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Abstract. Communicating multi-pushdown systems model networks
of multi-threaded recursive programs communicating via reliable FIFO
channels. Hence their verification problems are undecidable in general. The
behaviours of these systems can be represented as directed graphs, which
subsume both Message Sequence Charts and nested words. We extend
the notion of split-width [8] to these graphs, defining a simple algebra to
compose/decompose these behaviours using two natural operations: shuffle
and merge. We obtain simple, uniform and optimal decision procedures
for various verification problems parametrized by split-width, ranging
from reachability to model-checking against MSO, PDL and Temporal
Logics.

1 Introduction

Networks of multi-threaded recursive programs communicating via reliable un-
bounded channels are ubiquitous and their verification is as crucial as it is challeng-
ing. Recent researches have developed several approximation techniques for the
verification of multi-threaded recursive programs (abstracted as multi-pushdown
systems) and communicating machines. We continue this line of research. We
propose a more general and unifying formalism for their modelling and consider
various verification problems including reachability and model checking against
logical specifications.

Towards getting a general formalism, we introduce a simple system model, Con-
current Processes with Store (CPS), which abstract the various data-structures
(stacks for recursion and queues for channels) appearing in the system by a simple
global store. A program in the system may write to the global store or read a
value from the global store. Reads are destructive, as this is the case with stacks
(pops) and queues (dequeue).

The behaviour of a CPS will be a tuple of sequences of events (one per
program/process). In addition a binary matching relation links corresponding
writes and reads. Such a graph is called a Concurrent Behaviour with Matching
(CBM).



The matching relation can be further
refined to retrieve the case when the store
consists of several stacks and queues. The
system model in this case is called CPSQ
(Concurrent Processes with Stacks and
Queues) and the behaviours are called
MSCN (Message Sequence Charts with
Nestings), which generalize nested words
[1], multiply nested words [15], Message
Sequence Charts [14] and stack-queue
graphs [18].

1 2 3

For specifying their properties, we consider Monadic Second Order logic
(MSO), Propositional Dynamic Logic with and without intersection (IPDL/PDL)
and Temporal Logics (TL).

We show that the reachability problem for CPS is decidable, though with
high complexity. It is infact equivalent to reachability in Petri-nets/VAS. Model
checking and satisfiability of PDL without intersection is also shown to be decid-
able. All other problems for CPS/CBM turns out to be undecidable. Moreover,
all the verification problems are undecidable for CPSQ/MSCN.

However, the verification of these systems is an important concern. Hence, we
consider upper-approximate verification. We extend the technique of split-width
to cope with CPS/CPSQ. Split-width was introduced in [8] for getting decidability
for MSO model checking of multi-pushdown systems.

Split-width is based on a simple and intuitive algebra which generates CBMs.
We first generalize CBMs to split-CBMs which are CBMs with holes. The holes
may be seen as place holders where an actual behaviour may be inserted later.
Our algebra is over split-CBMs. The atomic elements are (i) the single matching
edge relating a write and the corresponding read and (ii) a single internal event.
The shuffle operator lets us combine two split-CBMs by inserting parts of one
into the holes of the other (and vice-versa). The merge operator allows us to
close some of the holes in a split-CBM. Every CBM can be generated from the
atomic ones using these two operations. split-CBM is the number of holes it has.
We say that a CBM has split-width k if it can be generated by this algebra in
such a way that each split-CBM obtained in any intermediate step has at most k
holes. We call a term in this algebra a split-term.

The algebra allows us to recursively divide a CBM into independent parts
which can be reasoned about separately. Thus, it provides a divide-and-conquer
approach (or compositional reasoning) for the analysis of a behaviour. Note that,
two events linked by a matching read-write are never separated in this algebra.
The algebra also gives a natural embedding of CBMs into trees via split-terms,
similar to how parse trees give a tree-representation for a word in a context-free
language.

The valid tree-embeddings of CBMs with split-width at most k form a regular
tree-language. Thus we can translate every problem on CBM/CPS to an equivalent
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one on tree-domain. With split-width as a parameter, we get uniform decision
procedures with optimal complexities for all verification problems on CBM/CPS
as well as MSCN/CPSQ. The complexities range from non-elementary for MSO
to 2ExpTime for IPDL to ExpTime for PDL/TL to PTime for reachability.

The simple notion of split-width, while giving us uniform and optimal decision
procedures for a wide range of verification problems, is also very powerful. In
[8,7] a bound on split-width is established for many behaviour restrictions for
which decidability of reachability was known before, e.g., for multi-pushdown
systems having a bound on context [20], scope [16], phase [15], ordered [6,2] and
for communicating pushdown systems over acyclic topologies [12]. The systematic
way of bounding the split-width also helped us to generalise these restrictions
and to discover several new decidable classes.

In [7] it is further shown that a class of CBMs has bounded split-width if
and only if it has bounded clique-width, and the corresponding bounds lie in a
linear factor. Thus, by Courcelle’s results, if a class of CBMs have a decidable
MSO theory, then it also has bounded split-width. Thus split-width is not only
sufficient but also necessary for MSO decidability of CBMs.

Related work [12] identifies topologies which give decidability of reachability for
communicating pushdown systems. A unified proof of decidability of reachability
of the known decidable restrictions (having a bound on context [20], scope
[16], phase [15], ordered [6,2] for multi-pushdown systems and communicating
pushdown systems over acyclic topologies) is given in [18] via demonstrating their
bounded tree-width. An abstract representation of these tree-decompositions is
studied in [13]. Reachability in acyclic networks of pushdown systems connected
via lossy FIFO channels is considered in [3].

2 Concurrent Behaviours with Matching (CBM)

Let Procs = {1, . . . , p} be a finite set of processes and Σ be a finite set of actions.
We are interested in systems of concurrent processes with data structures such as
queues, stacks, bags etc. With such data structures, a write action adds a value
to the store, while a read action removes a value from it. We describe a behaviour
of such a system as a tuple of sequences of actions (one for each process) enriched
with a relation matching write events to their corresponding read events. Thus
an action can be part of at most one matching edge. Furthermore, since writes
must precede reads, the resulting graph is a partial order.

Definition 1. A concurrent behaviour with matching (abbraviated as CBM) over
an alphabet Σ and a set Procs of processes is a tuple M = (E , λ, pid,→,⊲) where

– E is a non-empty finite set of events,
– λ : E → Σ labels each event with an action,
– pid : E → Procs assigns a process to each event,
– → ⊆

⊎

p∈Procs
pid−1(p)× pid−1(p) describes the linear orders on processes:

for each process p ∈ Procs, the restriction of → to the events of process p is
the direct-successor relation of some total order on pid−1(p),
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– ⊲ ⊆ E × E is the relation matching write events with their corresponding
read events: it is irreflexive and disjoint, i.e., if e1 ⊲ e2 then e1 6= e2 and two
distinct edges e1 ⊲ e2 and e3 ⊲ e4 must be disjoint (|{e1, e2, e3, e4}| = 4),

– The underlying graph (E , (→∪⊲)∗) is a partial order.

The set of all CBMs over Procs and Σ is denoted CBM(Procs, Σ). Notice
that, the definition of CBMs does not involve any specific data-structures such
as queues or stacks. However, the ⊲ edges may be thought of as those arising
from a global store shared by all processes.
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Fig. 2: An MSCN

Example 1. An example of a CBM over Σ = {a, b}, and Procs = {1, 2} is shown
in Fig. 1. The vertical arrows denote the → edges and the other arrows denote
the ⊲ edges. Observe that the underlying graph has no cycles. Notice also that
the ⊲ edges do not follow any LIFO or FIFO policy.

In the following, an event which is the source (resp. the target) of a ⊲ edge is
called a write event (resp. read event), and all other are called internal events.

Stacks and Queues To model behaviours of concurrent recursive multithreaded
programs communicating via FIFO channels, we will consider restrictions of
CBMs called Message Sequence Charts with Nestings (MSCNs) that subsume
stack-queue graphs [18]. They are obtained by assuming that the global store
shared by all processes is actually composed of disjoint data structures that are
either stacks or queues. So we consider a finite set DS = Stacks ⊎Queues of
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data-structure labels. The read and write accesses are specified by mappings
Writer : DS → Procs and Reader : DS → Procs. We restrict to self-stacks, i.e.,
for all d ∈ Stacks we have Writer(d) = Reader(d). We define an architecture to
be a tuple A = (Procs,Stacks,Queues,Writer,Reader).

An MSCN is a CBM in which events accessing the store will be additionally
labeled with a data-structure and the matching relation is restricted so that it
complies with the with LIFO or FIFO policies.

Definition 2. An MSCN over architecture A and alphabet Σ is a tuple M =
(E , λ, pid, δ,→,⊲) where M = (E , λ, pid,→,⊲) is a CBM and δ : E → DS is a
partial map satisfying

– dom(δ) = {e ∈ E | e⊲ f or f ⊲ e for some f ∈ E},
– If e⊲ f , then δ(e) = δ(f), Writer(δ(e)) = pid(e) and Reader(δ(f)) = pid(f).
– For each d ∈ Stacks, ⊲d = ⊲∩ (δ−1(d))2 conforms to LIFO: if e1 ⊲

d f1 and
e2 ⊲

d f2 are different edges then we do not have e1 →+ e2 →+ f1 →+ f2.
– For each d ∈ Queues, ⊲d = ⊲ ∩ (δ−1(d))2 conforms to FIFO: if e1 ⊲

d f1
and e2 ⊲

d f2 are different message edges then we do not have e1 →+ e2 and
f2 →+ f1.

We denote by MSCN(A, Σ) the set of MSCNs over architecture A and action
labels Σ.

Example 2. An MSCN is shown in Fig. 2. The data-structures consist of one
stack on process 1, two stacks on process 2 (one using solid arrows and the other
dashed arrows) and one queue from process 2 to process 1. For readability, we do
not include the DS labels to the events, they can be recovered from the various
matching edges.

When data structures are queues between pairs of processes, MSCNs extend
message sequence charts which are scenarios standardised by ITU [14]. When on
the other hand there is a single process and our data structures are stacks, our
setting extends nested words [1] and multiply nested words [15].

3 Concurrent Processes with Store (CPS)

We now describe a system model whose behaviours are CBMs. It consists of a
set of finite state processes which share a single store data-structure. The store
is just an unordered multi-set of unbounded size supporting two actions — add
a value and remove a value.

Definition 3. A system of concurrent processes with store (CPS) over a set of
processes Procs and actions Σ is a tuple S = (Locs, (Transp)p∈Procs, ℓin, Locsfin)
where

– Locs is the finite set of local control locations,
– ℓin ∈ Locs is local initial state of each process,
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– Locsfin ⊆ LocsProcs is the set of global final states,

– Transp = Transp,i ⊎Transp! ⊎Transp? is the set of local transitions of process
p where

Transp,i ⊆ Locs×Σ × Locs

Transp! ⊆ Locs×Σ × Locs× Locs

Transp? ⊆ Locs× Locs×Σ × Locs

Transp,i denotes the internal transitions of Process p, i.e., those that do not
involve the store, Transp! denotes the set of write transitions of Process p,
i.e., transitions which write to the store and Transp? are the transitions of p
which read from the store.

The intended operational semantics is the following. A write transition of the
form (ℓ1, a, ℓ2, ℓ) results in process p performing an action labeled a while moving
from location ℓ1 to ℓ2 and inserting value ℓ into the store. A read transition of
the form (ℓ1, ℓ, a, ℓ2) results in process p performing an action labeled a whilst
consuming a value ℓ from the store and moving from ℓ1 to ℓ2.

As is well known in concurrency theory, it is also possible to provide the
semantics of such systems directly on a partially ordered structure that represents
the causal relationship between the events in the execution. For a CPS, the
appropriate structure is that of CBMs, where the relation ⊲ relates the insertion
of a value into the store and its corresponding consumption. It is easy to provide
an equivalent operational semantics (see [7]).

We now define the notion of a run of a CPS over a CBM. Such a run labels
the events of a CBM with the control locations of the CPS. This is given by
the control location labeling ρ : E → Locs. Further, in order to keep track of the
values in the store, a run also labels write events by the value that was added
to the store. This is specified by a partial data mapping ν : E → Locs such that
e ∈ dom(ν) iff e is a write event.

A run of a CPS S= (Locs, (Transp)p∈Procs, ℓin, Locsfin) over a CBM M =
(E , λ, pid,→,⊲) is a pair (ρ, ν) such that the following additional consistency
conditions hold for all e ∈ E . We denote by e−, the unique event such that e− → e
if it exists, and otherwise e− = ⊥pid(e) /∈ E . We set ρ(⊥p) = ℓin as a convention.

1. if e⊲ f then (ρ(e−), λ(e), ρ(e), ν(e)) ∈ Transpid(e)!,

2. if f ⊲ e then (ρ(e−), ν(f), λ(e), ρ(e)) ∈ Transpid(e)?,

3. if e is internal then (ρ(e−), λ(e), ρ(e)) ∈ Transpid(e),i.

Let fp denote the maximal event on process p if it exists. Otherwise, we set
fp = ⊥p /∈ E (recall that ρ(⊥p) = ℓin). A run is accepting if (ρ(f1), . . . , ρ(fp)) ∈
Locsfin.

The language accepted by a CPS S is the set of CBMs on which it has an
accepting run. We denote it by L (S).
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Stacks and Queues Let A = (Procs,Stacks,Queues,Writer,Reader) be an ar-
chitecture. When operating over A, the transitions of a CPS are refined into
Transp! =

⊎

d∈Writer−1(p) Transp!d and Transp? =
⊎

d∈Reader−1(p) Transp?d.
For the operational semantics, the store is split into stacks and queues whose

contents are words in Locs∗. A write transition (ℓ1, a, ℓ2, ℓ) ∈ Transp!d adds the
value ℓ on the right of the word holding the contents of data-structure d. A read
transition (ℓ1, ℓ, a, ℓ2) ∈ Transp?d removes the value ℓ on the left (resp. right) of
the word for queue (resp. stack) d.

The modification is even easier for runs defined over an MSCN. We only have
to change the conditions above for the write and read transitions to:

1. if e⊲d f then (ρ(e−), λ(e), ρ(e), ν(e)) ∈ Transpid(e)!d,

2. if f ⊲
d e then (ρ(e−), ν(f), λ(e), ρ(e)) ∈ Transpid(e)?d.

A CPS S over an architecture A is called a system of concurrent processes
with stacks and queues (CPSQ). It defines the language LMSCN(S) of MSCNs in
MSCN(A, Σ) admitting an accepting run.

4 Specification formalisms

We now describe three classical logical formalisms that will be used for specifying
properties of CBMs. We only give their syntax and intuitive semantics here.

Monadic Second Order Logic over CBM(Procs, Σ) is denoted MSO(Procs, Σ).
Its syntax is given below, where p ∈ Procs and a ∈ Σ.

ϕ ::= a(x) | p(x) | x = y | x ∈ X | x→ y | x⊲ y

| ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

Every sentence in MSO defines a language of CBMs consisting of all those
that satisfy that sentence. As is well known, monadic second-order quantifiers can
be used to express transitive closures — that is, for each MSO formula ϕ(x, y)
defining a relation R over its domain, one can construct another formula ϕ∗(x, y)
which defines the transitive closure of R. Thus, the predicates ≤ and ≤p, denoting
transitive closures of (⊲ ∪→) and → respectively, are MSO(Procs, Σ) definable.

The formula ∀x∀y.a(x) =⇒ (x ≤ y) ∨ (y ≤ x) asserts that events labeled a
cannot occur concurrently to some other event. The formula

∀x∀y.(x ≤p y ∧ x⊲ y) =⇒ ¬∃z.(x ≤p z ∧ z ≤p y ∧ b(z))

prohibits, in any process, occurrence of b events from the point a value is inserted
into the store to the point it is taken back.

Remark 1. The language of a CPS S over Procs and Σ can be described in
MSO(Procs, Σ). We use second order variables {Xℓ}ℓ∈Locs to identify the ρ
mapping and {Yℓ}ℓ∈Locs to identify the ν mapping and the rest of the formula
asserts that the second order variable assignment identifies a valid run of the
CPS.
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This generous expressive power of MSO comes at a cost — in general, satisfi-
ability and model-checking are undecidable and even for decidable fragments the
decision procedures have non-elementary complexity. Therefore we examine less
expressive logics with reasonable decision procedures.

Propositional Dynamic Logic (PDL) A well-studied logical formalism for describ-
ing properties of programs is that of PDL, a generalization of modal logic. As
in a modal logic, formulas in PDL assert properties of nodes in a graph, in our
case events in a CBM. Unlike a modal logic where modal operators only refer to
neighbours of the current node, PDL uses path modalities to assert properties on
nodes reachable via paths conforming to some regular expressions. Traditionally,
PDL is used to express branching-time properties of transition systems (or kripke
structures). However, in the study of concurrent systems where each behaviour
has a graph-like structure, PDL may be used to express properties of behaviours
(i.e., linear-time properties of the system under consideration) as illustrated in
[11,5,4]. PDL and its extensions with converse and intersection are studied in
this sense, as linear-time logics, here. The syntax of state formulas (σ) and path
formulas (π) of ICPDL(Procs, Σ) are given by

σ ::= ⊤ | p | a | σ ∨ σ | ¬σ | 〈π〉σ

π ::= σ | → | ⊲ | →−1 | ⊲−1 | π + π | π ∩ π | π · π | π∗

where p ∈ Procs and a ∈ Σ. If backward edges →−1 and ⊲
−1 are not allowed

the fragment is called PDL with intersection (IPDL). If intersection π ∩ π is not
allowed, the fragment is PDL with converse (CPDL). The basic PDL is when
neither backwards edges nor intersection are allowed.

The formula p asserts that current event belongs to process p while a asserts
that it is labeled by a. The formula 〈π〉σ at e asserts the existence of an e′

satisfying σ and a path e = e1, e2, . . . , ek = e′ that conforms to π. The only paths
that conform to σ are the trivial paths from e to e for any e that satisfies σ.
Similarly → and ⊲ identify pairs related by the corresponding edge relation in
the CBM. Finally ·, + and ∗ correspond to composition, union and iteration of
paths as in regular expressions.

The formula 〈→∗〉α asserts that α holds at some future event on the same
process while the formula 〈(β · →−1)∗〉α asserts that, β has been true at all the
events in the current process since the last event (on this process) that satisfied
α.

Intersection of path expressions is a powerful feature. The formula 〈π1 ∩ π2〉α
at an event e asserts the existence of an e′ satisfying α, a path from e to e′

conforming to π1 and a path from e to e′ conforming to π2. For instance, the
formula 〈⊲ ∩ (→∗ · b · →∗)〉true is true at an event e only if there is an e′ with
e ⊲ e′ on the same process and b holds somewhere between e and e′ (on this
process).

Observe that PDL formulas have implicit free variables. To define languages
of CBMs with PDL we introduce sentences φ of ICPDL(Procs, Σ) with the
following syntax: φ = ⊤ | Eσ | φ ∨ φ | ¬φ where σ is an ICPDL(Procs, Σ) state
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formula. The sentence Eσ is true on CBM M if M, e |= σ for some event e of
M. With this interpretation the formula ¬E〈⊲∩ (→∗ · b ·→∗)〉true is equivalent
to the second MSO property written above.

Temporal Logics Another reason to study PDL over CBMs is that it naturally
subsumes an entire family of temporal logics. The classical linear time temporal
logic (LTL) is interpreted over discrete linear orders and comes with two basic
temporal operators: the next state (Xϕ) which asserts the truth of ϕ at the
next position and the until (ϕ1 U ϕ2) which asserts the existence of some future
position where ϕ2 holds such that ϕ1 holds everywhere in between. In the setting
of CBMs, following [11], it is profitable to extend this to a whole family of
temporal operators by parametrizing the steps used by next and until with path
expressions. Despite of their differing expressive powers, they can all be translated
into PDL uniformly.

The syntax of local temporal logics TL(Procs, Σ) is as follows, where a ∈ Σ,
p ∈ Procs and π is a path expression:

ϕ = a | p | ¬ϕ | ϕ ∨ ϕ | Xπϕ | ϕ Uπ ϕ

For example, ϕ Uπ ψ asks for the existence of a sequence of events related
by π-steps and such that ψ holds at the last event of the sequence and ϕ holds
at intervening events in the sequence. The translation in PDL gives 〈(Φ · π)∗〉Ψ ,
where Φ and Ψ are the PDL translations of ϕ and ψ respectively. When π is
→ it corresponds to the classical until along a process, and when π is → + ⊲

it corresponds to an existential until in the partial order of the CBM. We may
also use backward steps such as →−1 or →−1 +⊲

−1 and thus TL(Procs, Σ) has
both future and past modalities.

Stacks and Queues Let A = (Procs,Stacks,Queues,Writer,Reader) be an ar-
chitecture. The logics above may be used to specify properties of MSCNs over
(A, Σ). We provide the ability to talk about the data-structures by adding atomic
formulas. For MSO logic, we add d(x), meaning that event x is labeled d ∈ DS.
For PDL or TL, we simply add atomic propositions d ∈ DS to the syntax of
state formulas. Then, every sentence of MSO(A, Σ), ICPDL(A, Σ) and TL(A, Σ)
defines a language of MSCN(A, Σ).

Note that MSO logic or IPDL are powerful enough to express the LIFO or
FIFO restrictions. More precisely, let x⊲

d x′ = x⊲ x′ ∧ d(x) ∧ d(x′). The LIFO
condition for data-structure d can be expressed with the MSO formula

¬∃x, x′, y, y′, x⊲
d x′ ∧ y ⊲d y′ ∧ x < y < x′ < y′ .

The same property is expressed by the IPDL formula

¬E〈(⊲d · → · (⊲d · →+ ¬〈⊲d〉⊤ · →)∗) ∩ (→+ ·⊲d)〉true

where the path expression ⊲
d stands for d ·⊲ · d.
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5 Split concurrent behaviour with matching

Our analysis of CBMs via split-width will be based on a divide and conquer
approach. More precisely, we will divide a CBM in smaller behaviours by splitting
(cutting) some of the process (linear) edges so that the graph becomes discon-
nected. Such subgraphs are called split-CBMs. Once a CBM is split, a process
may have several connected components and we relate them with elastic edges
to remember the original ordering between them.

Example 3. The split-CBM M of Fig. 3 is obtained by splitting 5 process edges
from the CBM M of Fig. 1, replacing them by elastic edges (wavy edges in the
picture).

If we omit the elastic edges, this split-CBM is composed of 3 disconnected
subgraphs which can be easily seen in Fig. 4. Hence, M can be divided into
the two split-CBMs of Fig. 4. Notice that in these split-CBMs, we still include
elastic edges allowing to recover the original ordering between events. Also, the
split-CBM on the right of Fig. 4 can be further divided into two split-CBMs, one
where only process 1 is active, the other where only process 2 is active.
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Definition 4. A split-CBM is a CBM in which → edges are partitionned into
rigid edges (denoted r−→) and elastic edges (denoted e−→). It is a tuple M =
(E , λ, pid, r−→, e−→,⊲) such that M = (E , λ, pid,→,⊲) is a CBM with → = r−→⊎ e−→,
which we call the underlying CBM.

The elasticity of a split-CBM M is its number of elastic edges: elasticity(M) =
| e−→|. A component ofM is a maximal connected component of the graph restricted
to rigid edges ( r−→). For instance, the split-CBM M of Fig. 3 has elasticity five
and it has seven components. The set of active processes in M is Procs(M) =
{p ∈ Procs | pid−1(p) 6= ∅}. The number of components of a split-CBM M is
elasticity(M) + Procs(M).

Stacks and Queues Indeed, this definition carries over to MSCNs: a split-MSCN
over some architecture A is simply a tuple M = (E , λ, pid, δ, r−→, e−→,⊲) such that
M = (E , λ, pid, δ, r−→⊎ e−→,⊲) is an MSCN over A.

6 Merge and Shuffle

We have motivated split-CBMs with a top-down divide and conquer approach:
starting from a CBM, we split some process edges and then divide the graph
in smaller split-CBMs that are no more connected. Dually, we may reconstruct
bottom-up CBMs. The dual operation of divide is shuffle, it takes two split-CBMs
and shuffles their components to get a single split-CBM. The dual for split is
merge, it turns an elastic edge split-CBM into a rigid edge.

The merge operation may transform any of the elastic edges into a rigid one,
though only one at a time. Hence merge(M) is a set of split-CBMs.

Definition 5. Formally, let M = (E , λ, pid, r−→, e−→,⊲) be a split-CBM. Then,
merge(M) consists of the split-CBMs M′ = (E , λ, pid, r−→

′
, e−→

′
,⊲) such that r−→

′
⊎

e−→
′
= r−→⊎ e−→, e−→

′
⊆ e−→ and | e−→| − | e−→

′
| = 1.

Notice that the number of components and the elasticity decrease by 1 as
the result of a merge and that |merge(M)| = elasticity(M). For instance, the
split-CBM M of Fig. 3 has 5 elastic edges, hence merge(M) consists of five
split-CBMs, each of elasticity 4.

The binary shuffle operation, denoted ✁, when applied to two split-CBMs,
gives a set of split-CBMs, obtained by shuffling on each process their components.
For instance, the split-CBM of Fig. 3 belongs to the shuffle of the two split-CBMs
of Fig. 4.

Definition 6. Let Mi = (Ei, λi, pidi,
r−→i,

e−→i,⊲i) for i ∈ {1, 2} be two split-
CBMs with E1 ∩ E2 = ∅. Then, M1 ✁M2 is the set of split-CBMs M =
(E , λ, pid, r−→, e−→,⊲) such that

– apart from the elastic edges, M is the disjoint union of M1 and M2, i.e.,
E = E1 ⊎E2, λ = λ1 ⊎ λ2, pid = pid1 ⊎ pid2, ⊲ = ⊲1 ⊎⊲2 and r−→ = r−→1 ⊎

r−→2,
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– for each i, the order of the components of Mi, as prescribed by the elastic
edges e−→i, is preserved in M: e−→1 ∪

e−→2 ⊆ ( r−→∪ e−→)∗.

Note that, two consecutive components in Mi may either be still consecutive
in M or may be separated by components from M3−i. An elastic edge between
two components of a split-CBM is a place holder where some other components
may be inserted during a shuffle. If we decide that no more components should
be inserted, the elastic edge can be replaced with a rigid edge using the merge
operation.

Example 4. Considering again the two split-CBMs from Fig. 4, we can see that
their shuffle contains 18 split-CBMs, one of which is presented in Fig. 3, two
others are presented in Fig. 5.

1 2

b

a

a

b

b

a

b

b

a

a

b

a

b

a

b

a

b

b

a

b

a

b

b

a

b

b

a

a

1 2

a

b

a

b

a
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b

b

a

b

b

a

a

b

b

a

b

b

a

b

b

a

a

b

a

b

b

a

Fig. 5: Two shuffled split-CBMs.

Note that, the number of components of any split-CBM M ∈ M1 ✁M2 is
the sum of the number of components in M1 and the number of components in
M2. We deduce that

elasticity(M) = elasticity(M1) + elasticity(M2) +

|Procs(M1) ∩ Procs(M2)| .
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We can lift the definition of merge and shuffle to sets of split-CBMs in the
natural way. Let L, L1 and L2 be sets of split-CBMs. We define

merge(L) =
⋃

M∈L

merge(M) (1)

L1 ✁ L2 =
⋃

M1∈L1,M2∈L2

M1 ✁M2 (2)

Stacks and Queues Again, merge and shuffle carry over to MSCNs by replacing
split-CBMs by split-MSCNs in Def. 5 and Def. 6. Any elastic edge of a split-
MSCN may be turned into a rigid edge with the merge operation. On the other
hand, notice that, the shuffle operation of split-MSCNs is more restricted than
for split-CBMs since the LIFO and FIFO policies of the data-structures must be
respected.

7 An algebra over split-CBMs

We define an algebra which allows to reconstruct bottom-up (split)-CBMs from
atomic ones (single events) using three very simple constructs: adding a matching
edge between two events, shuffling two split-CBMs into a single one, or merging
two consecutive components of a split-CBM into a single one.

We describe a combination of these constructs with split-terms over (Procs, Σ)
whose syntax is given by:

s ::= (a, p) | (a, p)⊲ (a′, p′) | merge(s) | s✁ s

where a, a′ ∈ Σ and p, p′ ∈ Procs. Note that, in this algebra, the binary operator
⊲ may only be applied to atomic terms.

Each split-term s represents a set JsK of split-CBMs. This semantics is defined
as follows:

– J(a, p)K is the CBM consisting of a single event labeled a on process p.

– J(a, p)⊲ (a′, p′)K is the CBM consisting of two events, e labeled a on process
p, and e′ labeled a′ on process p′. These events are connected by a matching
edge: e⊲ e′. Moreover, if p = p′, these two events are also linked by an elastic
edge: e e−→ e′.

– Jmerge(s)K = merge(JsK) (cf. (1) in Sec. 6).

– Js1 ✁ s2K = Js1K✁ Js2K (cf. (2) in Sec. 6).

Example 5. For instance, consider the split-term

s = merge(((a, 1)⊲ (b, 1))✁ (((b, 2)⊲ (a, 1))✁ (a, 2))).

This term can be depicted as the following tree

13



merge

✁

⊲

(a, 1) (b, 1)

✁

⊲

(b, 2) (a, 1)

(a, 2)

and its semantics consists of 18 split-CBMs, two of which are given in Fig. 6.

1 2

a

b

b

a a

1 2

a

b b

a

a

Fig. 6: Two split-CBMs

We can easily check that all the split-CBMs in the semantics JsK of a split-term
s have the same set of non-empty processes, denoted Procs(s), the same number
of components, hence also the same elasticity, donoted elasticity(s). We have

– elasticity((a, p)) = 0,

– elasticity((a, p)⊲ (a′, p′)) =

{

0 if p 6= p′

1 if p = p′,
– elasticity(merge(s)) = elasticity(s)− 1, and
– elasticity(s1 ✁ s2) = elasticity(s1) + elasticity(s2) + |Procs(s1) ∩ Procs(s2)|.

The width of a split-term s, denoted swd(s), is the maximum elasticity of all
its sub-terms. For instance, the elasticity of the split-term in Example 5 is two
and its width is three.

The split-width of a split-CBM M, denoted swd(M), is the minimum width
of all split-terms s such that M ∈ JsK. For instance, both split-CBMs of Fig. 6
have split-width two since they are respectively in the semantics of

s1 = merge(((a, 1)⊲ (b, 1))✁ ((b, 2)⊲ (a, 1)))✁ (a, 2)

s2 = ((a, 1)⊲ (b, 1))✁merge(((b, 2)⊲ (a, 1))✁ (a, 2)).

We denote by k-CBM the set of split-CBMs whose split-width is bounded by
k.

Remark 2. The split-width algebra over (Procs, Σ) can generate any CBM
M = (E , λ, pid,→,⊲) over (Procs, Σ). In fact a sequence of shuffles of basic
split-terms will generate a split-CBM M1 = (E , λ, pid, r−→1 = ∅, e−→1 = →,⊲).
This will then be followed by a sequence of merges to get the split-CBM M2 =
(E , λ, pid, r−→2 = →, e−→2 = ∅,⊲) = M.
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Remark 3 (Split-width of Nested-Words). Nested words are MSCNs over an
architecture with only one process and one stack. The split-width of any nested-
word is at most two. This can be checked easily since a nested word is either

the concatenation of two nested words, or of the form a w1 b where w1 is a
nested word, or a basic nested word of the form a or a b.

Stacks and Queues Split-terms are easily extended to an architecture A by adding
the data-structure label to terms denoting a matching edge: (a, p, d)⊲ (a′, p′, d)
means that data-structure d is accessed by the write event a on process p and
the matching read event a′ on process p′. The semantics of merge and shuffle is
as above, restricting to MSCN(A, Σ).

8 Main Results

We are interested in various verification problems (Table 1) for CPS/CBM and
CPSQ/MSCN. The Emptiness Problem (1, resp. 1’) asks whether a given CPS
(resp. CPSQ) is empty. The satisfiability problems for MSO (2) and the different
variants of PDL (3,4, 5) ask whether a given sentence is satisfied by any CBM.
The same questions can be asked in the case of MSCNs as well (2’,3’,4’,5’). The
model checking problems on the other hand, check for the existence of a satisfying
model in the language of a CPS (6,7,8,9) or respectively CPSQ (6’,7’,8’,9’). As
we will see soon, most of these problems are undecidable, and the decidable ones
are of very high complexity. Hence we consider the parametrised (by split-width)
version of the above problems (10-18, 10’-18’). The various verification problems
are stated in Table 1. A main contribution of our paper is the decidability and
complexity results of these problems:

Theorem 1. The decidability and complexity of the problems 1-18 and 1’-18’
(Table 1) are as stated in Table 2.

In this section, we proceed to prove the results for problems (1-9) and (1’-9’).
The results for the remaining problems are proved in the following sections.

First, we consider control state reachability or equivalently the (language)
emptiness problem. For CPSQ the emptiness problem (1’) is undecidable due to
the presence of multiple stacks (and/or queues). The reachability problem for
CPS (1) is equivalent to the reachability problem for vector addition systems
(VAS) or Petri Nets, a problem whose decidability is known but highly non-trivial
[19,17].

Let L be a set of labels. A vector addition system V over L is a finite set
of functions from the set {−1, 0, 1}L. Elements of V are called transitions. A
marking of V is an element of NL.

We write v+w for the function defined as (v+w)(i) = v(i)+w(i). A transition
w is enabled at v if (v + w)(i) ≥ 0 for all i ∈ L. We write v w−−→ v′ for markings
v, v′ and a transition w ∈ V if w is enabled at v and v′ = v + w. Let v−→ v′ if
there is some w ∈ V such that v

w−−→ v′ and let −→∗ be the reflexive-transitive
closure of −→.
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Problem Input Question

ID Name

1 Emptiness S: CPS Is L (S) = ∅?

2 MSO-Sat φ: MSO sentence Is there a CBM M
s.t. M |= φ?3,4,5 (ǫ,C,IC)PDL-Sat φ: (ǫ,C,IC)PDL sentence

6 MSO-MC
φ: MSO sentence

Is there a CBM
M ∈ L (S) s.t.
M |= φ?

S: CPS

7,8,9 (ǫ,C,IC)PDL-MC
φ: (ǫ,C,IC)PDL sentence

S: CPS

10 par-Emptiness
S: CPS, Is

L (S) ∩ k-CBM = ∅?k ∈ N

11 par-MSO-Sat
φ: MSO sentence

Is there a CBM
M ∈ k-CBM s.t.
M |= φ?

k ∈ N

12,13,14 par-(ǫ,C,IC)PDL-Sat
φ: (ǫ,C,IC)PDL sentence

k ∈ N

15 par-MSO-MC

φ: MSO sentence

Is there a CBM
M ∈ L (S) ∩ k-CBM
s.t. M |= φ?

S: CPS

k ∈ N

16,17,18 par-(ǫ,C,IC)PDL-MC

φ: (ǫ,C,IC)PDL sentence

S: CPS

k ∈ N

Table 1: Problems for CPS and CBM. Primed versions refer to the corresponding
problems for CPSQ/MSCN.

ID Complexity

1,3,7 Decidable (VAS Reachability)

2,5,6,9, 1’-9’ Undecidable

4,8 Open

10,10’ ExpTime in k PTime in |S|

11,11’, 15,15’ Non-elementary

12,12’, 13,13’ ExpTime in k and |φ|

14,14’ 2ExpTime in |φ| ExpTime in k

16,16’, 17,17’ ExpTime in k, |φ| PTime in |S|

18,18’ 2ExpTime in |φ| ExpTime in k PTime in |S|

Table 2: Decidability and complexities
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The reachability problem for VAS is the following: Given a VAS V and an
initial marking u determine whether u−→∗ 0 where 0 is the constant function
returning 0. The reachability problem is known to be decidable [19,17] but its
precise complexity is not known.

Remark 4. The classical definition of VAS permits transitions to come from the
set ZL and further the reachability problem is often formulated as given u and v
in NL whether u−→∗ v. As is well known, as far as decidability goes, our version
is equivalent to the general one.

As a first step we show that the emptiness problem for CPS can be reduced
to the reachability problem for VAS.

Lemma 1. Given a CPS S = (Locs, (Transp)p∈Procs, ℓin, Locsfin) over the set
of processes Procs and alphabet Σ, we can construct a VAS VS and an initial
marking u ∈ VS such that the language of S is non-empty if and only if u−→∗ 0.

Proof. Clearly, as far as the emptiness problem goes, one may assume that Σ is
a singleton, by relabeling all transitions to use this single letter if necessary. So,
we assume that Σ = {a} is singleton. VS is defined over the set of labels

L = Procs× Locs ⊎ Locs .

For each transition τ ∈
⊎

Transp, we have an element vτ in VS given by

1. Case τ = (ℓ1, a, ℓ2) ∈ Transp,i: vτ (p, ℓ1) = −1, vτ (p, ℓ2) = 1 and vτ (x) = 0
for all other x ∈ L.

2. Case τ = (ℓ1, a, ℓ3, ℓ) ∈ Transp!: vτ (p, ℓ1) = −1, vτ (p, ℓ2) = 1, vτ (ℓ) = 1 and
vτ (x) = 0 for all other x ∈ L.

3. Case τ = (ℓ1, ℓ, a, ℓ2): vτ (p, ℓ1) = −1, vτ (p, ℓ2) = 1, vτ (ℓ) = −1 and vτ (x) = 0
for all other x ∈ L.

In addition for each f = (fp)p∈Procs ∈ Locsfin, we have a transition τf given by

4) τf (p, fp) = −1 for p ∈ Procs and τf (x) = 0 for all other x ∈ L.

We let u be the marking with u(p, ℓin) = 1 for all p ∈ Procs and u(x) = 0
for all other x ∈ L. Then, u−→∗ 0 iff S accepts at least one CBM. ⊓⊔

Lemma 2. Let V be a VAS over the set of labels L and let u be a marking.
Then there is a CPS S = (Locs, (Transp)p∈Procs, ℓin, Locsfin) with Procs = {p}
a singleton and Σ = {a} a singleton such that u−→∗ 0 if and only if the language
of S is non-empty.

Proof. W.l.o.g we assume that u 6= 0. The idea is to use one location for each
ℓ ∈ L and in the simulation keep c copies of ℓ in the store whenever the marking of
the VAS assigns the value c to ℓ. Thus, to begin the simulation from the marking
u we add we add u(ℓ) copies of ℓ to the store. Subsequently, each transition v
is simulated using |L| transitions, one transition to modify the store content of
each ℓ ∈ L as specified in v.
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Let ≤L be some linear order on L, ⋖L be the covering relation of this linear
order and let b and e be the minimum and maximum elements under ≤L. The
state space is

Locs = {(ℓ, i) | ℓ ∈ L, i ≤ u(ℓ)} ⊎ {(v, ℓ) | v ∈ V, ℓ ∈ L} ⊎ L

with ℓin = (b, u(b)) and Locsfin = {(e, 0)}.
States of the from (ℓ, i), i ≥ 1, are used to initialize the store to u (using the

first 2 types of transitions below). The state (e, 0) has a special role, which is to
initiate the simulation of the next transition (using transitions of type 3 given
below). States of the form (v, ℓ) are used is to modify the number of copies of ℓ
in the store as required by v (using transitions of types 4-9). Observe at the end
of the simulation of a transition, the simulation reverts back to (e, 0) so that a
new simulation may begin.

The set of transitions is as follows

((ℓ, i), a, (ℓ, i− 1), ℓ) ∈ Transp! if i > 0.

((ℓ, 0), a, (ℓ′, u(ℓ′))) ∈ Transp,i if ℓ⋖L ℓ
′.

((e, 0), a, (v, b) ∈ Transp,i ∀v ∈ V.

((v, ℓ), a, (v, ℓ′), ℓ) ∈ Transp! if ℓ⋖L ℓ
′ and v(ℓ) = 1.

((v, ℓ), ℓ, a, (v, ℓ′)) ∈ Transp? if ℓ⋖L ℓ
′ and v(ℓ) = −1.

((v, ℓ), a, (v, ℓ′)) ∈ Transp,i if ℓ⋖L ℓ
′ and v(ℓ) = 0.

((v, e), a, (e, 0), e) ∈ Transp! if v(e) = 1.

((v, e), e, a, (e, 0)) ∈ Transp? if v(e) = −1.

((v, e), a, (e, 0)) ∈ Transp,i if v(e) = 0. ⊓⊔

Next we consider decision problems for the logics described in Sec. 4. Given a
sentence in such a logic we would like to check whether it is absurd. This amounts
to asking whether there is at least one CBM which can model the given sentence,
the so-called satisfiability problem for the logic. The satisfiability problems (2’,5’)
for MSO and IPDL are undecidable over MSCNs, even when p = 1. Indeed,
the set of runs of a multi-pushdown system or an automaton with queues is
expressible in these logics and as a result the satisfiability problem for these
logics is undecidable.

The satisfiability problems (2,5) for MSO and IPDL over CBMs are also
undecidable. Recall, from Sec. 4, that MSO and IPDL can both express LIFO
(as well as FIFO) restrictions. This can be used to show that the set of runs of a
multi-pushdown system or an automaton with queues is also expressible in these
logics over CBMs.

Another important verification problem is model checking of CPS (resp.
CPSQ) against specifications given in some logic, that is, given a system and a
formula, decide whether some CBM (resp. MSCN) accepted by the CPS (resp.
CPSQ) satisfies the formula. As usual, the satisfiability problem reduces to
the model checking problem since it is easy to describe a CPS (resp. CPSQ)
accepting all CBMs (resp. MSCNs) over (Procs, Σ). Thus, due to the presence
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of multiple-stacks/queues in CPSQs, model-checking problems (6’–9’) are all
undecidable. Since MSO and IPDL can express LIFO or FIFO restrictions, the
model checking problems (6,9) are also undecidable.

For PDL and TL, both satisfiability (3) and model-checking for CPS (7) are
decidable with high complexity. The solution presented below uses the classical
tableaux construction. These problems remain open for PDL with converse.

To prove that the satisfiability problem for PDL sentences over CBMs is
decidable, we consider an extended labeling of a CBM with maximal consistent
subsets of the Fischer-Ladner closure of the formula [9]. The proof is then
done in two steps. In the first step, we describe consistency conditions on the
labelings. These conditions essentially relate the labeling of a node with that of
its neighbouring nodes. In the second step we argue that these conditions can
be checked by a CPS. For the satisfiability of the PDL sentence, the CPS in
addition needs to witness some nodes in which some state formulas hold. Thus,
the satisfiability problem for PDL sentences can be reduced to the emptiness
checking of CPS, which is decidable (with complexity equivalent to reachability
in VAS).

First, consider a PDL formula 〈π〉σ. This formula is equivalent to 〈π · σ〉true.
Hence, for the sake of notations, we may assume that if 〈π〉σ appears as a
subformula then σ is true. Furthermore, we simply denote it by 〈π〉 (which
means 〈π〉true).

Next, we describe the Fischer-Ladner closure of a PDL formula. The path
expressions present some subtleties. We need to indicate the current “progress”
of a path expression. Hence we first consider the automaton for a path expression
seen as a regular expression.

Let π be a path expression. Let Tests(π) = {β1, . . . , βk} be the set of tests
appearing in π. Now, π is a regular expression over the alphabet {→,⊲}∪Tests(π).
Let Aπ be a finite state automaton for π (obtained from any standard regular
expressions to finite state automata translation).

Now we are ready to describe the closure of a PDL state formula σ, denoted
CL(σ).

– σ ∈ CL(σ).
– If ¬σ1 ∈ CL(σ) then σ1 ∈ CL(σ).
– If σ1 ∈ CL(σ) and σ1 is not a negation then ¬σ1 ∈ CL(σ).
– If σ1 ∨ σ2 ∈ CL(σ) then σ1, σ2 ∈ CL(σ).
– If 〈π〉 ∈ CL(σ) then

• 〈π@q〉 ∈ CL(σ) for all states q of Aπ,
• β ∈ CL(σ) for all β ∈ Tests(π).

Now we are ready to describe the first step of the proof. We consider the
labeling of the events of a CBM by maximal consistent subsets of CL(σ). The
labeling of an event is intended to describe the precise set of formulas in CL(σ)
which hold true at that event. If 〈π@q〉 is present at an event, the intended
meaning is that a run of the automaton Aπ from state q to a final state can be
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simulated as a walk on the CBM from the current event. We will now describe
the consistency conditions on the labeling which ensure that the labeling indeed
does what we want.

A set X ⊆ 2CL(σ) can label an event labeled a on process p only if it agrees to
the following static consistency:

– if b ∈ Σ ∩ CL(σ) then b ∈ X ⇔ b = a,
– if q ∈ Procs ∩ CL(σ) then q ∈ X ⇔ q = p,
– if ¬σ1 ∈ CL(σ) then σ1 ∈ X ⇔ ¬σ1 /∈ X,
– if σ1 ∨ σ2 ∈ CL(σ) then σ1 ∨ σ2 ∈ X ⇔ σ1 ∈ X or σ2 ∈ X,
– if 〈π〉 ∈ CL(σ) then

• 〈π〉 ∈ X ⇔ 〈π@q〉 ∈ X for some initial state q of Aπ,

• 〈π@q′〉 ∈ X and β ∈ X and q
β
−→ q′ in Aπ implies 〈π@q〉 ∈ X,

• q is a final state of Aπ implies 〈π@q〉 ∈ X.

Moreover the labeling of an event should be consistent with that of its → and
⊲ successors. Let e be an event of the CBM and let e′ and e′′ be events of the
CBM such that e → e′ and e ⊲ e′′ if they exist. Let X,X ′ and X ′′ be their
respective labelings. Then the following (local) dynamic consistency must also
hold. If 〈π〉 ∈ CL(σ) and q is a state of Aπ then 〈π@q〉 ∈ X only if there is a path

q = q0
β1

−→ q1
β2

−→ q2 . . .
βk

−→ qk in Aπ with k ≥ 0, β1, β2, . . . , βk ∈ X and

– either qk is a final state of Aπ,
– or qk

→
−→ q′ in Aπ and 〈π@q′〉 ∈ X ′,

– or qk
⊲
−→ q′ in Aπ and 〈π@q′〉 ∈ X ′′.

Furthermore, for all 〈π@q′〉 ∈ CL(σ), if 〈π@q′〉 ∈ X ′ and q
→
−→ q′ in Aπ then

〈π@q〉 ∈ X. Also, for all 〈π@q′′〉 ∈ CL(σ), if 〈π@q′′〉 ∈ X ′′ and q
⊲
−→ q′′ in Aπ

then 〈π@q〉 ∈ X.
Let χ : E → 2CL(σ) be a labeling of the events. We say that χ is consistent if

it respects the static and (local) dynamic consistency conditions described above.
The consistency condition ensures the correctness of the labeling:

Lemma 3. χ is consistent if and only if χ(e) = {α ∈ CL(σ) | M, e |= α}.

The first step of the proof is complete. In the second step we argue that the
above consitency conditions can be checked by a CPS. The CPS remembers a
pair (X1, X2) in its locations. X1 is the labeling of the current event and X2 is
the expected labeling of the successor event. Then,

– ((X1, X2), a, (X2, X3), X4) ∈ Transp! if (X,X
′, X ′′) = (X2, X3, X4) satisfies

the consistency conditions,
– ((X1, X2), a, (X2, X3)) ∈ Transp,i if (X,X

′, X ′′) = (X2, X3, ∅) satisfies the
consistency conditions,

– ((X1, X2), X2, a, (X2, X3)) ∈ Transp? if (X,X ′, X ′′) = (X2, X3, ∅) satisfies
the consistency conditions.
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From the initial state, there is a transition to a pair of static consistent
subsets of CL(σ). That is, the pair (X1, X2) may be replaced with ℓin in the above
paragraph to get the initial transitions.

A pair (X2, X3) is a final state on a process if X3 = ∅ and (X,X ′, X ′′) =
(X2, ∅, ∅) satisfies the consistency conditions.

In order to evaluate a PDL sentence φ, we add a flag bit εσ for each subformula
Eσ of φ. The flag bit εσ is set to 0 initially and it is set to 1 as soon as a transition
(as described above) with σ ∈ X2 is taken. The global final acceptance then
permits all combinations of locations which are final states on respective processes
and in addition, the formula φ evaluates to true when its subformulas Eσ are
replaced with their associated flag bits εσ.

The construction is complete. The sentence φ is satisfiable if and only if the
language accepted by the constructed CPS is non-empty.

Remark 5. The construction will not go through as such if we consider CPDL
instead of PDL. However, if the path-expressions inside any iteration (∗) are
one-way then the above construction can be adapted to check its satisfiability.

Thus, we see that most verification problems are undecidable. Moreover,
the decidable cases have high complexity. However, if we restrict these decision
problems to CBMs (or MSCNs) with split-width bounded by some parameter
k, we obtain tractable decision procedures for almost all of them in a uniform
manner (the only exception is in problems where the MSO formula is part of the
input, where non-elementary lower bounds are known even for ordinary words,
leave alone CBMs). The following sections describe this technique in detail.

9 Split-CBMs to Trees

Here, we show how to encode CBMs of bounded split-width with finite binary
trees. This is a crucial step in all the decision procedures described in Sec. 10
that exploit the bound on split-width.

As it stands, each split-term s defines a set of split-CBMs JsK. In order to
reason about each split-CBM we decorate split-terms with additional labels so
that each such labeled term denotes a unique split-CBM. The reason JsK is a
set is that the operations merge and ✁ are ambiguous. For instance, the merge
operation replaces one elastic edge by a rigid edge, but does not specify which.
By decorating each merge operation with the identity of this edge we resolve
this ambiguity. The shuffle operation permits the interleaving of the components
coming from its two operands in multiple ways and we disambiguate it by
decorating each shuffle operation with the precise ordering of these components.

The key observation is that we only need a finite set of labels to disambiguate
every split-term of width at most k. Our labels consist of a word per process,
containing one letter per component indicating the origin of that component. At
merge nodes we use letters m to denote that it is the result of a merge and i to
indicate that it is inherited as it is from the operand. At a shuffle node we use
letters ℓ to indicate it comes from the left operand and r to indicate it comes
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from the right. For instance, Fig. 7 and 8 give the 3-DSTs corresponding to the
split-CBMs in Fig. 6 arising from the split-term s from Ex. 5.

merge

(mi, ii)

✁

(ℓrℓ, rr)

⊲

(ℓℓ, ε)

(a, 1)

(ℓ, ε)

(b, 1)

(ℓ, ε)

✁

(ℓ, ℓr)

⊲

(ℓ, ℓ)

(b, 2)

(ε, ℓ)

(a, 1)

(ℓ, ε)

(a, 2)

(ε, ℓ)

Fig. 7: A 3-DST for the split-term in Ex. 5.

Consider the set of labels

Lk = ({i,m}≤k)Procs ∪ ({ℓ, r}≤k)Procs .

A k-disambiguated split-tree or k-DST is a split-term s of width at most k,
treated as a binary tree, labeled by Lk+1, and satisfying some validity conditions.
Hence, each node n of t corresponds to a subterm sn of s, and we denote by
(Wp(n))p∈Procs its labeling. We define simultaneously, the validity condition for
the labeling at each node n and the unique split-CBM Mn belonging to JsnK
identified by this labeling.

1. If n is a leaf with associated split-term sn = (a, p) ∈ Σ ×Procs, then Mn

is the unique split-CBM in JsnK and we set Wp(n) = ℓ and Wp′(n) = ε if
p′ 6= p.

2. If n is a ⊲ node then its children must be leaves n′ and n′′ and sn = sn′ ⊲sn′′ .
Again, Mn is the unique split-CBM in JsnK and we set Wp(n) = Wp(n

′) ·
Wp(n

′′) for all p ∈ Procs.
3. If n is a merge node, then it has a single child n′ and sn = merge(sn′). In

this case, there must be exactly one process p such that Wp(n) ∈ i∗mi∗ and
|Wp(n)| = |Wp(n

′)| − 1 and for all other p′ 6= p, we have Wp′(n) ∈ i∗ and
|Wp′(n)| = |Wp′(n

′)|. Further, Mn is the split-CBM obtained from Mn′ by
merging on process p the component indicated by m in Wp(n) with the next
component. Clearly Mn ∈ JsnK.
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4. If n is a shuffle node, it has two children n′ and n′′ and sn = sn′✁ sn′′ . Then,
for each process p ∈ Procs, we have Wp(n) ∈ {ℓ, r}≤k and #ℓ(Wp(n)) =
|Wp(n

′)| and #r(Wp(n)) = |Wp(n
′′)|. Moreover, Mn is the unique split-CBM

obtained by shuffling the components of Mn′ and Mn′′ as indicated by
(Wp(n))p∈Procs and once again Mn ∈ JsnK.

Clearly, the validity conditions above for k-DSTs can be checked with a deter-
ministic bottom-up tree automaton.

Lemma 4. The set of k-DSTs is a regular tree language recognized by a tree
automaton Ak-valid whose size is 2O(k|Procs|) +O(|Σ| · |Procs|).

We write Mt for the split-CBM described by the root of t. When a split-term
s has width k, it is not difficult to see that, any split-CBM M ∈ JsK can be
obtained as Mt for some k-DST t with associated split-term s.

We can recover Mt from t and hence reason about Mt using t. Clearly the
events in Mt are in bijective correspondence with the leaves of t and we identify
the two. If n and n′ are leaves of t then n⊲ n′ in Mt iff there is a ⊲ node in t
whose left child is n and right child is n′.

When is n r−→ n′ in Mt? The r−→ edge connecting them is to be found in some
merge common ancestor of n and n′. We walk up the tree starting at leaf n
tracking the identity of the component whose last event is n (this component
may grow in size as previous components are merged with it), till a merge node
x merging this component with the next is encountered. We also walk up the
tree starting at the leaf n′ tracking the identity of its component till a merge
node x′ merging this component with the previous one is encountered. These
routes from n and n′ are marked in red and blue in Fig. 8.

Clearly, n r−→ n′ iff x = x′. It is easy to build a bottom-up tree automaton to
carry out this tracking and to check if x = x′. This gives us the first part of the
following Proposition. The second part follows from the observation that having
found x one may walk down from there to the leaf n′.

Proposition 1. – There is a deterministic bottom-up tree automaton with at
most 3kp + 2 states which accepts the set of k-DSTs t having exactly two
marked leaves n and n′ such that n r−→ n′ in the split-CBM Mt.

– There is a deterministic tree-walking automaton with at most 2kp states
which has an accepting run on a k-DST t from leaf n to leaf n′ iff n r−→ n′ in
the split-CBM Mt.

Remark 6. It is also possible to restrict Lemma 4 and Proposition 1 to k-DSTs
that identify CBMs (as opposed to split-CBMs). An analogue of Proposition 1

can also be established for the relation r−→
−1

as well as e−→ and e−→
−1

.

10 Split-width and Decidability

10.1 Satisfiability

An easy consequence of Proposition 1 is that the satisfiability problem for MSO
becomes decidable when restricted to CBMs of split-width at most k.
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merge

(mi, ii)

✁

(ℓrℓ, rr)

⊲

(ℓℓ, ε)

(a, 1)

(ℓ, ε)

(b, 1)

(ℓ, ε)

✁

(ℓ, ℓr)

⊲

(ℓ, ℓ)

(b, 2)

(ε, ℓ)

(a, 1)

(ℓ, ε)

(a, 2)

(ε, ℓ)

Fig. 8: Recovering a rigid edge in a 3-DST.

Theorem 2. From any MSO(Procs, Σ) formula ψ one can effectively construct
a tree automaton Ak

ψ such that

L(Ak
ψ) = {t | t is a k-DST, Mt |= ψ} .

By Lemma 4 and Remark 6 we may assume that the input is a k-DST
representing a CBM. The argument is quite standard: construct the automaton
inductively, using closure under union, intersection, complement and projection
to handle the boolean operators and quantifiers. This leaves the atomic formulas.
The formula a(x) is translated to a tree automaton that verifies that x is a leaf
and that it is labeled a and similarly for p(x). The formula x ∈ X is translated
to a tree automaton that verifies that x is a leaf and belongs to the set of leaves
labeled by X. x⊲ y just requires us to verify that the leaves labeled x and y have
a parent labeled ⊲. Finally, x → y is handled using Proposition 1, completing
the proof. As always, the combination of projection and complementation means
that the size of the constructed automaton grows as a non-elementary function.

Decidability for MSO immediately implies decidability for all the variants
of PDL (and the Temporal Logics). However, we obtain more efficient decision
procedures by working directly with these logics.

Theorem 3. From any CPDL sentence ψ one can effectively construct a tree au-
tomaton Ak

ψ whose size is 2O(p2.k2.|σ|2) such that L(Ak
ψ) = {t | t is a k-DST, Mt |=

ψ}.

The idea here is to use alternating 2-way tree automata (A2A). For a PDL
sentence Eσ the A2A walks down to a leaf and starts a single copy of the A2A
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that will verify the formula σ. For each σ we construct an automaton Aσ such that
Aσ has an accepting run from a leaf n if and only if the event n in the associated
CBM satisfies σ. The automata for the atomic formulas true, p and a are self-
evident. For ∨ and ¬ we use the constructions for union and complementation
for A2A. The case where σ = 〈π〉σ′ needs a little bit of work. Suppose π does
not use any state formulas then we construct a finite automaton Bπ equivalent
to the regular expression π (over the alphabet D = {→,→−1,⊲,⊲−1}). We
non-deterministically guess an accepting run of Bπ, simulating each move labeling
this run using the tree-walking automata given by Proposition 1 and Remark 6.
Notice that each such simulation of a move from D begins and ends at a leaf.
Finally, when reaching a final state of Bπ, we start a copy of the automaton A′

σ.
Checking state formulas in π adds no complication due to the power of alternation.
To verify the formula α we simply propagate a copy of the automaton Aα at
the current node (leaf). All this can be formalized to get an A2A Aσ of size
O(k · p · |σ|). We then use Vardi’s result [21] to convert this into an ordinary tree

automaton of size 2O(k2·p2·|σ|2).

Since temporal logic formulas can be translated into CPDL formulas with
linear increase in size, it follows that

Corollary 1. The satisfiability problem for TL(Procs, Σ) over k-split-width
CBMs is decidable in ExpTime.

The intersection operator in IPDL adds an additional level of complexity, since
the path expression π1 ∩ π2 requires that the tree walking automata propagated
to handle π1 and π2 have to end up at the same leaf. However, the technique of
[10] to decide IPDL over trees can be adapted to our setting as well. As in [10]
this results in an additional exponential increase in size.

Theorem 4. From any ICPDL sentence ψ one can effectively construct a
tree automaton Ak

ψ whose size is doubly exponential such that L(Ak
ψ) = {t |

t is a k-DST, Mt |= ψ}.

We explain the construction of alternating 2-way tree automata (A2A) for
ICPDL. We have already explained the construction for CPDL in Sec. 10. The
modification required to deal with intersection is borrowed from [10] and explained
below.

Recall, from Section 10, that from any state formula σ in CPDL, we construct
by structural induction an A2A Aσ such that Aσ has an accepting run starting
from some leaf n of a k-DST t if and only if Mt, n |= σ. In this construction,
to deal with any formula of the form 〈π〉α, we construct an alternating A2A
automaton with a specific structure: it consists of a tree-walking automaton which
navigates a walk from a leaf n to another leaf n′ (possibly going through many
leaves on the way) in the given k-DST t (propagating state-formula checking
automata on the way) and transfers control to the automaton for α at n′. Let us
call this automaton Aπ. Then, Aπ has an accepting run starting at a leaf n in
which its tree-walking component reaches the leaf n′ iff Mt, n, n

′ |= π.
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Extending this to the case where π = π1 ∩ π2, turns out to be a direct
application of the technique of [10], where an A2A construction for model-
checking ICPDL over trees is described. Consider any accepting walk w of the
tree-walking component of Aπ1

from a leaf n to a leaf n′. This may be broken
up as w0e1w1 · · · em where e1e2 · · · em is the (unique) shortest path from n to
n′ in the tree and further there is no occurrence of ei in wiei+1 · · · em. If w

′ is
an accepting walk of Aπ2

then we may write w′ = w′
0e1w

′
1 · · · em similarly. The

idea is to synchronize the tree-walking part of the automata Aπ1
and Aπ2

on the
edges along the path e1e2 · · · em while allowing them to evolve asynchronously
along wi (w

′
i).

As shown in [10], it is easy with an A2A to check, given a pair of states
(q, q′) of Aπ1

(resp. of Aπ2
) whether there is a looping path in the tree starting

from state q and ending in state q′. The states of the walking automaton part
of Aπ1∩π2

are pairs of states, one each form the walking automaton part of Aπ1

and Aπ2
. At each step along the path e1e2 · · · em, this walking automaton from a

state (q1, q2) first guesses the existence of looping paths q1 to q′1 and q2 to q′2 in
Aπ1

and Aπ2
respectively and propogates automata to verify the same. It then

synchronises a pair of transitions, q′1 to q′′1 from Aπ1
and q′2 to q′′2 from Aπ2

to
take one more step along the walk e1 · · · em and move to (q′′1 , q

′′
2 ). The details are

easy to formalise and thus the construction extends to the case where intersection
is permitted as part of path formulas.

For the complexity, we have already argued in Sec. 10 that the number of
states of Aσ is O(k · p · |σ|) when σ is a formula from CPDL. This is because
a basic move along a linear edge → is simulated with O(k · p) states thanks to
Prop. 1, and all constructs from CPDL only increase the size of the automata
linearly. Now, intersection induces a quadratic increase in the number of states.
Indeed, it requires pairs of states, either from Aπ1

or from Aπ2
to check the

existence of looping paths, or from Aπ1
and Aπ2

to synchronously follow the
shortest path between two leaves. Due to this, we can show that the size of the
A2A Aσ constructed from a formula σ in ICPDL is 2poly(|σ|), and we deduce that
the size of the corresponding tree automaton is doubly exponential in |σ|. We
refer to [10, Section 3.3] for a more detailed study of the complexity, which can
be further refined if we consider the intersection width of the ICPDL formula.

10.2 Emptiness and other Problems on CPS

We now show that the emptiness, universality and the containment problems for
CPS w.r.t. CBMs with split-width bounded by k have reasonable complexity.

Lemma 5. Given a CPS S over (Procs, Σ) and any integer k, one can effec-
tively construct a tree automaton Ak

S with |Locs|O(p.k) many states such that

L(Ak
S) = {t | t is a k-DST, Mt ∈ L (S)} .

Recall, from Sec. 3, that a run is just a labeling of the events by locations
via two functions (ρ, ν) satisfying 3 requirements. Our aim is to construct a
bottom-up tree automaton that simulates such runs on any k-DST.
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Let t be a k-DST. The events of Mt are the leaves of t. The bottom-up
tree automaton guesses a possible labeling of the events (the leaves) and verifies
that it defines a run as it walks up the DST. Actually, at each leaf e, the
automaton guesses the location labels assigned to e as well as to e−, the reason
for which will be clear soon. Due to this double labeling, if e is an internal event
then conformance to requirement 3 in the definition of a run can be checked
immediately. Similarly, if e⊲f then, by nondeterministically guessing the identity
of the value that is placed and removed from the store by transitions at these
two events, the automaton can verify the conformance to requirement 1 at e and
to requirement 2 at f simultaneously. This is done as it visits the parent of these
two nodes (labeled ⊲). We are almost done, except that all this assumes the
correctness of the guess about the labeling of e− at each e. It remains to verify
the correctness of these guesses.

The correctness of the guess at leaf e is verified at the unique merge node me

in the tree that adds the r−→ (or equivalently →) edge connecting e− and e. Thus,
the guessed location labels of e− and e need to be carried in the state of the
automaton till this node is reached. The key observation is that at every node in
the path from e to me, e is the left-most event in its component and similarly, e−

is the right-most event in its component along the path from e− to me. In other
words, as the automaton walks up the tree, it only needs to keep the guesses for
the first and last events in each component (in each process). The number of
such events is bounded by p(k + 1), explaining the complexity stated in Lem. 5.
(Actually, for the first event e in any component it suffices to keep the labels
associated with e− and for the last event e it suffices to keep the labels for e.)

It is easy to maintain this information. At a merge node, apart from checking
the correctness as explained above, the unnecessary labels (e/e− if they are not
the first or last events of the merged component) are dropped and other labels
are inherited. At a shuffle node, the labels for each component is simply inherited.
Finally, when the automaton reaches the root, there is only one component per
process. The entire run accepts if in each process the location labeling e− of the
first event is ℓin and the tuple of locations labeling the last events of each process
is a final state in Locsfin. In all this we have assumed that the automaton reads
a k-DST, but that can be arranged using Lemma 4, completing the proof. As an
immediate application we have the following theorem.

Theorem 5. The emptiness problem for CPS over (Procs, Σ) w.r.t. k-split-
width CBMs is decidable in Exptime. The universality problem and inclusion
problems w.r.t. k-split-width CBMs are decidable in 2-Exptime.

Emptiness problem for S reduces to the emptiness problem for Ak
S . Notice that

a CBM M of split-width at most k is accepted by S iff all k-DSTs representing
M are accepted by Ak

S . Hence, the universality problem reduces to checking
whether Ak

S accepts all k-DSTs representing CBMs (as opposed to split-CBMs),
which is just the equivalence problem of tree automata. Finally, the containment
problem reduces to the containment problem for associated tree automata.
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10.3 Model-checking

The k-split-width model-checking problem for a logic L determines, given a CPS
and a formula ϕ in L, whether some CBM of split-width at most k accepted by
the CPS satisfies ϕ.

Theorem 6. The k-split-width model-checking problem for MSO can be solved
with non-elementary complexity. The k-split-width model-checking problem for
CPDL and Temporal Logic are in Exptime. The k-split-width model-checking
problem for ICPDL is in 2-Exptime.

In all the cases, we use results from Sections 10.1 and 10.2, we first construct
from the formula ϕ a tree automaton Ak

¬ϕ that recognizes all k-DSTs representing
CBMs that do not satisfy ϕ. The model-checking problem then reduces to the
emptiness of the intersection of the tree automata Ak

¬ϕ and Ak
S .

11 Discussions

Optimal complexities of the decision procedures Optimality of the reachability in
CPS and of PDL satisfiability follows from the equivalence to (reduction from)
VAS. The PTime hardness on the size of the system |S| for the problems 10,
16-18, 10’, 16’-18’ follow from the PTime hardness of the emptiness checking
of nested-word automata, since nested-words have split-width bounded by 2 (cf.
Remark 3). The hardness of problems 14, 18, 12’-14’, 16’-18’ with respect to the
size of the (ǫ,C,IC)PDL formula and more specifically with respect to the bound
on split-width follow from the corresponding problems in the case of bounded
phase multi-pushdown systems [5] and the bound on their split-width [8].

Open problems In addition to problems 4 and 8 from Table 1 a number of
interesting problems remain open (see [7]). Given an architecture A, a set of
actions Σ and an integer k, is it possible to design a CPSQ Suniv

k over A and Σ
such that it accepts exactly the MSCNs whose split-width is bounded by k? If so,
one can restrict any CPSQ to its (verified) k-bounded split-width behaviours by
intersecting it with Suniv

k . This problem is open, however see [7] for subclasses
which can be easily implemented as CPSQs. These subclasses generalize many
known decidable system restrictions, giving elementary decision procedures for
various model-checking problems. Another open problem is whether we can
construct the CPS (or CPSQ) corresponding to a regular language of k-DSTs.
An affirmative answer would immediately yield a complementation procedure for
CPS w.r.t. behaviours of split-width at most k.
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