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Abstract

Gossip peer sampling protocols now represent a solid

basis to build and maintain peer to peer (p2p) overlay net-

works. They typically provide peers with a random sam-

ple of the network and maintain connectivity in highly dy-

namic settings. They rely on the assumption that, at any

time, each peer is able to establish a communication with

any of the peers of the sample provided by the protocol. Yet,

this ignores the fact that there is a significant proportion of

peers that now sit behind NAT devices (70% is a fair ratio

in the current Internet), preventing direct communication

without specific mechanisms. This has been largely ignored

so far in the community. Our experiments demonstrate that

the presence of NATs, introducing some restrictions on the

communication between peers, significantly hurts both the

randomness of the provided samples and the connectivity

of the p2p overlay network, in particular in the presence

of high rate of peers arrivals, departures and failures (aka

churn). In this paper we propose a NAT-resilient gossip

peer sampling protocol, called Nylon, that accounts for the

presence of NATs. Nylon is fully decentralized and spreads

evenly among peers the extra load caused by the presence

of NATs. Nylon ensures that a peer can always establish

a communication, and therefore initiates a gossip, with any

peer in its sample. This is achieved through a simple, yet

efficient mechanism, establishing a path of relays between

peers. Our results show that the randomness of the gener-

ated samples is preserved, that the connectivity is not im-

pacted even in the presence of high churn and a high ratio

of peers sitting behind NAT devices.

1 Introduction

Gossip protocols have received an increasing attention

in distributed computing over the past decade as they are

robust, simple and highly resilient to churn. Gossip random

peer sampling protocols are extensively used in that area to

build and maintain unstructured networks.

In gossip peer sampling, each peer typically maintains a

set of neighbors (called its view) which it periodically ex-

changes with another peer in the system, picked from its

view. This view is expected to be a sample of peers picked

uniformly at random among all peers. Such protocols rely

on the implicit assumption that a peer is able to commu-

nicate with any peer of its view. Yet, it is a well known

fact that today, a large number of peers sit behind NATs [4]

(such peers are called natted in the sequel, while other peers

are called public). NAT devices allow several peers with a

private IP address to share a single public IP address. NATs

implement firewall-like mechanisms that drop unsolicited

incoming messages. Consequently, the presence of NATs

between peers may prevent them to communicate directly.

While this issue has been addressed in the context of

structured p2p networks [4, 9], it has been mostly ignored in

the area of gossip protocols so far. To the best of our knowl-

edge, the only work that deals with NATs in gossip protocol

is [6]. In this solution, a peer p stores in a cache the peers

with which it successfully communicated in the past. The

presence of this cache is expected to ensure that at any time

p has a high probability to know a peer with which it can

communicate. Needless to say, such a simple mechanism

cannot ensure that the network will remain connected. As

we show in the sequel, the presence of natted peers signifi-

cantly impacts the properties of the peer sampling protocol

with respect to both the randomness of the provided sam-

ples and the connectivity. A straightforward cope out is to

associate every natted peer to a public one. Provided the

natted peer accepts incoming messages from its associated

public peer, the latter can act as a relay between this natted

peer and any other peer. Obviously, this imposes a signifi-

cant overhead on public peers which is not acceptable.

In this paper we present Nylon, a fully decentralized

NAT-resilient gossip peer sampling protocol where the re-

lay load is evenly spread among peers be they natted or

public. This protocol ensures that the communication be-

tween a peer and its neighbors is always possible. As soon

as a peer picks a neighbor n in its view to initiate a gossip, it



uses as relay the peer which gave it this specific entry to set

up a communication with n, and becomes itself a relay to n.

Note that the peer might rely on more than one relay to set

up a communication with n. Typically, in our experiments,

the chain of relays contains on average less that 4 peers in a

system comprising 10.000 peers, 90% of which are natted.

We show through a simulation study that Nylon (i) ensures

that the properties of the peer sampling are preserved in the

presence of NATs; (ii) evenly balances the relay load be-

tween peers; and (iii) is highly resilient to churn.

The rest of this paper is organized as follows. We provide

a background on NAT in Section 2, we study the impact of

the presence of NAT on existing peer sampling protocols

in Section 3. Section 4 provides a description of our NAT

resilient protocol. We report experimental results in Section

5. We discuss related works before concluding in Section 6.

2 Background on NATs

This section presents the various NAT devices and de-

scribes NAT traversal techniques allowing UDP message

exchanges between natted peers. More details can be found

in [19]. Note that in this section and in the rest of the paper,

we do not consider nested NAT topologies.

2.1 NAT devices behavior

A NAT device typically orchestrates the communication

between peers sitting behind it and the rest of the network

(external peers). When a natted peer opens an outgoing TCP

or UDP session through a NAT, the NAT assigns the session

a public IP address and port number to allow subsequent

messages from an external peer to be received. In addition,

the NAT assigns the session a filtering rule, which specifies

whether messages received from external peers on the as-

signed public IP address and port should be forwarded or

not to the natted peer’s private IP address and port. The

public IP address and port mapping, as well as the filtering

rule, only remain valid a limited time after the last message

was sent (or received) in a session.

Existing NATs differ in the way they assign public IP

addresses and ports, as well as in the filtering rules they

implement. We briefly describe the four main NAT types.

Full Cone (FC). This is the most permissive type of NAT.

The NAT assigns the same public IP address and port to all

sessions started from a given natted peer’s IP address and

port. These sessions all share the same filtering rule, which

states that the NAT must forward all incoming messages.

Restricted Cone (RC). This type of NAT imposes restric-

tions on the IP addresses of external peers that can send

messages to natted peers. As for FC NATs, the RC NAT

assigns the same public IP address and port to all sessions

started from a given natted peer’s IP address and port. All

the sessions started from a given natted peer’s IP address

and port, and involving the same target IP address, share

the same filtering rule: the NAT only forwards messages

coming from this IP address.

Port Restricted Cone (PRC). This type of NAT imposes

restrictions on the IP addresses and ports of external peers

that can send messages to natted peers. As for the previ-

ous NAT types, the NAT assigns the same public IP address

and port to all sessions started from a given natted peer’s IP

address and port. Nevertheless, each session started from

a given natted peer’s IP address and port towards a target

IP address and port, has its own filtering rule. This rule

states that the NAT only forwards messages coming from

the target IP address and port to which the session has been

opened.

Symmetric (SYM). This is the most restrictive type of

NAT. For every session started from a given natted peer’s IP

address and port, the NAT always assigns the same public

IP address but a different port. Note that contrarily to other

NAT types, the mapping is destination-dependent. The fil-

tering rule is similar to the one used in PRC NATs: the NAT

device only forwards messages coming from the target IP

address and port to which the session has been opened.

2.2 NAT traversal techniques

The public IP address and port mapping and the filtering

rules determine how peers can communicate. As long as

a peer behind a FC NAT regularly sends or receives mes-

sages through the public address and port the NAT device

assigned to it, it will have a valid filtering rule forcing the

NAT device to forward it all incoming messages. Rather,

if the target peer is behind a RC, PRC, or SYM NAT, the

source peer willing to communicate with it has to apply

a so-called NAT traversal technique. NAT traversal tech-

niques rely on the use of rendez-vous peers (RVP) able to

exchange messages with both the source and the destina-

tion peers1. There exist two different techniques depending

on the combination of source’s and target’s NAT type. The

two techniques are described below. The table summarizes

which one should be used in various configurations. Source

peer’s NAT type is given in the most-left column, whereas

target peer’s NAT type is given in the heading row.

public RC PRC SYM

public direct hole punching hole punching relay

RC direct hole punching hole punching hole punching

PRC direct hole punching hole punching relaying

SYM direct mod. hole punching relaying relaying

1RVP is usually a public node to which the source and destination peers

periodically send PING messages.



Hole punching. In the hole punching technique, the source

peer sends a PING message to the destination peer. Con-

sequently, the source peer’s NAT device creates a filtering

rule forcing it to forward incoming messages from the des-

tination peer. The source peer then sends an OPEN HOLE

message to an RVP, indicating that it wants to commu-

nicate with the destination peer. The RVP forwards the

OPEN HOLE message to the destination peer. As soon as

it receives the OPEN HOLE message, the destination peer

sends a PONG message to the source peer. Thereafter, the

NAT device of the destination peer has a valid filtering rule

allowing incoming messages from the source peer (we say

that there is a hole in the NAT). The source peer can start

sending messages to the destination peer as soon as it re-

ceives the PONG message2. Note that for most combina-

tions (i.e. those not involving SYM NATs), after the hole

punching technique has been applied, the destination peer

can also send messages directly to the source peer.

Relaying. In some cases, the hole punching mechanism

cannot be used: when the destination peer is behind a SYM

NAT and the source peer is either behind a PRC NAT or a

SYM NAT, or when the destination peer is behind a PRC

NAT and the source peer is behind a SYM NAT. This is

due to the fact that the SYM NAT device assigns a different

port to every new session, and this port is not known by the

source peer. The only possibility for sending messages to

the destination peer is then to use the RVP as a relay.

3 Impact of NATs on existing protocols

Various peer sampling protocols have been proposed [12,

17, 23]. The protocols described in [12, 17] rely on random

walks. These protocols assume a fairly static peer intercon-

nection topology and are not specifically designed to sus-

tain high levels of churn. Conversely, gossip protocols have

been designed to handle peers joining and leaving the sys-

tem at a high rate. We focus on such protocols in the sequel.

A generic gossip peer sampling protocol is described in

Figure 1. The system is composed of a set of uniquely iden-

tified peers, each one storing references to few other peers

into a view. Typically, the view size is in the order of log(n),
where n is the number of peers in the network. The generic

protocol works as follows: each peer periodically initiates a

communication (i.e. gossips) with one target peer selected

from its view. The source and/or the target peer exchange

their views. When a peer receives a view, it merges it with

its view, and truncates the result to a constant maximum

2When the source peer is behind a SYM NAT, the hole punching tech-

nique needs to be slightly modified. Indeed, as the destination peer does

not know the public IP address and port that has been assigned to the source

peer, it uses the RVP to send the PONG message to the source peer.

view size. This is typically called a view shuffling.

A peer sampling protocol is expected to provide the fol-

lowing properties: (i) the graph formed by peer views re-

mains connected, and (ii) every peer in the network has the

same probability to be selected by other peers (the provided

sample is random).

1 every s h u f f l i n g p e r i o d u n i t s do

2 t a r g e t ← s e l e c t g o s s i p d e s t i n a t i o n ( view )

3 send 〈REQUEST , view 〉 to t a r g e t

4 i f p u s h p u l l then

5 r e c e i v e 〈RESPONSE , v i e w t 〉 from t a r g e t

6 view ← m e r g e a n d t r u n c a t e ( view , v i e w t )

7 i n c r e a s e v i e w a g e ( )

8 on r e c e i v e 〈REQUEST , v i e w s 〉 from s o u r c e do

9 i f p u s h p u l l then

10 send 〈RESPONSE , view 〉 to s o u r c e

11 view ← m e r g e a n d t r u n c a t e ( view , v i e w s )

12 i n c r e a s e v i e w a g e ( )

Figure 1. Generic peer sampling protocol.

The generic gossip-based peer sampling protocol de-

scribed in Figure 1 can be configured along the following

three dimensions [11]: (i) Gossip target selection: can either

be done randomly (rand), or by picking the oldest peer in

the view (tail); (ii) View propagation: either only the source

peer sends its view to the target peer (push), or both source

and target peers exchange their view (push/pull); (iii) View

merging: when truncating a view, randomly chosen peers

are kept (rand), or the youngest ones (healer), or the ones

received from the other peer (swapper).

We evaluated six different configurations of the generic

protocol described in the previous section. The view prop-

agation strategy is the same in all the configurations and is

set to push/pull, which is most used in the literature as a

push mode consistently exhibits significantly worse perfor-

mances than push/pull. The gossip target selection and view

merging strategies that we evaluated are those described

above.

The experiments have been obtained through simula-

tions. The network size is 10,000 peers, and the bootstrap-

ping procedure is such that at the beginning of the simula-

tion all peers’ views are filled with randomly chosen public

peers. The initial graph is thus always connected. No churn

was considered. A more detailed description of the exper-

imental setup is done in Section 5. Moreover, for the sake

of simplicity, only PRC NATs are considered in the experi-

ments presented in this section. We evaluated the protocols

along the following metrics: (i) the resilience of the pro-

tocol with respect to network partitioning; (ii) the ratio of

stale entries in the views and; (iii) the randomness of the

resulting views.

Network partitions. Figure 2 shows the size of the biggest

cluster as a function of the percentage of natted peers for



two view sizes (15 and 27). The biggest cluster size is ex-

pressed as the percentage of peers that belong to it. We

clearly see that the graph partitions when the percentage of

natted peers reaches a certain threshold (50% and 70% for

the considered view sizes). We observe that, as expected,

increasing the view size has a positive impact on the biggest

cluster size for all protocols. This result is not surprising as

it is well known that a graph remains connected with only a

few neighbors. One can legitimately consider that increas-

ing the view sizes is enough to prevent partitions in the pres-

ence of NATs. We show in the reminder of this section that

increasing the view size is not a satisfactory solution with

respect to the two other metrics, the randomness and ratio

of stale entries.
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Figure 2. Size of the biggest cluster for view

sizes equal to 15 (top), 27 (bottom).

Stale references. Figure 3 shows the average percentage of

stale references in peer views for two different view sizes

(15 and 27). A reference to a peer is said to be stale when

it is not possible to communicate with this peer (due to the

presence of NATs). We observe that a small proportion of

natted peers suffices to cause peers to maintain stale ref-

erences in their view. This percentage of stall references

almost linearly grows with the percentage of natted peers.

Moreover, we observe that the percentage of stale refer-

ences increases when the view size increases, and that the

percentage of stale references decreases for view size 15

when the percentage of NATs reaches a certain threshold

(85%). These two observations can be easily explained by

two facts. First, increasing the view size decreases the prob-

ability that two peers shuffle with each other twice during

the lifetime of a NAT filtering rule. Second, with a large per-

centage of NATs and view size 15, the network starts to sig-

nificantly partition in many small clusters. Consequently,

two peers within a cluster have a very high probability to

shuffle with each other twice during the lifetime of a NAT

filtering rule.
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Figure 3. Percentage of stale references.

Randomness. Figure 4 shows the average ratio of non-stale

references that correspond to natted peers. Again, we con-

sider two different view sizes (15 and 27). For instance, the

plot shows that with 40% of natted peers and a view of size

15, peers have on average only 10% of their non-stale refer-

ences that correspond to natted peers. This typically means

that 40% of the peers are sampled only 10% which is ob-

viously a non uniform random sampling. As in Figure 3,

we observe that increasing the view size negatively impacts

the protocol. We also observe that when the percentage of

NATs reaches a certain threshold (70%), the average ratio of

non-stale references increases. The explanation is similar to

the one given for Figure 3.

4 The Nylon protocol

In this section, we present Nylon, a NAT-resilient gossip

peer sampling protocol. A commonly used technique for

traversing NATs is to use public RVPs [13, 24]. This tech-

nique could be used to build a NAT-resilient peer sampling

protocol as follows: a source peer needing to communi-

cate with a natted peer, would contact first the natted peer’s

public RVP to forward an OPEN HOLE message to the tar-

get peer. This simple scheme suffers however from several
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wards natted peers.

drawbacks. First, the extra load induced by the presence of

NATs is supported by the public peers. This creates an un-

even distribution of the load where public peers contribute

much more to the protocol than natted peers. Another issue

is the non uniform impact of failures of natted and public

peers. A public peer’s failure invalidates all references to

natted peers bound to it. A possible solution is to use sev-

eral RVPs for each natted peer. Nevertheless, this solution

increases the bandwidth consumption.

In order to overcome the limitations imposed by using

only public RVPs, we design a fully decentralized protocol

that uses both natted and public peers as RVPs. Relying

on natted peers for implementing RVPs is challenging: ef-

fectively, an RVP must be reachable by all peers willing to

communicate with peers for which it acts as RVP. This is

obviously impossible to ensure that a natted RVP will have

valid filtering rules for every peer in the system. Instead,

peers may rely on a routing infrastructure to send messages

to any RVP in multiple hops. This is for instance what is ap-

plied in Distributed Hash Tables (DHT), where each peer in

the DHT maintains valid filtering rules for the natted peers

that are in its routing table. When a peer needs to commu-

nicate with an RVP, its message is routed using the DHT.

Unfortunately, it is not possible to use such a routing infras-

tructure in the large-scale, highly dynamic, environments

that we consider in this paper.

The design of Nylon relies on two observations:

1. A gossip protocol does not require all peers to be

reachable at any time by all peers. Effectively, at a

given time, the only peers a given peer might want to

communicate with are those that are in its view.

2. In gossip protocols, although a peer should be able to

communicate with any peer in its view at any time, it

does not. Instead, a single peer of its view is picked

upon each gossip operation. It may be the case that a

peer p in the view of a peer q is removed from q’s view

without p and q effectively gossip with each other.

Nylon leverages these two observations to build NAT-

resilient gossip-based peer sampling protocols in which all

peers can act as RVPs. The first observation is used to im-

plement a hole punching protocol for only a subset of the

system. The second observation is used to implement a re-

active hole punching protocol which consists in perform-

ing the actual hole punching protocol between two peers

only when needed, namely when a gossip between the two

peers is initiated. This avoids to systematically send an

OPEN HOLE message to all peers that p adds in its view.

The Nylon protocol. The main idea of Nylon is to imple-

ment reactive hole punching. Intuitively, this works as fol-

lows: a peer only performs hole punching towards peers it

gossip with. Hole punching is implemented using a chain of

RVPs that forward the OPEN HOLE message until it reaches

the gossip target.

The chain of RVPs is built as follows. Consider the case

of a peer n1 shuffling with a peer n2. After having per-

formed hole punching towards n2 (using a chain of RVPs),

peer n1 and n2 can directly communicate with each other.

Thus, they both become RVP for each other. Consider now

that later, one of them, say n2, shuffles with a peer n3 and

gives it a reference to n1. Before shuffling, peers n2 per-

forms hole punching towards n3. Consequently, as between

n1 and n2, peers n2 and n3 both become RVP for each

other. Finally, consider that n3 shuffles with a peer n4 and

gives it a reference to n1. A chain of RVPs has thus been

created, as shown in Figure 5. This chain allows n4 to shuf-

fle with peer n1. For this purpose, it performs hole punching

towards peer n1 by sending an OPEN HOLE message to n3
that will forward it to n2, that will forward it to n1.

OPEN_HOLE
n4

natted

NAT rules

n3: allow

others: deny

rule TTL
170

routing table
dest RVP
n1 n3

... ...

TTL
120

view

n1
...

OPEN_HOLE
n3

natted

NAT rules

n2: allow

others: deny

rule TTL
140

routing table
dest RVP
n1 n2

... ...

TTL
120

view

...

OPEN_HOLE
n2

natted

NAT rules

n1: allow

others: deny

rule TTL
120

routing table
dest RVP
n1   -

... ...

TTL
120

view

...

n1

natted

NAT rules

n2: allow

others: deny

rule TTL
120

routing table
dest RVP

-

TTL

view

...

120n2

n3: allow 140 n4: allow 170

Figure 5. Nylon operating principle.

As illustrated in Figure 5, in addition to its view, each

peer maintains a routing table. This routing table maintains

the mapping between a natted peer in its view and its asso-

ciated RVP. For each peer n in the routing table, the RVP is

the peer it shuffled with to obtain the reference to n. RVPs



in Nylon are constantly changing and following the reactive

flavour of Nylon, RVPs do not proactively refresh holes.

Therefore, a time to live (TTL) is associated to each RVP

entry in the routing tables. TTLs are exchanged by peers

together with their views and are updated every shuffling

period, and every time a message from one RVP stored in

the routing table is received. Note that the TTL mechanism

assumes that there is a known upper bound on the latency

between each pair of peers3.

Pseudocode. The pseudocode of the Nylon protocol is

presented in Figure 6. The basis of the protocol is the

(push/pull, rand, healer) protocol presented in Section 3.

The only additions to the protocol are for handling NAT

traversal techniques and implementing the RVP chaining

mechanism presented in the previous paragraph. The rout-

ing table code is not presented in the figure. It is abstracted

in four methods. The next RVP() method returns the

next RVP to be used for a given destination. Note that if

the destination is directly reachable (because either the des-

tination is public or the peer acts as an RVP for the des-

tination), the method returns the destination itself. The

update next RVP() method is used to update (or cre-

ate) an entry in the routing table. It is called whenever a

message is received. The update routing table()

method is called to update the routing table. It takes as

parameter a view that has been received during a shuffle.

This method adds an entry in the routing table for each

entry in the view and specifies that the RVP for these en-

tries is the peer with which the shuffle was performed. The

decrease routing table ttls() method is used

to decrease the TTL of routing table entries, and purge the

expired ones.

5 Evaluation

In this section, we report the results of the evaluation of

the Nylon protocol. We simulated a system of 10,000 peers

and varied the percentage of peers sitting behind NATs. In

short, we show that (i) it achieves uniform random peer

sampling, (ii) it induces a reasonable overhead and homo-

geneously balances the load among natted and public peers,

(iii) it achieves reasonable latency, and (iv) it is highly re-

silient to churn. Before describing these results in more de-

tail, we first present the experimental setup.

Experimental settings. To the best of our knowledge, ex-

isting p2p simulators do not take into account NATs. We

thus developed a Java-based, event-driven simulator that

3If the upper bound is not met, this could cause an entry in the routing

table to be stale. We show in Section 5 that the protocol resists to the

simultaneous departure of 50% of the nodes. This shows that the protocol

would resist to half of the message exchanges simultaneously exceeding

the upper bound.

1 every s h u f f l i n g p e r i o d u n i t s do

2 t a r g e t ← s e l e c t g o s s i p d e s t i n a t i o n ( view )

3 i f ( t a r g e t i s p u b l i c

or next RVP ( t a r g e t ) = t a r g e t ) then

4 send 〈REQUEST , view , s e l f , t a r g e t 〉 to t a r g e t

5 e l i f ( ( t a r g e t i s SYM and s e l f i s PRC)

or s e l f i s SYM) then

6 / / Use r e l a y i n g

7 send 〈REQUEST , view , s e l f , t a r g e t 〉
to next RVP ( t a r g e t )

8 e l s e

9 / / Hole punch ing

10 send 〈OPEN HOLE , s e l f , t a r g e t 〉 to next RVP ( t a r g e t )

11 i f s e l f i s not p u b l i c then

12 send 〈P ING〉 to t a r g e t

13 i n c r e a s e v i e w a g e ( )

14 d e c r e a s e r o u t i n g t a b l e t t l s ( )

15 on r e c e i v e 〈REQUEST , v iew s , s r c , d e s t 〉 from p do

16 upda te nex t RVP ( p , p , HOLE TIMEOUT)

17 i f d e s t 6= s e l f then

18 / / Forwarding

19 send 〈REQUEST , v iew s , s r c , d e s t 〉 to next RVP ( d e s t )

20 e l i f ( s r c i s SYM and s e l f 6= p u b l i c )

or ( s e l f i s SYM and s r c 6= p u b l i c ) then

21 / / Use r e l a y i n g

22 send 〈RESPONSE , view , s r c 〉 to next RVP ( s r c )

23 e l s e

24 send 〈RESPONSE , view , s r c 〉 to s r c

25 view ← m e r g e a n d t r u n c a t e ( view , v i e w s )

26 u p d a t e r o u t i n g t a b l e ( view )

27 on r e c e i v e 〈RESPONSE , v i e w t , d e s t 〉 from p do

28 upda te nex t RVP ( p , p , HOLE TIMEOUT)

29 i f d e s t 6= s e l f then

30 / / Forwarding

31 send 〈RESPONSE , view , d e s t 〉 to next RVP ( d e s t )

32 e l s e

33 view ← m e r g e a n d t r u n c a t e ( view , v i e w t )

34 u p d a t e r o u t i n g t a b l e ( view )

35 on r e c e i v e 〈OPEN HOLE , s r c , d e s t 〉 from p do

36 upda te nex t RVP ( p , p , HOLE TIMEOUT)

37 i f d e s t = s e l f then

38 send 〈PONG〉 to s r c

39 e l s e

40 send 〈OPEN HOLE , s r c , d e s t 〉 to next RVP ( d e s t )

41 on r e c e i v e 〈P ING〉 from p do

42 upda te nex t RVP ( p , p , HOLE TIMEOUT)

43 send 〈PONG〉 to s r c

44 on r e c e i v e 〈PONG〉 from p do

45 upda te nex t RVP ( p , p , HOLE TIMEOUT)

46 send 〈REQUEST , view , s e l f , p〉 to p

Figure 6. The Nylon protocol.



takes into account the four kinds of NATs described in Sec-

tion 2. Message latency was set to 50ms, the hole timeout

was set to 90s (a typical vendor value), and the shuffling

period was set to 5s. Experiments were conducted on a

10,000 peers system. Although we experimented with all

four kinds of NATs, experiments with FC NAT are not re-

ported. In practice, as explained in Section 2, peers behind

FC NATs behave similarly to public peers as long as they

frequently send or receive messages. The distribution we

used is the following: 50% of RC NATs, 40% of PRC NATs,

and 10% of SYM NATs. Note that we evaluated other dis-

tributions and got comparable results. Peers were initial-

ized with a view composed of a random set of public peers

to ensure connectivity at the start of each experiment. Un-

less explicitly mentioned otherwise, the view size is set to

15. All experiments were run with 30 different seeds, the

results reported are the average of those 30 runs. Finally,

experiments lasted a long enough time to observe, most of

the time, a negligible variance. However, any non negligible

observed variance is indicated in the graphs.

Correctness. We assessed the correctness of Nylon with

different experiments. Due to space limitation, we do not

show graphs for these experiments. First, we checked that

there were no network partitions and no stale references in

peer views. Moreover, we assessed randomness using the

diehard test suite for random number generators [16].

Network bandwidth usage. We made experiments to as-

sess the bandwidth usage of Nylon. We computed the av-

erage number of bytes per second that each peer sends and

receives as a function of the percentage of NATs. Results

are depicted in Figure 7. Nylon consumes less than 350B/s.

For comparison, we plotted the average number of bytes per

second consumed by the (push/pull, rand, healer) configura-

tion (line “reference”). We also observe that the bandwidth

usage does not evolve linearly with the number of NATs.

This comes from the fact that the length of RVP chains do

not evolve linearly with the number of NATs (see next sec-

tion).

As explained in Section 4, one of the objectives of Nylon

is to ensure that all peers contribute almost equally to the

protocol4. This is reflected in Figure 8 which shows the av-

erage number of bytes per second sent and received by pub-

lic and natted peers. We observe that public peers send and

receive between 10% and 20% less bytes per second than

natted peers. This comes from the fact that (i) all peers can

act as RVP, and (ii) public peers do not receive OPEN HOLE

messages for themselves and do not send PONG messages.

Latency. The latency is expressed in the number of hops re-

quired for a peer to establish a message exchange with the

peer it selected for shuffling. The latency towards public

4The only exception being that messages sent and received by peers

sitting behind SYM NATs must be relayed by public peers.
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peers is obviously equal to one hop. Regarding natted des-

tinations, the protocol requires sending one PING and one

PONG message. The main factor impacting latency is the

length of the RVP chain used to send the OPEN HOLE mes-

sage. Figure 9 shows the average length of RVP chains with

two different view sizes (15 and 27). Not surprisingly, we

observe that the number of RVPs increases with the percent-

age of NATs. Note that this increase is not linear, which ex-

plains the non-linear bandwidth usage observed for Nylon

in Figure 7. With a view size of 15, the RVP chain length

ranges from 1 (with 10% of NAT) to 3. The average relaying

latency of Nylon is thus smaller than 4 hops, which is very

reasonable. The fact that the length of RVP chain is small

limits the TTL expiration. Finally, an interesting observa-

tion is that the average RVP chain length decreases when

the view size increases. This result is consistent with ran-

dom graph theory results on the average distance between

peers in a graph as a function of their in and out degree [5].
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natted destination.

Churn resiliency. We conclude this section by an analysis

of the behavior of Nylon under massive churn. The ex-

periments consisted in removing a varying fraction of peers

after each of them had performed 500 shuffles. Public and

natted peers were removed proportionally to their number

in the system. We present results in Figure 10. The differ-

ent bar types correspond to different percentages of NATs.

On the X axis is represented the percentage of peers that

are leaving the system. The Y axis represent the size of the

biggest cluster 1500 shuffles after the start of the massive

churn. We observe that Nylon is highly resilient to churn.

It tolerates the departure of 50% of the peers without parti-

tioning. Even with higher percentage, it exhibits very good

performance. This result can be explained by the fact that

each peer can be reached by different chains of RVPs at the

same time.
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6 Related works and conclusion

Several systems have tried to overcome the problem of

limited connectivity [15, 20, 14]. All these systems rely

on an explicit structure to route messages on top of a gos-

sip protocol. They use proactive mechanisms to ensure that

communication between natted peers is possible under the

implicit assumption that the network is fairly static. Some

works have also been done in the context of Distributed

Hash Tables (DHTs) [13, 22]. Traversing NATs in such

systems can be achieved provided that each peer has a rel-

atively static set of neighbors. In addition the structure of

DHTs can be used as a natural vector to assign public peers

to natted peers. Let us also note that there exist protocols al-

lowing the creation of permanent NAT filtering rules: NAT-

PMP [?] and UPnP [?]. These protocols could be used in

gossip protocols to avoid the problems caused by the pres-

ence of NAT devices. Unfortunately these protocols have

limitations. First, they are not supported by all NAT de-

vices. Second, they pose security issues since any applica-

tion running on a peer can open ports on the NAT device

without any approval or notification to the node’s user. Fi-

nally, some works have also been done at the network level.

For instance, [8] proposes an extension to the routing pro-

cess of IPv4 in order to take into account NAT devices. Nev-

ertheless, the proposed architecture requires modifications

to NAT devices and to end hosts.

While taking into account NATs can be achieved in fairly

static systems, this is challenging in the context of highly

dynamic systems. In this paper, we have proposed Nylon,

a fully decentralized NAT-resilient gossip peer sampling

protocol. Nylon leverages the fact that in a gossip proto-

col each peer only needs to communicate with a subset of

peers contained in its view and does actually communicate

with an even smaller subset of the peers. It uses a reac-



tive hole punching protocol, which creates a path of relay

peers to setup communications. Experiments have shown

that Nylon accommodates a large proportion of NATs with-

out impacting the properties of the peer sampling. More-

over, Nylon evenly spreads the overhead induced by NATs

between public and natted peers and is highly resilient to

churn.
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