused by LiFTinG
on the content dissemination protocol. To this end, we compute
the maximum number of verification and blame messages sent
by a node during one gossip period. The overhead of the verifi-
cations is summarized in Table 4. Note that we do not consider
statistical verifications in this section, as it does not imply a
regular overhead but only sporadic message exchanges.

Direct verification. Direct verifications do not require any
exchange of verification messages as they consist only in com-
paring the number of chunks requested by the verifier to the
number of chunks it really received. However, direct verifi-
cation can lead to the emission of f blames (to M managers).
The communication overhead caused by direct verifications is
therefore O(M · f) messages.

Direct cross-checking. In order to check that the chunks it sent
during the previous gossip period are further proposed, the ver-
ifier polls the f partners of its f partners with probability pdcc.
Similarly, a node is polled by pdcc · f 2 nodes per gossip period
on average and therefore sends pdcc · f 2 replies. Finally, a node
sends the list of its current partners to the f nodes (on average)
that served chunks to it in the last gossip period. In addition,
as a node inspects its f partners, direct cross-checking can lead
to the emission of a maximum of f blames (to M managers).
The communication overhead caused by direct cross-checking
is therefore O(pdcc · f 2 + pdcc · M · f) messages. Setting pdcc to
1/ f the overhead is O(M + f).

11

direct verifications (messages) 0
direct verifications (blames) O(M · f) for the verifier

direct cross-check (messages)
O(pdcc f 2) for the verifier
O(pdcc f) for the inspected node
O(pdcc f 2) for the each witness

direct cross-check (blames) O(pdcc · M · f) for the verifier

Table 4: Overhead of verifications.

The number of messages sent by LiFTinG is O(M · f). This
has to be compared to the number of messages sent by the three-
phase gossip protocol itself, specifically f (2 + |R|) – where R
is the set of requested chunks, the two additional messages are
the proposal and the request. The overhead of LiFTinG is even
more negligible when taking into account the size of the chunks
sent by a node, which is several orders of magnitude larger than
the verification and blame messages. Finally, as f ∼ ln(n), both
the three-phase protocol and LiFTinG scale with the number of
nodes. Finally, note that setting f to ln (n) in an infect-and-
die gossip protocol is sufficient to ensure that the content is
successfully broadcast with high probability [31]. Thus, both
the three-phase protocol and LiFTinG scale with the number of
nodes.
A posteriori verification and cross-checking. Assume that
nodes verify the nodes they manage. Every period of time, a
node picks one such node and triggers a verification. The cost
of obtaining/providing the inspected node history is O(nh f) (for
the inspected node and for the verifier). For each entry in the
history, the verifier asks for a confirmation to the correspond-
ing node (with a given probability pc). This leads to a cost of
O(pcnh f) (for the verifier and for the polled nodes as they an-
swer to pcnh f such confirmation requests on average, each with
a unit cost).

6. Evaluation and Experimental Results

We now evaluate LiFTinG on top of the gossip-based stream-
ing protocol described in [14], over the PlanetLab testbed. We
describe the experimental setup in Section 6.1. We evaluate
the performance of LiFTinG showing its small overhead in Sec-
tion 6.2 and its precision and speed at detecting freeriders in
Section 6.3.

6.1. Experimental Setup
We deploy and execute LiFTinG on a 300 PlanetLab node

testbed, broadcasting a stream of 674 kbps in the presence of
10% of freeriders. The freeriders (i) contact only f̂ = 6 random
partners (δ1 = 1/7), (ii) propose only 90% of what they receive
(δ2 = 0.1) and finally (iii) serve only 90% of what they are
requested (δ3 = 0.1). The fan-out of all nodes is set to 7 and the
gossip period is set to 500 ms. The blaming architecture uses
M = 25 managers for each node.

6.2. Practical Cost
We report on the overhead measurements of direct and a pos-

teriori verifications (including blame messages sent to the man-
agers) for different stream rates.

Direct verifications. Table 5 gives the bandwidth overhead of
the direct verifications of LiFTinG for three values of pcc. Note
that the overhead is not null when pcc = 0 because acknowl-
edgment messages are always sent. Yet, we observe that the
overhead is negligible when pcc = 0 (i.e., when the system is
healthy) and remains reasonable when pcc = 1 (i.e., when the
system needs to be purged from freeriders).

direct a posteriori
pcc =0 pcc =0.5 pcc =1

674 kbps 1.07% 4.53% 8.01% 3.60%
1082 kbps 0.69% 3.51% 5.04% 2.89%
2036 kbps 0.38% 2.80% 2.76% 1.74%

Table 5: Practical bandwidth overhead.

A posteriori verifications. A history message contains nh en-
tries. Each entry consists of f nodes identifiers and the chunk
IDs that were proposed. Both the fan-out and fan-in histories
are sent upon a posteriori verification.

Besides the entropic checks, a posteriori cross-checking is
performed on a subset of the fan-out or fan-in entries. We mea-
sure the maximum overhead, that is when the whole fan-out and
fan-in histories are cross-checked. The overhead incurred by a
posteriori verifications in our experimental setup (i.e., a history
size nh = 50, a gossip period of 500 ms, a fan-out of f = 7 and
a posteriori verification period of h = 25 s) is given in Table 5.

6.3. Experimental Results
We executed LiFTinG with pcc = 1 and pcc = 0.5. Figure 10

depicts the scores obtained after 25, 30 and 35 seconds when
running direct verifications and cross-checking. The scores are
compensated as explained in the analysis, assuming a loss rate
of 4% (average value for UDP packets observed on PlanetLab).

The two cumulative distribution functions, for honest nodes
and freeriders, are clearly separated. The threshold for ex-
pelling freeriders is set to −9.75 (as specified in the analysis).
In Figure 10b (pcc = 1, after 30 s) the detection mechanism
expels 86% of the freeriders and 12% of the honest nodes. In
other words, after 30 seconds, 14% of freeriders are not yet de-
tected and 12% represent false positives that mainly correspond
to honest nodes that suffer from very poor connection (e.g.,
limited connectivity, message losses and bandwidth limitation).
These nodes do not deliberately freeride, but their connection
does not allow them to contribute their fair share. This is ac-
ceptable as such nodes should not have been allowed to join the
system in the first place. As expected, with pcc set to 0.5 the de-
tection is slower but not twice as slow. Effectively, with nodes
freeriding with δ3 > 0 (i.e., partial serves) the direct checking
blames freeriders without the need for any cross-checking. This
explains why the detection after only 35 seconds with pcc = 0.5
(Figure 10f) is comparable with the detection after 30 seconds
with pcc = 1 (Figure 10b).

Due to the dynamic nature of live streaming, being able to
expel freeriders after less than 1 minute allows us to drasti-
cally reduce their viewing experience. Indeed, because of LiFT-
inG’s exclusion mechanism, a freerider will experience fre-
quent pauses, i.e., every time it is excluded from the system,

12

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

fr
a
c
ti
o

n
 o

f
n

o
d
e
s

score

honest nodes

freeriders

(a) After 25 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

score

honest nodes

freeriders

(b) After 30 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

score

honest nodes

freeriders

(c) After 35 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

fr
a
c
ti
o

n
 o

f
n

o
d
e
s

score

honest nodes

freeriders

(d) After 25 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

score

honest nodes

freeriders

(e) After 30 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20

score

honest nodes

freeriders

(f) After 35 seconds.

Figure 10: Scores CDF for honest nodes and freeriders, with pcc = 1 (top row) and pcc = 0.5 (bottom row).

during the viewing. The duration of such pauses is increased
by the fact that the freerider needs to change its identifier (e.g.,
its IP) to be able to rejoin the system and by the bootstrapping
time inherent to the dissemination protocol (e.g., buffering time,
delay before the node’s ID is available to the node selection).
Hence, running a posteriory verification every few minutes on
average is enough to significantly degrade the freeriders’s ex-
perience. For the same reasons, whitewashing (i.e., leaving and
joining the system with a fresh identifier to reset its score) is not
a viable solution for freeriders.

As stated in the analysis, we observe that the gap between
the two cumulative distribution functions widens over time.
However, the variance of the score does not decrease (for both
honest nodes and freeriders). This is because, in the analysis,
we considered that the blames applied to a given node during
distinct gossip periods were independent and identically dis-
tributed (i.i.d.). In practice however, successive gossip periods
are correlated. Indeed, a node with a poor connection is usu-
ally blamed more than nodes with high capabilities, and this
remains true over the whole experiment.

7. Related Work

TfT distributed incentives have been broadly used to deal
with freeriders in file sharing systems based on symmetric ex-
changes, such as BitTorrent [10]. However, there are a number
of attacks, mainly targeting the opportunistic unchoking mech-
anism (i.e., asymmetric push), allowing freeriders to down-

load contents with no or a very small contribution [38, 45, 51].
Many other incentive schemes have been proposed, in particu-
lar for mesh overlays (e.g., reputation-based [29, 41, 42, 49]) or
trees (e.g., [57], market-based [44], payment-based [53]) sys-
tems. However, most of them either rely on a central author-
ity to maintain reputation or consider static overlays for easier
auditing and real-time verifications. In [46], the authors pro-
pose OneHop reputations, a system in which peers rely on the
peers they interacted with in the past to assess the reputation
of the peers they could interact with: if a peer p never inter-
acted with p′ in the past, it looks for a peer p′′ that interacted
with it (i.e., p) and with p′ in the past, and asks p′′ about the
reputation of p′. However, while such a peer can be found
most of the times in small swarms in which peers collaborate
with many other peers and keep track of all their previous in-
teractions, this might not be the case for large-scale epidemic
systems with hard scalability constraints. In [28, 29], the au-
thor propose EigenTrust, a distributed algorithm for reputation
management in peer-to-peer networks, based on the number of
satisfactory/unsatisfactory pairwise interactions. The authors
also propose a (secure) distributed version of EigenTrust that
relies, similarly to LiFTinG, on the peers to act as score man-
agers (for each other) for aggregating, computing and maintain-
ing the reputation of other peers. The focus and the contribution
of EigenTrust are dual to those of LiFTinG: EigenTrust relies on
basic input from the peers (i.e., generic binary input that repre-
sents whether an interaction was satisfactory) and proposes a
complex aggregation and management scheme for reputation

13

scores; LiFTinG however, relies on fine-grained input from the
peers (i.e., blames, tightly related to the dissemination protocol,
with integer values that reflect the seriousness of the deviation–
which is one of the main contributions) and makes use of a sim-
ple aggregation scheme (i.e., sum of the blame values). Note
also that EigenTrust can raise scalability issues in the context
of epidemic dissemination as it involves computations on the
scores given by all the peers that interacted with a given peer.

FlightPath (built on top of BAR Gossip) [36] is a gossip-
based streaming application that fights against freeriding by
using verifications on partner selection and chunk exchanges.
FlightPath operates in a gossip fashion for partner selection and
is composed of opportunistic pushes performed by altruistic
nodes (essential for the efficiency of the protocol) and balanced
pairwise exchanges secured by TfT. The randomness of partner
selection is verified by means of a pseudo-random number gen-
erator with signed seeds, and symmetric exchanges are made
robust by using cryptographic primitives. FlightPath prevents
attacks on opportunistic pushes by turning them into symmetric
exchanges: each peer must reciprocate with junk chunks when
opportunistically unchoked. This results in a non-negligible
waste of bandwidth. It is further demonstrated in [22] that BAR
Gossip presents scalability issues, not to mention the overhead
of cryptography.

PeerReview [20] deals with malicious nodes following an ac-
countability approach. Peers maintain signed logs of their ac-
tions that can be checked by using a reference implementation
running in addition to the application. When combined with
CSAR [4], PeerReview can be applied to non-deterministic pro-
tocols. However, the intensive use of cryptography and the sizes
of the logs maintained and exchanged drastically reduce the
scalability of this solution. In addition, the validity of PeerRe-
view relies on the fact that messages are always received, which
is not the case over the Internet.

The case of malicious participants is considered in the con-
text of generic gossip protocols, i.e., consisting of state ex-
changes and updates [26]. This system relies on cryptography
for signing messages between peers and does not consider ma-
licious behaviors that stem from the partner selection, i.e., bi-
asing the random choices. In addition, they do not tackle the
problem of collusion.

The two approaches that relate the most to LiFTinG are the
distributed auditing protocol proposed in [22] and the pas-
sive monitoring protocol proposed in [30]. In the first pro-
tocol, freeriders are detected by cross-checking their neigh-
bors’ reports. The latter focuses on gossip-based search in the
Gnutella network. The peers monitor the way their neighbors
forward/answer queries in order to detect freeriders and query
droppers. In [8], the authors propose a protocol to detect and
exclude freeriders in the CAN peer-to-peer data structure by
monitoring how peers forward and answer routing messages.
Yet, contrarily to LiFTinG– which is based on random peer se-
lection – in both protocols the peers’s neighborhoods are static,
forming a fixed mesh overlay. These techniques thus cannot be
applied to gossip protocols. In addition, the situation where col-
luding peers cover each other up (not addressed in the papers)
makes such monitoring protocols vain.

In [2], the authors study the impact of measures against the
peers, such as the exclusion of peers, on several metrics, includ-
ing the extinction time of the shared file, in epidemic dissemi-
nation systems. The results of this work can be used to evaluate
the efficacy of LiFTinG in terms of its effect on the global per-
formance of the system.

8. Conclusion

We have presented LiFTinG, a protocol for tracking freeriders
in gossip-based asymmetric data dissemination systems. Be-
yond the fact that LiFTinG deals with the inherent randomness
of the protocol, LiFTinG precisely relies on this randomness to
robustify, with very low overhead, its verification mechanisms
against colluding freeriders . We provided a theoretical analysis
of LiFTinG that enables the system designers to set its param-
eters to their optimal values and characterizes its performance
backed up by extensive simulations. We reported on our Plan-
etLab experimentation, that demonstrates the practicability and
efficiency of LiFTinG.

We believe that, beyond gossip protocols, LiFTinG can be
used to secure the asymmetric component of TfT-based proto-
cols, namely opportunistic unchoking, which is considered to
constitute their Achilles’ heel [38, 51]. We can also envision a
scheme in which peers are rewarded (by increasing their scores)
when they altruistically push chunks to other peers, even af-
ter completing the download (i.e., seeding, for P2P file down-
load systems). As future work, we intend to model a content-
dissemination system secured by LiFTinG as a game and study
the strategies of freeriders and the possible equilibria.

References

References

[1] E. Adar, B. Huberman, Free Riding on Gnutella, First Monday 5 (2000).
[2] E. Altman, P. Nain, A. Shwartz, Y. Xu, Predicting the Impact of Measures

Against P2P Networks on the Transient Behaviors, in: INFOCOM’11:
Proc. of the 30th IEEE Conference on Computer Communications, pp.
1440–1448. doi:10.1109/INFCOM.2011.5934931.

[3] F. Azzedin, Trust-based taxonomy for free riders in distributed multi-
media systems, in: HPCS’10: Proc. of the 2010 International Confer-
ence on High Performance Computing and Simulation, pp. 362–369.
doi:10.1109/HPCS.2010.5547108.

[4] M. Backes, P. Druschel, A. Haeberlen, D. Unruh, CSAR: A Practical
and Provable Technique to Make Randomized Systems Accountable, in:
NDSS’09: Proc. of the 16th Annual Network & Distributed System Se-
curity Symposium, pp. 341–353.

[5] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, A. Twigg, Epidemic
Live Streaming: Optimal Performance Trade-offs, in: SIGMETRICS’08:
Proc. of the 2008 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, pp. 325–336. doi:10.
1145/1375457.1375494.

[6] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, A. Shraer, Brahms:
Byzantine Resilient Random Membership Sampling, Computer Networks
53 (2009) 2340–2359. doi:10.1145/1400751.1400772.

[7] S. Buchegger, J.Y. Le Boudec, Coping with False Accusations in Mis-
behavior Reputation Systems for Mobile Ad-hoc Networks, Technical
Report, EPFL, 2003. URL: http://infoscience.epfl.ch/record/
467.

14

[8] E. Buchmann, K. Böhm, FairNet: How to Counter Free Riding in Peer-
to-Peer Data Structures, in: CoopIS’04: Proc. of the 2004 International
Conference on Cooperative Information Systems, pp. 337–354. doi:10.
1007/978-3-540-30468-5_22.

[9] K.H. Chan, S.H. Chan, A. Begen, SPANC: Optimizing Scheduling Delay
for Peer-to-Peer Live Streaming, IEEE Transactions on Multimedia 12
(2010) 743–753. doi:10.1109/TMM.2010.2053524.

[10] B. Cohen, Incentives Build Robustness in BitTorrent, in: P2PEcon’03:
Proc. of the 1st Workshop on Economics of Peer-to-Peer Systems, pp.
1–5.

[11] T. Cover, J. Thomas, Elements of Information Theory, John Wiley and
Sons, Inc., 1991.

[12] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
S. Mehrotra, CREW: A Gossip-based Flash-Dissemination System, in:
ICDCS’06: Proc of the 26th IEEE International Conference on Dis-
tributed Computing Systems, pp. 45–45. doi:10.1109/ICDCS.2006.24.

[13] P.T. Eugster, R. Guerraoui, S.B. Handurukande, P. Kouznetsov, A.M. Ker-
marrec, Lightweight Probabilistic Broadcast, ACM Transactions on Com-
puter Systems 21 (2003) 341–374. doi:10.1145/945506.945507.

[14] D. Frey, R. Guerraoui, A.M. Kermarrec, M. Monod, V. Quéma, Stretching
Gossip with Live Streaming, in: DSN’09: Proc. of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 259–
264. doi:10.1109/DSN.2009.5270330.

[15] D. Frey, R. Guerraoui, B. Koldehofe, A.M. Kermarrec, M. Mogensen,
M. Monod, V. Quéma, Heterogeneous Gossiping, in: Middleware’09:
Proc. of the ACM/IFIP/USENIX 10th International Middleware Confer-
ence, pp. 42–61. doi:10.1007/978-3-642-10445-9_3.

[16] A. Ganesh, A.M. Kermarrec, L. Massoulié, SCAMP: Peer-to-peer
Lightweight Membership Service for Large-scale Group Communication,
in: NGC’01: Proc. of the 3rd International Workshop on Networked
Group Communication, pp. 44–55. doi:10.1007/3-540-45546-9_4.

[17] J. Gerard, H. Cai, J. Wang, Alliatrust: A Trustable Reputation Manage-
ment Scheme for Unstructured P2P Systems, in: GPC’06: Proc. of the 1st
International Conference on Advances in Grid and Pervasive Computing,
pp. 115–125. doi:10.1007/11745693_12.

[18] C. Gkantsidis, P. Rodriguez, Network Coding for Large-Scale Content
Distribution, in: INFOCOM’05: Proc. of the 24th IEEE Conference
on Computer Communications, pp. 2235–2245. doi:10.1109/INFCOM.
2005.1498511.

[19] R. Guerraoui, K. Huguenin, A.M. Kermarrec, M. Monod, S. Prusty, LiFT-
inG: Lightweight Freerider-Tracking Protocol in Gossip, in: Middle-
ware’10: Proc. of the ACM/IFIP/USENIX 11th International Middleware
Conference, pp. 313–333. doi:10.1007/978-3-642-16955-7_16.

[20] A. Haeberlen, P. Kouznetsov, P. Druschel, PeerReview: Practical Ac-
countability for Distributed Systems, in: SOSP’07: Proc. of 21st ACM
SIGOPS Symposium on Operating Systems Principles, pp. 175–188.
doi:10.1145/1323293.1294279.

[21] G. Hardin, The Tragedy of the Commons, Science 162 (1968) 1243–
1248. doi:10.1126/science.162.3859.1243.

[22] M. Haridasan, I. Jansch-Porto, R. Van Renesse, Enforcing Fairness in a
Live-Streaming System, in: MMCN’08: Proc. of the 2008 Conference
on Multimedia Computing and Networking, pp. 1–13. doi:10.1117/12.
775127.

[23] T. Ho, M. Mdard, R. Koetter, D. Karger, M. Effros, J. Shi, B. Leong, A
Random Linear Network Coding Approach to Multicast, IEEE Transac-
tions on Information Theory 52 (2006) 4413–4430. doi:10.1109/TIT.
2006.881746.

[24] K. Hoffman, D. Zage, C. Nita-Rotaru, A Survey of Attack and Defense
Techniques for Reputation Systems, ACM Computing Surveys 42 (2009)
1–31. doi:10.1145/1592451.1592452.

[25] D. Hughes, G. Coulson, J. Walkerdine, Free Riding on Gnutella Revisited:
The Bell Tolls?, IEEE Distributed Systems Online 6 (2005) 1–18. doi:10.
1109/MDSO.2005.31.

[26] M. Jelasity, A. Montresor, O. Babaoglu, Detection and Removal of Mali-
cious Peers in Gossip-Based Protocols, in: FuDiCo’04: Proc. of the 2nd
Workshop on Future Directions in Distributed Computing, pp. 1–4.

[27] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, M. van Steen,
Gossip-based Peer Sampling, ACM Transactions on Computer Systems
25 (2007) 1–36. doi:10.1145/1275517.1275520.

[28] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, Incentives for Combat-
ting Freeriding on P2P Networks, in: Euro-Par’03: Proc. of the 9th In-

ternational Conference on Parallel and Distributed Computing, pp. 1273–
1279. doi:10.1007/978-3-540-45209-6_171.

[29] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The Eigentrust Algo-
rithm for Reputation Management in P2P Networks, in: WWW’03: Proc.
of the 12th International Conference on the World Wide Web, pp. 640–
651. doi:10.1145/775152.775242.

[30] M. Karakaya, I. Körpeoğlu, O. Ulusoy, Counteracting Free-riding in
Peer-to-Peer Networks, Computer Networks 52 (2008) 675–694. doi:10.
1016/j.comnet.2007.11.002.

[31] A.M. Kermarrec, L. Massoulié, A. Ganesh, Probabilistic Reliable Dis-
semination in Large-Scale Systems, IEEE Transactions on Parallel and
Distributed Systems 14 (2003) 248–258. doi:10.1109/TPDS.2003.
1189583.

[32] A.M. Kermarrec, A. Pace, V. Quéma, V. Schiavoni, NAT-Resilient Gossip
Peer Sampling, in: ICDCS’09: Proc. of the 29th IEEE International Con-
ference on Distributed Computing Systems, pp. 360–367. doi:10.1109/
ICDCS.2009.44.

[33] V. King, J. Saia, Choosing a Random Peer, in: PODC’04: Proc. of the
23rd Annual ACM Symposium on Principles of Distributed Computing,
pp. 125–130. doi:10.1145/1011767.1011786.

[34] R. Krishnan, M. Smith, Z. Tang, R. Telang, The Impact of Free-Riding on
Peer-to-Peer Networks, in: HICSS’04: Proc. of the 37th Annual Hawaii
International Conference on System Sciences, pp. 1–10. doi:10.1109/
HICSS.2004.1265472.

[35] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, X. Zhang, Inside the New
Coolstreaming: Principles, Measurements and Performance Implications,
in: INFOCOM’08: Proc. of the 27th IEEE Conference on Computer
Communications, pp. 1031–1039. doi:10.1109/INFOCOM.2008.157.

[36] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson, L. Alvisi,
M. Dahlin, FlightPath: Obedience vs Choice in Cooperative Services, in:
OSDI’08: Proc. of the 8th USENIX Conference on Operating Systems
Design and Implementation, pp. 355–368.

[37] Q. Lian, Z. Zhang, M. Yang, B.Y. Zhao, Y. Dai, X. Li, An Empiri-
cal Study of Collusion Behavior in the Maze P2P File-Sharing System,
in: ICDCS’07: Proc of the 27th IEEE International Conference on Dis-
tributed Computing Systems, p. 56. doi:10.1109/ICDCS.2007.84.

[38] T. Locher, P. Moor, S. Schmid, R. Wattenhofer, Free Riding in BitTorrent
is Cheap, in: HotNets-V: Proc. of the 5th Workshop on Hot Topics in
Networks (2006), pp. 85–90.

[39] N. Magharei, R. Rejaie, PRIME: Peer-to-Peer Receiver-Driven Mesh-
Based Streaming, IEEE/ACM Transactions on Networking 17 (2009)
1052–1065. doi:10.1109/TNET.2008.2007434.

[40] S. Marti, H. Garcia-Molina, Taxonomy of Trust: Categorizing P2P
Reputation Systems, Computer Networks 50 (2006) 472 – 484. doi:j.
comnet.2005.07.011.

[41] M. Meulpolder, J. Pouwelse, D. Epema, H. Sips, BarterCast: A Practical
Approach to Prevent Lazy Freeriding in P2P Networks, in: IPDPS’09:
Proc. of the IEEE International Symposium on Parallel & Distributed Pro-
cessing, pp. 1–8. doi:10.1109/IPDPS.2009.5160954.

[42] A. Montazeri, B. Akbari, Mesh-Based P2P Video Streaming with a Dis-
tributed Incentive Mechanism, in: ICOIN’11: Proc. of the 2011 Inter-
national Conference on Information Networking, pp. 108–113. doi:10.
1109/ICOIN.2011.5723143.

[43] R. Morales, I. Gupta, AVMON: Optimal and Scalable Discovery of Con-
sistent Availability Monitoring Overlays for Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems 20 (2009) 446–459.
doi:10.1109/TPDS.2008.84.

[44] A. Payberah, F. Rahimian, S. Haridi, J. Dowling, Sepidar: Incentivized
Market-Based P2P Live-Streaming on the Gradient Overlay Network, in:
ISM’10: Proc. of the 2010 IEEE International Symposium on Multime-
dia, pp. 1–8. doi:10.1109/ISM.2010.11.

[45] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkataramani,
Do Incentives Build Robustness in BitTorrent?, in: NSDI’07: Proc. of the
4th USENIX Symposium on Networked Systems Design and Implemen-
tation, pp. 1–14.

[46] M. Piatek, T. Isdal, A. Krishnamurthy, T. Anderson, One Hop Reputa-
tions for Peer to Peer File Sharing Workloads, in: NSDI’08: Proc. of the
5th USENIX Symposium on Networked Systems Design and Implemen-
tation, pp. 1–14.

[47] F. Picconi, L. Massoulie, ISP Friend or Foe? Making P2P Live Streaming
ISP-Aware, in: ICDCS’09: Proc of the 29th IEEE International Con-

15

ference on Distributed Computing Systems, pp. 413–422. doi:10.1109/
ICDCS.2009.37.

[48] J. Rosenberg, R. Mahy, P. Matthews, D. Wing, Session Traversal Utilities
for NATs (STUN), Technical Report RFC 5389, IETF, 2008.

[49] A. Satsiou, L. Tassiulas, Reputation-Based Resource Allocation in P2P
Systems of Rational Users, IEEE Transactions on Parallel and Distributed
Systems 21 (2010) 466–479. doi:10.1109/TPDS.2009.80.

[50] Z. Shen, R. Zimmermann, ISP-Friendly P2P Live Streaming: A Roadmap
to Realization, ACM Transactions on Multimedia Computing, Communi-
cations and Applications 8 (2012) 11:1–11:20. doi:10.1145/2089085.
2089088.

[51] M. Sirivianos, J. Park, R. Chen, X. Yang, Free-riding in BitTorrent with
the Large View Exploit, in: IPTPS’07: Proc. of the 6th International
Workshop on Peer-to-Peer Systems, pp. 1–6.

[52] M.A. Stephens, EDF Statistics for Goodness of Fit and Some Compar-
isons, Journal of the American Statistical Association 69 (1974) 730–737.

[53] G. Tan, S.A. Jarvis, A Payment-Based Incentive and Service Differenti-
ation Scheme for Peer-to-Peer Streaming Broadcast, IEEE Transactions
on Parallel and Distributed Systems 19 (2008) 940–953. doi:10.1109/
TPDS.2007.70778.

[54] D.N. Tran, B. Min, J. Li, L. Subramanian, Sybil-Resilient Online Con-
tent Voting, in: NSDI’09: Proc. of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation, pp. 15–28.

[55] V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: Heterogeneous
Unstructured Tree-Based Peer-to-Peer Multicast, in: ICNP’06: Proc. of
the 14th IEEE International Conference on Network Protocols, pp. 2–11.
doi:10.1109/ICNP.2006.320193.

[56] M. Wang, B. Li, R2: Random Push with Random Network Coding in Live
Peer-to-Peer Streaming, IEEE Journal on Selected Areas in Communica-
tions 25 (2007) 1655–1666. doi:10.1109/JSAC.2007.071205.

[57] S. Yang, X. Wang, An Incentive Mechanism for Tree-based Live Media
Streaming Service, Journal of Networks 5 (2010) 57–64.

[58] N. Zeilemaker, M. Capotă, A. Bakker, J. Pouwelse, Tribler: P2P Me-
dia Search and Sharing, in: MM’11: Proc. of the 19th ACM Interna-
tional Conference on Multimedia, pp. 739–742. doi:10.1145/2072298.
2072433.

[59] M. Zhang, Q. Zhang, L. Sun, S. Yang, Understanding the Power of Pull-
Based Streaming Protocol: Can We Do Better?, IEEE Journal on Selected
Areas in Communications 25 (2007) 1678–1694. doi:10.1109/JSAC.
2007.071207.

[60] X. Zhang, H. Hassanein, A Survey of Peer-to-Peer Live Video Streaming
Schemes - An Algorithmic Perspective, Computer Networks 56 (2012)
3548–3579. doi:10.1016/j.comnet.2012.06.013.

16

