
HAL Id: hal-00941413
https://hal.inria.fr/hal-00941413

Submitted on 23 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible Framework for Asynchronous In Situ and In
Transit Analytics for Scientific Simulations

Matthieu Dreher, Bruno Raffin

To cite this version:
Matthieu Dreher, Bruno Raffin. A Flexible Framework for Asynchronous In Situ and In Transit
Analytics for Scientific Simulations. CCGrid 2014 - 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, May 2014, Chicago, United States. �hal-00941413�

https://hal.inria.fr/hal-00941413
https://hal.archives-ouvertes.fr

A Flexible Framework for Asynchronous In Situ and In Transit Analytics for

Scientific Simulations

Matthieu Dreher

INRIA - LIG

Montbonnot, France

matthieu.dreher@inria.fr

Bruno Raffin

INRIA - LIG

Montbonnot, France

bruno.raffin@inria.fr

Abstract—High performance computing systems are today
composed of tens of thousands of processors and deep memory
hierarchies. The next generation of machines will further
increase the unbalance between I/O capabilities and processing
power. To reduce the pressure on I/Os, the in situ analytics
paradigm proposes to process the data as closely as possible
to where and when the data are produced. Processing can be
embedded in the simulation code, executed asynchronously on
helper cores on the same nodes, or performed in transit on
staging nodes dedicated to analytics. Today, software environ-
nements as well as usage scenarios still need to be investigated
before in situ analytics become a standard practice.

In this paper we introduce a framework for designing,
deploying and executing in situ scenarios. Based on a com-
ponent model, the scientist designs analytics workflows by first
developing processing components that are next assembled in
a dataflow graph through a Python script. At runtime the
graph is instantiated according to the execution context, the
framework taking care of deploying the application on the
target architecture and coordinating the analytics workflows
with the simulation execution. Component coordination, zero-
copy intra-node communications or inter-nodes data transfers
rely on per-node distributed daemons.

We evaluate various scenarios performing in situ and in
transit analytics on large molecular dynamics systems sim-
ulated with Gromacs using up to 2048 cores. We show in
particular that analytics processing can be performed on the
fraction of resources the simulation does not use well, resulting
in a limited impact on the simulation performance (less than
9%). Our more advanced scenario combines in situ and in
transit processing to compute a molecular surface based on
the Quicksurf algorithm.

Keywords-In Situ Analytics and Visualization; IO; Molecular
Dynamics;

I. INTRODUCTION

The ever growing amount of data produced by parallel

numerical simulations calls for new practices to reduce

the pressure on I/Os. For instance, the complete chemical

structure of the capsid of the HIV-1 virus has recently been

resolved [1]. The molecular model has a total of 64 millions

atoms. To simulate this model, scientists used the Blue Water

supercomputer, the simulation producing about 10To per run

of 100 nanoseconds of simulated time, which makes the

analysis of the trajectory very difficult.

Instead of saving raw data to disks for further post-

processing, the in situ analytics paradigm proposes to per-

form data processing as closely as possible to where and

when the data are produced [2]. The goal is first to reduce

the amount of data to be transfered and stored, but also

to parallelize analytics on the large supercomputer booked

for the simulation. This approach also enables to get a live

feedback on the current simulation state, and, if necessary,

to take early measures to stop the simulation or change some

parameters [3].

These processing workflows being interleaved with the

simulation, the ease of use, flexibility as well as the overall

performance impact must be carefully considered. We can

distinguish different mappings for analytics, adopting the

vocable of [4]: in situ embedded in the simulation code,

or running asynchronously on the same nodes but often

on dedicated helper cores; in transit on staging nodes

dedicated to analytics; or more classically once data have

been saved to disk. Depending on the application domain

and the analytics algorithms, the needs can range from

simple filtering schemes, for instance removing the water

atoms before saving a time step of a molecular dynamics

simulation, up to producing high quality images [2].

Our contribution is a framework for designing, deploy-

ing and executing in situ and in transit data-flows. Our

framework goal is twofold: to be flexible and yet perfor-

mant. Based on a component model, the scientist designs

analytics workflows by first developing processing compo-

nents that are next assembled in a dataflow graph through

a Python script. Relying on a full blown programming

language enables to develop complex parametrizable, thus

reusable, parallel patterns, like NxM data distribution or

MapReduce. Complex graphs can thus be specified in a

compact way. At runtime the graph is instantiated according

to the execution context, the framework taking care of

deploying the application on the target architecture, and of

coordinating the analytics workflows with the simulation

execution. The numerical simulation is seen as a collection

of distributed components (one component per process). The

runtime systems relies on daemons (one per node) in charge

of managing shared memory segments used to exchange

data (without copies) between the components local to a

given node, and to trigger data transfers to distant nodes

when required. We designed this software layer to be as

thin as possible, to give the user a high level of control

on its application behavior and to limit intrusion when

encapsulating existing codes into components, like parallel

simulation codes or analytics libraries.

The performance is evaluated with Gromacs [5], a popular

parallel molecular dynamics simulation software. We aug-

mented Gromacs with in situ and in transit filters. Various

scenarios are tested from simple file writes to computing a

surface skin of the simulated molecular system, based on

the Quicksurf algorithm [6] both in situ and in transit. We

show that using up to 2048 cores our various scenarios have

only a limited impact on the simulation (less than 9%).

After discussing related work (Sec. II), we present

our framework (Sec. III), before to detail some scenar-

ios (Sec. IV) and the associated performance evaluation

(Sec. V). A conclusion closes the paper (Sec. VI).

II. RELATED WORK

We discuss related approaches according to the locus of

analytics processing.

The most direct way to perform in situ analytics is to

inline computations directly in the simulation code. This is

the approach adopted in [2] as well as for the standard visu-

alization tools like Paraview and Visit [7], [8]. In this case,

in situ processing is directly accounted in the simulation

time. This approach could enable to share data structures,

but often simulation and visualization tools rely on their own

specific formats [9].

To reduce the cost of in situ analytics on the simulation,

several works propose to dedicate one or several cores

per node, called helper cores, to analytics. The simulation

responsibility is simply to handle a copy of the relevant

data to the node-local analytics processes, usually through a

shared memory segment, both codes being executed concur-

rently. This approach also limits analytics intrusion in the

simulation code. Damaris[10], Functional Partitioning[11],

GePSeA[12] or Active Buffer[13] adopt this solution. Even

if the in situ processing simply consists in saving data to

disks, this approach can be more efficient than to rely on

standard I/O libraries like MPI I/O [10].

In situ is well adapted for computations that conform

with the data distribution imposed by the simulation, thus

avoiding inter-node transfers. If intensive data transfers are

required, it may be more efficient to offload these compu-

tations from the simulation nodes towards extra dedicated

nodes, usually called staging nodes. These computations are

said to be performed in transit. HDF5/DMS [14] uses the

HDF5 interface and a virtual file driver to expose a virtual

file to staging nodes. GLEAN [15] proposes a Map/Reduce

approach to analyse molecular dynamic simulations.

Several systems use staging nodes to expose the sim-

ulation data to other scientific workflows [16], [17].

DataSpaces[18] stores the simulation data on staging nodes

with a spatially coherent layout and acts as a server to client

applications.

A few frameworks support both in situ and in transit

processing. JITStaging [19] and PreData [20] propose to

extract data from the simulation, apply a first in situ treat-

ment with simple stateless codes, then transfer the data

to staging nodes. Bennett et al. [21] solution is build on

top of DataSpaces and Dart[22] to perform in situ and in

transit visualization and analytics. ADIOS [23] is emerging

as a standard I/O interface to describe the simulation data

that may need to be read, written, processed outside of

the simulation. An XML configuration file specifies how

the data are actually handled, relying on various extensions

ranging from standard I/O libraries like MPI I/O up to

visualization libraries. FlexIO [24] brings to ADIOS in situ

and in transit processing capabilities. FlexIO uses shared

memory segments to handle data to asynchronous node-

local in situ processes and RDMA transport methods for

inter-node transfers, in particular to staging nodes. Specific

stateless codelets can be dynamically moved on different

cores during the simulation. For NxM like data redistribu-

tions, FlexIO relies on centralized coordinators that gather

information about data and process distribution, compute the

communication pattern and send back the necessary instruc-

tions to each process involved. This handshaking process can

be totally or partly bypassed if the data distribution does not

need to be recomputed in between consecutive steps. Zheng

et al. [24] also propose several heuristics to compute process

to core mappings and optimize the use of helper cores and

staging nodes.

In situ and in transit computing can be seen as some form

of parallel code coupling. The Common Component Archi-

tecture (CCA)[25] defines a component model tailored for

coupling scientific applications. Several software libraries

adopted this model like Intercomm[26], Meta-Chaos[27] or

PAWS[28]. XChange[29] pushes the concept of CCA by

adding the possibility to apply data transformation during

transferts between simulation codes. Zhang et al.[30] added

a shared memory space to a Dart server to support both

simulation code coupling and in situ/in transit scenarios. The

user describes groups of parallel codes called bundles and

creates a workflow between these bundles. Based on MPI,

the framework requires that all bundles be integrated in the

same MPI application, which can require significant coding

efforts.

Our contribution is a framework supporting asynchronous

in situ and in transit processing by combining the component

oriented and data-flow approaches. The level of abstraction

proposed lead to a comprehensive and flexible environment,

while having a thin software layer to let the user keep a

good understanding of the application behavior.

III. PROGRAMMING MODEL AND RUNTIME

We describe in the following the main features of the

programming model and runtime. Our framework is an

extension of FlowVR, a middleware designed for interactive

applications running on up to a few hundred cores [31]. For

this paper we tailored FlowVR to support in situ processing

on large core counts.

An application is described as a dataflow graph where

edges are communication channels and vertices, called mod-

ules, are codes processing data received on input channels

and producing results sent on output channels.

A. Module

A module is a process or thread running an infinite loop.

A module has input and output ports it relies on to send

and receive messages in the FlowVR world. A module has

no further view of the application. This componentization

enables to reuse the same modules in different graphs

without having to recompile them.

The API to turn a code into a module relies on three main

functions:

• Wait() : blocking operation. Suspend the module until

all its connected input ports have at least one message

available.

• Get() : Get the oldest message from the queue attached

to an input port (non blocking)

• Put() : Send a message to an output port (non blocking).

For flexibility, an input port can also be declared non-

blocking. In this case, a get call on this port can return a

null value if no message is available. These ports are usually

used for low frequency message streams, for controlling the

module configuration for instance.

This API is kept simple to minimize the refactoring

necessary to transform a code into a module. Modules can

be created in C, C++, Python and Fortran. They can defer

computations to local accelerators (GPU or Intel Phi for

instance). FlowVR does not impose a new launching com-

mand when turning into modules the processes or threads

of an existing application. It simply needs to have the native

launching command forward a couple of FlowVR specific

environment variables. If several modules are started from

the same command line, they get different ids, either using

a rank assigned by FlowVR or inheriting the rank the native

launching command assigns (for instance the MPI rank given

by mpirun).

B. Application Assembly

The user assembles his application through a Python

script. This consists in listing the modules involved and how

they connect their ports. An output port can be connected

to several input ports (for broadcasting). Loops are possible,

enabling for instance to set feedback channels to control

upstream message production, or to enable application steer-

ing. Tokens (special empty messages) will be released when

starting the application to unlock these cycles.

Because we rely on Python, complex parametrized pat-

terns can be programmed in a compact way and reused

in different contexts. For instance we developed various

common parallel communication patterns like 1-to-N, N-to-

1 or N-to-N. The N-to-1 pattern takes as parameter an arity

and a type of merging module, to build a reduction tree.

The default merging module simply concatenates incoming

messages and forwards the result on its output, but more

specific modules can be developed and used for this N-to-1

pattern. Figure-III-B presents an exemple of N-to-1 Python

script for a MapReduce like data processing. Following the

same approach we implemented resampling patterns. The

simplest one is to put a specific module on the channel

just before the consumer input port. On request from the

consumer (backward link from consumer to sampler), the

sampler module forwards the newest message available and

discards all older messages. If no message is available it

forwards an empty message. More advanced patterns support

a coherent sampling for N producers. As for all other

patterns, the module implementing the default resampling

policy can be switched with a custom one. More advanced

patterns can be obtained by combining several base patterns.

The application is instantiated for a given target machine

by assigning modules to compute nodes and optionally to

also specify the cores where to pin them. The execution of

the Python script generates various XML files that list the

command lines to start the various modules, usually using

ssh or their native launcher, as well as a list of commands

for configuring each daemon (detailed in Sec. III-C). To run

the application, the user simply calls the flowvr command

with the application name. This command takes care of

coordinating module launchings and daemon settings.

Changing the Python script does not involve any change

or recompilation of the module codes. Various scenarios

can thus be easily experimented, for instance changing the

computations performed by switching some modules, or

testing different analytics placements on in situ or in transit

nodes.

C. Daemon

Because modules ignore who and where their neighbors

are, we need external entities to implement the data transfers

and coordination logic. For that purpose FlowVR requires

to have one daemon running per node, similarly to Hy-

bridDart [30]. A daemon is a multithreaded process that

fills an action table and loads plugins according to the

application configuration. The action table lists the action to

trigger upon message notification for each potential message

source. A typical action consists in forwarding a message to

a local module or to the transport plugin if the destination

module runs on a distant node. The daemon manages shared

P a r a l l e l s i m u l a t i o n

mySimula t ion = S i m u l a t i o n (” mySimula t ion ” , h o s t s S i m u l a t i o n ,

c o r e s = s i m u l a t i o n C o r e s)

P a r a l l e l mapper (one p r o c e s s per node)

myMapper = Mapper (”myMapper” , hos tsNode ,

c o r e s = d e d i c a t e d C o r e s)

V i s u a l i z e r on a d e d i c a t e d node

myRenderer = R e n d e r e r (” myRenderer ” , h o s t s V i s u a l i z a t i o n)

Connect t h e k s i m u l a t i o n p r o c e s s e s per node

t o t h e l o c a l mapper f i l t e r .

m a k e p a r t i a l f i l t e r t r e e (’ t r e e L o c a l M e r g e ’ ,

mySimula t ion . g e t P o r t (” o u t ”) ,

myMapper . g e t P o r t (” i n ”) ,

a r i t y = l e n (h o s t s S i m u l a t i o n) / l e n (hos t sNode) ,

n o d e c l a s s = F i l t e r M e r g e)

N−to−1 r e d u c t i o n t r e e from t h e mappers t o v i s u a l i z e r

f i n a l P o r t = g e n e r a t e N t o 1 (” TreeReduce ” ,

myMapper . g e t P o r t (” o u t ”) ,

a r i t y = 8 , n o d e c l a s s = myReducer)

L ink t o t h e v i s u a l i z e r

f i n a l P o r t . l i n k (myRenderer . g e t P o r t (” i n ”))

Figure 1. Python script to generate a N-to-1 MapReduce like pattern. The
script begins with the module specifications (their launching commands
and port interfaces), code omitted here for sake of conciseness. Next we
request to have the simulation running in parallel (k processes per node),
one mapper per node running simulation proceses and a single visualization
module on a different node. The data are merged a first time locally to
have one message per node (make partial filter tree) using a FilterMerge

module. This message is forwarded to the mapper (myMapper) and the
result handled to a N-to-1 merge tree (generateNto1). At each node of the
tree, a module (type myReducer) applies the expected reduction operation
on the arity incoming messages. Finally, the result of the reduction is send
to the visualizer.

memory segments where all local messages are stored. It

is responsible to allocate and free shared memory. Smart

pointers are used to point to messages, which are destroyed

when the reference count reaches zero. Intra-node com-

munications consists in handling to the destination module

a pointer on the message, thus avoiding memory copies.

Inter-node communications are implemented by dedicated

plugins. FlowVR default transport plugin relies on TCP/IP,

ensuring a wide portability. For in situ applications we

developed a MPI based plugin to better take benefit of

high performance networks like Infiniband. For each local

module the daemon loads one threaded regulator plugin

in charge of the dialog with that module. The regulator is

responsible for unlocking the module upon wait() calls, to

provide pointers to incoming messages upon get() calls and

to handle outgoing messages over put() calls.

D. Message Handling

In opposite to other frameworks like FlexIO, FlowVR

offers a direct access to the shared memory. A module can

thus work within the shared memory buffer, rather than

copying the data once ready and just before to send the

message, saving one copy. Once the put() call occurs, the

buffer becomes read only for the producer but also for all

receivers. Indeed, when a message is sent to several modules

in the same node, all receivers have access to the same

message. This mechanism avoids to have multiple copies

of the same message.

FlowVR does not provide specific interfaces for handling

structured data like Adios. We expect users to develop their

own library according to their needs. This also avoids to

mask too complex behaviors that can impair some context

specific optimizations or reveal difficult to debug when not

behaving as expecting.

To mitigate the cost of memory allocation, the daemon

supports a bufferpool mechanism. When a module requests

a shared memory allocation, the deamon tries to reuse an

unused, already allocated and large enough buffer. An other

important mechanism to save memory allocations and copies

is the ability to concatenante incoming messages by chaining

them rather than copying them to build a new message.

This mechanism is particularly useful when, at node level,

we need to concatenate the messages from the various

simulation processes before in situ or in transit processing.

If such message needs to be sent over the network, the

transport protocol is free to transmit it untouched or to

compact it for efficiency purpose.

A FlowVR message is composed of a list of stamps and

a data payload. The stamps are metadata attached to the

message. Some are system defined like the rank of the mes-

sage in the communication channel, or can be user defined,

like a bounding box. The stamp list can be routed without

the payload by simply connecting an output port with a

specific stamp-only link when assembling the application.

This enables for instance to gather the stamps to a decision

maker module that works only with stamps, the execution

of the decision being implemented by other modules. This

is a feature used to implement the N consumers sampling

pattern for instance.

E. Monitoring

It is important to provide tools to assist the user in under-

standing the behavior of his application. FlowVR provides

two main ways to monitor performance. A per node top-like

interface shows online various module data like its update

frequency or the size of message queues for each input port.

FlowVR also integrates a trace capture mechanism, with pre-

set events and the possibility to add user specific events.

A timeline visualization utility shows for each module the

wait() and active periods as well as all data movements

between modules. FlowVR also comes with a graphical

tool displaying a visual 2D representation of the application

graph the Python scrip describes.

IV. LIVE PROCESSING SCENARIOS

In this section we highlight how to couple existing codes,

like simulation or analytics codes, within our framework and

how to derive various scenarios and pipeline constructions.

We focus on adding in situ capabilities to a molecular

dynamic simulation running with Gromacs [32].

A. Code Coupling

Instrumenting an iterative numerical simulation usually

proves an easy task with FlowVR. First, a FlowVR wait()

must be integrated in the simulation loop. Next, the data

to be extracted from the simulation are copied inside a

FlowVR message and the message availability notified to the

FlowVR daemon through a call to put(). The data can also be

packed in several messages to be sent on different ports if,

for instance, different data need to be extracted at different

frequencies or processed through different pipelines. Most

of other systems like ADIOS or Damaris follow similar

schemes, requiring only minor modifications to the simula-

tion codes. Note that for steering purposes, input ports can

also be created to retrieve data used to change the application

internal parameters.

In the case of Gromacs, we instrumented each MPI

process, building the messages outside of OpenMP parallel

regions to ensure the data integrity if Gromacs is launched

with an hybrid OpenMP and MPI parallelization. It is though

possible to further optimize this code, for instance having

each OpenMP thread writing in parallel in the message. We

also set an input port to impose external forces to a selection

of atoms. This was used to interactively steer a system with

an haptic device for a small scale simulation [33]. But a port

is inoperative as long as not linked to an other module: the

wait() does not block on this port and a get() call simply

returns a null value. Thus, ports can be set even if not used,

enabling different scenarios without requiring to recompile

the application.

To connect traditional post-process analytics codes to our

pipeline, we added a new file format able to receive and

send FlowVR messages. The FlowVR module interface fits

well the usual file I/O interface :

• open() : initialize the module with an input (respectively

output) port if the file is opened for reading (resp.

writing).

• read() : do a get()

• write(): do a put()

• close(): close the module.

ADIOS has adopted the same correspondance with its stream

interface. Developers can thus easily integrate legacy an-

alytics codes in their pipeline. Such analytics codes are

often sequential, at best multithreaded. They are thus usually

mapped on staging nodes connected to an incoming N-to-1

merging pattern gathering the data from the simulation. If

the reached performance is too limited, such codes can be

parallelized later to run on several in transit or in situ nodes.

We integrated the Gromacs analyze tools and the Python

library MDAnalysis [34] inside our framework following the

interface we just described. Both tools are sequential and

expect as entry the atom positions of a full time step. It is

then necessary to merge all the atoms positions, sort them

according to their atom ID and finally remove all the IDs to

provide the analysis modules only the ordered atom positions

as if they were extracted from a standard trajectory file.

A very simple parallelism can be set up without modifying

anything more than the Python script. If an analysis takes

longer than the time between two output steps, we can

simply set a module to cyclically distribute the incoming

messages to multiple instances of the analytics module. The

produced results are then reordered by an other module

before being forwarded downstream.

B. Quicksurf

Figure 2. Quicksurf pipe-line (top). Redistribution takes place only at
one level (a,b or c) depending on the adopted strategy. The redistribution
component (bottom) is made of rooter and merger modules. The rooters
split incoming data according to the adopted domain decomposition. The
mergers gather the different data received from rooters.

We now highlight the possibility of in situ and in transit

scenarios with our framework through the live extraction of

Figure 3. Quicksurf with atom redistribution (strategy (a) in Figure-2). Domain decomposition used to route the atoms (left). Atoms at side regions are
duplicated to keep the futur calculations coherent without needs for exchanging extra data later on. The molecule is mapped to a grid and the density is
computed for each cell (center). A marching cube is performed to extract the Quicksurf representing the surface of the molecule. Finally the local meshes
are merged to obtain a global 3D model (right).

a molecule surface. The considered algorithm, called Quick-

surf [6], operates in three main steps. First, the atoms are

sorted according to their location in a 3D density grid. Next,

a density value is computed for each grid cell according

to the cumulated Gaussian weight of all particules present

in the cell and its 26 neighbors. Finally, the surface mesh

is extracted running the classical marching cube algorithm.

This mesh is expansive to compute for large systems on a

single machine even with a high end GPU [6]. But once

computed, it is usually significantly smaller than the source

data set. The mesh can easily be stored or forwarded to the

scientist office and rendered interactively on a PC with a

descent GPU.

Notice that in several in-situ visualization papers, like. [2],

the authors propose to render in situ images from the

simulation data. But having only a few images per time step

is of very limited use for molecular dynamics where users

generally want to freely observe the structure from different

points of view. Producing instead a mesh per time step offers

this possibility.

The parallel Quicksurf algorithm we propose here exhibit

two main steps. Computations take first place on the local

nodes inheriting from the data distribution adopted by the

parallel simulation. Next partial results are redistributed

either to in-situ nodes or to staging nodes to finalize the

extraction of the Quicksurf mesh. The distribution can take

place at three different levels as detailed in Figure-3). We

detail here the algorithm adopting the distribution strategy

(c), the other strategies being discussed at the end of the

section.

We first perform live computations with only the data

locally available on each node running simulation processes.

A first module aggregates the atom positions provided by

each MPI process running on the node into one single

message (message chaining - no copy). The next module

gets this message (pointer - no copy) and computes a Morton

index for each atom. The atoms are then sorted according

to their Morton indices. The module forwards the atom

positions and Morton indices (no copy) to the next module.

This third one creates a 3D grid and stores for each cell the

start and end index of the atoms contained in this cell (end

index equal to zero for empty cells). Because the grid size

is reduced (about 20MB in our experiments for the global

grid), we can afford to store empty cells. For larger grids

we would benefit from keeping only non empty cells and

rely on a binary search to find a given cell. Eventually atom

positions, Morton indices and the 3D grid are forwarded

(still no copy) to a fourth module that computes the cell

densities based on the atom present in the 27 neighbors.

We get here partial densities as the cells may contain other

atoms that are not visible at this point (atoms simulated

on other nodes). We then redistribute these partial densities

(network data transfers) towards M modules (distribution (c)

in Figure-3) to recompose (sum) the final densities. Finally

the local density grid is send (no copy) to a marching cube

module that generates a mesh of the surface molecule for the

cells it owns. The produced triangles are then gathered on

a single node with a N-to-1 communication pattern before

being saved and/or rendered.

In this case we exchange the partial density grids and next

sum the densities when they reach their final destination. For

large values of N and M we could get better performance by

relying on algorithms that combine the redistribution pattern

with the density summation, like the binary swap or 2-3

swap [35].

We could perform data redistribution earlier, either just

once the atom gets their Morton index (Figure-3), or once

atoms are sorted according to the cell they belong to (Figure-

2 top). The redistribution component (Figure-2 bottom) re-

quires inter-node data transfers to combine the data obtained

on each of the N simulation nodes. A first module (N in-

stances, one per node), the rooter, gets the locally computed

Morton indices and the atom positions, the grid and/or the

partial densities. It is responsible to redistribute the data to M

entities based on a gird decomposition including a layer of

ghost cells or atoms to ensure the next computation steps can

occur without any further communications. The rooter and

merger components were designed with multiple ports for

various data types (non connected ports are inactive in the

FlowVR model). This enable us to test the three distribution

strategies without the need to recompile anything.

In-situ processes are executed on one helper core. Instead

we could first process the data locally on each core before

to gather and merge the results. This exhibit more paral-

lelism and may save some memory transfers. Conversely,

the simulation processes needs to compete with the in-situ

processes running on the same core to use the local resources

(CPU, cache, memory bandwidth), leading to performance

degradations. Such approach usually proves less efficient

than relying on dedicated helper cores [24].

From this pattern we can derive several placements. All

steps could be performed in-situ, having the final mesh

gathered on a single staging node. But the communications

triggered by the distribution could affect the simulation

performance. An other option is to rely on staging nodes for

combining the partial densities, or if the work load left is still

too important for in-situ nodes, transfer the data to staging

nodes at an earlier step. All these different scenarios just

require to adjust the Python script. No module compilation is

required. Various of these placement strategies are evaluated

in Section. V.

V. EXPERIMENTS

A. Experimental Context

The experiments ran on Froggy, a 138 compute nodes

cluster from the Ciment infrastructure. Each compute node

is equipped with 2 eight cores processors Sandy Bridge-

EP E5-2670 at 2.6 GHz, 64GB of memory. Nodes are

interconnected through a FDR Infiniband network. FlowVR

2.1 and Gromacs 4.6 are compiled with Intel MPI 4.1.0. For

all experiments Gromacs runs a Martini simulation with a

patch of 54000 lipids representing about 2100000 particles

in coarse grain[36] (simulation of atom aggregates).

B. Writing Scenario

We first benchmark Gromacs with and without IOs and

comparable data saving patterns handled through FlowVR.

Gromacs natively uses a master-slave approach to write

the results to disk. At each output step, all the atoms are

gathered synchronously to the master through MPI commu-

nications before to writes the data in one file. During this

step, the simulation is blocked, which can significantly affect

the performance and force scientists to reduce the output

frequency. Notice also that in opposite to many numerical

simulations, Gromacs runs at a very high frequency ranging

from 200 to 1200 Hz. It is classical that biologists save data

only every 5000 iterations or even significantly less. Here

we voluntarily stress the system to make the overheads more

Figure 4. Gromacs frequency when running with various data saving
patterns and number of cores.

visible and save atom positions every 100 iteration. Gromacs

dynamically balances its work load based on performance

measurements. This process can create important frequency

jitters for the first 1000 steps. We thus start the timings at

the 2000th frame up to the end of the simulation to avoid

the perturbations from the initialization phase. We ran the

simulations for 5min representing at least 20000 steps.

Figure-4 shows Gromacs running frequency for vari-

ous configurations. The curve Gromacs-0-16cores (resp.

Gromacs-0-15cores) gives the performance of Gromacs run-

ning on all the 16 cores available per node (resp. 15 cores)

and without performing any IO. These set the performance

upper bounds we should try to stay close to when activating

data saving. When Gromacs writes to disk the atom positions

every 100 steps the performance drops significantly (curve

Gromacs-100-16cores). Adding cores beyond the first 512

ones, does not lead to any additional performance gain.

Next we use FlowVR to gather all data on one helper

core per node and locally write one file per node in HDF5

format (curve write-hdf5-local). The simulation runs on 15

cores per node and the FlowVR processes (daemon, merge

and writer modules) are hosted on a dedicated helper core.

At each output step, the atom positions are extracted from

the simulation, gathered on each node (no copy) with a

merge module and sent (no copy) to a node-local HDF5

writer module. The obtained numbers are very close to

Gromacs-0-15cores, 3.6% slower for 1920 cores, showing

the low overhead of the code instrumentation, efficiency of

the daemon for coordinating the modules and handling the

message transfers.

The last experiment reproduces Gromacs file writing pat-

tern with FlowVR (curve write-xtc-merge). Data are gathered

on the master node with a N-To-1 pattern and written

in an XTC file with the Gromacs trjconv tool modified

as described in section IV-A. Transferring the data asyn-

chronously enables to outperform Gromacs-100-16cores,

even though Gromacs uses less cores. Despite the transfer of

data, the performance is slightly impacted with a maximum

cost of 6.5%. This is made possible because of the good

Infiniband support provided by the MPI communication

Figure 5. Gromacs frequency when running concurrently with the
Quicksurf pipeline.

layer and a fast network interconnection.

Notice that the helper core is never loaded beyond 10%

for all these experiments. Therefore, there are opportunities

to run extra in situ processings, like data filtering, to make

this core more profitable. As we are not using busy wait

in the daemon, the user is free to use these cores for

running external analytics codes, which may be part of the

global FlowVR application or not. Moreover, Gromacs has

difficulties to take fully benefits from the 16 cores (except

for 64 nodes) motivating the use of a dedicated core.

C. Live Quicksurf

We benchmark several placement strategies, in-situ and

in-transit schemes to compute a live Quicksurf based on

section IV-B scenarios. The water and ion particles are

filtered out in-situ to keep only the lipids. About 30% of

the atoms remain after this filtering step. At the end of the

pipeline, the partial meshes produced by the marching cube

modules are merged to a single visualization node.

Figure-5 compares three configurations with the base

Gromacs performances (Gromacs-0-15cores and Gromacs-

0-16cores).

The quicksurf-c-intransit scenario adopts the the distri-

bution strategy (c) of Figure-2 with one helper core per

simulation node, and a NxM redistribution sending the data

to staging nodes . We use one extra staging nodes every 64

simulation nodes. This strategy gives the best performance

impacting Gromacs performance decreases by at most 7%

compared to over Gromacs executed without I/O, on N nodes

at 15 cores per node (Gromacs-0-15cores). This strategy

is the lightest regarding network traffic. The global grid

represents only 700000 cells and only the non nul densities

are sent to the staging nodes.

The quicksurf-c-insitu scenario also relies on strategy (c)

but the redistribution is performed between the simulation

nodes (M = N). The impact on Gromacs is at most 8%

compared to Gromacs-0-15cores. This is higher than for

quicksurf-c-intransit but requires 1.5% less nodes (no stag-

ing nodes are used).

Finally, the quicksurf-a-intransit strategy gives a max-

imum cost of 8.6% compared to Gromacs-0-15cores. In

this case the atom positions are directly redistributed to the

staging nodes (M = N/64 staging nodes). The performance

impact is more significant than for quicksurf-c-intransit. This

overhead can be explained by the amount of data to transfer

(atom positions versus cell densities), which is at least 3

times larger. Even if this strategy is the slowest one, it has

the advantage of distributing the atom positions across the

staging nodes. These positions are the base data required by

a large variety of analysis. The range of possible analysis is

significantly more limited if only densities reach the staging

nodes as for the 2 other scenarios. This third scenario can

thus be more interesting depending on the user needs.

We choose not to place the redistribution component in (b)

since it generates more network traffic than in (a) whereas

the computational cost to generate the grid is relatively low

and can easily be computed after the redistribution.

D. Discussion

The molecular dynamics simulation we rely on departs

from the type of simulations usually used to benchmark

other in-situ frameworks like [24] or [37]. Molecular dy-

namics simulations are characterizer by high frequencies (up

to 1061Hz in our case) compared to simulations runnings in

between 1Hz and 1/20Hz. The amount of data produced at

each output step is inversely proportional to the frequency.

Our benchmark produces about 25MB per output step to be

compared to the 700 MB reported in [1]. If we normalize

the amount of data extracted per node we get a traffic of

2MB per node per second in our case (Gromacs running

at 1061Hz on 128 nodes and one output step every 100

steps). In[20], the GTC simulation running on 16,384 cores

(2048 nodes) produces 260GB every 2 minutes. It represents

a traffic of about 1MB per node per second. Even if a direct

comparison is delicate given the very different contexts, we

can see that the extracted data exert a similar pressure on the

network bandwidth, but in our case at a higher frequency.

Finally, Gromacs uses a dynamic load-balancing system

that adapts the grid configuration at runtime. This prevents

us to use a priori data-aware redistribution on the simulation

nodes like in [30]. Even though the data redistribution

towards staging nodes is not impacted by this mechanism,

the full in-situ scenario could certainly take advantage of

this information.

VI. CONCLUSION

We introduced a dataflow oriented framework for in situ

and in transit analytics. Based on the FlowVR middleware,

our framework enables to support a large range of scenarios.

A Python script describes the assembly of the application,

offering the ability to program and reuse advanced patterns.

Often a new scenario can be experimented simply by updat-

ing the Python script, without module recompilation. The

runtime takes care of the application deployment, module

coordination and data exchanges, with various levels of

optimization. Because we tried to make FlowVR as inun-

trusive as possible (simple module API, direct access to

shared memory, module started with their native launching

commands), the user keeps a strong control and good

understanding of the application behavior.

Experiments with Gromacs molecular simulations paral-

lelized on up to 2048 cores, show that our framework enables

to concurrently perform analytics with a low impact on the

simulation (less than 9%).

So far, we rely on very basic mechanisms to keep the

simulation running when errors occur on the analytics pipe-

line. Future works include the integration of more advanced

fault tolerance mechanisms. On the performance side we

will investigate scheduling algorithms to let in-situ processes

communicate over the network when not used by the simula-

tion. We are also involved in a long-term collaboration with

computational biologists to test and develop new scenarios

and usages, so in situ processing can become part of their

standard software toolbox.

ACKNOWLEDGMENTS

This work was partly funded by the ANR, project

EXAVIS ANR-11-MONU-003. Most of the computations

presented in this paper were performed using the Froggy

platform of the CIMENT infrastructure (https://ciment.ujf-

grenoble.fr), supported by the Rhône-Alpes region (GRANT

CPER07 13 CIRA) and the Equip@Meso project (reference

ANR-10-EQPX-29-01) of the programme Investissements

d’Avenir supervised by the ANR. We thank Jeremy Jaus-

saud, INRIA, and Pierre Neyron, CNRS, for their helpful

inputs and contributions. We thank Philip Fowler, University

of Oxford, for his expertise on Gromacs scalability.

REFERENCES

[1] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen,
J. Ning, J. Ahn, A. M. Gronenborn, K. Schulten, and
C. Aiken, “Mature HIV-1 Capsid Structure by Cryo-electron
Microscopy and All-Atom Molecular Dynamics,” pp. 643–
646, 2013.

[2] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In
situ visualization for large-scale combustion simulations,”
Computer Graphics and Applications, IEEE, vol. 30, no. 3,
pp. 45–57, 2010.

[3] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter, “Falcon:
On-line monitoring for steering parallel programs,” in In
Ninth International Conference on Parallel and Distributed
Computing and Systems (PDCS’97), 1998, pp. 699–736.

[4] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining
in-situ and in-transit processing to enable extreme-scale sci-
entific analysis,” in nternational Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 2012, pp. 49:1–49:9.

[5] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apos-
tolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der
Spoel, B. Hess, and E. Lindahl, “Gromacs 4.5: a high-
throughput and highly parallel open source molecular sim-
ulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854,
2013.

[6] M. Krone, J. E. Stone, T. Ertl, and K. Schulten, “Fast
Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories,” in EuroVis 2012
Short Papers, vol. 1, 2012, pp. 67–71.

[7] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Mar-
ion, B. Geveci, M. Rasquin, and K. Jansen, “The Paraview
Coprocessing Library: A Scalable, General Purpose In Situ
Visualization Library,” in Large Data Analysis and Visualiza-
tion (LDAV), 2011 IEEE Symposium on, 2011, pp. 89–96.

[8] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In
Situ Coupling of Simulation with a Fully Featured Visual-
ization System,” in 11th Eurographics conference on Parallel
Graphics and Visualization, 2011, pp. 101–109.

[9] benjamin Lorendeau, Y. Fournier, and A. Ribes, “In Situ vi-
sualization in fluid mechanics using Catalyst: a case study for
Code Saturne,” in IEEE Symposium on Large Data Analysis
and Visualization (LDAV), 2013.

[10] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,
“Damaris: How to Efficiently Leverage Multicore Parallelism
to Achieve Scalable, Jitter-free I/O,” in CLUSTER - IEEE
International Conference on Cluster Computing. IEEE, Sep.
2012.

[11] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman, “Functional partitioning
to optimize end-to-end performance on many-core architec-
tures,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, 2010, pp. 1–
12.

[12] A. Singh, P. Balaji, and W.-c. Feng, “GePSeA: A General-
Purpose Software Acceleration Framework for Lightweight
Task Offloading,” in International Conference on Parallel
Processing, 2009, pp. 261–268.

[13] X. Ma, J. Lee, and M. Winslett, “High-Level Buffering for
Hiding Periodic Output Cost in Scientific Simulations,” Par-
allel and Distributed Systems, IEEE Transactions on, vol. 17,
no. 3, pp. 193–204, 2006.

[14] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G.
Piccinali, “Parallel Computational Steering and Analysis for
HPC Applications using a ParaView Interface and the HDF5
DSM Virtual File Driver,” in Eurographics Symposium on
Parallel Graphics and Visualization, T. Kuhlen, R. Pajarola,
and K. Zhou, Eds., 2011, pp. 91–100, honourable Mention
Award.

[15] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror,
J. Gullingsrud, M. O. Jensen, J. L. Klepeis, P. Maragakis,
P. Miller, K. A. Stafford, and D. E. Shaw, “A Scalable Parallel
Framework for Analyzing Terascale Molecular Dynamics
Simulation Trajectories,” in Conference on Supercomputing,
2008, pp. 56:1–56:12.

[16] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, “Pegasus: A Framework for
Mapping Complex Scientific Workflows onto Distributed Sys-
tems,” Sci. Program., vol. 13, no. 3, pp. 219–237, Jul. 2005.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific Workflow
Management and the Kepler System: Research Articles,”
Concurr. Comput. : Pract. Exper., vol. 18, no. 10, pp. 1039–
1065, Aug. 2006.

[18] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Inter-
action and Coordination Framework forCoupled Simulation
Workflows,” Cluster Computing, vol. 15, no. 2, pp. 163–181,
2012.

[19] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and
S. Klasky, “Just in Time: Adding Value to the IO Pipelines of
High Performance Applications with JITStaging,” in Interna-
tional symposium on High performance distributed comput-
ing, 2011, pp. 27–36.

[20] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Pre-
DatA - Preparatory Data Analytics on Peta-Scale Machines,”
in Parallel Distributed Processing (IPDPS), 2010 IEEE In-
ternational Symposium on, 2010, pp. 1–12.

[21] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy,
T. Jin, S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay,
D. Thompson, H. Yu, F. Zhang, and J. Chen, “Combining
In-Situ and In-Transit Processing to Enable Extreme-Scale
Scientific Analysis,” in Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp.
49:1–49:9.

[22] C. Docan, M. Parashar, and S. Klasky, “Dart: a substrate for
high speed asynchronous data io,” in 17th international sym-
posium on High performance distributed computing, 2008,
pp. 219–220.

[23] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible io and integration for scientific codes
through the adaptable io system (adios),” in 6th international
workshop on Challenges of large applications in distributed
environments, 2008, pp. 15–24.

[24] F. Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf,
J. Dayal, T. A. Nguyen, J. Cao, H. Abbasi, S. Klasky,
N. Podhorszki, and H. Yu, “FlexIO: I/O middleware for
Location-Flexible Scientific Data Analytics,” in IPDPS’13,
2013.

[25] F. Bertrand, R. Bramley, A. Sussman, D. E. Bernholdt, J. A.
Kohl, J. W. Larson, and K. B. Damevski, “Data Redistribution
and Remote Method Invocation in Parallel Component Archi-
tectures,” in 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), 2005.

[26] J.-Y. Lee and A. Sussman, “High Performance Communi-
cation Between Parallel Programs,” in International Parallel
and Distributed Processing Symposium (IPDPS’05), 2005.

[27] G. Edjlali, A. Sussman, and J. H. Saltz, “Interoperability
of Data Parallel Runtime Libraries,” in 11th International
Symposium on Parallel Processing, 1997, pp. 451–459.

[28] K. Keahey, “PAWS: Collective Interactions and Data Trans-
fers,” in High Performance Distributed Computing Confer-
ence, 2001, pp. 47–54.

[29] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and
A. Hilton, “XChange: Coupling Parallel Applications in a
Dynamic Environment,” in IEEE International Conference on
Cluster Computing, 2004.

[30] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki,
and H. Abbasi, “Enabling In-situ Execution of Coupled
Scientific Workflow on Multi-core Platform,” in Parallel
Distributed Processing Symposium (IPDPS), 2012, pp. 1352–
1363.

[31] J. Allard, J.-D. Lesage, and B. Raffin, “Modularity for Large
Virtual Reality Applications,” Presence: Teleoperators and
Virtual Environments, vol. 19, no. 2, pp. 142–162, April 2010.

[32] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GRO-
MACS 4: Algorithms for Highly Efficient, Load-Balanced,
and Scalable Molecular Simulation,” Journal of Chemical
Theory and Computation, vol. 4, no. 3, pp. 435–447, 2008.

[33] M. Dreher, P. Marc, T. Ahmed, C. Matthieu, M. Baaden,
N. Férey, S. Limet, B. Raffin, and S. Robert, “Interactive
Molecular Dynamics: Scaling up to Large Systems,” in Inter-
national Conference on Computational Science, ICCS 2013.
Elsevier, Jun. 2013.

[34] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and
O. Beckstein, “Mdanalysis: A toolkit for the analysis of
molecular dynamics simulations,” J. Comput. Chem., vol. 32,
pp. 2319–2327, 2011.

[35] H. Yu, C. Wang, and K.-L. Ma, “Massively parallel volume
rendering using 2-3 swap image compositing,” in ACM/IEEE
conference on Supercomputing (SC’08), 2008, pp. 48:1–
48:11.

[36] [Online]. Available: http://philipwfowler.wordpress.com/2013/10/23/gromacs-
4-6-scaling-of-a-very-large-coarse-grained-system/

[37] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Se-
meraro, “Damaris/Viz: a Nonintrusive, Adaptable and User-
Friendly In Situ Visualization Framework,” in IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV), 2013.

