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Abstract

We propose the demonstration of Direct Code Ex-
ecution (DCE), a framework of network simulation
running with both existing Linux kernel space pro-
tocol stack and POSIX socket based protocol imple-
mentations, to achieve a set of requirements for re-
producible network experiment: 1) experimentation
realism, 2) topology flexibility, 3) easy and low cost
replication, 4) experimentation scalability, and 5)
easy debugging. Our demonstration showcases the
typical use cases of DCE: content centric networking
over mobile ad hoc network with CCNx, and seam-
less handoff experiment with Linux the Multipath
TCP implementation.

Keywords: Network Stack; Experiment; Software De-

velopment; Direct Code Execution; Linux

1. INTRODUCTION

Increasing demand for the reproducible network
experiments requires sophisticated tools to conduct
arbitrary network experiment with satisfying a set
of requirements such as 1) experimentation realism,
2) topology flexibility, 3) easy and low cost repli-
cation, 4) experimentation scalability, and 5) easy
debugging. Container-based emulation (CBE) [3]
as well as shared emulation testbed (PlanetLab [9])
are good at satisfying such requirements while net-
work simulators are not as it had been lacked the
functional realism of simulated protocols.
Porting existing network protocol implementations

to network simulators is one possible direction to
improve the functional realism of experimental re-
sult. OppBSD [2] or INETQuagga [1] would take
this approach to reuse existing protocol implemen-
tations (i.e., TCP/IP stack of FreeBSD and Quagga
routing protocol suite), but they still left the painful
task of manual patching for a particular network
simulator, resulting difficulties to track the latest
version of code. Network Simulation Cradle (NSC) [6]
introduces a nice way with automatically generat-
ing C source files of different operating system’s net-

Table 1: Requirements for reproducible net-

work experiments.
Simulators Testbeds Emulators

Functional
??? X X

Realism
Timing

X X X
Realism
Topology

X (limited) X
Flexibility

Easy
X X X

Replication
Easy

X
Debug

Scalability X X

work stacks (e.g., FreeBSD, Linux, OpenBSD, lwip)
built to shared libraries used in network simulators.
The automation alleviates the cost of tracking lat-
est version of codes and supports a wide range of
existing code with a single framework, but it still
requires additional effort to introduce arbitrary pro-
tocols implementation rather than TCP.
We will present the Direct Code Execution (DCE)

environment for ns-3, notable for being the first
free, open source framework for integrating both
Linux kernel space protocol stack and POSIX socket
based user space application code with a leading
discrete-event network simulator. DCE takes the
traditional library operating system (LibOS) ap-
proach such as Exokernel [7] in its core architectural
design to enable running and evaluating real net-
work protocol implementations. As a result, DCE
brings us functional realism to network simulation-
based experiment as shown in Table 1.

2. SYSTEM OVERVIEW

The design of DCE is structured around three
separate components as depicted in Figure 1.

• Core. The lowest-level core module handles
the virtualization of stacks, heaps, and global
memory. It provides singe-process model vir-
tualization for simulated nodes with carefully
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Figure 1: Architecture of Direct Code Execution.

isolating the namespace of each simulated pro-
cess.

• Kernel layer. The kernel layer takes advan-
tage of the core services to provide an execu-
tion environment to the Linux network stack
within the network simulator. The services of
kernel such as the Linux bottom halves, sched-
uler, Read-Copy-Update (RCU) [?], and timer
API are re-implemented as a new architecture
based on the asm-generic implementation to
minimize the modification to original kernel
code.

• POSIX layer. The POSIX layer builds upon
the core and kernel layers to re-implement the
standard socket APIs used by emulated appli-
cations.

Along with these components, DCE, in theory,
enables to run any existing network protocol imple-
mentations upon ns-3 without any manual modifi-
cations to the original code. At the present moment,
it supports a broader range of existing implementa-
tions running on ns-3: Linux kernel (2.6.36, 3.4-
3.10 version), quagga (ripd, ripngd, ospfd, ospf6d,
bgpd, and rtadv), ccnx, iperf, ip, ping/ping6,
umip, bind9, unbound, thttpd, and bittorrent (open-
tracker/rasterbar).

3. DEMONSTRATION DETAIL

We will demonstrate the seamless simulation ex-
amples using existing protocol implementations over
ns-3. To present major features of DCE, we pick

Figure 2: CCNx in mobile and Wi-Fi ad hoc

network.

two examples as representatives of user space appli-
cation simulation and Linux kernel space protocol
simulation.
User space protocol implementation run-

ning on DCE: CCNx1 over mobile nodes

Contents Centric Network (CCN) [5] is a network
architecture categorized clean-slate design, which
brings a different perspective for the identifier of
communications from traditional IP addresses to
named data. Such floating identifier independent
from physical conditions is beneficial especially in

1http://www.ccnx.org/

2

http://www.ccnx.org/


highly dynamic network topology like mobile ad hoc
network [8].
In this showcase, we will present this new network

paradigm with a CCN implementation, CCNx, over
simulated dynamic topology via ns-3.

Kernel space protocol implementation run-

ning on DCE: Multipath TCP

Multipath TCP (MPTCP) [10] is an extension
of the standard TCP that allows to use multiple
subflows with different IP addresses without mod-
ifying user space applications. Basically, this new
transport protocol makes it possible to increase the
throughput of an application by running it over
multiple links, as well as transparent handoff using
multiple IP addresses.
In this showcase, we will present a Linux MPTCP

implementation2 running on DCE over ns-3 with
the support of various user space applications (quagga,
ip command, udhcpd, iperf). Multiple addresses
to a mobile node are provided via two different wire-
less technologies of ns-3, LTE and Wi-Fi, and tries
to switch its primary address between them during
node movement, keeping ongoing TCP session avail-
able. Similar handoff scenario using Linux Mobile
IPv6 implementation is available3.

Figure 3: Similar Handoff simulation with

the Linux Mobile IPv6 implementation.

In all demonstrations, we will present a typical
network simulation using existing protocol imple-
mentations, with animated visualization of simu-
lated nodes, traffic status, as well as measurement
results with plotted graphs from each simulation.

Facilities for the Demonstration

The followings are the required facilities at the venue
to demonstrate our system.
2https://github.com/multipath-tcp/mptcp
3https://www.youtube.com/watch?v=y790NE3EPCg

• Power outlet (2 slots for 2 Laptop PCs)

• Table (enough space to put 2 PCs)

• Wall or Stand to put a poster
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