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CNRS

vivien.quema@inria.fr

Valerio Schiavoni

University of Neuchâtel

valerio.schiavoni@unine.ch

Abstract—Distributed Hash-Tables (DHTs) provide an
efficient way to store objects in large-scale peer-to-peer
systems. To guarantee that objects are reliably stored,
DHTs rely on replication. Several replication strategies
have been proposed in the last years. The most efficient ones
use predictions about the availability of nodes to reduce the
number of object migrations that need to be performed:
objects are preferably stored on highly available nodes.

This paper proposes an alternative replication strategy.
Rather than exploiting highly available nodes, we propose
to leverage nodes that exhibit regularity in their connection
pattern. Roughly speaking, the strategy consists in repli-
cating each object on a set of nodes that is built in such
a way that, with high probability, at any time, there are
always at least k nodes in the set that are available. We
evaluate this replication strategy using traces of two real-
world systems: eDonkey and Skype. The evaluation shows
that our regularity-based replication strategy induces lower
network usage than existing state of the art replication
strategies, and better balances the replication and storage
loads than existing availability-based approaches.

I. INTRODUCTION

Distributed Hash Tables (DHTs) [1] [2] provide a

simple high-level put/get abstraction that can be used to

build efficient distributed storage systems (e.g. [3] [4]).

DHTs have gained wide popularity in the last decade,

fostering a large amount of interest in the academia,

and inspiring the design of key/value distributed storage

systems deployed in production (e.g. [5] [6]).

DHTs provide a way to deterministically map ob-

jects to nodes and allow efficiently retrieving objects in

a distributed fashion. Nodes and objects are logically

arranged in a large numeric key-space, according to a

given variant of consistent hashing [7]. Typically, the

node in charge of an object is the one whose position

immediately follows the object in the key-space.

To ensure the availability of objects despite churn,

DHTs rely on replication [8]: multiple copies of each

object are stored on different nodes (called replicas).

A replication protocol is in charge of ensuring that,

at any time, each object is replicated on a sufficiently

large number of replicas (called the replica set). The

replication protocol is also in charge of deciding where

replicas should be localized. In the past years, several

replication strategies have been proposed [8] [9]. The

first replication strategies were quite basic: replicas were

simply placed on a contiguous set of k online nodes on

the DHT [3]. Nevertheless, this simple strategy consumes

a very high bandwidth to migrate replicas whenever a

node arrival or departure breaks the contiguous set of k

replicas. Moreover, as pointed out in [10], bandwidth –

and not disk space – is the crucial and limiting factor

when designing distributed storage systems. Subsequent

works have thus focused on designing replication strate-

gies able to limit the number of object migrations in

case of churn. Towards that goal, the most recent works

are those leveraging some knowledge about node avail-

ability. For instance, in [11], the authors propose node

availability predictors which drive the replication strat-

egy to place and migrate objects on the most available

nodes. This solution clearly aims at reducing the number

of object migrations, at the expense of a fair balance of

load on the nodes. Instead, in a recent work [12], the

authors propose to build replica sets using nodes with

different availability patterns. The goal of this replication

strategy is to decrease the number of object migrations,

while ensuring a fair balance of the replication load on

replicas. Unfortunately, as we show in the evaluation

section, this strategy still induces a very high bandwidth

consumption.

In this paper, we propose a new approach to repli-

cating objects in DHTs. Rather than focusing on node

availability, we propose to leverage nodes that exhibit

regularity in their connection pattern. To the best of our

knowledge, our work is the first attempt at leveraging

connection regularity to improve replication in DHTs.

Our work is motivated by recent studies that have shown

that diurnal availability patterns are commonly exhibited

by real-world systems [11] [13] [14] [15]. The key idea is

to create for each object a candidate set containing nodes

exhibiting regular connection patterns such that, with a

high probability, there will always be k online nodes



in the candidate set. The candidate set is then used to

feed the replica set. That way, these are always the same

set of nodes that will periodically belong to the replica

set of a given object. Nodes can thus cache objects

and drastically reduce the bandwidth usage. Moreover,

this strategy allows leveraging nodes that are not highly

available but that are regular. This results in a better

replication and storage load balancing than strategies

relying on the availability of nodes.

We evaluate our new replication strategy using two

traces of real-world systems: eDonkey and Skype. Our

evaluation shows that our regularity-based replication

strategy induces lower network usage, and better bal-

ances the replication and storage loads than existing

availability-based approaches.

The remaining of the paper is organized as follows: in

Section II, we describe the existing replication strategies.

In Section III, we present Regular, our new regularity-

based replication strategy. We then evaluate the perfor-

mance of the state-of-the-art strategies of Regular in

Section IV. We finally discuss related work in Section V,

before concluding the paper in Section VI.

II. BACKGROUND

In this section, we present the state-of-the-art tech-

niques that have been proposed for replicating objects in

a DHT. We assume that the DHT is organized as a ring

and that each node has a unique identifier that is used to

position the node in the DHT (by increasing identifier).

Moreover, we assume that each object has a hash value

belonging to the same space as the node identifiers.

Each replication technique used in this section seeks to

maintain k online replicas of every object in the DHT.

At any point in time, the k nodes that are replicating an

object form the replica set for that object.

A. Standard

In the Standard replication strategy (e.g. [3] [4]) (see

Figure 1), the replica set of an object comprises the first

k nodes with larger identifiers than the hash of the object.

A replica set is updated whenever a replica leaves or a

node join causes the first k successors of an object id to

change.

replica set

object/replica

hash(  )

Fig. 1: Standard replication strategy (k = 4).

B. Sticky

The Sticky replication strategy [16], [11], [17] (see

Figure 2) is an extension of the Standard strategy whose

goal is to avoid migrating objects whenever one of the k

successors of an object id changes. The Sticky replication

strategy works as follows: when an object is created, its

replica set first comprises the first k nodes with larger

identifiers than the hash of the object (this is similar

to the standard strategy). Contrarily to the Standard

strategy, a replica is used until it leaves the DHT, at

which point it is replaced with the first node having

a larger identifier than the hash of the object and not

belonging to the replica set of the object. A consequence

is that the replica set of an object does not necessarily

contain the k nodes with larger identifiers than the hash

of the object. In order to allow retrieving the replica

set of an object, the first k nodes with larger identifiers

than the hash of the object store localization metadata

describing the localization of the current replicas of the

object. These metadata are updated whenever the replica

set changes.

hash(  )
replica set

localization metadata

object/replica

Fig. 2: Sticky replication strategy (k = 4).

C. Most-available

The Most-available replication strategy [11] (see Fig-

ure 3) is an extension of the Standard strategy whose

goal is to reduce the number of object migrations by

choosing highly available nodes to compose replica sets.

Replication works as follows: at any time, an object

is replicated on the k most available nodes chosen

among the set of the S first nodes that have a larger

identifier than the hash of the object. This strategy

requires to be able to predict the availability of nodes.

Efficient heuristics to predict node availability have been

proposed in [11]. Note that to retrieve the replicas of

an object, it is either possible to query the S nodes

having a larger identifier than the hash of the object, or

to use localization metadata as described in the Sticky

replication strategy.

D. Sticky most-available

The Sticky most-available replication strategy [11]

(see Figure 4) is an extension of the Most-available
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hash(  )

replica set

S nodes

1h 3h
2h

4h

1h

3h

object/replica

4h availability

Fig. 3: Most-available replication strategy (k = 4).

strategy that aims at reducing the number of required

object migrations by relaxing the constraint on the local-

ization of replicas. Replication works as follows: when

an object is created, its replica set first comprises the

k most available nodes chosen among the set of the S

first nodes that have a larger identifier than the hash of

the object. Similarly to the Most-available strategy, this

strategy requires being able to predict the availability of

nodes. Contrarily to the Most-available strategy, a replica

does not need to remain during all its lifetime in the set

of the S first nodes with a larger identifier than the hash

of the replicated object. Consequently, a replica can be

used until it leaves the DHT, at which point it is replaced

by the most available node that is both among the S first

nodes that have a larger identifier than the hash of the

object, and not already in the replica set of the object.

Similarly to the Sticky strategy, to retrieve the replicas

of an object, the Sticky most-available strategy makes

use of localization metadata describing the localization

of the current replicas of the object. These metadata are

replicated on the first k nodes with larger identifiers than

the hash of the object.

hash(  )

replica set

S nodes

4h 3h
2h

4h

1h

3h

object/replica

4h availability

2h

localization metadata

Fig. 4: Sticky most-available replication strategy (k = 4).

E. Anti-correlated availability

The Anti-correlated availability replication strat-

egy [12] (see Figure 5) aims at reducing the number of

object migrations, while balancing the replication load

on nodes. For that purpose, the replica set of an object

comprises a set of pairs of nodes containing a node p

selected at random, and a node q whose availability is

anti-correlated with that of node p. Roughly speaking,

two nodes have anti-correlated availabilities if one is

online while the other one is offline, and vice versa.

Choosing a node at random in each pair allows balancing

the replication load on nodes, while associating two

anti-correlated nodes in each pair allows reducing the

number of object migrations (pairs of anti-correlated

nodes have a larger “online time” coverage than pairs

of randomly selected nodes). Similarly to the Sticky

replication strategy, it is necessary to use localization

metadata describing the localization of object replicas.

These metadata are replicated on the first k nodes with

larger identifiers than the hash of the object.

hash(  )

localization metadata

object/replica

replica set

pair of 

anti-correlated 

nodes

pair of 

anti-correlated 

nodes

Fig. 5: Anti-correlated availability replication strategy

(k = 4).

III. REGULARITY-BASED REPLICATION

In this section, we present a new replication strategy,

called Regular. We start by motivating the need for a

new replication strategy. We then show that nodes in

real-world systems exhibit regular connection patterns, a

necessary property for the Regular replication strategy.

Finally, we discuss how we implemented Regular.

A. The case for regularity-based replication

All the replication strategies discussed in Section II

reactively adjust the replica set of an object: when a

current replica leaves the network, a new one is picked to

ensure that k replicas are currently online. This induces

network traffic: online nodes communicate to find a

suitable replica and they migrate the replicated object

on the new replica.

To reduce the aforementioned costs, existing DHTs let

nodes cache the objects they have recently replicated.

This solution efficiently limits the number of object

migrations when few nodes intermittently join and leave

the network. Nevertheless, this solution is inefficient

when there is a high level of churn. Indeed, under

such conditions, nodes have a low probability to belong

multiple times to the same replica set.
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In this paper, we propose a way to leverage object

caching. More precisely, we propose to proactively as-

sociate with each object a static candidate set of nodes.

This candidate set should be such that at any given time,

there be a high probability that k nodes belonging to

the set be online. When such k nodes exist, they are

used to form the replica set of the object. Otherwise,

the replica set is fed with “temporary” nodes (details

are provided in Section III-C). This solution allows

reducing the number of object migrations that need to

be performed by limiting the set of nodes which can

become replicas for a given object (and by thus forcing

the same nodes to be regularly in the replica set of the

object).

Forming candidate sets requires nodes to exhibit regu-

lar connection patterns. For instance, if a set of k nodes

are known to be always online from 8am to 8pm, and if

a set of k other nodes are known to be online from 8pm

to 8am, then a candidate set can be formed by combining

these two sets of nodes. In the next section, we study two

real-world traces and show that nodes actually exhibit

regular connection patterns.

B. Connection regularity in real-world systems

Different works have studied node availability in dis-

tributed systems and have revealed that diurnal availabil-

ity patterns are commonly exhibited [11] [13] [14] [15].

In the context of this work, we studied the connection

regularity of nodes belonging to two different systems:

eDonkey and Skype (details on the traces are provided

in Section IV). We divide each days in 24 1-hour time

slots and consider that a node is online in a given time

slot t on day d if it connected at least once during the tth

hour of day d. Note that this coarse-grained granularity

is required provided that some of the traces we are

using are based on periodic pinging of nodes occurring

every 30 minutes. We compute the regularity of node

connections using the technique presented in [15]: a

node is considered regular for a given time slot t if

it connected in at least a percentage R of days of the

trace at that time slot t. We tested two distinct values

for R: 80% and 85% (R is called regularity threshold).

We report the results we obtained in Figure 6 (eDonkey)

and Figure 7 (Skype). Each graph contains 24 bars

corresponding to the 24 1-hour time slots of the day.

A bar of size X% for a time slot t means that, on

average, X% of the nodes that are connected in time slot

t are regularly connected in time slot t (i.e. they have a

probability greater or equal to R to be connected in time

slot t). Not surprisingly, we observe that increasing the

regularity threshold R reduces the percentage of regular

nodes. More interestingly, we observe that a quite large

fraction of the nodes are regular. For instance, with a

regularity threshold R = 80%, we observe regularity

values of 40% (eDonkey) and 25% (Skype).

C. Implementation

In this section, we describe our implementation of the

Regular replication strategy. Each node maintains a log

of its connections that it uses to compute its regularity,

i.e. the probability that it be connected at each time slot

of the day. This regularity data is exchanged among

nodes using a gossip-based protocol à la Cyclon [18]:

each node locally maintains a continuously changing

partial view of nodes belonging to the system with which

it exchanges informations about the connection regu-

larity of nodes (including nodes that are not currently

online). To ensure that exchanged informations are up-

to-date, nodes associate a timestamp to the regularity

information they disseminate. Each node stores the reg-

ularity informations it collects in a regularity table. This

table contains 24 buckets, one per time slot. Each bucket

contains a set of nodes that are regular in the associated

time slot.

When a node creates an object to be stored in the

DHT, it first creates a candidate set for that object using

its regularity table. This simply consists in selecting as

many nodes as required from each bucket, in order to

ensure that there will be a high probability that the

candidate set contain k online nodes at any time of the

day. The node then creates a replica set for the new

object that it fills with k currently online nodes taken

from the candidate set. Both the candidate and the replica

sets are replicated on the k first nodes in the DHT that

have a higher identifier than the hash of the created

object (this is similar to the replication of localization

meta-data in the Sticky strategy presented in Section II).

The creating node then notifies the currently online

nodes belonging to the candidate (resp. replica) set that

they have been selected to be in the candidate (resp.

replica) set of the created object. Nodes belonging to the

candidate set periodically ping each others. Whenever

they detect that the replica set contains fewer than

k nodes, one currently online node belonging to the

candidate set is randomly chosen to join the replica set.

If the candidate set does not contain online nodes not

currently in the replica set, a temporary node is chosen to

be part of the replica set. This temporary node is chosen

among the k nodes currently replicating the candidate

and replica sets.

IV. EVALUATION

In this section, we compare the performance achieved

by the regular replication strategy to that achieved by

4
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Fig. 6: eDonkey: percentage of regular nodes.
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Fig. 7: Skype: percentage of regular nodes.

replication strategies described in Section II. We start

by a description of the experimental settings, followed

by a performance comparison using two traces from real-

world systems: eDonkey and Skype. Finally, we present

a scalability analysis of the Regular replication strategy

using the eDonkey trace.

A. Experimental settings

We developed a C++ event-based simulator a la

PeerSim [19]. For efficiency reasons, we do not simulate

the routing protocol used in the DHT, which means that

nodes do not maintain a routing table. We rather focus on

simulating the replication protocol that is running among

nodes.

Each node in the system stores 500MB of data that

is split into 10MB chunks. We use the fact that data is

split into chunks to allow migrating replicated objects

from multiple sources in parallel. Moreover, in the

experiments we run, we configured the replication factor

to k = 4, which means that the replication protocol

tries to keep 4 replicas of each chunk at any time. This

replication factor was enough to ensure that no chunk

was lost in all experiments we ran.

We take into account the fact that Internet nodes have

a limited bandwidth by bounding the rate at which nodes

can exchange data. More precisely, we consider that

nodes have a maximum upload bandwidth of 1Mb/s.

Moreover, in order to reduce the overall bandwidth

usage, nodes keep the objects they replicate even after

exiting the replica set. That way, a node that temporarily

exits a replica set does not pay a high cost if it rejoins

the replica set. Finally, to simulate realistic churn (i.e.

node arrivals and departures), we use two traces from
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real-world applications that are described below1:

• eDonkey: the trace [15] contains a 27-day log of

user connections and disconnections to one of the

main eDonkey servers. The traces gathers data for

more than 14 millions users.

• Skype: the trace [21] contains a 1-month log of

the connections and disconnections of 2000 Skype

users. The trace was built by pinging nodes par-

ticipating to the Skype superpeer network every 30

minutes for one month, beginning September 12th,

2005.

Two replication strategies rely on an analysis of

past node connections (Anti-correlated available and

Regular)2. Therefore, we split the simulations into two

phases: the first phase lasts 20 days and is a learning

period, after which the availability correlation and the

connection regularity can be computed. The second

phase lasts 7 days and is used to collect the presented

results.

B. Performance comparison

The performance results obtained using the various

replication strategies are reported in Table I (eDonkey)

and Table II (Skype). In each table, we report the

following metrics:

• Total bandwidth (GB): this metrics represents the

total number of GB that are transferred by all nodes

during the experiment (7 days). A good replication

strategy is one that minimizes this value.

• Max bandwidth per node (GB): this metrics repre-

sents the maximum bandwidth (in GB) that is

consumed by a node during the experiment (7 days).

A good replication strategy is one that minimizes

this value.

• Max stored objects per node: this metrics repre-

sents the maximum number of objects that is stored

by a node during the experiment. We only count

objects in the replica set of which the node is

currently in. We do not count objects that are

kept after the node exited the replica set. A good

replication strategy is one that minimizes this value.

• Perc. of nodes storing 50% of the overall data:

this metrics represents the percentage of the most

loaded nodes in the network that store an aggregate

1These traces can be found on a public repository maintained by
Godfrey [20].

2The Most available and Sticky most-available strategies should
also rely on an analysis of past node connections. Nevertheless, we
implement availability predictions using an oracle.

value of half the data contained in the entire

system. For instance, if this metrics equals 9%, this

means that 9% of the nodes in the network (which

are the most loaded ones) are responsible for the

storage of half the data of the entire network. The

larger this value, the better the replication strategy.

Indeed, a large values means that the storage load

is balanced on a large fraction of nodes.

• Perc. of nodes that are replica at least once: this

metrics represents the percentage of nodes that,

during the experience, act at least once as replica

for an object. The larger this value, the better the

replication strategy. Indeed, a large value indicates

that the replication load is balanced on a large

fraction of nodes.

Each line in Tables I and II corresponds to a replica-

tion strategy. For replication strategies relying on avail-

ability prediction, we use an oracle that outputs, at any

time, how long every node will remain in the system.

Moreover, considering the Anti-correlated availability

strategy, we configure the number of pairs contained

in each replica sets in such a way that there is always

k = 4 replicas online3. Finally, regarding the Regular

replication strategy, we use two different values for the

regularity threshold: 80% and 85%.

The first observation we can make is that the Stan-

dard, Sticky and Anti-correlated availability replication

strategies induce a much higher total bandwidth

consumption than other replication strategies, but

better balance the replication and storage loads on

nodes. For instance, in the eDonkey trace, the Standard

replication strategy uses 17.7 times more bandwidth

than the Regular strategy with a regularity threshold of

85%. This higher bandwidth consumption translates into

higher networking requirements for individual nodes:

for instance, in the case of eDonkey, the maximum

bandwidth that is used by a node is 7.7GB for the

Standard strategy, whereas it is only 1.07GB for the

Regular strategy with a regularity threshold of 85%.

Regarding the replication load, we observe that with

the Regular and Sticky, and Anti-correlated availability

strategies, the number of nodes that are replica at least

once is systematically higher than with other strategies

(for all traces). Finally, regarding storage, we can observe

that the Standard, Sticky and Anti-correlated availability

strategies better balance storage than other strategies: for

instance, in the eDonkey case, 36.5% of nodes are in

3Note that this configuration is different from that used in [12],
where authors guarantee that there are k nodes in replica sets, but
including temporarily offline ones.
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Standard 2812.2 7.7 40 36.5% 100.0%

Sticky 2436.9 10.0 40 33.3% 96.2%

Anti-correlated availability 2104.2 4.8 61 38.9% 97.7%

Most-available 574.0 11.9 77 7.5% 29.0%

Sticky most-available 290.6 11.7 77 6.7% 24.4%

Regular (R = 80%) 372.6 1.5 43 19.1% 75.6%

Regular (R = 85%) 159.1 1.1 57 15.5% 60.2%

TABLE I: eDonkey: evaluation of the different replication strategies (5000 nodes).
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Sticky most-available 648.8 32.1 185 5.0% 25.3%

Regular (R = 80%) 790.8 18.0 136 8.8% 69.7%

Regular (R = 85%) 441.1 16.3 187 5.1% 51.2%

TABLE II: Skype: evaluation of the different replication strategies (2000 nodes).

charge of storing half of the data when the Standard

replication strategy is used. This drops to 15.5% when

the Regular strategy is used with a regularity threshold

of 85%.

The second observation we can make is that for the

Regular strategy, increasing the regularity thresh-

old R decreases the network usage, but negatively

impacts the replication and storage load balancing.

For instance, we observe on the eDonkey trace that

the Regular strategy induces 372.6GB of network traffic

when R = 80%, whereas it induces 159.1GB of traffic

when R = 85%. At the same time, with R = 85%,

75.6% of the nodes are replica at least once, whereas

only 60.2% of the nodes are replica at least once when

R = 85%. Similarly, with R = 80%, 19.1% of the nodes

are responsible for the storage of half the data, whereas

it drops to 15.5% when R = 85%. This observed behav-

ior makes sense: increasing the regularity threshold R

decreases the number of nodes that are in the candidate

set. This does thus reduce the network load (fewer object

migrations are necessary), but also negatively impacts the

replication and storage load balancing.

The third observation we can make is that the Regular

replication strategy induces lower network usage, and

better balances the replication and storage loads than

the Most-available and Sticky most-available replica-

tion strategies. Tables I and II show that, using the two

traces considered in this performance study, it is possible

to configure the regularity threshold so that the Regular

strategy be less bandwidth consuming, and be better

at balancing the replication and storage load than the

Most-available and Sticky most-available strategies. For

instance, in the eDonkey trace: Regular with R = 85%

is better than Most-available and Sticky most-available.

The better network usage is easily explained by the fact

that, by design, the Regular strategy induces fewer object

migrations. The better balancing of both the storage

and replication loads is due to the fact that the set

of nodes participating in replica sets with the Sticky

most-available strategy is smaller than the set of nodes

participating in replica sets with the Regular strategy.

This phenomenon is clearly illustrated by values reported
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in the last column of the Tables. Using Regular with

R = 85%, 60.1% of the nodes are replica at least once,

whereas only 24.4% of the nodes are replica at least once

when using the Sticky most-available strategy.

As a conclusion, we can say that if bandwidth

consumption is not an issue, then the Anti-correlated

availability strategy is the best choice. If bandwidth

consumption is an issue (which, is considered the

common case [10]), the Regular strategy is the best

choice.

C. Scalability analysis

In this section, we assess the scalability of the Reg-

ular replication strategy. Using the eDonkey trace, we

performed experiments involving 1000, 5000, 50.000,

100.000 and 250.000 nodes, respectively. In all cases,

the regularity threshold R was set to 85%. We depict

the evolution, as a function of the number of nodes,

of the maximum bandwidth that is consumed per node

(Figure 8) and of the maximum number of objects that a

node stores (Figure 9). We see that these two metrics in-

crease very slowly when the number of nodes increases.

For instance, we observe that multiplying the size of the

system by 250 less than double the maximum bandwidth

consumed by a node and the maximum number of

objects that are stored by a node.
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Fig. 8: eDonkey: maximum bandwidth consumed per

node as a function of the number of nodes in the system.

V. RELATED WORK

Distributed Hash Tables (DHTs) (e.g. [1] [2]) have

established in the last decade as a practical and effective

approach to store and retrieve objects in a large and

dynamic network of nodes. Their underlying principle

relies on mapping (via variants of consistent hashing [7])

objects and nodes on a large numeric key-space, whose
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Fig. 9: eDonkey: maximum number of objects stored

by a node as a function of the number of nodes in the

system.

topology depends on the actual DHT implementation

(e.g. a ring for Chord [1] and Pastry [2], a d-dimensional

torus for CAN [22] and Tapestry [23]). The different

topology variants share that fact that the node in charge

of a stored object is the one whose position is the closest

to that of the object on the key-space.

To ensure availability of stored objects in case of node

failures, the first solutions introduced redundancy by

replicating a stored object on the k closest (online) nodes

on the DHT. This strategy is usually called leafset-based

replication [8], and was first embodied by DHash [3]

and Past [4]. This approach is captured by the Standard

replication strategy which we described in Section II-A:

a node in charge of an object replicates the latter on the

first k − 1 online successors on the ring.

Despite the fact that the Standard strategy ensures

high availability of stored objects despite node arrivals

and departures, it induces (possibly high) bandwidth

consumption to migrate copies of the objects to the

actual first k online successors on the ring. More flex-

ible replication strategies have then be proposed. In

RelaxDHT [17], an online node replicating an object

is allowed to remain a replica as long as it falls into

the first S ≥ k closest nodes. The location of the

replicas is maintained in the form of object metadata,

which are replicated and maintainted (via the Standard

strategy) on the first k online nodes, allowing to lookup

the actual object copies [16]. The Sticky replication

strategy presented in [11], and which we have described

in Section II-B, is a generalization of this approach: an

online node is allowed to remain a replica despite its

future higher distance on the ring.

In recenter years, more sophisticated strategies have
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been proposed to further limit the number of objects

migration by exploiting some knowledge about node

availability. The first solutions assumed roughly homo-

geneous availability patterns among nodes (e.g. [24]

[25]). Subsequent works have taken a finer control by

focusing on individual nodes’ availability [11] [15] [12].

In particular, in [11] the authors describe two replication

strategies which rely on predictors in order to place an

object copy on the most expected available nodes. These

two replication strategies correspond in our study to

the Most-available and Sticky most-available strategies,

which we have detailed respectively in Section II-C and

Section II-D. Finally, in a very recent work [12], the

authors propose the anti-correlated replication strategy

illustrated in Section II.

VI. CONCLUSION

Distributed Hash Tables (DHTs) provide a simple

distribute put/get abstraction upon which it is possible

to build efficient distributed storage systems. Object

replication is typically used to ensure object availability

in case of churn. Due to bandwidth costs incurred in

object migration, bandwidth remains the most important

and limited resource. In the last years, many works have

focused on designing replication strategies which better

utilize bandwidth. This has ranged from more flexible

replica placement strategies, to adaptations accounting

for average network and node metrics, and more recently

to exploiting knowledge of individual node availability

to guide replicas placement. We presented in this paper

a replication strategy which, instead of leveraging the

most available nodes, exploits the regularity connection

pattern exhibited by nodes. We have evaluated the ef-

fectiveness of our solution by comparing it with five

different existing replication strategies. Results show

that the regularity-based replication strategy dramatically

reduces bandwidth utilization and better balances the

replication and storage loads among nodes.
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