
HAL Id: hal-00948727
https://hal.archives-ouvertes.fr/hal-00948727

Submitted on 18 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Code Execution: Realistic Protocol Simulation
with Running Code

Hajime Tazaki, Emilio Mancini, Daniel Camara, Thierry Turletti, Walid
Dabbous

To cite this version:
Hajime Tazaki, Emilio Mancini, Daniel Camara, Thierry Turletti, Walid Dabbous. Direct Code
Execution: Realistic Protocol Simulation with Running Code. 2013. �hal-00948727�

https://hal.archives-ouvertes.fr/hal-00948727
https://hal.archives-ouvertes.fr


Direct Code Execution: Realistic Protocol Simulation
with Running Code

Hajime Tazaki∗, Emilio Mancini◦, Daniel Câmara◦, Thierry Turletti◦, Walid Dabbous◦

∗NICT, Japan ◦INRIA, France

Abstract

We propose the demonstration of Direct Code Ex-
ecution (DCE), a framework of network simulation
running with both existing Linux kernel space pro-
tocol stack and POSIX socket based protocol imple-
mentations, to achieve a set of requirements for re-
producible network experiment: 1) experimentation
realism, 2) topology flexibility, 3) easy and low cost
replication, 4) experimentation scalability, and 5)
easy debugging. Our demonstration showcases the
typical use cases of DCE: content centric networking
over mobile ad hoc network with CCNx, and seam-
less handoff experiment with Linux the Multipath
TCP implementation.

Keywords: Network Stack; Experiment; Software De-

velopment; Direct Code Execution; Linux

1. INTRODUCTION

Increasing demand for the reproducible network
experiments requires sophisticated tools to conduct
arbitrary network experiment with satisfying a set
of requirements such as 1) experimentation realism,
2) topology flexibility, 3) easy and low cost repli-
cation, 4) experimentation scalability, and 5) easy
debugging. Container-based emulation (CBE) [3]
as well as shared emulation testbed (PlanetLab [9])
are good at satisfying such requirements while net-
work simulators are not as it had been lacked the
functional realism of simulated protocols.
Porting existing network protocol implementations

to network simulators is one possible direction to
improve the functional realism of experimental re-
sult. OppBSD [2] or INETQuagga [1] would take
this approach to reuse existing protocol implemen-
tations (i.e., TCP/IP stack of FreeBSD and Quagga
routing protocol suite), but they still left the painful
task of manual patching for a particular network
simulator, resulting difficulties to track the latest
version of code. Network Simulation Cradle (NSC) [6]
introduces a nice way with automatically generat-
ing C source files of different operating system’s net-

Table 1: Requirements for reproducible net-

work experiments.
Simulators Testbeds Emulators

Functional
??? X X

Realism
Timing

X X X
Realism
Topology

X (limited) X
Flexibility

Easy
X X X

Replication
Easy

X
Debug

Scalability X X

work stacks (e.g., FreeBSD, Linux, OpenBSD, lwip)
built to shared libraries used in network simulators.
The automation alleviates the cost of tracking lat-
est version of codes and supports a wide range of
existing code with a single framework, but it still
requires additional effort to introduce arbitrary pro-
tocols implementation rather than TCP.
We will present the Direct Code Execution (DCE)

environment for ns-3, notable for being the first
free, open source framework for integrating both
Linux kernel space protocol stack and POSIX socket
based user space application code with a leading
discrete-event network simulator. DCE takes the
traditional library operating system (LibOS) ap-
proach such as Exokernel [7] in its core architectural
design to enable running and evaluating real net-
work protocol implementations. As a result, DCE
brings us functional realism to network simulation-
based experiment as shown in Table 1.

2. SYSTEM OVERVIEW

The design of DCE is structured around three
separate components as depicted in Figure 1.

• Core. The lowest-level core module handles
the virtualization of stacks, heaps, and global
memory. It provides singe-process model vir-
tualization for simulated nodes with carefully

1



ARP

Qdisc

TCP UDP DCCP SCTP

ICMP IPv4IPv6

Netlink

BridgingNetfilter

IPSec Tunneling

Kernel layer

Heap Stack

memory

Core layer

network simulation core

POSIX layer

Application
(ip, iptables, quagga)

bottom halves/rcu/
timer/interupt

struct net_device

(ns3::NetDevice)

DCE

DCE

Hardware

Simulation Core

Host 

operating system

Process

Network

stack

Applications

Network

stack

Applications

node#1 node#N

Figure 1: Architecture of Direct Code Execution.

isolating the namespace of each simulated pro-
cess.

• Kernel layer. The kernel layer takes advan-
tage of the core services to provide an execu-
tion environment to the Linux network stack
within the network simulator. The services of
kernel such as the Linux bottom halves, sched-
uler, Read-Copy-Update (RCU) [?], and timer
API are re-implemented as a new architecture
based on the asm-generic implementation to
minimize the modification to original kernel
code.

• POSIX layer. The POSIX layer builds upon
the core and kernel layers to re-implement the
standard socket APIs used by emulated appli-
cations.

Along with these components, DCE, in theory,
enables to run any existing network protocol imple-
mentations upon ns-3 without any manual modifi-
cations to the original code. At the present moment,
it supports a broader range of existing implementa-
tions running on ns-3: Linux kernel (2.6.36, 3.4-
3.10 version), quagga (ripd, ripngd, ospfd, ospf6d,
bgpd, and rtadv), ccnx, iperf, ip, ping/ping6,
umip, bind9, unbound, thttpd, and bittorrent (open-
tracker/rasterbar).

3. DEMONSTRATION DETAIL

We will demonstrate the seamless simulation ex-
amples using existing protocol implementations over
ns-3. To present major features of DCE, we pick

Figure 2: CCNx in mobile and Wi-Fi ad hoc

network.

two examples as representatives of user space appli-
cation simulation and Linux kernel space protocol
simulation.
User space protocol implementation run-

ning on DCE: CCNx1 over mobile nodes

Contents Centric Network (CCN) [5] is a network
architecture categorized clean-slate design, which
brings a different perspective for the identifier of
communications from traditional IP addresses to
named data. Such floating identifier independent
from physical conditions is beneficial especially in

1http://www.ccnx.org/

2

http://www.ccnx.org/


highly dynamic network topology like mobile ad hoc
network [8].
In this showcase, we will present this new network

paradigm with a CCN implementation, CCNx, over
simulated dynamic topology via ns-3.

Kernel space protocol implementation run-

ning on DCE: Multipath TCP

Multipath TCP (MPTCP) [10] is an extension
of the standard TCP that allows to use multiple
subflows with different IP addresses without mod-
ifying user space applications. Basically, this new
transport protocol makes it possible to increase the
throughput of an application by running it over
multiple links, as well as transparent handoff using
multiple IP addresses.
In this showcase, we will present a Linux MPTCP

implementation2 running on DCE over ns-3 with
the support of various user space applications (quagga,
ip command, udhcpd, iperf). Multiple addresses
to a mobile node are provided via two different wire-
less technologies of ns-3, LTE and Wi-Fi, and tries
to switch its primary address between them during
node movement, keeping ongoing TCP session avail-
able. Similar handoff scenario using Linux Mobile
IPv6 implementation is available3.

Figure 3: Similar Handoff simulation with

the Linux Mobile IPv6 implementation.

In all demonstrations, we will present a typical
network simulation using existing protocol imple-
mentations, with animated visualization of simu-
lated nodes, traffic status, as well as measurement
results with plotted graphs from each simulation.

Facilities for the Demonstration

The followings are the required facilities at the venue
to demonstrate our system.
2https://github.com/multipath-tcp/mptcp
3https://www.youtube.com/watch?v=y790NE3EPCg

• Power outlet (2 slots for 2 Laptop PCs)

• Table (enough space to put 2 PCs)

• Wall or Stand to put a poster

4. REFERENCES

[1] INETQuagga: OMNeT++ wiki.
http://www.omnetpp.org/pmwiki/index.

php?n=Main.INETQuagga. (Accessed July 1st
2013).

[2] Bless, R., and Doll, M. Integration of the
freebsd tcp/ip-stack into the discrete event
simulator omnet++. In Simulation

Conference, 2004. Proceedings of the 2004

Winter (2004), vol. 2, pp. 1556–1561 vol.2.
[3] Handigol, N., Heller, B., Jeyakumar,

V., Lantz, B., and McKeown, N.

Reproducible network experiments using
container based emulation. In Proceedings of

the 2012 ACM CoNEXT conference (2012),
CoNEXT ’12.

[4] Hibler, M., Ricci, R., Stoller, L.,

Duerig, J., Guruprasad, S., Stack, T.,

Webb, K., and Lepreau, J. Large-scale
virtualization in the emulab network testbed.
In USENIX 2008 Annual Technical

Conference on Annual Technical Conference

(2008), pp. 113–128.
[5] Jacobson, V., Smetters, D. K.,

Thornton, J. D., Plass, M. F., Briggs,

N. H., and Braynard, R. L. Networking
named content. In Proceedings of the 5th

international conference on Emerging

networking experiments and technologies

(Dec. 2009), CoNEXT ’09, ACM, pp. 1–12.
[6] Jansen, S., and McGregor, A. Simulation

with real world network stacks. In Proceedings

of the 37th conference on Winter simulation

(2005), WSC ’05, Winter Simulation
Conference, pp. 2454–2463.

[7] Kaashoek, M. F., Engler, D. R.,

Ganger, G. R., Briceño, H. M., Hunt,

R., Mazières, D., Pinckney, T., Grimm,

R., Jannotti, J., and Mackenzie, K.

Application performance and flexibility on
exokernel systems. In Proceedings of the

sixteenth ACM symposium on Operating

systems principles (New York, NY, USA,
1997), SOSP ’97, ACM, pp. 52–65.

[8] Meisel, M., Pappas, V., and Zhang, L.

Ad hoc Networking via Named Data. In
Proceedings of the fifth ACM international

workshop on Mobility in the evolving internet

3

https://www.youtube.com/watch?v=y790NE3EPCg
https://github.com/multipath-tcp/mptcp
https://www.youtube.com/watch?v=y790NE3EPCg
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga
http://www.omnetpp.org/pmwiki/index.php?n=Main.INETQuagga


architecture (2010), MobiArch ’10, ACM,
pp. 3–8.

[9] Peterson, L., Anderson, T., Culler, D.,

and Roscoe, T. A blueprint for introducing
disruptive technology into the Internet.
SIGCOMM Comput. Commun. Rev. 33, 1
(2003), 59–64.

[10] Raiciu, C., Paasch, C., Barre, S., Ford,

A., Honda, M., Duchene, F.,

Bonaventure, O., and Handley, M. How
hard can it be? designing and implementing a
deployable multipath tcp. In Proceedings of

the 9th USENIX Conference on Networked

Systems Design and Implementation

(Berkeley, CA, USA, 2012), NSDI’12,
USENIX Association, pp. 29–29.

4


	1 Introduction
	2 System Overview
	3 Demonstration Detail
	4 References

