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Abstra
t: Network tra�
 model is a 
riti
al problem for urban appli
ation, mainly be
ause of its

diversity and node density. As wireless sensor network is highly 
on
erned with the development

of smart 
ities, 
areful 
onsideration to tra�
 model helps 
hoose appropriate proto
ols and adapt

network parameters to rea
h best performan
es on energy-laten
y tradeo�s. In this paper, we


ompare the performan
e of two o�-the-shelf medium a

ess 
ontrol proto
ols on two di�erent

kinds of tra�
 models, and then evaluate their appli
ation-end information delay and energy


onsumption while varying tra�
 parameters and node density. From the simulation results, we

highlight some limits indu
ed by node density, o

urren
e frequen
y and non-uniform 
hara
ters

of event-driven appli
ations. When it 
omes to real-time urban servi
es, a proto
ol sele
tion shall

really be taken into a

ount - even dynami
ally - with a spe
ial attention to energy-delay tradeo�.

To this end, we provide several insights on parking sensor networks.
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Modélisation du tra�
 et analyse de la performan
e des

réseaux de 
apteurs de stationnement

Résumé : Les réseaux de 
apteurs sans �l sont essentiels au développement des villes intelli-

gentes. Pour les étudier, les modèles de tra�
 employés sont 
ru
iaux pour prendre en 
ompte

les spé
i�
ités des appli
ations urbaines, ainsi que la diversité et la densité des noeuds. Dans


e travail, nous 
omparons les performan
es de deux proto
oles 
lassiques de 
ontr�le d'a

ès au

médium (MAC) sur deux modèles de tra�
 di�érents. Nous nous intéressons à leur performan
es

en termes d'e�
a
ité énergétique et de délai d'a
heminement de l'information en fon
tion de

l'intensité de l'a
tivité mesurée et de la densité du réseau. Nous mettons en éviden
e les limites

de pertinen
e de 
haque appro
he et en dérivons des 
onseils sur les paramètres à utiliser en

fon
tion de la situation ainsi que des perspe
tives vers des proto
oles s'adaptant aux 
onditions

réelles de l'a
tivité mesurée.

Mots-
lés : réseau de 
apteurs de stationnement, la modélisation du tra�
 de réseau, délai

des informations
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1 Introdu
tion

As the urban population is in
reasing it brings the e
onomi
 growth and the denser urban

mobility[22℄. The �rst to be a�e
ted is the tra�
. Thanks to the smartphone te
hnology, drivers


an get diverse urban information simply from mobile app or internet. Thus, the availability and

quality of urban information be
ome the most important 
riteria for 
ities. Two general types

of information are real-time and non real-time. The former is time-sensitive and tells 
urrent

status or up
oming events, for example, tra�
, publi
 transit, surveillan
e and so on. The latter

is time-insensitive and tells the timeless information, history, fore
ast or s
hedule, for example,

environmental monitoring, weather fore
ast, lo
al travel information and so on. The 
ontent of

information 
an be generated and maintained by government institutions, �rms, users or wireless

networked sensors. User-generated 
ontent is 
rowdsour
ed data whi
h enri
hes the information

sour
es at di�erent prospe
ts. Plenty of interesting information 
an also be shared a

ording to

users' sudden or periodi
 urban mobility. The published 
ontent 
ould, however, be outdated

or false be
ause of insu�
ient parti
ipants or mali
ious users, as well as limited to human's

observation. In view of this fa
t, wireless networked sensors help obtain more various types of

information and assure of the a

urate measurement. A

ording to information types, sensors

send updated information periodi
ally, on demand or burstingly. That is, a network pa
ket whi
h


onsists of 
ertain information, shall be treated with its 
orresponding priority so as to respe
t

an a

eptable information delay[26℄. Here, we are interested in the possible servi
es whi
h 
an be


arried out by networked sensors due to the in
reasing mobility need. Among whi
h, the tra�



ongestion is the greater thought at present and a huge per
ent of tra�
 jams are 
aused by

the vehi
les looking for parking spa
es. So far as urban drivers are 
on
erned, smart on-street

parking system assisted by networked sensors is needed to shorten the parking sear
h time and

the parking distan
e from destinations.

Parking sensor network is formed by di�erent types of networked sensors, whi
h 
an dete
t

vehi
le's presen
e. Sensors whi
h 
olle
t data 24 hours a day, allow us to follow up the 
ongestion

problem anytime. Two 
ategories of sensing methods are stationary and mobile. Stationary

sensors normally �xed on the pavement, 
urb, parking meter, or above parking spa
es 
an dete
t

parking o

upan
y within the sensing range. Mobile sensors mounted on vehi
les 
an do likewise

in movement, a

ordingly the dete
tion range is larger yet mu
h less rea
tive. For this reason,

muni
ipalities tends to install thousands of on-site parking sensors in the 
ity 
entre, and, our

studies also fo
us on this type of sensor networks.

Parking sensor networks as the general urban sensor network has the following problems to

ta
kle:

Link quality Parking sensors are installed along the 
urb so that the wireless signal is easily

a�e
ted by the 
hanging urban environment. By now, link quality is normally assessed by several

indi
ators in a �eld test. In view of sto
hasti
ally varying link status, periodi
 tra�
 model is

often applied in urban appli
ation to inform gateways of sensors' existen
es.

Node density Sensor deployment a�e
ts the medium a

ess method and network load. Owing

to the la
k of multiple dete
tion, parking sensors are merely gotten done in demar
ated spa
es,

to wit, one vehi
le dete
tion sensor per spa
e. By assuming that N parking sensors are served

by one gateway, the distan
e between any two parking sensors si and sj where 1 ≤ i, j ≤ N
will satisfy ‖si − sj‖ ≥ l whenever i 6= j. However, the 
ommuni
ation range of ea
h gateway is

bounded so that N will not be arbitrarily large.

RR n° 8480



4 T. Lin & H. Rivano & F. Le Mouël

Tra�
 variation The design of network proto
ols shall be tailor-made for the need of net-

worked sensors whi
h is appli
ation-oriented and 
an be des
ribed by tra�
 models. If the

sele
ted appli
ation demands a real-time servi
e from the network, proto
ols must be rea
tive

enough to respe
t the minimum laten
y. In smart parking appli
ation, the information delay is

quite stri
t. Three mainstream tra�
 models are request, event and time-driven. Request-driven

is irrelevant for smart parking appli
ation sin
e 
ontinuous re
ording is required. Time-driven

appli
ation whi
h generates periodi
 tra�
 is often used in testing the performan
e of network

proto
ols be
ause of its weak dependen
e on the environment. Event-driven appli
ation is knotty

due to its variety on di�erent types of observed events.

Our network stru
ture 
omprises three 
omponents: parking sensor, gateway and mobile

vehi
le. Parking sensor is the measurement point, to wit the sour
e of information, and stationary

just like the parking spa
e it is wat
hing. Gateway plays two roles whi
h are to aggregate

the information form parking sensors and disseminate the aggregated information to vehi
les

a

ording to their respe
tive interests. Mobile vehi
le is the network parti
ipant with an interest

of parking spa
es in the vi
inity of a given destination. To 
arry out a smart parking servi
e,

diverse appli
ation models between the three 
omponents shall be dis
ussed in order to design

adapted network proto
ols. In this report, the appli
ation models between parking sensors and

gateways are studied be
ause the deployment of sensor nodes and the design of network will be


riti
al for the subsequent information dissemination. Our body of work is to simulate the tra�


in�uen
e on stationary WSN with the aim of ameliorating the design of network ar
hite
ture

in order to a
hieve its best performan
e in an urban environment and redu
e the urban tra�
.

The problem we are addressing is the impa
t of urban parking density, event frequen
y and

non-uniform tra�
 parameters to the real-time servi
e 
onstraints. We veri�ed the impa
t of

tra�
 variation on event and time driven appli
ations through �xed and dynami
 bandwidth

allo
ations or through di�erent number of sensors. Our 
ontributions are summarized as follows:

1. Modeling of event- and time-driven urban smart parking appli
ations by observing vehi
le's

arrival and departure.

2. Energy and delay performan
e evaluation of event- and time-driven appli
ations through

extensive experiments on urban s
enarios, helps to �nd out the network limit with tra�


variation in two typi
al bandwidth allo
ation proto
ols.

3. Engineering insights to streamline the WSN 
onstru
tion of urban smart parking appli
a-

tions, help network designers sele
t appli
able proto
ols and optimize the network perfor-

man
e.

2 Ba
kground and related works

Smart on-street parking appli
ation has re
eived a lot of attention in re
ent years. Its main

missions are to 
olle
t the real-time parking o

upan
y information and to disseminate these

information to drivers simply through smart parking app. Two types of 
olle
tion methods are

mobile and stationary. The former is to take advantage of vehi
le's mobility to 
olle
t informa-

tion along the route. In whi
h, the most e
onomi
al is 
rowd-based mobile appli
ation. But

the 
rowdsour
ed information is frequently unavailable, outdated or false be
ause of insu�
ient

parti
ipants, freeriders and mali
ious users[6, 2, 10, 13℄. Therefore, it is obvious that 
rowdsour
-

ing parking assistan
e system 
an not really provide a reliable real-time time servi
e required

by muni
ipalities[19℄. Alternatively, an ultrasoni
 sensor 
an be side-mounted on a taxi
ab or

bus so as to dete
t an on-street parking spot map. For example, the ParkNet system in San

Inria
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Fran
is
o[17℄, 
olle
ts data with the lo
ation information from GPS re
eiver and then transmit it

over a 
ellular uplink every 60 se
onds to the 
entral server. Su
h a mobile parking sensor system

requires mu
h less installation, yet needs a longer average inter-polling time, to wit, 25 minutes

for 80% of the 
ells in busier downtown area with only 300 
abs. Stationary 
olle
tion method is

to install on-site vehi
le dete
tion sensors[20℄ so as to monitor the o

upan
y status of parking

spa
es. Based on this, large-s
ale road-side parking sensor network has been implemented in

many 
ities.

SFpark proje
t[23℄ is the earliest muni
ipal smart parking proje
t whi
h adopted 8200 station-

ary in-ground parking sensors and deployed a large-s
ale of multi-hop parking sensor networks

in the downtown area of San Fran
is
o. Ea
h parking sensor, in 
ommuni
ation with nearby

relays, re
ords when vehi
les 
ome and leave. The information delay is 
al
ulated by how long it

takes the sensor network to pro
ess and sends out a event. 85% of events 
an be re
eived within

60 se
onds. Ea
h sensor sends a message everyday even if the o

upan
y status doesn't 
hange.

Also SFpark applies a dynami
 pri
ing poli
y in order to keep a 75% o

upan
y rate in any

parking blo
ks. LA Express park[14℄ adopts a multi-hop parking sensor network in Los Angeles.

In addition, the 
ommuni
ation module uses Dust Networks' TSMP proto
ol [18, 24℄, designed

to operate on multiple 
hannels. Physi
ally the wireless 
hannel is divided up in time and fre-

quen
y, and ea
h resulting unit of the 
hannel is assigned to satisfy data �ow requirements,

mainly event-driven. Similarly, Fastprk[8℄ proje
t also installed stationary in-ground parking

sensors in Bar
elona and follows the Zigbee 
erti�
ation. Parking sensors send a message when

the o

upan
y status 
hanges and every 20 minutes to inform the gateway their existen
es. Ni
e

park is one appli
ation of Conne
ted Boulevard proje
t in Ni
e. Parking sensors send a message

with update information every 60 se
onds or while the o

upan
y status 
hanges. Thus the

parking system is updated every 10 se
onds and drivers pays their parking fee by se
ond. Ea
h

sensor 
an work up to 8 years. Beijing 
ity also implemented a smart parking system. Parking

sensors dete
t the vehi
le's presen
e every 8 se
onds and then transmit the information to the


entral server. The in-ground parking sensor 
an work for 5 years without repla
ing battery.

The disadvantage of in-ground parking sensors is the installation and the la
k of multiple dete
-

tion, nor the dimension of parked vehi
le. That is, only demar
ated parking area is supported.

Conversely ParkNet 
an work on the dete
tion of demar
ated and un-demar
ated parking area

if the parking map is known in advan
ed.

Parking sensor network is a spe
ialized form of WSN and 
ertainly inherits its problems,

viz energy-e�
ien
y, laten
y and throughput. These indi
ators are all related to the design of

network proto
ols[3, 29, 11, 1, 15, 21℄. The tasks of parking sensor networks are to get real-time

information of parking spa
e availability and to have good resilien
e to adapt the tra�
 variation.

Thus, the laten
y takes an utmost important role among all the fa
tors. To optimize network

parameters for the best performan
e of sensor networks, the network tra�
 and phenomenon

are relevant. The measurement of vehi
le arrival and departure, the key fa
tor of generating

network tra�
, is one body two sides, either vehi
les equipped with GPS re
eiver know their

own lo
ations for mobile dete
tion, or install external on-site sensors for stationary dete
tion.

Vehi
le arrival and departure have been studied in several kinds of real-time urban events, for

example, publi
 transit vehi
le real-time position, tra�
 signal 
ontrol a

ording tra�
 �ow and

some 
losed 
ar parks[12, 30, 28℄. As previously mentioned, among three types of tra�
 models,

request-driven does not �x the need of muni
ipalities nor the quality of servi
e[16℄ required for

real-time appli
ation. Hen
e, a 
a
hing platform is preferred to build on the gateway so as to store

the 
urrent parking o

upan
y information and response rapidly to parking queries from nearby

drivers[5℄. Also, it helps redu
e the system delay time if applying 
entralized or de
entralized

dynami
 parking resour
e allo
ation[9℄. Sin
e the arrival and departure are assumed Poisson

distributed, the o

upan
y rate of the parking system 
an be analyzed by Markov pro
ess[4℄.

RR n° 8480
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3 Network tra�
 model

The underlying parameters for simulating the network tra�
 are start time, duration, interval,

pa
ket size and the pro
edure. In urban sensor network, sensors are often stationary to monitor


ertain events, and then
e the pa
ket transmission shall always happen and never end. In other

words, the key point of modeling an event-driven appli
ation will be to �nd an appropriate

distribution to de�ne the tra�
 interval, viz inter-event interval. Next, we present the modeling

of the event o

urren
e and the de�nition of information delay with respe
t to urban smart

parking appli
ations.

3.1 Vehi
le's arrival and departure

In parking sensor networks, the main observed events are vehi
les' arrivals and departures. Also,

ea
h vehi
le arrival a

ompanies exa
t one departure prior to next arrival. To model it, we �rst

look at the event o

urren
e sequen
e on one parking sensor. We suppose ea
h parking sensor

is pre
ise enough and provides merely two status, namely o

upied and va
ant (�gure 1). The

interval from vehi
le's arrival to departure is so-
alled o

upan
y time Tp,i during whi
h sensor

i dete
ts vehi
le's presen
e. Likewise, the interval from one's departure to next arrival is va
ant

time Tv,i during whi
h sensor i dete
ts nothing. Both Tp,i and Tv,i proper shall be des
ribed by

a �tting distribution in order to approximate their randomness. By assuming that Tp,i and Tv,i

are both exponentially distributed with rate parameters λi and µi, we have:

Figure 1: O

upan
y status of one parking sensor over time

� The probability of 
hoosing a o

upan
y time X 
an be 
al
ulated by Pr(Tp,i = X) =
λie

−λiX
and the mean is E[Tp,i] = λ−1

i .

� The probability of 
hoosing a va
ant time Y 
an be 
al
ulated by Pr(Tv,i = Y ) = µie
−µiY

and the mean is E[Tv,i] = µ−1
i .

After applying the exponential distribution, the timeline of sensor i's parking status is shown
in �gure 2. The o

upied period presents Tp,i and the rest Tv,i. The average interval of ve-

hi
le's arrival will be Tp,i + Tv,i and the average o

upan
y rate will be Tp,i/(Tp,i + Tv,i) =
λ−1
i /(λ−1

i + µ−1
i ). If λ−1

i > µ−1
i , the average o

upan
y rate will be greater than 50%. Expo-

nential distribution is one shape of Weibull so that the tra�
 interval 
an also be reshaped if

needed. Besides, bursty tra�
 
onsidered part of event-driven with Pareto distribution[25℄ is not

dis
ussed in our studies as one event 
an only be dete
ted by one parking sensor at a time. In a

business area, the parking status varies fast be
ause of the parking time limit (λi is small) and

the higher hot spot parking demand (µi is small).

Suppose that N networked parking sensors are installed in a distri
t and form one subnet.

These parking sensors 
an be installed along a street or in a 
rossroads. Ea
h parking spa
e

i has average o

upied and va
ant periods λ−1
i and µ−1

i . Thus, the new parameters for global

o

upied and va
ant time will be λ =
∑N

i=1 λi and µ =
∑N

i=1 µi su
h that the global parking

o

upan
y rate will be λ−1/(λ−1 +µ−1). In �gure 3, it shows the time-varying o

upan
y rate's

timeline of 24 parking sensors in a day while λ = µ.

Inria
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3.2 Event-driven tra�


The event o

urren
e frequen
y has a great impa
t on event-driven appli
ations. Sin
e ea
h

sensor node sends a pa
ket while one vehi
le arrives and another when it leaves, assume vehi
le

arrivals and departures are Possion distributed with an average arrival and departure rates of α
and β vehi
les per se
ond. Thus, the generated tra�
 will be α+ β per se
ond. For one parking

spa
e (N = 1), the relation between (α + β) and (λ + µ)−1
is shown in �gure 4. In whi
h, it is

obvious that the produ
t of (α+ β) and (λ+ µ)−1
is a 
onstant.

(α+ β)(λ + µ)−1 = k (1)

Sin
e there are N limited parking spa
es, it means that the number of parked vehi
les np

in this area is between 0 and N . Assume the queueing model in this network with N parking

sensors 
an be des
ribed by the birth and death pro
ess, one 
ase of 
ontinuous-time Markov

pro
ess, with a M/M/1/K queue, i.e., in�nite input and output, 1 system and bu�er size K. The

probability of j parked vehi
les is de�ned as Pj(t). When a birth happens, the number of parked

vehi
les in
reases 1 with a birth rate αj from state j to j + 1 where αj = α for 0 ≤ j < N .

When a death happens, the number of parked vehi
les des
reases 1 with a death rate βj from

state j to j − 1 where βj = β for 0 < j ≤ N . The probability of zero parked vehi
le P0(t) 
an
only be rea
hed by the transition from state one to zero so that αPo(t) = βP1(t). Similarly, the

probability of i parked vehi
les Pi(t) in this area 
an be rea
hed by the transition from the states

i − 1 and i + 1 to i so that αPi(t) = βPi+1(t) and (α + β)Pi(t) = αPi−1(t) + βPi+1(t). Let ρ
equals to

α
β
where β > α, then Pi(t) = ρPi−1(t) = ρiP0(t) where P0(t) =

1−ρ
1−ρN+1 . The average

number of parked vehi
les np in this area 
an be 
al
ulated by equations 2 and 3.

The number of total parking spa
es multiplied by the o

upan
y rate is the average number

of parked vehi
les:

np = N ∗
λ−1

λ−1 + µ−1
(2)

The expe
tation value of average parked vehi
les stands for the average number of parked

vehi
les:

np =

N
∑

k=0

kPk(t) =

N
∑

k=0

kρkP0(t) =
1

1− ρ
−

1 +NρN+1

1− ρN+1
(3)

A

ording to Little's formula, the average number of parked vehi
les np is equal to the produ
t

of vehi
le arrival rate α and average parking time of N vehi
les λ−1
, i.e., np = αλ−1

. Hen
e, λ
and µ 
an be 
al
ulated from the given α and β by equations 4 and 5, and vi
e versa.

λ−1 =
np

α
=

1

α
(

1

1 − ρ
−

1 +NρN+1

1− ρN+1
) =

1

α
(

β

β − α
−

βN+1 +NαN+1

βN+1 − αN+1
) (4)

RR n° 8480
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Figure 6: The 
al
ulation of information de-

lay for event- and time-driven appli
ations

(a) 12 nodes (b) 24 nodes (c) 36 nodes (d) 48 nodes

(e) 60 nodes (f) 72 nodes (g) 84 nodes (h) 96 nodes

gateway sensor

Figure 7: Topologies of di�erent numbers

of sensors. In
rease the node density by

adding one more line or one more side of


urb parking.

µ−1 = Nα−1 − λ−1
(5)

Here λ and µ only stand for the global parameters of all the parked vehi
les in the system.

If we suppose all the parking spa
es are uniform, ea
h parking spa
e has the same λi =
λ
N

and

µi =
µ
N

for 1 ≤ i ≤ N . But in real life, ea
h parking spa
e has di�erent preferen
es a

ording

to their relative positions or 
ommer
ial interests, for example, sensors have respe
tive average

parking and idle time a

ording to the lo
al 
ommer
ial a
tivities. That is to say, for any given

λ and µ, the individual parameters λi and µi of ea
h parking spa
e 
an not be obtained. But

these parameters will a�e
t the performan
e a

ording the proto
ols' properties.

3.3 Periodi
/Time-driven tra�


On the 
ontrary, time-driven appli
ation is only a�e
ted by the tra�
 interval ω instead of

o

urren
e frequen
y. The amount of generated pa
kets is inversely proportional to the tra�


interval ω, shown in �gure 5. While using periodi
 tra�
 model, the amount of network tra�


is una�e
ted by the sensory information. It simply sends out a pa
ket with the 
urrent time-

stamped status when the time is up.

3.4 De�nition of information delay

The main goal of parking sensor networks is to provide a real-time urban servi
e to drivers. The

prin
ipal performan
e indi
ator whi
h we look at, therefore, is the information delay, de�ned as

the required time for knowing a 
hanged o

upan
y status of a parking sensor. Information delay

is the sum of sensing duty-
y
le, appli
ation delay, end-to-end delay and queuing delay. We have

negle
ted the sensing duty 
y
le whi
h is normally quite short. In event-driven appli
ation, ea
h

sensor sends out an updated information at on
e when dete
ting any event, namely, appli
ation

delay is almost zero. Time-driven appli
ation is subje
t to the tra�
 interval so that an appli-


ation delay shall be added up. In �gure 6, we see that a longer tra�
 interval de
reases the

tra�
 intensity but also 
auses a longer information delay whi
h is not preferable for real-time

parking servi
es.
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Table 1: Simulation parameters

Transmit power output 3 dBm Re
eive sensitivity -110 dBm Data rate 250 kbps

Ptx 65.7 mW Prx 56.5 mW Pcs 55.8 mW Poff 30 µW Eradio.switch 0.16425mJ

Transmission range 50m Simulation time: 86400 se
onds Sensor node number: 12 - 96

Appli
ation parameters: Event-driven - λ & µ, Time-driven - ω Pa
ket size 84 bytes

MAC: duty-
y
led �xed & dynami
 bandwidth allo
ation, slot duration = 0.1s, retransmission

and piggyba
k enabled.

4 Urban smart parking appli
ation experiments with real-

time servi
e 
onstraints

Bandwidth allo
ation 
an be �xed or dynami
. In this work we evaluate two o�-the-shelf medium

a

ess 
ontrol proto
ols: duty-
y
led TDMA for �xed bandwidth allo
ation and duty-
y
led

CSMA for dynami
 one. Our simulations, performed with the WSNet simulator[27℄ , use the

topologies depi
ted in �gure 7 with various node density. We evaluate the required energy


onsumption and the information delay of our tra�
 models in di�erent s
enarios. The distan
e

between two adja
ent sensors on the same road-side is 5 meters. The sensors in the vi
inity of

gateway are 10 meters away. That is to say, ‖si − sj‖ ≥ l = 5 whenever i 6= j
Some simulation parameters are indi
ated in table 1, in whi
h, ea
h parking sensor 
an rea
h

the gateway through one hop. Two types of bandwidth allo
ations are used to evaluate the

impa
t of event-driven model 
ompared with time-driven one. We 
hoose to use o�-the-shelf

medium a

ess 
ontrol proto
ols, so that we 
an keep the obje
tivity in our simulation result and

analysis without any ex
eption of a parti
ular proto
ol. Duty-
y
led TDMA is used for �xed

bandwidth allo
ation, and duty-
y
led CSMA for dynami
 bandwidth allo
ation

1

.

4.1 Impa
t of node density

4.1.1 Fixed bandwidth allo
ation

Considering the sensor network is often bandwidth-limited, in single 
hannel s
enario, the only

medium resour
e is time division. Ea
h node is pre-assigned to one partition of medium resour
e

in order to transmit their pa
kets. While the network 
oordinator does not know in advan
e

the tra�
 model and geolo
ation of ea
h node, it pre-assigns an equal partition to nodes in the

subnet. If a node has no pa
kets to send in its term, the others still 
an not seize this o

asion

to send their pa
kets.

s0 s1 s2 ....... sN ina
tive

←−������ duty 
y
le ������−→

Figure 8: Duty 
y
le of �xed bandwidth allo
ation

The duty 
y
le 
omprises an ina
tive period and N + 1 time slots for N parking sensors and

gateway, shown in �gure 8. Ea
h sensor 
an only send its pa
ket on its pre-assigned time slot. By

assuming the ina
tive period = 0, the maximum 
apa
ity will be the re
ipro
al of slot duration

si, viz 10 pa
kets per se
ond, and the duration of duty 
y
le 
an be 
al
ulated by Tduty.cycle =

1

Three points are not 
onsidered in our simulations that are the energy 
onsumption of �rst syn
hronization,

hourly 
hanging tra�
 parameters, and the time-varying network throughput 
aused by the unstable link quality.

Thus, all the retransmissions 
ome merely of pa
ket 
ollision. The hourly 
hanging tra�
 parameters λi and µi


an be obtained from the existing muni
ipal parking payment information.
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(N + 1) ∗ si = 0.1(N + 1). If the pa
ket transmission is failed on the 
urrent time slot, the next

one will be in 0.1(N + 1) se
onds. To minimize the idle listening period, ea
h transmitter sends

a very small reservation bea
on message before starting the data transmission. If the reservation

fails (the re
eiver is unrea
hable), the transmitter will put the pa
ket into the queue, turn o�

its radio and wait for the next time slot. Instead of wasting energy to do a vain transmission,

sensor nodes prefer to evaluate the re
eiver's availability through these very small bea
ons. The

advantages of �xed bandwidth allo
ation are the mu
h less pa
ket 
ollision and lower energy


onsumption sin
e nodes only send bea
ons in 
ertain slots. If sensor nodes' tra�
 model is

given and stati
, �xed bandwidth allo
ation 
an optimize the resour
e assignment in order to

rea
h a better performan
e. The drawba
ks are that many time slots are wasted so that a longer

delay time is 
aused, also the urban tra�
 model is dynami
 and time-variant. Sin
e ea
h node

in
luded the gateway has its 
orresponding time slot, that is, the gateway needs to know the

amount of nodes in its subnet in order to allo
ate the resour
e. If there is a new node whi
h

intends to join this network, the gateway will have to reallo
ate the resour
e while there is no

enough time slots.

Figures 9 and 10 shows the per-node energy 
onsumption using time- and event-driven net-

work tra�
 while the number of sensors varies. It is obvious that the per-node energy 
on-

sumption is elevated while the node density in
reases, even in
reasingly signi�
ant when the

tra�
 intensity is high((λ + µ)−1
or ω is small). If the tra�
 intensity is not that high, the

energy 
onsumption is elevated in the beginning on grounds of additional 
ontrol pa
kets and

then stabilized. But when it 
omes to information delay, the situation is not the same. Figure 11

shows the information delay of time-driven model is merely ω-related. Figure 12 shows that the

information is proportional to the number of sensors be
ause of the duty 
y
le ampli�ed with

the number of nodes N .

4.1.2 Dynami
 bandwidth allo
ation

s0 ina
tive


ontention data transmission

←−������� duty 
y
le �������−→

Figure 13: Duty 
y
le of dynami
 bandwidth allo
ation

Dynami
 bandwidth allo
ation uses 
ontention-based medium a

ess 
ontrol due to the in�ex-

ible resour
e allo
ation previously mentioned. The prin
iple is that the node gets its partition of
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network resour
e when it asks for. If more than two nodes de
lare their demands, a 
ompetition

will be held to 
hoose who is the 
urrent transmitter. Nodes who lose the 
ompetition will go to

sleep and wait for next resour
e allo
ation. If the 
ompetition method is not good enough, the

pa
ket 
ollision will happen frequently and drop the network performan
e. To do that, nodes

listen to the 
hannel to know if the 
hannel is busy before sending a pa
ket. If the 
hannel is

busy, nodes will put the pa
ket into their queues and wait for next 
ompetition. Otherwise,

nodes will send out a bea
on message with the reservation information. If the desired re
eiver

gets this pa
ket, it will reply an a
knowledgment and then a transmission reservation is done.

Also 
onsidering the bandwidth is limited, the network resour
e is also time-division.

So as to redu
e the idle listening, a duty 
y
le is also applied and 
ontains the 
ontention,

data transmission and ina
tive periods, shwon in �gure 13. The advantages of dynami
 resour
e

allo
ation are the better use of network resour
e and a short network delay. The drawba
ks is

the inevitable pa
ket 
ollision whi
h 
auses arbitrarily high energy 
onsumption and laten
y on

grounds of endless 
ontentions triggered by high node density. By assuming the ina
tive period

is equal to zero and the slot duration is 0.1 se
onds, the maximum 
apa
ity will be the re
ipro
al

of slot duration, viz 10 pa
kets per se
ond and the duration of duty 
y
le is 0.1 se
onds. If there

is a new node whi
h intends to join this network, it will just join the 
ompetition and in
rease

the pa
ket 
ollision rate.

Figure 14 and 15 show the per-node energy 
onsumption of time- and event-driven models

while N varies. Unlike the previous 
ase, the elevated energy 
onsumption is mainly provoked

by the in
reasing 
ompetitors during ea
h 
ontention period. While ω = 60s and N = 96,
the energy 
onsumption de
lines, inasmu
h as ex
essive pa
ket 
ollisions 
ause no su

essful

transmission reservation. Figure 16 shows the information delay of time-driven model whi
h is

ω-related as well. After N is greater than 60, the information delay is also arbitrarily large due

to the very high pa
ket 
ollision rate. However, in event-driven model, the information delay is

also proportional to the duty 
y
le. The di�eren
e is that the duty 
y
le of dynami
 bandwidth

allo
ation does not vary with N , thus ea
h node tries to send its pa
kets within κ times of duty


y
le where κ is a 
onstant. The more transmission demands, the greater value of κ, shown in

�gure 17. Even the average information delay is just a little bit higher than the half of duty


y
le, the global information delay 
an still vary to 5 times of duty 
y
le. Hen
e, 0.5 se
onds is


onsidered as the guaranteed maximum information delay.

4.2 Impa
t of tra�
 intensity

The simulation we ran in this se
tion used the topology in �gure 7(b) with 24 nodes.
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Figure 20: Information

delay - dynami
 band-

width allo
ation - time-

driven with varied λ, µ
and ω

Figure 21: Information

delay - �xed bandwidth

allo
ation - time-driven

with varied λ, µ and ω

Figure 22: Information

delay - Fixed bandwidth

allo
ation - non-uniform

- (λ+µ)−1 = 1.667 - ω =
60s

Figure 23: Information

delay - Fixed bandwidth

allo
ation - non-uniform

- (λ+ µ)−1 = 8.33 - ω =
60s

Figure 24: Information

delay - Fixed bandwidth

allo
ation - non-uniform

- (λ+µ)−1 = 1.667 - ω =
300s

Figure 25: Information

delay - Fixed bandwidth

allo
ation - non-uniform

- (λ+ µ)−1 = 8.33 - ω =
300s

Figure 26: Information

delay - Dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
1.667 - ω = 60s

Figure 27: Information

delay - Dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
8.33 - ω = 60s

Figure 28: Information

delay - Dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
1.667 - ω = 300s

Figure 29: Information

delay - Dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
8.33 - ω = 300s

4.2.1 Periodi
/time-driven tra�
 parameter

Sin
e periodi
 tra�
 is less a�e
ted by the bandwidth allo
ation method and strongly related to

the tra�
 interval ω, �gures 18 and 19 show the relation between tra�
 interval ω and per-node

energy 
onsumption. The periodi
 tra�
 is equivalent to 
onstant bit rate so that the tra�


is known and uniform among all sensor nodes. Hen
e the deviation of 
onsumed energy is not

apparent. However, it is obvious that the 
onsumed energy is extremely low while ω ≥ 1200. In
other words, the information delay whi
h is proportional to 1200 will not be a

eptable for real-

time urban servi
e. But it is interesting to assign a periodi
 tra�
 with a long interval on sensor

nodes simply to inform gateways of their existen
es and 
urrent battery status. Figures 20 and 21

show the information delay in fun
tion and (λ+ µ)−1
and ω. Note that in periodi
/time-driven

appli
ation, sensor veri�es the o

upan
y status every ω se
ond and then sends a pa
ket with
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hange and N = 24 un-
der �xed bandwidth al-

lo
ation

the sensed information to gateways. Thus, if sensor 
hanges its o

upan
y more than two times

in ω se
onds, the updated information will not be re
orded anywhere and the 
urrent status

will also be less antique. When (λi + µi)
−1 > ω, the information delay time is proportional

to

ω
2 , otherwise, 2(λi + µi)

−1
. The bandwidth allo
ation methods make no di�eren
e to the

information delay.

In �gures 22 and 23, we see that when ω is 60 se
onds, the variation of (λi+µi)
−1

only a�e
ts

the amount of pa
kets, the maximum and average information, however, are not a�e
ted at all.

Therefore, when ω is 300 se
onds, (λi + µi)
−1

does a�e
t the average information. In �gures 24

and 25, the e�e
t of (λi + µi)
−1

is obvious. The information delay of pa
kets from nodes 1-9 is

mu
h shorter than the others. That is be
ause their tra�
 parameters are more a
tive than the

period interval, namely (λi+µi)
−1 ≪ ω for 1 ≤ i ≤ 9. In addition, in �gures 23 and 25, the pa
ket

number is redu
ed as the node id in
reases. Take dynami
 bandwidth allo
ation to substitute

the �xed one and see the results in �gures 26-29. In this way, some updated information will be

missed if the sensor does not store it into the bu�er. As previously mentioned, neither bandwidth

allo
ation method a�e
ts the performan
e of time-driven appli
ation.

4.2.2 Event-driven tra�
 parameters

Besides node density, the impa
t of tra�
 variation on energy 
onsumption and information delay

is also important. Figures 30 and 31 shows the per-node energy 
onsumption when the tra�


parameters vary under �xed and dynami
 bandwidth allo
ations. Compared with �gure 18

and 19, we see that the 
onsumed energy deviation is 
aused by the tra�
 di�eren
e among

sensor nodes, in parti
ular in the �xed bandwidth allo
ation. That is be
ause �xed bandwidth

allo
ation is more sus
eptible to network tra�
. Similarly, the average information delay in

�gures 32 and 33 also shows a higher deviation in �xed bandwidth allo
ation.

To explain this phenomenon, we 
ompare the information delay with uniform and non-uniform

parameters. In �gure 34 and 35, (λ + µ)−1 = 1.667. By assuming all the N parking spa
es are

uniform, λi = λ
N

and µi = µ
N

for 1 ≤ i ≤ N . The uniform simulation result is shown in

�gure 34. If the N parking spa
es are non-uniform, set λi ≤ λj and µi ≤ µj for i ≤ j su
h

that (
∑N

i=1 λi +
∑N

i=1 µi)
−1 = (λ + µ)−1 = 1.667. Then in �gure 35, we see that some nodes

whi
h have a smaller (λi +µi)
−1

have to transmit more pa
kets but 
an not have more assigned

time-slots so that a longer information delay is provoked.

On the 
ontrary, apply the same tra�
 parameters in dynami
 bandwidth allo
ation and


ompare the results in �gures 36 and 37. It is obvious that the tra�
 variation does not a�e
t

the information laten
y in dynami
 bandwidth allo
ation, as well as (λ+ µ)−1 = 8.333 in �gure
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38 and 39.

Even enlarge the value of (λ + µ)−1
to 50 with respe
tive di�erent λi and µi values, it 
an

still be seen that node 1 and 2 in �gure 40 have several pa
kets with a longer information delay

but not in �grue 41. It means even the network resour
e is adequate for all generated pa
kets,

an in�exible allo
ation method 
an still 
ollapse the network performan
e.

Figure 34: Information

delay - �xed bandwidth

allo
ation - uniform -

(λ+ µ)−1 = 1.667

Figure 35: Informa-

tion delay - �xed band-

width allo
ation - non-

uniform - (λ + µ)−1 =
1.667

Figure 36: Information

delay - dynami
 band-

width allo
ation - uni-

form - (λ + µ)−1 =
1.667

Figure 37: Information

delay - dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
1.667

Figure 38: Informa-

tion delay - �xed band-

width allo
ation - non-

uniform - (λ + µ)−1 =
8.333

Figure 39: Information

delay - dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
8.333

Figure 40: Informa-

tion delay - �xed band-

width allo
ation - non-

uniform - (λ + µ)−1 =
50

Figure 41: Information

delay - dynami
 band-

width allo
ation - non-

uniform - (λ + µ)−1 =
50

4.3 Multiple hop

Table 2: Transmission power at 2 hops[7℄

Transmit power output: 0 dBm PTX : 48 mW

The transmission range of sensor nodes is proportational to its transmit power output, as well

as the power 
onsumption per unit of time. While the transmission range is redu
ed, sensor node


ould be out of the 
ommuni
ation range of the gateway and then 
ould only send out its pa
kets

via its neighbors. The simulation results in �gure 42-53 use a lower transmission power, shown

in table 2. Here we �rst look at the �xed bandwidth allo
ation. In �gures 42-44, we see that

information delay for nodes, whi
h are two hops far away, is in
reased by one more duty-
y
le

duration. But if the tra�
 parameters are non-uniform, the information delay 
an be ampli�ed

on 
ertain nodes due to the un�exible bandwidth allo
ation, shown in �gures 45-47. Also, if the

further nodes and their relays (nodes 1-5) both have a lot of pa
kets to send, the delay time will

be even more severe.
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Figure 42: Information delay -

Fixed bandwidth allo
ation - uni-

form - (λ+µ)−1 = 1.667 - 2 hops

Figure 43: Information delay -

Fixed bandwidth allo
ation - uni-

form - (λ+ µ)−1 = 8.33 - 2 hops

Figure 44: Information delay -

Fixed bandwidth allo
ation - uni-

form - (λ+ µ)−1 = 50 - 2 hops

Figure 45: Information delay

- Fixed bandwidth allo
ation -

non-uniform - (λ+µ)−1 = 1.667 -

2 hops - (λi+µi)
−1

≤ (λj+µj)
−1

when i ≤ j

Figure 46: Information delay

- Fixed bandwidth allo
ation -

non-uniform - (λ+ µ)−1 = 8.33 -

2 hops - (λi+µi)
−1

≤ (λj+µj)
−1

when i ≤ j

Figure 47: Information delay

- Fixed bandwidth allo
ation -

non-uniform - (λ+ µ)−1 = 50 - 2

hops - (λi + µi)
−1

≤ (λj + µj)
−1

when i ≤ j

Figure 48: Information delay -

Dynami
 bandwidth allo
ation -

uniform - (λ + µ)−1 = 1.667 - 2

hops

Figure 49: Information delay -

Dynami
 bandwidth allo
ation -

uniform - (λ + µ)−1 = 8.33 - 2

hops

Figure 50: Information delay -

Dynami
 bandwidth allo
ation -

uniform - (λ+µ)−1 = 50 - 2 hops

Figure 51: Information delay -

Dynami
 bandwidth allo
ation -

non-uniform - (λ+µ)−1 = 1.667 -

2 hops - (λi+µi)
−1

≤ (λj+µj)
−1

when i ≤ j

Figure 52: Information delay -

Dynami
 bandwidth allo
ation -

non-uniform - (λ+ µ)−1 = 8.33 -

2 hops - (λi+µi)
−1

≤ (λj+µj)
−1

when i ≤ j

Figure 53: Information delay -

Dynami
 bandwidth allo
ation -

non-uniform - (λ+ µ)−1 = 50 - 2

hops - (λi + µi)
−1

≤ (λj + µj)
−1

when i ≤ j
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Figure 54: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
1.667 - ω = 60s - 2 hops

Figure 55: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
8.33 - ω = 60s - 2 hops

Figure 56: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
50 - ω = 60s - 2 hops

Figure 57: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
1.667 - ω = 300s - 2 hops

Figure 58: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
8.33 - ω = 300s - 2 hops

Figure 59: Information delay -

Fixed/Dynami
 bandwidth allo-


ation - non-uniform - (λ+µ)−1 =
50 - ω = 300s - 2 hops

Now we observe the same s
enario in dynami
 bandwidth allo
ation. In �gures 48-50, these

further nodes all have a longer information delay as well as in previous paragraph. While apply-

ing a non-uniform tra�
 parameters, the delay time in �gures 51-53. In terms of �xed bandwidth

allo
ation, dynami
 bandwidth allo
ation adaptes mu
h better to the variation of tra�
 param-

eters. But we 
an still see some pa
kets from nodes 1-5 have a slightly longer delay whi
h are


aused by the 
ompetitive area and hidden terminal problem.

Multiple hop prolongs the information delay whi
hever appli
ation model is applied. In

�gures 54-56, as indi
ated in previous sessions, the maximum information is only related to the

tra�
 interval ω plus one-hop delay, i.e., one time of duty-
y
le duration. Only when the event

o

urren
e frequen
y is high than the tra�
 interval, the average information delay will be shorter

be
ause of some losing data, in �gure 57. As the tra�
 o

urren
e frequen
y redu
es, the data

loss is gradually unapparent, in �gures 58 and 59. In addition, dynami
 bandwidth allo
ation

has more transmission 
on�i
t sin
e multiple-hop network brings more hidden terminal in the

network.

4.4 Duty 
y
le

From �gures 8 and 13, we 
an see that duty 
y
le is mainly determined by slot duration whi
h

is, however, bounded by tra�
 model. The minimum slot duration smin shall be long enough

to 
omplete a reservation and a piggyba
ked pa
ket transmission so that pa
ket size and data

rate are the important fa
tors. Nevertheless, the maximum slot duration smax is limited by

the minimum required throughput a

ording to appli
ation. That is to say, if the slot duration

is equal to si se
onds, the maximum throughput will not ex
eed

1
si

pa
kets per se
ond. Sin
e
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Figure 60: Per-node energy-delay tradeo� of

event-driven appli
ation in dynami
 bandwidth al-

lo
ation while N = 24
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Figure 61: Per-node energy-delay tradeo� of

event-driven appli
ation in �xed bandwidth allo-


ation while N = 24

event-driven appli
ation is mainly proportional to the duty 
y
le, we varied slot duration from

0.1 to 1.2 se
onds in the topology in �gure 7(b) with 24 nodes and then got the energy-delay

tradeo�.

Figure 60 shows the energy-delay tradeo� in dynami
 bandwidth allo
ation. For (λi+µi)
−1 =

40, smax,40 = 1.667 and we 
an see that the energy deviation is more obvious when the slot

duration approximates to smax,40. Also the average information delay is equal to κ∗Tduty.cycle =
κsi where κ varies from

1
2 to approximately 1 when si in
reases. Figure 61 shows the energy-

delay tradeo� in �xed bandwidth allo
ation. By repla
ing Tduty.cycle = (N + 1)si, the average

information delay is equal to κ(N + 1)si where κ varies from

1
2 to approximately 1 when si

in
reases. However, thanks to the extremely low 
ollision rate in �xed bandwidth allo
ation, the

energy deviation is still low even though we in
rease the slot duration.

A

ordingly, while having the same slot duration, the energy 
onsumption in dynami
 band-

width allo
ation is a bit higher, yet the information delay is mu
h shorter. In other words,

subje
t to the throughput 
onditions, for the same information delay, dynami
 bandwidth allo-


ation 
onsumes signi�
antly less energy than �xed one.

5 Engineering Insights

In this se
tion, we summarize our results in se
tion 4 and provide engineering insights to stream-

line the WSN 
onstru
tion of urban smart parking appli
ation. The bandwidth allo
ation method

is the utmost important key point of determining energy 
onsumption and information delay

when tra�
 and node densities are known a priori. We applied two fundamental types of band-

width allo
ations to our simulations instead of 
hoosing parti
ular proto
ols. In this way, we


an see 
learly that how the tra�
 and node densities a�e
t the network performan
e and the

results 
ould serve as guidelines for urban sensor network designers. Sin
e the network load is


al
ulated by summing up the respe
tive tra�
 load on ea
h node, and shall not be greater than

the network throughput, we dis
uss it separately from the following three viewpoints by referring

to �gure 62.
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5.1 Node density

The network load elevates undoubtedly as the number of nodes N in
reases. In dynami
 band-

width allo
ation, the �rst to be a�e
ted is the rising pa
ket 
ollision rate be
ause of more 
om-

petitors in one time slot. When N > 50, the information delay be
omes arbitrarily large. The

energy 
onsumption �rst rises due to the retransmission, and then falls, inasmu
h as the 
han-

nel is always busy. However, the 
ontention method of dynami
 bandwidth allo
ation 
an be

improved to serve more sensor nodes, like what is done in[11, 1, 15℄. Else, in �xed bandwidth

allo
ation, the throughput is none the less on the downsides as N in
reases. This is due to the

extension of duty 
y
le. That is to say, the network load of ea
h node shall not be greater than

the maximum network throughput, viz αi+βi ≤ (Tduty.cycle)
−1 =

(

si ∗ (N +1)+Tinactive

)

−1
, to

ensure the network is 
apable to pro
ess all the demands. Hen
e, Dynami
 bandwidth allo
ation

has a short information delay and is more adaptive to the non-uniform tra�
 parameters for

N ≤ 50, i.e, 
an be improved by a good 
ontention method. Fixed bandwidth allo
ation 
an

avoid the pa
ket 
ollision problem while the network density is high but still miss an optimal

s
heduling whi
h 
onsiders routing and MAC proto
ols to improve its laten
y.

5.2 tra�
 intensity

The network load of node i is equal to αi + βi = k(λi + µi). When the tra�
 intensity is

high, event-driven appli
ation is suggested on grounds of its mu
h shorter information delay.

On the 
ontrary, time-driven appli
ation generates ex
essive pa
kets when ω is small, and the

information delay is too long when ω is large. As previously mentioned, time-driven appli
ation

is often used to inform gateway of sensors' existen
es, for example, to report the hourly battery

status, also to provide the information of link quality. If (λi+µi)
−1

is large enough, to wit event

frequen
y is very low, the updated pa
ket 
an be merged with other hourly information. In other

words, in time-driven appli
ation, the energy 
onsumption is extremely low for ω ≫ 1200. If

(λi+µi)
−1 ≫ 2ω, and λ−1

i and µ−1
i are both mu
h greater than 4ω, it means the event o

urren
e

rate is low and time-driven 
an be 
onsidered. Anthor problem of time-driven appli
ation is their

start time. If all sensor nodes have a very similar start time and tra�
 interval, a bursty tra�



an be generated and gives an apparent in�uen
e on dynami
 bandwidth allo
ation.

5.3 Duty 
y
le

What will happen if the network tra�
 and node densities are both high? When N is large,

the throughput of �xed bandwidth allo
ation drops be
ause of the extension of duty 
y
le. The

maximum network throughput in �xed bandwidth allo
ation, 
al
ulated by the inverse of duty


y
le

1
(N+1)∗si+Tinactive

, shall be greater than k(λi+µi) or
1
ω
respe
tively in event- or time-driven

appli
ations. Be
ause k ≈ 0.48 and (λi + µi)
−1 ≫ 2ω to apply time-driven appli
ation, we then

get k(λi + µi)≪
1
4ω . Certainly

1
ω
ex
eeds

1
(N+1)∗si+Tinactive

faster than

1
4ω . By assuming Nm is

the maximum number of nodes to apply time-driven appli
ation in �xed bandwidth allo
ation,

we have

1
(N+1)∗si+Tinactive

= 1
ω
. Thus, Nm = ω

si
− 1 if Tinactive = 0.

6 Con
lusion

In this report, we have studied parking sensor networks, espe
ially fo
using on delay 
onstraints

and energy e�
ien
y issues from a viewpoint of tra�
. Two types of tra�
 models, viz event-

and time-driven, are performed with di�erent rate parameters. We provide engineering insights

for urban sensor network designers, in parti
ular the best 
ombination of tra�
 models and
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Figure 62: Best 
on�guration versus vehi
le a
tivity and network density

bandwidth allo
ation depending on the urban a
tivity and the node density. Even though these

thresholds 
an be slightly shifted by parti
ular optimized proto
ols, no doubt it retains a 
lear

overview to build urban appli
ations over WSNs. These insights highlight the importan
e to

develop an adaptive MAC proto
ol whi
h is able to distributedly dete
t the intensity of tra�


and swit
h between event- and time-driven tra�
 model when required.
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