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NUMERICAL ANALYSIS OF THE NONLINEAR SCHRÖDINGER

EQUATION WITH WHITE NOISE DISPERSION

RADOIN BELAOUAR, ANNE DE BOUARD, AND ARNAUD DEBUSSCHE

Abstract. This article is devoted to the numerical study of a nonlinear Schrödinger
equation in which the coefficient in front of the group velocity dispersion is multi-
plied by a real valued Gaussian white noise. We first perform the numerical analysis
of a semi-discrete Crank-Nicolson scheme in the case when the continuous equation
possesses a unique global solution. We prove that the strong order of convergence in
probability is equal to one in this case. In a second step, we numerically investigate, in
space dimension one, the behavior of the solutions of the equation for different power
nonlinearities, corresponding to subcritical, critical or supercritical nonlinearities in
the deterministic case. Numerical evidence of a change in the critical power due to the
presence of the noise is pointed out.

1. Introduction

The cubic nonlinear Schrödinger (NLS) equation is a model describing the propagation
of light waves in optical fibers. In some circumstances – this is typically the case in
dispersion-managed fibers – the group velocity dispersion may vary along the fiber (see
[1, 2]) and this gives rise in the mathematical model to a NLS equation with a time-
varying coefficient in front of the dispersion (Laplace operator). It has been proved in
[18, 9] (see also [15]) that when this coefficient is random, with mean zero, and under
some specific scaling, the limit equation (as the correlation of the noise tends to zero)
is a NLS equation with white noise dispersion (i.e. the preceding coefficient becomes a
real valued time white noise).

We consider in this paper the more general stochastic nonlinear Schrödinger equation

(1.1)

{
idu+∆u ◦ dβ + |u|2σu dt = 0,
u(0) = u0,

where the unknown u is a complex valued random process on a probability space
(Ω,F ,P) depending on t ≥ 0 and x ∈ Rd, and the nonlinear term |u|2σu is a power
term, σ being a positive real number. The noise term involves a real valued Brownian
motion β associated to a filtration (Ft)t≥0. The product ◦ is a Stratonovich product,
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and equation (1.1) is formally equivalent to its Itô form:

(1.2)

{
idu+ i

2
∆2u dt+∆u dβ + |u|2σu dt = 0,

u(0) = u0.

Equation (1.1) has been studied in [9] in the case σ < 2/d and in [11] in the case d = 1
and σ = 2, and the existence of a unique global square integrale solution was proved.
However, nothing is known about the qualitative behavior of the solutions of (1.1) –
note that the Hamiltonian structure of the deterministic NLS equation is destroyed by
the presence of a time varying dispersion coefficient. While the case of a deterministic
time-periodic coefficient has been investigated from the numerical as well as theoretical
point of view (see e.g. [17, 21, 22]), few investigations have been performed in the
stochastic case (see however [15] and [18] for numerical simulations in the cubic case),
and no theoretical result on the qualitative behavior is known.
These considerations motivated us for a more systematic numerical study of equation

(1.1) for general values of the parameter σ. We will be in particular interested in the
blow up phenomena. In [10] and [3], one of the authors conducted such investigations for
a different stochastic equation, in which the noise, which was there a space-time noise,
white in time and possibly correlated in space, acted as a linear potential in the equation.
It was then observed that in the supercritical case σ > 2/d, as the space correlation of
the noise tends to zero, the blow up mechanism could be stopped. Note that it was
proved in [7] that if on the opposite, the noise is spatially sufficiently correlated, then
blow up occurs for any initial data with a positive probability, still in the case σ > d/2.
We will here do the same investigation in the, somewhat simpler, case of equation (1.1),
where the noise only depends on time (see Section 3).

In a first step, we study the order of convergence for equation (1.1), of a semi-discrete
Crank-Nicolson scheme, which is one of the schemes used in the numerical simulations
of Section 3. As is natural for a Stratonovich noise, we use a mid-point discretization
of the noise. The scheme then presents the advantage of preserving the L2-norm, which
is a conserved quantity of the continuous equation. The same kind of schemes has been
considered in [6] where the convergence in probability to the solution of the continuous
equation is proved, in the case where the noise is a space-time potential and is white in
time. The order of convergence of a Crank-Nicolson semi-discrete scheme as also been
studied in [16], for the Manakov-PMD system, a system of NLS equations with a three-
dimensional time white noise appearing in the equation as a coefficient of the gradient
of the solution.This model also appears in nonlinear fiber optics, and the (strong) order
of convergence in time was then found to be at least 1/2. The order of convergence
of a splitting scheme was studied in [18] for equation (1.1), except that the nonlinear
term was replaced by a Lipschitz function. Asymptotic preserving properties of the
scheme have also been proved ([13]). The order of convergence was also found to be
at least 1/2, although it is expected to be equal to one in this case, since the noise is
one-dimensional. We indeed prove in Section 2 that the strong order in probability for
the time semi-discrete Crank-Nicolson scheme is at least 1.
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Note that the spatial discretization is very easy to analyse. Indeed, from our argument
it is clear that it suffices to study (1.1) with a Lipschitz nonlinearity. Then, classical
arguments show that the spatial discretization error is the same as in the deterministic
case.

We now give some notations. We will denote by Fx the spatial Fourier transform in
Rd and û denotes also the (space) Fourier transform of the (complex-valued) function
u. For any integer (or even real) number s, we denote by Hs(Rd) the Sobolev space of
complex-valued distributions u on Rd satisfying (I −∆)s/2u ∈ L2(Rd) and by ‖ · ‖Hs its
norm. This is a real Hilbert space, which thanks to the Plancherel Theorem is endowed
with the inner product

(u, v)s ≡ Re
∫

Rd

(1 + |ξ|2)sû(ξ)¯̂v(ξ) dξ.

Note that here we identify C with R2, and we will say that a function f defined on
Hs(Rd) is in C2

b (H
s) if f is of class C2 on Hs(Rd;R) × Hs(Rd;R) and has bounded

derivatives, i.e. there is a constant C > 0 such that for any u, v, w ∈ Hs(Rd)

‖Df(u).v‖Hs ≤ C‖v‖Hs

and

‖D2f(u)(v, w)‖Hs ≤ C‖v‖Hs‖w‖Hs ,

where D2f(u) denotes the second order derivative of f at u, and is a bilinear operator
from Hs(Rd) × Hs(Rd) into Hs(Rd). With obvious modifications in the definition, we
will also consider functions g which belong to C2

b (H
s×Hs). We will in that case denote

D1g (resp. D2g) the partial differential with respect to the first (resp. second) argument
of g.

2. Numerical analysis of the Crank-Nicolson scheme

2.1. Preliminaries and main result. We consider in this section equation (1.1) in
the cases where σ is an integer, which makes the power term |u|2σu regular in u and
allows us to differentiate it as many times as we need. Moreover, we will assume that the
existence and uniqueness of a global solution is known, which is the case e.g. if σ = 1 or
σ = 2, and the space dimension d is equal to one (see Proposition 2.1 below). We recall
(see [9, 18]) that equation (1.1) may also be written in the mild form

(2.1) u(t) = S(t, 0)u0 + i

∫ t

0

S(t, s)(|u|2σu(s))ds,

where the random propagator S(t, s) assigns to any Fs-measurable L2-valued random
variable us the solution at time t > s of the linear equation

(2.2)

{
idu+ i

2
∆2u dt+∆u dβ = 0,

u(s) = us.
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Note that S(t, s) has an explicit expression in Fourier variables given by

F(S(t, s)us)(ξ) = e−i|ξ|2(β(t)−β(s))ûs(ξ), t ≥ s, ξ ∈ R
d,

(see [9]) and this allows to generalize the definition of S(t, s)u to non necessarily Fs-
measurable random functions u.
Our assumption on global existence and uniqueness result is known to be true in some

cases: it has been proved for s = 1, in [9] in the case σ = 1 and in [11] for the case
σ = 2. The extension of the result to a general Sobolev space Hs(Rd) with s ≥ 1, i.e.
the fact that the solution u has trajectories a.s. in C(R+;Hs(R)) if u0 ∈ Hs(R) is an
immediate consequence of the embedding H1 ⊂ L∞(R) and of the isometry of S(t, s) in
Hs(R) for any s. We recall these results for completeness.

Proposition 2.1. Let d = 1, σ = 1 or 2, and u0 ∈ Hs(R) with s ≥ 1. Then there exists
a unique adapted solution of equation (2.1) with paths a.s. in C(R+;Hs(R)).

We expect that global existence and uniqueness can be proved for σ < 4/d – see the
numerical simulations of Section 3 – so that our result would also hold true with σ = 1
for d = 2, 3.
Our aim in this section is to study the following time discretization of equation (1.1),

where δt > 0 denotes the time step :

(2.3) i
un+1 − un

δt
+

χn√
δt
∆un+1/2 + g(un, un+1) = 0,

where the function g is an approximation of the nonlinear term |u|2σu given by

(2.4)

g(u, v) =

∫ 1

0

(
θ|u|2 + (1− θ)|v|2

)σ
dθ

(
u+ v

2

)

=
1

σ + 1

( |u|2σ+2 − |v|2σ+2

|u|2 − |v|2
)(

u+ v

2

)
.

Here un+1/2 = 1
2
(un + un+1). Moreover, the random variables χn are defined by χn =

β((n+1)δt)−β(nδt)√
δt

. Hence the family (χn)n ∈ N is an independent family of normal random

variables. With these definitions, un is then an approximation of u(tn), where tn = nδt
and u is the solution of equation (1.1).

The mid-point discretization of the noise term is natural to approximate a Stratonovich
product. This scheme is a generalization to equation (1.1) of the classical Crank-Nicolson
scheme for the deterministic NLS equation, which is known to be conservative (in the
deterministic case) for the L2-norm and the Hamiltonian (see e.g. [12] or [20]). For the
stochastic NLS equation (1.1) with a power nonlinearity, the scheme is conservative for
the L2-norm (see Section 3).

Another possibility would have been to consider an explicit discretization of the noise
term in the Itô formulation (1.2) of the equation. However, such a discretization would
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not lead to a conservative scheme. On the other hand, the scheme (2.3) may be written
as

i
un+1 − un

δt
+

χn√
δt
∆un +

1

2

χn√
δt
∆(un+1 − un) + g(un, un+1) = 0

from which we deduce (assuming that each term above is bounded and that g is suffi-
ciently regular and bounded)

∆(un+1 − un)√
δt

= iχn∆
2un +O(

√
δt);

plugging this expression into the preceding equation, we obtain up to the O(
√
δt) term

the new formulation for the scheme (2.3)

i
un+1 − un

δt
+

χn√
δt
∆un +

i

2
χ2
n∆

2un + g(un, un+1) = 0,

which is exactly the Milstein scheme for the Itô equation (1.2) (see [19]). Hence we may
expect that the scheme has an order of convergence in time equal to one. This is indeed
the main result of this section (see Theorem 2.3 below).

We now introduce some notations. For a fixed n ∈ N, we denote by Sn,δt the linear
operator

Sn,δt = (I − i

√
δt

2
χn∆)−1(I + i

√
δt

2
χn∆).

This operator is a Fourier multiplier, it is a bounded linear operator on L2(Rd) satisfying

F(Sn,δtu)(ξ) =
1− i

√
δt
2
χn|ξ|2

1 + i
√
δt
2
χn|ξ|2

û(ξ)

for any u ∈ L2(Rd). We also denote by Tn,δt the linear operator Tn,δt = (I− i
√
δt
2
χn∆)−1,

which is also a linear bounded operator in L2(Rd). Then the scheme (2.3) may be written
as

(2.5) un+1 = Sn,δtun + i(δt)Tn,δtg(un, un+1).

At that point, we should mention that because g is only a locally Lipschitz function on C2

– hence the Nemytskii operator (u, v) 7→ g(u, v) is locally Lipschitz in Hs(Rd)×Hs(Rd)
for any s > d/2 – the existence, for a given un in Hs(Rd), of un+1 ∈ Hs(Rd) satisfying
(2.5) is not obvious ; moreover, un+1 will not be unique in general. In order to define
the solution in a simple way, we thus introduce a cut-off in the nonlinear part of the
scheme.

Let θ ∈ C∞(R+) with θ ≥ 0, supp θ ⊂ [0, 2] and θ ≡ 1 on [0, 1] ; we then set
θk(x) = θ(x

k
), for x ≥ 0 and k ∈ N. Now, in all what follows, the integer s > d/2 is

fixed, and we set for k ∈ N and u, v ∈ Hs(Rd) :

(2.6) gk(u, v) =
1

2σ + 2
θk(|u|2Hs)θk(|v|2Hs)

( |u|2σ+2 − |v|2σ+2

|u|2 − |v|2
)(

u+ v

2

)
.
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It is clear that gk is a Lipschitz function on Hs(Rd) and satisfies : for any u1, u2, v1, v2 ∈
Hs(Rd),

|gk(u1, v1)− gk(u2, v2)|Hs ≤ C(σ, k)(|u1 − u2|Hs + |v1 − v2|Hs).

We then replace the scheme (2.5) by

(2.7) ukn+1 = Sn,δtu
k
n + i(δt)Tn,δtgk(u

k
n, u

k
n+1).

The next proposition may be proved as Proposition 3.1 in [16], using the integral formu-
lation of (2.7) and a fixed point argument in the subspace of L∞(0, T ;Hs(Rd)) consisting
of functions which are constant on each interval [nδt, (n + 1)δt], 0 ≤ n ≤ N − 1, with
δt = T/N , provided that this latter is less than 1/C(σ, k), where C(σ, k) the Lipschitz
constant of gk, together with the fact that the operators Sn,δt and Tn,δt are bounded in
Hs(Rd) with bound less than one. For general δt, one obtains the existence of a discrete
solution by using a measurable selection theorem (see e.g. [8, 16]), but the solution is
not unique in general.

Proposition 2.2. Let T > 0 and δt = T/N > 0 be fixed. Let u0 ∈ Hs(Rd) with s > d/2;
then for any k ∈ N∗, there is an adapted discrete solution ukδt = (ukn)n=0,...,N satisfying
(2.7) for n ≤ N − 1, which belongs a.s. to L∞(0, T ;Hs(Rd)), and the solution ukδt is
unique if δt is sufficiently small, depending on k. Moreover, for any n ≤ N , the L2

norm is preserved that is ‖ukn‖L2 = ‖u0‖L2.

Now, we define the stopping time

(2.8) τ kδt = inf{nδt, ‖ukn−1‖Hs ≥ k, or ‖ukn‖Hs ≥ k},
which is nondecreasing with k. It is clear that (ukn)n=0,...,n0−1 satisfies the scheme (2.5)
as long as n0δt ≤ τ kδt. Moreover the discrete solution given by Proposition 2.2 can be
constructed in such a way that uk+1

n = ukn for nδt ≤ τ kδt..
Finally, we set for a fixed δt = T/N > 0: uδtn = ukn if nδt ≤ τ kδt. This allows to define

the discrete solution of the scheme (2.3) up to the stopping time τ∞δt ≡ limk→∞ τ kδt ∧ T .
For t ≥ τ∞δt , we just set u

δt
n = u∞, where u∞ is any arbitrary element in Hs(Rd). We are

now in position to state our main result, which says that the scheme (2.3) has strong
order one in probability.

Theorem 2.3. Let T > 0; assume u0 ∈ Hs(Rd), s > d/2, is such that equation (2.1)
has a unique adapted solution u with paths a.s. in C([0, T ] : Hs(Rd)). For δt = T/N ,
with N ∈ N∗, let tn = nδt, n = 0, ..., N ; then for any n ≤ N ,

lim
C→∞

P
(
‖u(tn)− uδtn ‖Hs ≥ Cδt

)
= 0,

uniformly with respect to δt.

Remark 2.4. We have assumed for simplicity that the solution of the continuous equa-
tion (2.1) was defined on a deterministic time interval, but the result would also be true
if the solution was only locally defined in time, on a random time interval which is a
stopping time (see [8, 16]). In particular the result would be true for s > d/2 in Hs(Rd),
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or in Hs(Td), where T = R/2πZ, using in all what follows Fourier series instead of the
continuous Fourier transform

Remark 2.5. We actually expect that a stronger result holds under the assumptions of
Theorem 2.3, namely we expect that

lim
C→∞

P

(
sup
nδt≤T

‖u(tn)− uδtn ‖Hs ≥ Cδt
)
= 0,

uniformly with respect to δt. This would e.g. follow from the arguments in [8] if we
were able to prove a mean square order one, for the truncated scheme 2.7, in the
L∞(0, T ;Hs(Rd)) norm (see Proposition 2.6) below. In turn, this latter result would
follow from the arguments in [14], Chapter 5, if we were able to prove that the scheme
2.7 approximates the continuous equation at order one in Lp(Ω) for any p ≥ 1. However,
the scheme being implicit in the noise, we cannot use the Itô Formula, and obtaining an
order in Lp(Ω) seems to require very tedious computations, while our argument to get
Theorem 2.3 from the mean square result for the truncated scheme given by Proposition
2.6 below is extremely simple.

In order to prove Theorem 2.3 we will thus first prove that the scheme defined by
(2.7) gives an approximation of the corresponding continuous equation of order one in
mean square. This will be the object of the next subsection.

2.2. Mean square order for the truncated scheme. In this subsection, we consider
the scheme (2.7), where the integer k ∈ N is fixed, and we prove that its solution ukδt
given by Proposition 2.2 converges in mean square at order one to the solution of the
continuous equation :

(2.9) u(t) = S(t, 0)u0 + i

∫ t

0

S(t, s)fk(u(s)) ds,

where

fk(u) = θk(‖u‖2Hs)|u|2σu.
Note that, for a fixed k ∈ N, since s > d/2, fk is a Lipschitz function on Hs(Rd), and
the existence of a unique global adapted solution of (2.9) in L∞(Ω;C([0, T ];Hs(Rd))) is
immediate, if u0 ∈ Hs(Rd). Moreover, using an induction argument and the fact that
S(t, s) is an isometry in Hα(Rd) for any α, it is not difficult to see that if in addition
u0 ∈ Hs+6(Rd), then uk has paths a.s. in H

s+6(Rd), and there is a deterministic constant
C = C(T, k, ‖u0‖Hs) such that

(2.10) ‖uk‖C([0,T ];Hs+6) ≤ C, a.s.

Proposition 2.6. Let T > 0 and u0 ∈ Hs+6(Rd). Let k ∈ N be fixed, uk be the
unique adapted solution of (2.9) with paths a.s. in C([0, T ];Hs+6(Rd)), and ukδt =
(ukn)n=0,..,N with δt = T/N be an adapted discrete solution of (2.7) given by Proposi-
tion 2.2, where gk is defined by (2.6). Then there is a constant C which may depend on
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T and supt∈[0,T ] E(‖u(t)‖4Hs+6) such that for any δt = T/N ,

sup
nδt≤T

E(‖ukn − uk(tn)‖2Hs) ≤ C(δt)2

where tn = nδt.

Proof of Proposition 2.6. In all the proof, since the index k refereeing to the cut-off
is fixed, we ignore it and simply denote ukn by un, uk by u, and so on. Moreover, all
the constants appearing in the subsection may depend on k, even though this is not
always explicitly stated. We then denote by en the error en = un−u(tn) where we recall
that tn = nδt. In order to prove Proposition 2.6, we first prove that there are positive
constants ε, K1 and K2, that possibly depend on supt∈[0,T ] E(‖u(t)‖4Hs+6) such that

(2.11) E(‖en+1‖2Hs) ≤ (1 + (δt)K1)E(‖en‖2Hs) + (δt)3K2

for all δt ≤ ε and all n ∈ N such that nδt ≤ T .
Using the mild form of the scheme (2.7), and the expression

(2.12) u(tn+1) = S(tn+1, tn)u(tn) + i

∫ tn+1

tn

S(tn+1, s)fk(u(s))ds.

which is deduced from (2.9), one may express en+1 in terms of en as follows :

(2.13) en+1 =
5∑

j=1

en,δt,j

where

(2.14) en,δt,1 = Sn,δten,

(2.15) en,δt,2 = (Sn,δt − S(tn+1, tn))u(tn),

(2.16) en,δt,3 = i

∫ tn+1

tn

S(tn+1, s) (gk(u(tn), u(tn+1))− fk(u(s))) ds,

(2.17) en,δt,4 = i

(
(δt)Tn,δt −

∫ tn+1

tn

S(tn+1, s)ds

)
gk(u(tn), u(tn+1)),

and

(2.18) en,δt,5 = i(δt)Tn,δt (gk(un, un+1)− gk(u(tn), u(tn+1))) .

We will estimate separately the contribution of each of the above terms to the left
hand side of (2.11). Indeed, we may write using (2.13) :

(2.19) E(‖en+1‖2Hs) =
5∑

j=1

E(‖en,δt,j‖2Hs) + 2
∑

1≤i<j≤5

E(en,δt,i, en,δt,j)s

where we recall that (., .)s denotes the inner product in Hs(Rd).
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First, it is obvious from its expression in Fourier space (we recall that χn is a real valued
Gaussian random variable) that the operator Sn,δt is a unitary operator on Hs(Rd). It
follows

(2.20) E(‖en,δt,1‖2Hs) = E(‖en‖2Hs).

The second term, which corresponds to the approximation of the linear equation, is
estimated thanks to the next lemma.

Lemma 2.7. There is a constant C such that for any random function v ∈ L4(Ω;Hs+6(Rd)),

E(‖S(tn+1, tn)v − Sn,δtv‖2Hs) ≤ C(δt)3(E(‖v‖4Hs+6))1/2.

If moreover, v is Ftn-measurable, then

E(‖S(tn+1, tn)v − Sn,δtv‖2Hs) ≤ C(δt)3E(‖v‖2Hs+6).

Applying Lemma 2.7 with v = u(tn) immediately leads to the estimate

(2.21) E(‖en,δt,2‖2Hs) ≤ C(δt)3 sup
t∈[0,T ]

E(‖u(t)‖2Hs+6),

for any n such that nδt ≤ T .

Proof of Lemma 2.7. Thanks to the expression of the operator Sn,δt as a Fourier multi-
plier, we may write, for any ξ ∈ Rd :

F(Sn,δtv)(ξ) =
1− i

√
δt
2
χn|ξ|2

1 + i
√
δt
2
χn|ξ|2

v̂(ξ) = e−2i arctan(
√

δt
2

|ξ|2χn)v̂(ξ).

Hence the Parseval Theorem implies that for any random function v ∈ L2(Ω;Hs+6(Rd)),

E(‖S(tn+1, tn)v − Sn,δtv‖2Hs) =

∫

Rd

E(|e−i
√
δt|ξ|2χn − e−2i arctan(

√

δt
2

|ξ|2χn)|2|v̂(ξ)|2)(1 + |ξ|2)sdξ

Now, since |1 − eix|2 ≤ C|x|2 for any real x, and | arctan y − y| ≤ C|y|3 for any y ∈ R,
where the constants C are independent of x and y, the previous equality implies

E(‖S(tn+1, tn)v − Sn,δtv‖2Hs) ≤ C(δt)3E

(
χ6
n

∫

Rd

(1 + |ξ|2)s|ξ|12|v̂(ξ)|2dξ
)
.

If moreover, v is independent of χn, then the right hand side above is bounded by

C(δt)3E(χ6
n)E(‖v‖2Hs+6)

and we may conclude in the general case using Cauchy-Schwarz inequality. �

We now turn to the estimate of E(‖en,δt,3‖2L2). For this purpose, we will use a Taylor
expansion of the function (in fact the Nemytskii operator) gk. Indeed, we recall that
since σ is an integer, there exists a real valued polynomial function pσ(x1, x2) such that,
for all u, v ∈ Hs(Rd) and all x ∈ Rd,

(2.22) gk(u, v)(x) = θk(|u|2Hs)θk(|v|2Hs) pσ(|u(x)|2, |v(x)|2).
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It easily follows that gk is differentiable onH
s(Rd)×Hs(Rd), and for any (u, v) ∈ Hs×Hs,

and any w ∈ Hs, the function Dugk(u, v).w belongs to Hs(Rd) and ∀x ∈ Rd,

(Dugk(u, v).w)(x) = θk(|u|2Hs)θk(|v|2Hs) ∂x1
pσ(|u(x)|2, |v(x)|2) 2Re(ū(x)w(x))

+ 2θ′k(|u|2Hs)θk(|v|2Hs) (u, w)s pσ(|u(x)|2, |v(x)|2).
A similar expression holds for Dvgk(u, v).w, and we deduce that there is a constant

C(k), which only depends on k, such that for any (u, v) ∈ Hs ×Hs, and any (w1, w2) ∈
Hs ×Hs,

‖Dgk(u, v).(w1, w2)‖Hs ≤ C(k)(‖w1‖Hs + ‖w2‖Hs),

in other words, gk ∈ C1
b (H

s × Hs). In the same way, it may be checked that gk ∈
C2

b (H
s ×Hs), i.e. for any (u, v) ∈ Hs ×Hs, and any (w1, w2) ∈ Hs ×Hs,

‖D2gk(u, v).(w1, w2)
2‖Hs ≤ C(k)(‖w1‖2Hs + ‖w2‖2Hs).

Then, by Taylor expansion, we may write, for any s ∈ (tn, tn+1),
(2.23)
fk(u(s)) = gk(u(s), u(s))

= gk(u(tn), u(tn+1)) +

∫ 1

0

Dgk(u(tn) + θEn(s), u(tn+1) + θEn+1(s))(En(s), En+1(s))dθ

where En(s) = u(s) − u(tn). Using (2.23) above in the expression of en,δt,3 given by
(2.16), it follows by Cauchy-Schwarz inequality, since gk has bounded first derivatives,
that
(2.24)

E(‖en,δt,3‖2Hs)

≤ C(δt)

∫ tn+1

tn

∫ 1

0

E ‖Dgk(u(tn) + θEn(s), u(tn+1) + θEn+1(s))(En(s), En+1(s))‖2Hsdθds

≤ C(δt)

∫ tn+1

tn

E(‖En(s)‖2Hs + ‖En+1(s)‖2Hs)ds.

In order to estimate the right hand side above, En(s) is written using again the mild
form (2.9) of the continuous equation as :

(2.25) En(s) = u(s)− u(tn) = S(s, tn)u(tn)− u(tn) + i

∫ s

tn

S(s, σ)fk(u(σ))dσ

and we use the following lemma.

Lemma 2.8. There is a constant C such that for any random function v ∈ L4(Ω;Hs+2(Rd)),
and for any s ∈ (tn, tn+1),

E(‖S(s, tn)v − v‖2Hs) ≤ C(δt)(E(‖v‖4Hs+2))1/2.

If moreover, v is Ftn-measurable, then

E(‖S(s, tn)v − v‖2Hs) ≤ C(δt)E(‖v‖2Hs+2),
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and

E(‖S(s, tn)v − v‖4Hs) ≤ C(δt)2E(‖v‖4Hs+2).

Proof of Lemma 2.8. The first inequality requires the same arguments as the proof of
Lemma 2.7 : the inequality |eix − 1|2 ≤ C|x|2, which is true for any real x, implies, for
any v ∈ L4(Ω;Hs+2(Rd)), and for any s ∈ (tn, tn+1) :

(2.26)

E(|Fx(S(s, tn)v − v)(ξ)|2)
= E(|e−i(β(s)−β(tn))|ξ|2 − 1|2|v̂(ξ)|2)
≤ CE(|β(s)− β(tn)|2|ξ|4|v̂(ξ)|2).

Parseval Theorem and Cauchy-Schwarz inequality then easily lead to the first inequalities
of Lemma 2.8. On the other hand, the above argument and Parseval Theorem imply,
for any Ftn-measurable v ∈ L4(Ω;Hs+2(Rd)),

E(‖S(s, tn)v − v‖4Hs)

= E

∫

Rd

∫

Rd

|ei(β(s)−β(tn))|ξ|2 − 1|2|ei(β(s)−β(tn))|η|2 − 1|2(1 + |ξ|2)s|v̂(ξ)|2(1 + |η|2)s|v̂(η)|2dξdη

≤ C

∫

Rd

∫

Rd

(1 + |ξ|2)s(1 + |η|2)s|ξ|4|η|4E(|β(s)− β(tn)|4|v̂(ξ)|2|v̂(η)|2)dξdη

which is bounded above by

C(δt)2E
[ ∫

Rd

(1 + |ξ|2)s+2|v̂(ξ)|2dξ
]2

= C(δt)2E(‖v‖4Hs+2),

using again the independence of v and β(s)− β(tn). The third inequality of Lemma 2.8
follows. �

Lemma 2.8, (2.25) and the fact that fk is Lipschitz in Hs(Rd) with fk(0) = 0 imme-
diately imply the bound

(2.27) E(‖En(s)‖2Hs) ≤ C(δt) sup
t∈[0,T ]

E(‖u(t)‖2Hs+2),

for any s ∈ (tn, tn+1). Modifying the above arguments in an obvious way, one may also
prove that

(2.28) E(‖En+1(s)‖2Hs) ≤ C(δt) sup
t∈[0,T ]

E(‖u(t)‖2Hs+2)

for any s ∈ (tn, tn+1). From (2.24), (2.27) and (2.28), we deduce

(2.29) E(‖en,δt,3‖2Hs) ≤ C(δt)3 sup
t∈[0,T ]

E(‖u(t)‖2Hs+2).
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Let us now consider E(‖en,δt,4‖2Hs). The expression (2.17) allows to write

(2.30)

E(‖en,δt,4‖2Hs) ≤ 2E(‖
∫ tn+1

tn

(I − S(tn+1, s))gk(u(tn), u(tn+1))ds‖2Hs)

+ 2(δt)2E(‖(I − Tn,δt)gk(u(tn), u(tn+1))‖2Hsds

= I + II.

The first term on the right hand side above is bounded thanks to the previous arguments :
using Cauchy-Schwarz inequality,

I ≤ C(δt)E

∫ tn+1

tn

‖(I − S(tn+1, s))gk(u(tn), u(tn+1))‖2Hsds

and by Lemma 2.8, and the fact that gk is Lipschitz in Hs+2(Rd)×Hs+2(Rd), as follows
from (2.22) and the fact that s is a positive integer,

(2.31) I ≤ C(δt)3 sup
t∈[0,T ]

(E(‖u(t)‖4Hs+2)1/2.

In order to estimate II, we again use Parseval identity, and noticing that for any ξ ∈ Rd,
∣∣∣∣∣

1

1 + i
√
δt
2
χn|ξ|2

− 1

∣∣∣∣∣

2

≤ δt

4
χ2
n|ξ|4,

we obtain, again with the use of Cauchy-Schwarz inequality and the fact that gk is
Lipschitz in Hs+2(Rd)×Hs+2(Rd),

II ≤ 2(δt)2E

∫

Rd

∣∣∣∣∣
1

1 + i
√
δt
2
χn|ξ|2

− 1

∣∣∣∣∣

2

|Fx(g(u(tn), u(tn+1))(ξ)|2dξ

≤ C(δt)3(E(χ4
n)

1/2) sup
t∈[0,T ]

[E(‖u(t)‖4Hs+2)]1/2.

From (2.30) and these two estimates, we deduce

(2.32) E(‖en,δt,4‖2Hs) ≤ C(δt)3
[
1 + sup

t∈[0,T ]

E(‖u(t)‖4Hs+2)
]
.

The estimate of the last term, given by (2.18), simply follows from the boundedness of the
operator Tn,δt inH

s(Rd) and the fact that the function gk is Lipschitz inH
s(Rd)×Hs(Rd);

(2.33) E(‖en,δt,5‖2Hs) ≤ C(δt)2E(‖en‖2Hs + ‖en+1‖2Hs).

We now wish to estimate the second term in (2.19), i.e. to consider the Hs-inner
products of the terms en,δt,j, for 1 ≤ j ≤ 5. We first note that all the terms of the
form E(en,δt,j, en,δt,k)s with 2 ≤ j, k ≤ 4 may be bounded thanks to the Cauchy-Schwarz
inequality, since from (2.21), (2.29) and (2.32), for any j with 2 ≤ j ≤ 4,

(2.34) E(‖en,δt,j‖2Hs) ≤ C(δt)3
[
1 + sup

t∈[0,T ]

E(‖u(t)‖4Hs+6)
]
.
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Let us estimate the expectation of the product of the first and second terms in (2.19).
Using the expressions of those terms given in (2.14) and (2.15), together with Plancherel
equality and the Fourier transform of the operators Sn,δt and S(tn+1, tn), we obtain

E(en,δt,1, en,δt,2)s = E
(
Sn,δten, (Sn,δt − S(tn+1, tn))u(tn)

)
s

= E
(
en, S

∗
n,δt(Sn,δt − S(tn+1, tn))u(tn)

)
s

= ReE
∫

Rd

(1 + |ξ|2)sên(ξ)(1− e−2i arctan(
√

δt
2

χn|ξ|2)+i
√
δtχn|ξ|2)¯̂u(tn, ξ)dξ

and since χn is independent of û(tn, ξ), the previous term is equal to

Re
∫

Rd

E(1− ei
√
δtχn|ξ|2−2i arctan(

√

δt
2

χn|ξ|2))E((1 + |ξ|2)sên(ξ)¯̂u(tn, ξ))dξ.

Since

arctan x− x = −x
3

3
+ x5ε(x)

for some bounded function ε(x) on R, it follows

1− ei
√
δtχn|ξ|2−2i arctan(

√

δt
2

χn|ξ|2)

= 1− e
i
12

(δt)3/2χ3
n|ξ|6+i(δt)5/2χ5

n|ξ|10ε(
√

δt
2

χn|ξ|2)

= − i
12
(δt)3/2χ3

n|ξ|6 + (δt)5/2χ5
n|ξ|10η(

√
δtχn|ξ|2),

where, again, η is a bounded function on R. Now, since E(χ3
n) = 0, this and Cauchy-

Schwarz inequality easily imply

(2.35)

|E(en,δt,1, en,δt,2)s| ≤ C(δt)5/2E(‖en‖2Hs)1/2E(‖u(tn)‖2Hs+5)1/2

≤ C1(δt)E(‖en‖2Hs) + C2(δt)
4 sup
t∈[0,T ]

E(‖u(t)‖2Hs+5).

We now consider the estimate of the expectation of the Hs inner product of the first and
third terms in (2.19). Using the expressions given in (2.14) and (2.16), we easily obtain

(2.36)

E(en,δt,1, en,δt,3)s

= E
(
en, iS

∗
n,δt

∫ tn+1

tn

S(tn+1, s)(gk(u(tn), u(tn+1))− fk(u(s)))ds
)
s

= I + II + III

with

(2.37) I = E
(
en, i

∫ tn+1

tn

[fk(u(tn))− fk(u(s))]ds
)
s
,

(2.38) II = (δt)E
(
en, i[gk(u(tn), u(tn+1))− fk(u(tn))]

)
s
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and

(2.39) III = E
(
en, i

∫ tn+1

tn

(I − S∗
n,δtS(tn+1, s))[gk(u(tn), u(tn+1))− fk(u(s))]ds

)
s
.

The use of a Taylor expansion for fk – which is easily seen to belong to C2
b (H

s(Rd)) –
allows to write

(2.40)

I = E
(
en, i

∫ tn+1

tn

Dfk(u(tn))En(s)ds
)
s

+E
(
en, i

∫ tn+1

tn

∫ 1

0

(1− θ)D2fk(u(tn) + θEn(s))(En(s), En(s))dθds
)
s

= I1 + I2.

Thanks to the Cauchy-Schwarz inequality and the fact that

(2.41) E(‖En(s)‖4Hs) ≤ C(δt)2 sup
t∈[0,T ]

E(‖u(t)‖4Hs+2),

which follows easily from Lemma 2.8 and (2.25), the following estimate holds :

(2.42) I2 ≤ C(δt)2E(‖en‖2Hs)1/2 sup
t∈[0,T ]

E(‖u(t)‖4Hs+2)1/2.

In order to estimate the term I1, we use again, the expression (2.25) of En which allows
to write

E
(
en,

∫ tn+1

tn

Dfk(u(tn))En(s)ds
)
s

= E
(
en,

∫ tn+1

tn

Dfk(u(tn))(S(s, tn)− I)u(tn)ds
)
s

+E
(
en,

∫ tn+1

tn

Dfk(u(tn)).i

∫ s

tn

S(s, σ)fk(u(σ))dσds
)
s
.

The second term in the right hand side above is bounded, again thanks to the Cauchy-
Schwarz inequality, by

C(δt)2E(‖en‖2Hs)1/2 sup
t∈[0,T ]

E(‖u(t)‖2Hs)1/2.

The first term is equal to

E
(
en,

∫ tn+1

tn

Dfk(u(tn))E(S(s, tn)− I)u(tn)ds
)
s

and the use of Cauchy-Schwarz inequality, together with the fact that Dfk(u) is a
bounded operator in Hs(Rd) uniformly in u, allows to bound this term by

C(δt)1/2E
(
‖en‖2Hs)1/2E(

∫ tn+1

tn

‖E(S(s, tn)− I)u(tn)‖2Hsds
)1/2

.
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Then, Parseval Theorem and the fact that, or all s ∈ (tn, tn+1),

(2.43)

|E(Fx((S(s, tn)− I)u(tn))(ξ)
∣∣ Ftn)| = |E(ei(β(s)−β(tn))|ξ|2 − 1)û(tn, ξ)|

= |e−(s−tn)|ξ|4/2 − 1||û(tn, ξ)|
≤ C(δt)|ξ|4|û(tn, ξ)|

lead to the estimate :

(2.44) I1 ≤ C(δt)2E(‖en‖2Hs)1/2 sup
t∈[0,T ]

E(‖u(t)‖2Hs+4)1/2.

The term II in (2.36) may be estimated in the same way. In order to bound the third
term, we use the following lemma.

Lemma 2.9. There exists a constant C > 0 such that for any random function v ∈
L4(Ω;Hs+2(Rd)), and for any s ∈ (tn, tn+1),

E(‖(I − S∗
n,δtS(tn+1, s))v‖2Hs) ≤ C(δt)(E(‖v‖4Hs+2))1/2.

Applying Lemma 2.9 with v = gk(u(tn), u(tn+1))− fk(u(s)) and using (2.23), together
with Cauchy-Schwarz inequality and (2.27)–(2.28) leads yo

(2.45) III ≤ C(δt)2E(‖en‖2Hs)1/2 sup
t∈[0,T ]

E(‖u(t)‖4Hs+4)1/2.

We deduce from (2.42), (2.44), the same estimate for II and (2.45), that

(2.46) E
(
en,δt,1, en,δt,3

)
s
≤ C(δt)2E(‖en‖2Hs)1/2[1 + sup

t∈[0,T ]

E(‖u(t)‖4Hs+4)].

Proof of Lemma 2.9. The proof is based on similar arguments as those of Lemma 2.7 :
Parseval theorem and the fact that |1− eix|2 ≤ C|x|2 for any real x allows to write, for
any v ∈ L4(Ω;Hs+2(Rd)),

E(‖(I − S∗
n,δtS(tn+1, s))v‖2Hs)

≤ CE

∫

Rd

∣∣2 arctan(
√
δt

2
χn|ξ|2) + (β(tn+1)− β(s))|ξ|2

∣∣2(1 + |ξ|2)s|v̂(ξ)|2dξ

≤ C(δt)(E(χ2
n +

|β(tn+1)−β(s)|2
tn+1−s

)2)1/2E(‖v‖4Hs+2)1/2

by Cauchy-Schwarz inequality. �

In order to estimate the term E
(
en,δt,1, en,δt,4

)
s
, we use (2.14), (2.17) and a Taylor

expansion to decompose it as

E
(
en,δt,1, en,δt,4

)
s
= I + II + III

with

I = E
(
en, iS

∗
n,δt

[
(δt)Tn,δt −

∫ tn+1

tn

S(tn+1, s)ds
]
fk(u(tn))

)
s
,
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II = E
(
en, iS

∗
n,δt

[
(δt)Tn,δt −

∫ tn+1

tn

S(tn+1, s)ds
]
Dvgk(u(tn), u(tn))En(tn+1)

)
s

and

III = E
(
en, iS

∗
n,δt

[
(δt)Tn,δt−

∫ tn+1

tn

S(tn+1, s)ds
] ∫ 1

0

(1−θ)D2
vvgk(u(tn), u(tn))(En(tn+1))

2dθ
)
s

where En is defined in (2.25). The two last terms are bounded as above, using Cauchy-

Schwarz inequality and the fact that (δt)Tn,δt−
∫ tn+1

tn
S(tn+1, s)ds is of order (δt)

3/2 while

En(tn+1) is of order (δt)
1/2 (see (2.27) and (2.41)). The first term is bounded thanks to

arguments similar to those we have used to obtain (2.35). Indeed, Plancherel Theorem
implies
(2.47)

I = E Im
∫

Rd

(1 + |ξ|2)s ¯̂en(ξ)Fx

[
E

(
S∗
n,δt((δt)Tn,δt −

∫ tn+1

tn

S(tn+1, s)ds)fk(u(tn))
)]
dξ.

Now, for a fixed ξ ∈ Rd,

Fx

[
E

(
S∗
n,δt((δt)Tn,δt −

∫ tn+1

tn

S(tn+1, s)ds)
)
fk(u(tn))

]
(ξ)

= (m1,n,δt(ξ) +m2,n,δt(ξ)) ̂fk(u(tn))(ξ)

where

m1,n,δt(ξ) = (δt)E
[
(1− i

√
δt

2
χn|ξ|2)−1 − 1

]

and

m2,n,δt(ξ) =

∫ tn+1

tn

E(1− e−2i arctan(
√

δt
2

χn|ξ|2)+i(β(tn+1)−β(s))|ξ|2)ds.

On the one hand, we use the fact that

1

1− ix
− 1 = ix+ x2ε(x)

for some bounded function ε on R to obtain

(2.48) |m1,n,δt(ξ)| ≤ C(δt)2|ξ|4.
On the other hand, we successively use the equalities

arctan x = x+ x3η(x)

and
1− eiy = −iy + y2ν(y)

for some bounded functions η and ν on R, to get

(2.49) |m2,n,δt(ξ)| ≤ C(δt)2|ξ|4.
We deduce from (2.47), (2.48), (2.49) and Cauchy-Schwarz inequality that

I ≤ C(δt)2E(‖en‖2Hs)1/2E(‖fk(u(tn))‖2Hs+4)1/2.
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Because s is a positive integer, one may easily check that there is a constant C(k) such
that

‖fk(v)‖Hs+4 ≤ C(k)‖v‖2Hs+4 , ∀v ∈ Hs+4(Rd),

and

I ≤ C(δt)2E(‖en‖2Hs)1/2 sup
t∈[0,T ]

(E(‖u(t)‖2Hs+4))1/2.

It follows

(2.50) E
(
en,δt,1, en,δt,4

)
s
≤ C(δt)2E(‖en‖2Hs)1/2[ sup

t∈[0,T ]

E(‖u(t)‖4Hs+4) + 1].

The inner product of the first and fifth terms in (2.19) is easily estimated thanks to the
Cauchy-Schwarz inequality, the fact that gk is a Lipschitz function in Hs ×Hs, and the
unitarity of the operators S∗

n,δt and Tn,δt in H
s(Rd) :

(2.51)

E
(
en,δt,1, en,δt,5

)
s

= (δt)E
(
en, iS

∗
n,δtTn,δt[g(un, un+1)− g(u(tn), u(tn+1))]

)
s

≤ C(δt)E(‖en‖2Hs)1/2E(‖en‖2Hs + ‖en+1‖2Hs)1/2

≤ C(δt)E(‖en‖2Hs + ‖en+1‖2Hs).

Finally, all terms of the form E
(
en,δt,j, en,δt,5

)
with 2 ≤ j ≤ 5 are bounded using Cauchy

Schwarz inequality and (2.21), (2.29), (2.32) and (2.33). It follows

(2.52) E
(
enδt,j, en,δt,5

)
s
≤ C(δt)5/2E(‖en‖2Hs + ‖en+1‖2Hs)1/2E(‖en‖2Hs)1/2.

Gathering then (2.19)–(2.21), (2.29), (2.32)–(2.35), (2.46), (2.50), (2.51) and (2.52), we
deduce the existence of constants K̃j, for j = 1, 2, 3, depending on k and supt∈[0,T ] E(‖u(t)‖4Hs+6)
(which also depends on k) such that for any n with nδt ≤ T ,

E(‖en+1‖2Hs) ≤ (1 + K̃1δt)E(‖en‖2Hs) + K̃2(δt)
3 + K̃3(δt)E(‖en+1‖2Hs).

We deduce that (2.11) holds provided T/N = δt ≤ 1/2K̃3 with K1 = 3K̃1 + 2K̃3 and
K2 = 2K̃2. The discrete Gronwall Lemma concludes the proof of Proposition 2.6 for
δt = T/N ≤ 1/2K̃3. The conclusion is obviously still true for all N < 2TK̃3, since the
continuous solution u has paths a.s. in C([0, T ];Hs(Rd)) and the discrete solution uδt
given by Proposition 2.2 has paths a.s. in L∞(0, T ;Hs(Rd)). �

2.3. Proof of Theorem 2.3. We recall that the discrete solution is now defined by
uδtn = ukn if nδt ≤ τ kδt, and τ

k
δt is defined in (2.8), for any k ∈ N. On the other hand, by

Proposition (2.6), we have for any k ∈ N, recalling that δt = T/N :

E
(
sup
n≤N

‖uk(tn)− ukn‖2Hs

)
≤

∑

n≤N

E(‖uk(tn)− ukn‖2Hs) ≤ C(k)T (δt)
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and this show that supn≤N ‖u(tn) − uδtn ‖Hs converges to zero in probability as δt tends
to zero : indeed, if ε > 0 is fixed, with ε ≤ 1, then for k ∈ N,

P
(
sup
n≤N

‖u(tn)− uδtn ‖Hs ≥ ε
)

≤ P
(
sup
n≤N

‖u(tn)‖Hs ≥ k
)
+ P

(
sup
n≤N

‖uk+1(tn)− uk+1
n ‖Hs ≥ ε

)

≤ P
(
sup
n≤N

‖u(tn)‖Hs ≥ k
)
+ TC(k)(δt)ε−2.

Hence, choosing first k sufficiently large so that P(supn≤N ‖u(tn)‖Hs ≥ k) ≤ ε/2 –

this is possible since u ∈ C([0, T ];Hs(Rd)) a.s. – then δt sufficiently small so that
TC(k)(δt)ε−2 ≤ ε/2, the convergence in probability is proved.

We deduce from this convergence in probability, taking again δt = T/N for some
N ∈ N, that

(2.53) lim
K→∞

P
(
sup
n≤N

‖uδtn ‖Hs ≥ K
)
= 0

uniformly with respect to δt = T/N . Now, we can prove that P(‖u(tn)− uδtn ‖Hs ≥ Cδt)
tends to zero as C tends to infinity, uniformly with respect to δt : indeed, thanks to
Markov inequality

P(‖u(tn)− uδtn ‖Hs ≥ Cδt)

≤ P
(
sup
n≤N

‖u(tn)‖Hs ≥ k
)
+ P

(
sup
n≤N

‖uδtn ‖Hs ≥ k
)
+

E(‖uk(tn)− ukn‖2Hs)

C2(δt)2
.

We conclude choosing first k sufficiently large so that the two first terms are small,
thanks to (2.53), then for k fixed, choosing C sufficiently large, so that the last term,
which is bounded by C(k)/C2 thanks to Proposition 2.6, is in turn small. �

3. Numerical simulations in dimension one

In this section, we consider equation (1.1) in space dimension one, i.e.

(3.1) idφ+ ∂2xφ ◦ dβ + |φ|2σφ = 0,

for different values of σ. We numerically illustrate the order of convergence given in
Section 2, and we investigate the behavior of the solutions in terms of the power σ of
the nonlinear term.

3.1. Numerical schemes. Three different schemes have been used for the numerical
simulations. These are classical schemes for the deterministic nonlinear Schrödinger
equation, that we have adapted to the simulation of the equation with Stratonovich
noise (3.1). For each scheme, we work on the spatial domain [−Lx, Lx] and we use a
regular mesh in space. We of course need the use of boundary conditions in space, even
though our aim is to approximate the solution of equation (3.1) set in R. We will work
with either Dirichlet or periodic boundary conditions, and take Lx sufficient large so



NUMERICAL ANALYSIS OF NLS EQUATION WITH WHITE NOISE DISPERSION 19

that the solution stays confined in the interval [−Lx, Lx] up to the final time of the
computations. The spatial mesh step size is δx = 2Lx

Nx
where Nx = 2Mx is an even

integer, the time step being δt > 0, and we denote the grid points in space and time by

xj = −Lx + jδx, j = 0, 1, . . . , Nx, and tk = kδt, k = 0, 1, 2 . . .

with x0 = −Lx, xNx = Lx. Furthermore, φk
i is the approximations of φ(tk, xi).

Time-splitting spectral discretization. We consider the equation with periodic boundary
conditions, and use pseudo-spectral discretization in space. The relations between φk

i

and its discrete Fourier coefficients in space φ̂k
ℓ are given by

(3.2) φk
i =

Mx−1∑

ℓ=−Mx

φ̂k
ℓ e

iξℓxi , for i = 1, · · ·Nx,

and

(3.3) φ̂k
ℓ =

1

Nx

Nx∑

i=1

φk
i e

−iξℓxi , ℓ = −Mx, ..,Mx − 1,

where ξℓ = πℓ
Lx
, for ℓ = −Mx, . . . , 0, . . . ,Mx − 1, gives the regular mesh grid for the

frequencies.
Equation (3.1) is solved with the classical Strang splitting scheme. One first solves

(3.4) idφ+ ∂2xφ ◦ dβ = 0,

on a time interval of length δt/2. In the second step, one solves

(3.5)

{
i∂tφ+ |φ|2σφ = 0

φ0 = φ∗

where φ∗ is the solution of (3.4) at time t = tk + δt/2. The last step consists in solving
again (3.4) over a half time step with initial data given by the solution of the second
step.

Equation (3.4) is discretized in space by the Fourier spectral method and integrated
exactly in time. For t ∈ [tk, tk+1], multiplying (3.5) by φ̄, the conjugate of φ and taking
the imaginary part, we obtain for x ∈ [−Lx, Lx] and t ≥ 0 :

d

dt
|φ(t, x)|2 = 0.

With this conservation law, solving (3.5), amounts to solve :

(3.6) i∂tφ+ |φ∗|2σφ = 0.

Hence the algorithm may be summarized as follows.
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For the first step of the splitting, we compute

φ̂k
l =

1

Nx

Nx∑

i=1

φk
i e

−iξlxi , l = −Mx, ..,Mx − 1,

φ̂∗
l = φ̂k

l exp
(
− i

√
δt

2
ξ2l χk

)

φ∗
i =

Mx−1∑

l=−Mx

φ̂∗
l e

iξlxi , for i = 1, · · ·Nx,

where
√

δt
2
χk = β(tk +

δt
2
)− β(tk), so that (χk)k=0,1,... is a family of independent normal

random variables, and (Ûl) denote the Fourier coefficients of a periodic vector U = (Ui).
For the second step, we compute

φ̃j

k+1
= φ∗

j exp
(
iδt|φ∗|2σ

)
.(3.7)

Finally for the last step :

(3.8) φk+1
i =

Mx−1∑

l=−Mx

̂̃
φl

k+1

exp
(
i
(
ξlxi −

√
δt

2
ξ2l χk)

))
, for i = 1, · · ·Nx.

Crank-Nicolson scheme. We consider the Crank-Nicolson scheme which was analyzed
in Section 2, together with finite differences centered discretization in space. We use
here Dirichlet boundary conditions which are easily discretized with finite differences.
Therefore, ∂2x is approximated by the classical centered finite difference operator D+D−:

(D+D−φ)i =
φi+1 − 2φi + φi−1

(δx)2
.

The scheme reads:

(3.9) i
φk+1 − φk

δt
+

χk√
δt
D+D−

(
φk+1 + φk

2

)
+ g(φk+1, φk) = 0

where here
√
δtχk = β(tk + δt) − β(tk), and g is defined by (2.4). Note that the com-

putation of φk+1 requires the resolution of a nonlinear problem for which a fixed point
procedure is used.

Crank-Nicolson scheme with relaxation. For the last scheme, we use a fractional-step
Crank-Nicolson scheme with relaxation introduced by C. Besse for the deterministic
nonlinear Schrödinger equation [4]. The advantage is that the scheme is linearly implicit
and requires only the resolution of a linear system. It reads in our case :

(3.10) i
φk+1 − φk

δt
+

χk√
δt
D+D−

(
φk+1 + φk

2

)
+Rk+ 1

2

(
φk+1 + φk

2

)
= 0,
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where again
√
δtχk = β(tk + δt)− β(tk), and the auxiliary function R is given by

Rk+ 1

2 +Rk− 1

2

2
= |φk|2σ.

3.2. Numerical results. We here report the results of several numerical experiments.
In order to avoid numerical reflections due to the boundaries, we take a domain [−Lx, Lx]
large enough.

In order to satisfy the required independence properties of the family of Gaussian
random variables χk, these are simulated with the Netlib Library (http://netlib.org)
which uses a random generator routine with period 1032 − 1. This has to be compared
with the maximum size of the random vector we use which is of order 109.

3.2.1. Strong order of convergence. In the first experiment, we compute the strong nu-
merical order of the three numerical schemes described above and in particular, we
recover numerically the result obtained in Theorem 2.3. In the deterministic case, the
schemes are known to be consistent and of order 2 in time (see [4], [5], [12] ) which is
shown in figure 1.

We choose the computational domain [−Lx, Lx] = [−30, 30] and an initial data with
a Gaussian profile φ(0, x) = exp(−3x2). As our aim is to identify only the numerical
order in time, we take a fine spatial mesh with δx = 10−3.
Since there is no explicit solution for the stochastic equation (3.1), we first compute

a reference solution φref on a fine mesh in time δtref = 10−5, that we compare to
approximations of the same equation on 6 coarser grids in time by using a time step
δt = 2pδtref with p = 1, ..., 6. The Brownian path (one trajectory) is kept fixed for
each approximation. In figure 1, we plot four convergence curves corresponding to the
logarithm of the relative errors

√
|ψref − ψ2pδt|2L2 at time T = 0.5 for different schemes,

in terms of the logarithm of the number of points (in time) used in the discretization.
The slopes of the three curves corresponding to the stochastic schemes are close to −1
and we recover that the strong order of the Crank Nicolson scheme is 1 in time. Thus,
the result agrees with the theoretical analysis of the previous section.

The same experiment has been done with many other trajectories and the same order
of convergence has always been observed.

3.2.2. Influence of the power nonlinearities σ. We now investigate the influence of the
power nonlinearity σ on the behavior of the numerical solution of (3.1). For these
experiments, we only use the Crank-Nicolson scheme for the following values of σ : σ = 1,
σ = 2, σ = 3, σ = 3.9 and σ = 4, which we conjecture to be the critical case. Indeed, due
to the scaling invariance λ−1/2β(λt) of the Brownian motion β, one may easily see that

equation (3.1) with σ = 4 is invariant under the scale change uλ(t, x) =
√
λu(λ4t, λx)

for any λ > 0, ans so is the L2-norm in dimension one. This suggests that equation (3.1)
with σ = 4 should be critical in L2(R). This is different from the deterministic case for
which the L2-critical power is σ = 2.
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Figure 1. Strong order of convergence

For each simulation (σ = 1, σ = 2, σ = 3 and σ = 3.9), we take a Gaussian initial state
given by φ(0, x) = exp(−3x2) on the computational domain [−Lx, Lx] = [−10π, 10π]
with Nx = 212 points in space and a time step δt = 0.4δx2 with a final time T which
is chosen in such a way that the numerical solution stays confined in [−Lx, Lx] on the
whole interval [0, T ]. In order to understand the noise effects, all the experiments are
done with one realization of a Brownian path. Note that all the different simulations
that we have performed have given the same qualitative behavior.

Figure 2 shows the profile of the space-time evolution of the solution in the case σ = 1.
We can see clearly the effect of the noise on the dispersion. It seems that dispersion
and nonlinearity stay well balanced for a while, resulting in alternating contractions and
expansions of the solution. Here the solutions stays confined until T = 5, then boundary
effects occur (which would suggest that dispersion finally wins) and we had to stop the
computation. The modulus of the Fourier modes of the solution are plot in figure 6. In
the cases σ = 2, σ = 3 and σ = 3.9 (see figure 3, figure 4 and figure 5), the behavior
of the solution in time is similar, although the final computation time may be different
from one case to the other. The final amplitude seems much smaller than the initial
amplitude although the modulus of the Fourier modes of the solution do not seem to
move with time (see figure 6 and figure 7 ), which indicates that after a while there is
no energy transfer between the different Fourier modes.

For the case σ = 4, which is the expected critical case (see the above comments), it
is much more difficult to perform numerical simulations since the numerical method has
to be consistent with the small spatial scales of the blow up structures. Here we do not
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Figure 2. σ = 1 : space-time evolution of the solution (left) and contour
plot of the solution (right).

Figure 3. σ = 2 : space-time evolution of the solution (left) and contour
plot of the solution (right).

use spatial local refinement as in [10] . Since we are in dimension 1 in space, and it is
not too expensive, we only refine globally the time-space discretization. We take here
δx = 10−4 and δt = 0.1δx2. We take a Gaussian inital data φ(0, x) = 1.4 exp(−3x2). In
figure 8 we plot the modulus of the initial state and of the solution at time t = 0.035.
Figure 9 shows the modulus of the spatial spectrum of the solution at three different
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Figure 4. σ = 3 : space-time evolution of the solution (left) and contour
plot of the solution (right).

Figure 5. σ = 3.9 : space-time evolution of the solution (left) and the
contour plot of the solution (right).

times; there seems to be a collapse of this spatial spectrum at time t = 0.035. Finally,
figure 10 represents the evolution with time of the discrete H1-norm, which indicates
that the solution reaches very high amplitudes.

We finally plot in figure 11 the evolution with time of the expected amplitude of
the solution for σ = 1. We use the notation < > for the empirical average which
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Figure 6. Space-time evolution of the modulus of the spatial spectrum
of the solution; left : σ = 1, right : σ = 2.

Figure 7. Space-time evolution of the modulus of the spatial spectrum
of the solution; left : σ = 3, right : σ = 3.9.

approximates the mathematical expectation :

< max
x

|φ(t, x)| >= 1

N

N∑

p=1

max
i

|φp(t, xi)|
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Figure 8. σ = 4. Modulus of the initial data (left) and modulus of
solution at time t = 0.035 (right).

is the numerical approximation of the the average amplitude E(maxx |φ(t, x)|) where N
is number of computed trajectories. For the numerical simulation we take a Gaussian
inital data given by φ(0, x) = exp(−3x2) on the computational domain [−Lx, Lx] =
[−20π, 20π] with Nx = 212 points in space and a time step δt = 0.4δx2 with a final
time T = 1. The average is taken over 1000 trajectories. There seems to be a rather
strong diffusion of the expected amplitude as time evolves, but no clear time scale for
the diffusion phenomenon can be extracted from the numerical simulations.
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Figure 9. σ = 4. Evolution of the spatial spectrum of the solution at
times t = 0, t = 0.00012 and t = 0.035.

Figure 10. σ = 4 : Evolution of the discrete H1 norm.
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