archives-ouvertes

Detailed specifications for first cycle ready
Florian Schreiner, Wim Vandenberghe, Loic Baron, Carlos Bermudo, Albert
Vico, Donatos Stavropoulos, Mohamed Amine Larabi, Lucia Guevgeozian

Odizzio, Alina Quereilhac, Thierry Rakotoarivelo, et al.

» To cite this version:

Florian Schreiner, Wim Vandenberghe, Loic Baron, Carlos Bermudo, Albert Vico, et al.. Detailed
specifications for first cycle ready. 2013. hal-00948925

HAL Id: hal-00948925
https://hal.archives-ouvertes.fr /hal-00948925

Preprint submitted on 18 Feb 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr/hal-00948925
https://hal.archives-ouvertes.fr

¢
e

FED4FIRE

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

European
Commission

SEVENTH FRAMEWORK
PROGRAMME

Project Acronym

Fed4FIRE

Project Title

Federation for FIRE

Instrument

Large scale integrating project (IP)

Call identifier

FP7-1CT-2011-8

Project number

318389

Project website

www.fed4fire.eu

D5.1 Detailed specifications for first

cycle ready

Work package

WP5

Task

Task 5.1

Due date

28/02/2013

Submission date

01/03/2013

Deliverable lead

Florian Schreiner (FOKUS)

Version

11

Authors

Wim Vandenberghe (iMinds)
Loic Baron (UPMC)

Carlos Bermudo (i2CAT)

Albert Vico (i2CAT)

Donatos Stavropoulos (UTH)
Mohamed Amine Larabi (INRIA)
Lucia Guevgeozian Odizzio (INRIA)
Alina Quereilhac (INRIA)
Thierry Rakotoarivelo (NICTA)
Chrysa Papagianni (NTUA)
Georgios Androulidakis (NTUA)
Aggelos Kapoukakis (NTUA)
Florian Schreiner (FOKUS)
Alexander Willner (TUB)

2
%o

1o0f 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I
SEVENT

PR

H FRAM!
0GR

EWORK

AMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Reviewers Max Ott (NICTA)

Steve Taylor (IT-Innovations)
Felicia Lobillo (Atos)
Bernd Bochow (FOKUS)

Abstract This document specifies the implementations and
developments to be carried out in the context of Fed4FIRE’s
1st development cycle focusing on WP5 “Experiment
Lifecycle Management” mechanism and tools.

Keywords Fed4FIRE Experiment Lifecycle Management, resource
discovery, resource provisioning, resource reservation,
experiment control, report

Nature of the deliverable

Report X

Prototype

R
P
D Demonstrator
(0] Other

Dissemination level

PU | Public X

PP | Restricted to other programme participants
(including the Commission)

RE | Restricted to a group specified by the
consortium (including the Commission)

CO | Confidential, only for members of the
consortium (including the Commission)

4
e

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

2 of 151

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Disclaimer

The information, documentation and figures available in this deliverable, is written by the
Fedd4FIRE (Federation for FIRE) — project consortium under EC co-financing contract FP7-
ICT-318389 and does not necessarily reflect the views of the European Commission. The
European Commission is not liable for any use that may be made of the information
contained herein.

4
%o 3 0f 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Executive summary

Fed4FIRE's “experiment lifecycle management” WP5 together with WP6 “monitoring and
measurement” and WP7 “trustworthiness”, represent Fed4FIRE’s “federation-wide” mechanisms,
i.e. unified mechanisms that are applied across heterogeneous testbeds and facilities.

This deliverable D5.1 is the first deliverable of WP5, describing the specifications for the first
development cycle. As a fundamental basis, the specifications of the first development cycle in
WP5 take into account and align as much as possible with D2.1 the “first federation architecture”,
taking also into account D3.1 “Infrastructure Community Federation Requirements” as well as
requirements laid out by D4.1 the “First Input from Community to Architecture” and D8.1 “First
Level Support”.

Since the beginning of Fed4FIRE, significant efforts of WP5 went into the process of aggregating
information, classifying, evaluating and selecting the most appropriate existing tools that have the
potential to satisfy both architecture and community requirements and also integrate with the
other federation-wide mechanisms from WP6 and WP7.

This document starts with describing the evaluation process leading to the selection of tools to be
used and to be enhanced for WP5'’s first development cycle. The final outcome of this process is
summarized in Table 1. Subsequently, this document describes the selected tools in detail, and
provides a description of the exact functionalities expected to be ready after the first
development cycle of WP5. Special emphasis is furthermore put on a description of the

requirements that each tool brings to testbeds in order to interoperate.

Functional element of the | Implementation strategy
Fed4FIRE architecture

Portal Evolution of MySlice

Testbed directory Extension of SFA APl and MySlice Database, MySlice plugin

Tool directory Extension of SFA APl and MySlice Database, MySlice plugin, Wiki
Future reservation broker Evolution of NITOS scheduler

Exposing testbeds through SFA | Initially evolution of SFAwrap, in the mid-term potential use of

AMsoil

Experiment control Cycle 1: FRCP and EC deployment on testbeds through OMF6
install. Cycle 2: add NEPI which interacts with the deployed FRCP
layer.

Support of existing | VCTTool and FClI, Flack, Omni, SFI

experimenter front-ends and
tools

Table 1: Summary table mapping Fed4FIRE’s architecture to selected solutions for cycle 1

4
% 4 0f 151 i

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Glossary
AA Authorization and Authentication
AM Aggregate Manager
AM Aggregate Manager
AP| Application Programming Interface
CLI Command Line Interface
CMS Content Management System
Fed4FIRE Federation for Future Internet Research and Experimentation Facilities
FCI Federation Computing Interface
FRCP Federated Resource Control Protocol (FRCP)
GUI Graphical User Interface
OCF OFELIA Control Framework
OFELIA OpenFlow in Europe: Linking Infrastructure and Applications
OMA Open Mobile Alliance
OMF cOntrol and Management Framework
Pl Principal Investigators
RA Resource Adapter
REST Representational State Transfer
RPC Remote Procedure Call
RSpec Resource Specification
RSpec Resource Specification
SFA Slice-based Federation Architecture
SSH Secure Shell
ul User Interface
URL Uniform Resource Locator

g
%o

FED4FIRE

5 of 151
© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK

PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

VCT Virtual Customer Testbed
VM Virtual Machine
XMPP eXtensible Messaging and Presence Protocol

%o 6 of 151 A
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Table of Contents
R [1 4 o o [¥ o1 [o SRR PR 11
2 Inputs to this deliVErable ... e e 12
2.1 Y ol oY1 =Yt { U o TP PRR 12
2.1.1 Resource discovery, resource requirement, resource reservation and resource
[0 o)V 1Y (o] a1 o V- PUPPTTRPPPI 12
2.1.2 EXPEriMENT CONTIOL ...t e e e e e e et rre e e e e e e e e e e e esannes 12
2.2 Requirements addressed by the architecture........coccceeeeiieeeccciiiiie e, 13
2.2.1 Generic requirements of a FIRE federation........ccccceeeeeeeeeeccciiiiieeeecee e, 13
2.2.2 Requirements from a sustainability point of VIEWceevviiiiiiiiiiiiiiiiiieeeceeeeens 14
2.2.3 High priority requirements of the infrastructure community.........cccccceeeiiiinnninnns 15
2.2.4 High priority requirements of the services communityccooeecciiiiiiieeee e, 17

2.3 Additional WP5 requirements: Legal, contractual aspects, governance requirements...18

3 Implementation of the architectural functional elementscccccccoeeeiiiiiiiiieeic e, 19
3.1 Ta] d oo [T o1 4 e o HUU PP PUPRR 19
3.2 20 o =Y PP UPPPPT 20

3.2.1 LCTT a1 =Y e [T ol 41 oY To] o FS SR 20
3.2.2 Evaluation of possible approaches for implementationcccccovivieieeeeninns 21
3.2.3 Description of selected 100!coooiiiiiiieeeec e e 25
3.2.4 Required additional implementationscccccceeevcciiiiiiiiieee e 28
3.2.5 Y 0T el 1 o= 1 o o U UUU 30
3.2.6 Requirements for testbeds to interwork with the Portal..........cccccooiviieeeiiennnns 32
3.3 KT o oT=Te e [T =Yt do Y oY U PURSRRR 33
3.3.1 LCT=T a1 =Y e [T ol 41 oY To] o FS PSRRI 33
3.3.2 Evaluation of possible approaches for implementationcccccovviieeeiieeninns 33
3.33 Description of selected t00IS........ccc ittt 36
3.34 Required additional implementationsccccceeeeeciiiiiiiieeee e 37
3.35 Y 0T el 1 i oF= Y o) o U UUU 37
3.36 Requirements for testbeds to adopt the specified testbed directory solution........ 42
3.4 B oo I [T =To1 o] o VR URSRRR 43
3.4.1 (CT=Y Y= = e 1o T 1 4 o) o RSP 43
3.4.2 Evaluation of possible approaches for implementationcccccovivveeeeieeiinns 43
3.4.3 Description of selected t00IS........ccciiiiiiiiieie e e 45
3.4.4 Required additional implementationscccccceeeeeciiiiiiiieei e 46
3.4.5 Y 0T el 1 o= Y o) o SRR 46
3.4.6 Requirements for testbeds to adopt the specified testbed directory solution........ 48
3.5 FUtUre reservation BroKer ... i e e e e 49
3.5.1 GENEral deSCriPLION ..uii ettt e e s s bae e e s e nanres 49
3.5.2 Evaluation of possible approaches for implementationcccccooivieeeieeinns 52

‘e 7 of 151 e
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.53 Description of selected t00IS........cccciiiiiiiieie e e 55
3.5.4 Required additional implementationsccccccoeeeeciciiiiiiieie e 63
3.5.5 Y 0T el 1 o= 1 o) o PSR 64
3.5.6 Requirements for testbeds to interact with the Future Reservation broker 66

3.6 Exposing testbeds through SFA ... 68
3.6.1 (CT=T o1l =Y e [T ol 41 oY To] o FS SRR 68
3.6.2 Evaluation of possible approaches for implementationccccccoiiieeeneeinns 68
3.6.3 Description of selected t00IS........coo ittt 73
3.6.4 SPECIfiCatioNs fOr SFAWIAD c.uiiiiiiiieiiie e ettt e e e e e e e cbbrrre e e e e e e e e e e e eanrsaraeeees 81
3.6.5 Specifications fOr AMSOIluuiiiiiiiiiic e e 89
3.6.6 Required additional implementationscccccceeeecciiiiiiieeie e 89
3.6.7 Requirements for testbeds to adopt SFAWIAPcccuvviiiiiieee e 90
3.6.8 Requirements for testbeds to adopt AMSOIl.........cccuviiiiiiiiiiiiiieccceeee e, 90

3.7 EXPErIMENT CONTIOL ..uuiiiiiiiiiiii et e e e e e e e e e e e e e e e e e aanbraaaeeeaaaaeeas 91
3.7.1 (CT=T a1 =Y e [T ol 41 oY To] o FS SRR 91
3.7.2 Evaluation of possible approaches for implementationcccccoviiieieieeiinns 94
3.7.3 Description of selected t00IS........ccciiiiiiiiiie e e 99
3.7.4 Required additional implementationsccccccooeeciiiiiiiiieee e 109
3.7.5 Y 0Tl el) i o= YT o USRS 111
3.7.6 Requirements for testbeds to adopt the FRCP.........c.ccceeevieeeiiiicciiiiiiiieeee e 116

3.8 Support of existing experimenter front-ends and toOIS.........ccceeeeiiiiiiiiiiiiieeeee e 117
3.8.1 Teagle Framework Components: VCTTool and FClceuvieiiiieeciiiiiiiieieeee e 117
3.8.2 o = Vol PSRRI 118
3.8.3 (0] 401 o1 PRSP 120
3.8.4 1] S PRSP 121
011 011 1 =1 VPO OUTUPRR PPt 122
4.1 Mapping of architecture to the implementation plan.........coccccviiiiieeeeee e, 122
4.2 Deviation of supported requirements compared to the architecture blue-print.......... 124
4.3 FOreSEeN iIMPIrOVEMENTS ...ttt e e e e et e e e e e e aaaba e e s e eeesebaseeeaeeeees 124

LT 0= T =Y o Vol PR SRR 126
Appendix A: Development status of MYSIICE APL........uuuiiiiiiiiei e e e e e e e e e e eaeaes 130
Appendix B: Further Specifications for SFAWrap Registry APl Methodscccocviveeeeeeeieeeccinnnn, 134
Appendix C: Further AMSoil specifications and examples.........ccccciiiiiiiiie e 138

Appendix D: Use case: introducing support for the OMF messaging system in the PlanetLab
U] o] o YT YT o o YT U PURPR 141

Appendix E: Further NEPI specifications and eXamples.......cccoooeiiiiiiiieiee e 144

%o 8 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

List of Figures

Figure 1: Fed4FIRE cycle 1 architecture for discovery, reservation and provisioning...................... 12
Figure 2: Cycle 1 architecture for Experiment CONtrol........ccccveeeiiieie it 13
Figure 3: Portal interactions with external SYStemMS........cccuuiiiiieiee e 21
Figure 4: MySlice Gateways for dispatching queries across multiple platforms...........cccccvveeeeeennn. 26
FIUIre 5: MYSIICE ArChITECIUIE ..uviiiiii i e e e e e e e e e e e rbbeaeeeaaaaeeeas 28
Figure 6: FEd4AFIRE ReSErvation SYSTEIMuiiiiiiiiie ettt e et e e e e e e e e e e e nrarrereeeeaaaee s 51
Figure 7: Future Reservation System interactions with Fed4FIRE central location components52
Figure 8: NITOS BroKer ArChitECIUIE.........uiiiiiieeeee ettt e e e e e e e e e e e e e e e e e e 55
Figure 9: Components of Reservation Information Modelcccoooccciiiiiieiiie e, 60
Figure 10: Broker inside an SFA-enabled testbed ... 62
Figure 11: Hierarchical use of the BroKEr.........ueieiiiiii ittt e e rree e e e e e e e 63

Figure 12: Overall architecture of SFAWrap (R: Registry, AM: Aggregate Manager, SM: Slice

Y F=Y 0 T =T o U RRRUR 75
Figure 13: The Slice Manager and its function in the federation...........cccooveeeiiiiiiiiccciiiieeeeeee, 76
FIZUIre 14: SFAWIAP ESIZN ..uuiiiiiiiiieieeee ettt e e e e e e e e ettt e e e e e e e e e e e eseanbtaaseeaaaaeesesesnnsssaasareaaaaaeeas 80
Figure 15: AMSOIl ArChITECIUIE wuvvviiii et e e e e e e e e e e e e e e breaaeeeaaaeeean 87
Figure 16: Typical AMsoil workflow for resource provisioning..........ccccccviviieeeeeeeeeececccirieeeeeee e 88
Figure 17: FRCP in the context of Experiment Lifecycle COmponentsccccceeeeeeeieiecciiniiieeeeeeeeennn, 92
FIZUre 18: OME ArChItECTUN .. .uiiiiiee ettt e e e e e e e rr e e e e e e e e e e e e e snbbbraaaaeeaaaaeeeas 100
Figure 19: NEPI - Experiment Lifecycle Managementcccccevvieeie i 104
Figure 20: NEPI’s Boxes and Connectors Modelling.........ccoueeviiieiii et 106
Figure 21: NEPI — ODbjJECt MOUEI ...cccoiieeeee ettt e e e e e e e e ra e e e e e e e e e e e 108
Figure 22: VCTT0oO! With @Xample VCT ...ttt eeetrrre e e e e e e e e e e et rrr e e e e e e e e e e 118
Figure 23: FCl Archit@CtUre OVEIVIEWuuiiiiiiieieeee ettt et e e e e e e e eseatrare e e e e e e e e e eeesanssssaaaseeaaaaeeeas 118
Figure 24: Flack - High level resource discovery Using a map VIEW........ccccveeveeeeeeeeecciiinineeeeeeeeeeenn, 119
Figure 25: Flack - Detailed resource diSCOVEry Per Site.....coivvviiieeieiiiiiiiiiiieeeee e e e eeeecirrrreee e e e e 119
Figure 26: Flack - Immediate access to the applied RSPECSccveeeeeeeiciiiiiiiiieeee e 120
Figure 27: Screenshot of the Omni command lin€ tOOlceevieiiiiiiiiiiiiiiiiiee e, 120
FIUIE 28 SFl - NeIP PAEE c.uuuutiiiiiiiiee e ettt e e e e e e e e e e e e e e e ab b abeeaeaaaeeeeessnstssbraaeaaaaaaeans 121
Figure 29: Fed4FIRE’s cycle 1 approach for realizing a common testbed interface for resource
discovery, reservation and ProViSiONINGcooiciiiiiiiiiiiie e e e e e e e e e e errrrre e e e e e e e e eeeeennnnes 123
Figure 30: Fed4FIRE’s cycle 1 approach for resource discovery, registration and reservation...... 123
Figure 31: Fed4FIRE’s cycle 1 approach for experiment control...........ccocveeeeeeeiiiniiciiiiiiiieeeee e, 124
Figure 32: Possible future iteration of FEd4FIRE architectureccccccvvivieeeeeee e, 125
Figure 33: Development Status of MySIICE APl ...t eeeerrrrrre e e e e 130
FIZUIE 34: DHCP EXAMPIE...uuiiiiiiiiiiie ettt e e et e e e e e e e e e e e s abt b e b e s aeeaaeeeeeesanssstbsaaeeaaaaaeens 138
Figure 35: AMsoil — Relationship between Communication APl and Policy Management............ 138

e 9 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

List of Tables

Table 1: Summary table mapping Fed4FIRE’s architecture to selected solutions for cycle 1............ 4
Table 2: High priority requirements of the infrastructure community (D3.1)oooeiciiviiieeeeeeennn. 17
Table 3: High priority requirements of the services community (D4.1)......ccccceeeeeeeiiiiiiiiiiieieeeeeeeen, 18
Table 4: Comparison of available tools for implementing Fed4FIRE’s portalccccccvvvivveeeeeeennn. 25
Table 5: MySlice enhancement in 1% cycle and further eVolutionccccceeeeeeeeececeeeeeeeeeean 30
Table 6: Comparison of potential approaches for implementing the Testbed Directory 36
Table 7: Comparison of potential approaches for implementing the Tool Directoryccceee........ 45
Table 8: TaXoN0OMY Of rESEIVAtION TYPESuuiiiiiiiieee e ettt e e e e e e ererrre e e e e e e e e e e e e sabarrareeaeaaaaeeas 50
Table 9: Currently supported reservation types of Fed4FIRE’s testbeds......cccccceeevvieiciiiiiieennnnnnn, 51
Table 10: Comparison of potential approaches / eligible tools for realising Fed4FIRE’s reservation
YR (=] 1 4 OO TP PPPPR PP 55
Table 11: Advertisement RSpec — NITOS/NICTA Brokerooiieeciiieeeeiiiee et 56
Table 12: Request RSpec — NITOS/NICTA BIroKercc.uviieieiiiieee ettt ettt 57
Table 13: Node Reservation Request EXampPIeoooooiiiiiiiiieeee ettt nee e e e 59
Table 14: Node Reservation Confirmation EXamplecccuuviviieiieiiie i e e e 59
Table 15: Resource reservation functionalities to be implemented forcycle 1cccvvvvveeeeeennn. 64
Table 16: Comparision of eligible tools for exposing testbeds through SFA —part1ccccceeee.... 70
Table 17: Comparison of eligible tools for exposing testbeds through SFA—part 2cccceeeeeeeen. 71
Table 18: Evaluation of possible approaches for enabling SFA across Fed4FIRE’s testbeds............ 73
Table 19: Comparison of potential candidates for realizing Experiment Control in Fed4FIRE 98

Table 20: Comparison of potential approaches for implementing Fed4FIRE’s experiment control 99
Table 21: Experiment Control functionalities to implemented forcycle 1.........ooeeciiiiiieeeneennnn. 111
Table 22: Summary table mapping Fed4FIRE’s architecture to selected solutions for cycle 1...... 122

% 10 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

1 Introduction

Based on the cycle 1 architecture described in D2.1 [1], this document aims to provide detailed
specifications of the targeted developments of Fed4FIRE’s Experiment Lifecycle Management WP
5 for the first development cycle. Immediately after submission of this deliverable
implementation work for Fed4FIRE’s first development cycle will start so that after 7 months of
implementation and alfa-testing work and two months of interoperability and beta-testing, the
deployment of the described mechanisms on Fed4FIRE’s various testbeds will be finished after
project month 16 and ready to be utilized by Fed4FIRE’s experimenters.

The specifications provided in this document cover all details needed to start the actual
implementation work. If specific implementation choices defined in this deliverable result in a
deviation of requirements as originally stated in D2.1 they are being identified and fed back to
WP2 for further refinement of Fed4FIRE’s overall architecture.

This document is structures as follows. The for WP5 relevant aspects of Fed4FIRE’s initial
architecture blue-prints of D2.1 are recapitulated in Section 2.1 as they represent the design
boundaries according to which WP5 mechanisms have to be designed. Thereafter, requirements
of Fed4FIRE’s architecture, infrastructure community D3.1 [2] and services community D4.1 [3]
are being mapped to the functionalities expected after Fed4FIRE’s first development cycle in
Section 2.2. Potential other requirements such as legal, contractual and governance requirements
are provided in Section 2.3.

The actual specifications of Fed4FIRE’s experiment lifecycle management building blocks are
provided in Section 3. Each section specifying the six components (Portal 3.2, Testbed Directory
3.3, Tool Directory 3.4, Reservation Broker 3.5, Testbed Provisioning Interface 3.6 and Experiment
Control 3.7) targeted for Fed4FIRE’s first development cycle starts with a general description,
evaluates possible approaches and available tools, describes the selected approach, details
required additional implementations, describes the requirements for testbeds to interwork with
and/or adopt a specific component and provides specifications regarding API, data and message
formats and syntax.

Finally chapter 4 concludes this document mapping the planned components to the original
architecture of D2.1 [1], describing deviations from the originally planned architecture and
providing information about foreseen improvements.

% 11 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

2 Inputs to this deliverable

This section reviews some of the information provided by earlier Fed4FIRE deliverables. The goal
of this exercise is to summarize the specific constraints that WP5 has to operate within when
defining the specifications for the first cycle of Fed4FIRE.

2.1 Architecture

2.1.1 Resource discovery, resource requirement, resource reservation and resource
provisioning

In Figure 1, the components of the architecture for cycle 1 of Fed4FIRE are depicted that play a

role in the steps of resource discovery, resource reservation, resource reservation and resource

provisioning of the experiment lifecycle. For a more in-depth discussion of these architectural

elements we refer to D2.1 — First federation architecture [1].

s

|
| P
HTT R
r > Future reservation ¢
| broker
|
|
I
I
|
|
|
|

(

Portal 3 f:“
po rtal.fed4fire.eu) Tool directory |
Testbed Cemﬁcate‘g'r Iden
directol dlrectory prowde

Discovery, reservation, 4 Discovery, reservation, 4
provisioning provisioning
T N\,
N,
Grant access? ‘\

i
! Grant access?

Rules-based &
authorization

FE: EE:

Testbed B

authorization

Central
location(s)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r
I
|
|
|
|
|
|
|
|

Testbed

Testbed A

Figure 1: Fed4FIRE cycle 1 architecture for discovery, reservation and provisioning

2.1.2 Experiment control

For experiment control, the testbeds or central locations should not run specific components, as
the experimenter can fully roll this out on his own. However testbed providers could ease this by
putting certain frameworks pre-installed in certain images. Figure 2 shows two experiment

4
i, 12 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

control frameworks each with their own interfaces and experimenter user tools/command line
tools.

Q@

Define_ Define
scenario scenario
AR A o
v I - i ‘Sf“(
\ A I Future reservation -
\ \\\ J/ @ broker
\ |
\
\
\

L s S
Portal b
(portal.fed4fire.eu) Tool directory
e caich ok
Testbed iﬁ Ceniﬁcalé‘f?;: Identit’)"“g‘g1
directory J directory J provider J

Brokers

’/
u PV —
[
Experiment Experiment
B control server control server

Identity
provider

Discovery, reservation, -
provisioning

Discovery, reservation, “}ﬁ
provisioning

Rules-based &
authorization

Rules-based %E“" »
authorization

|
|
|
|
|
|
|
|
|
|
|
|
: Grant access?
|
|
|
|
|
|
|
I
|
|
|
|
|
'

B =2 | o
% g : i B Gﬂ ng Central
= Testbed A Testbed B location(s)

Figure 2: Cycle 1 architecture for Experiment Control

2.2 Requirements addressed by the architecture

This section presents a recapitulation of the requirements covered by the architecture described
in D2.1 (section 5 of that document) [1]. This is a subset of all requirements written down in D3.1
[2] and D4.1 [3] and D8.1 [4], together with a number of other requirements introduced by D2.1.

The intention is to recap only the requirements covered by the architecture which are relevant to
WP5.

2.2.1 Genericrequirements of a FIRE federation

The following section briefly recapitulates the requirements put forward by D2.1 with regards to
scalability, support and ease of use for the experimenter. Some of them are expressed in the
format of a questionnaire following the methodology used in that task (Q/A). Others are just
requirements (R/A).

e Scalability:
o Question: How can the architecture cope with a large number and a wide range
of testbeds, resources, experimenters, experiments and tools?

2
R % 13 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

e Answer: As tools can speak directly to the testbeds through SFA in a peer-to-peer
way, this is inherently scalable. The same applies for multiple identity providers
with a chain of trust model. For very large experiments over multiple testbeds,
experimenter tools can directly talk to all testbeds or broker services can
orchestrate this (making the experimenter tool simpler).

e Support:

o Question: How easily can components/testbeds/software be upgraded?

e Answer: For this, the APIs should be versioned and tools and testbeds should
support 2 or 3 versions at the same time, so that all components can be
gradually upgraded.

o Question: How can different versions of protocols be supported? (e.g. upgrade
of RSpec)

e Answer: With versions.

e Experimenter ease of use:

o Requirement: The final goal is to make it easier for experimenters to use all
kinds of testbeds and tools. If an experimenter wants to access resources on
multiple testbeds, this should be possible from a single experimenter tool
environment.

e Answer: It is possible, but Fed4FIRE should also aim to keep such tools up-to-date
during the lifetime of the project and set up a body which can further define the
APIs, also after the project.

2.2.2 Requirements from a sustainability point of view
The following section briefly recapitulates the requirements put forward by D2.1 with
regards to Sustainability.

® Requirement: It is also required that the federation framework supports the
joining and leaving of testbeds very easily, as this will be common practice.

o Answer: The architecture supports multiple identity providers/portals. There is a
common API for discovery, requirements, reservation and provisioning while it
imposes no restrictions on the use of specific experiment control, monitoring and
storage. The common APl makes it straight forward to add new tools and testbeds
while a testbed can be an extra identity provider also.

e Requirement: New tools can be easily added, while the dependency on specific
tools or components for the federation should be minimized in order to avoid that
the end of support of a specific tool makes the federation unusable

o Answer: See previous.

e Requirement: Finally, it is also required that the experimenters can join and leave
the federation easily, there is some notion of delegation (to make it more scalable

e 14 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

for lots of experimenters) and Pls (principal investigators) can put an end time on
experimenters (e.g. students) or can withdraw experiments they have approved.

o Answer: The architecture supports this through certificates but, of course, the
certificate creation and sign up process itself has to be defined in detail in WP7
“trustworthiness” and Task 5.6 (Portal definition).

2.2.3 High priority requirements of the infrastructure community

The following Table 2 recapitulates the high priority requirements of the infrastructure
community, as specified in D3.1. Requirements that will be met after cycle 1 are listed in “green”,
requirements that can be met partially are listed in “orange” and requirements that will not be
met after cycle 1 are listed in “red” colour.

A 15 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R A ORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Experiment

control

oo

FEDAFIRE

engine

16 of 151

Resource 1.1.403 Root access No architecture requirement
provisioning
Resource 1.1.404 Internet access to | No architecture requirement
provisioning software package

repositories

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Table 2: High priority requirements of the infrastructure community (D3.1)

2.2.4 High priority requirements of the services community

The following Table 3 recapitulates the high priority requirements of the services community, as
specified in D4.1. Requirements that will be met after cycle 1 are listed in “green”, requirements
that can be met partially are listed in “orange” and requirements that will not be met after cycle 1
are listed in “red” colour.

Experiment ST.1.023 | Access to internal Not an architecture requirement.
Control and external services

from a federated

testbed

A 17 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R A ORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Table 3: High priority requirements of the services community (D4.1)

2.3 Additional WP5 requirements: Legal, contractual aspects,
governance requirements

Until now, only WP3 “Infrastructure”, WP4 “Services and Applications “ and WP8 “Shared Support
Services” have submitted deliverables that define their specific requirements towards the
Fed4FIRE federation framework. Technical requirements in order to adopt the functionalities
specified in this deliverable are summarized at the end of the specifications of each mechanism.
In terms of legal, contractual aspects or governance requirements there were no additional
requirements identified at the current stage.

2
.‘.ﬂ. 18 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3 Implementation of the architectural functional elements

3.1 Introduction

In this section we discuss all functional elements of the architecture related to WP5 “Experiment
Lifecycle Management” and define how they will be implemented. In many cases, available
software, tools or a combination of such software will be used as a starting point (in order not to
reinvent the wheel, reduce implementation efforts, utilize already mature components and/or
support already existing communities). However, some elements will be implemented from
scratch. In the following sections, the tools / mechanisms are described, required
implementations outlined and a formal definition of the corresponding APIs and data formats is

provided.

Tools have been evaluated according to how much they provide the expected features, but also
taking into account some assumptions that arise from the general approach Fed4FIRE is following,
i.e., to try to take as much advantage as possible from existing tools and mechanisms in the
facilities to be federated and to allow current experimenters of these facilities to keep on using
their own tools with a broader range of resources. This approach leads to several assumptions,
such as the use of SFA for resource exposure. This decision has conditioned the evaluation of the

tools described in the following subsections and it is reflected as such.

% 19 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.2 Portal

3.2.1 General description

An increasing number of computer networking testbeds today are joining a federation based on
the Slice-Based Federation Architecture (SFA) [1] (see also section 3.6) . SFA provides a ‘thin waist’
for secure, distributed resource requests. The same approach is adopted in Fed4FIRE, as has
already been presented previously in the architectural deliverable D2.1 [1].

This effort has fostered the emergence of an ecosystem of tools and services covering a wide
range of applications not included in the thin waist of SFA: enriched user interfaces, measurement
and monitoring platforms, user registration and authentication services, and experimental
management software, to name a few. However, a typical user willing to run an experiment
across multiple testing facilities is usually required to switch between many heterogeneous and
overlapping tools. He needs to discover them, learn their processes and semantics, and often
authenticate himself several times and manually make the bridge between them. As a response to
this diversity and complexity, the notion of an experimenter’s portal is often advanced. To the
best of our knowledge, it is fair to say though that the research community has so far not

proposed a satisfactory solution that goes beyond sparse integration efforts.

The aim is to fill this gap and provide a portal, which will be a central starting point to access the
Fed4FIRE federation. The portal will provide pointers to the project website, to first line support
(WP8), to the federated testbeds’ websites and to appropriate FIRE tools. Portal users will also be
guided to the First Level Support systems (e.g. Trouble Ticket System), if they need help to
register or use the portal or encounter problems while setting up experiments.

As described in D2.1, the portal will also be the registration place for new experimenters [1].
Therefore, it will provide an easy way for experimenters to register themselves and to access the
federated testbeds. Note however that the testbeds will always determine whether the user can
actually access them according to their access policies.

Moreover, the portal will also perform the role of a client tool. On behalf of the experimenter, the
portal will forward queries to federated testbeds using SFA delegation mechanism. Using the
portal, the experimenter will be able to search, browse and reserve resources across federated
testbeds. The portal will also act as a bridge to experiment control tools.

It is obvious that the portal will provide a vast amount of functionalities. Many of them will be
implemented in the portal itself, but for some tasks interactions with other functional elements of
the Fed4FIRE architecture will be required. To be more concrete, the interactions between the
portal and the other functional elements defined in the architecture are depicted in Figure 3. The
portal includes some of the functionality of the testbed directory (the human readable part, see
Section 3.3 for more details regarding the testbed directory specifications). It also includes the
functionality of the tool directory (see Section 3.4). Both components will retrieve their needed
information directly from the testbeds using the SFA interface. For user authentication, the portal
will contact the identity provider of the federation if the user is not affiliated with a specific

2
e 20 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

testbed. If the user has such an affiliation then the portal will use the certificate directory to
authenticate the user with the correct certificate. Finally, the portal will provide a GUI to reserve
resources within the federation. For this it will interact with the future reservation broker
(described in Section 3.5).

@

Retrieve list of IP addresses of the
federated aggregate managers

Reserve resources

1
Portal !
(portal.fed4fire.eu) i o h
__________________________ (L —— {opt
i 1 Future reservation fht
g 1 broker
o} 1

Brokers

Register nejw federation users / i
authenticate existing federation usersp==

[t s BRSSO L e SN DS, i
Identit;"ff;?
provider

R

Retrieve list of endorsed tools Retrieve testbed description

e

Discovery, reservation, ¢ -
provisioning H

Figure 3: Portal interactions with external systems

3.2.2 Evaluation of possible approaches for implementation

This section, based on the requirements that were deducted by analyzing the high level
architecture of Fed4FIRE (D2.1), analyses whether existing and available tools meet these
requirements in order to identify and finally select the best suitable available solution as the basis

for further developments.

Requirements:
Several tools have been evaluated to build the Fed4FIRE Portal according to the gathered

requirements.

* In order to ensure the accessibility and the visibility of the federation, the first
requirement for the portal is to have a web interface.
* As an experimenter’s tool, the portal requires a programmatic interface such as an API,

which allows automating user’s actions.

2
R % 21 0f 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* The portal is required to communicate with a central identity provider to register,
authenticate and manage users. Thus, the portal will be a delegate of the user. It is acting
on behalf of the user making the request.

* The portal has to ensure a chain of trust and act as a broker between users and testbeds
(define WP7 “trustworthiness”). Through a single sign-on mechanism the portal enables
the possibility for users to access all federated testbeds. Authorization is still under the
responsibility of the testbeds, which have to ensure that incoming users are following
their local policy rules.

* Since the Fed4FIRE architecture uses SFA as a core mechanism, the portal needs to be SFA
compliant. The portal needs to make it straightforward to add new tools and testbeds. It
needs to be able to display the diversity of testbeds’ resources, such as geographical,
topological, or 3D coordinates information.

* The portal has to provide an entry point for the following functionalities: discovery,
reservation and provisioning of testbed resources. It should not impose any restrictions
on the use of specific experiment control, monitoring and storage mechanisms.

* The portal represents one centralized and convenient way to access federated facilities
but there might be other (sometimes preferred by experimenters) ways to interface with
the federated testbeds. Therefore the federation as a whole should not depend and rely
on the portal’s services.

* Of course, the central portal, identity provider, testbed directory, tool directory and
certificate directory ease the use of the federation as all the information is provided in a
single place to get new experimenters use testbeds and tools.

How available and potentially eligible tools meet the requirements:

The following tools and software solutions have been analysed in terms of suitability for meeting
the requirements arisen be Fed4FIRE’s high level architecture. Table 4 gathers a summarized
comparison of the following tools.

FITeagle’s Virtual Customer Testbed (VCT) tool [6] is a standalone tool that can be used to
discover, reserve and provision resources belonging to different SFA compliant testbeds. It can be
considered as being the frontend of the FITeagle framework. This is an extensible and distributed
open source experimentation and management framework for federated Future Internet
testbeds. However, the VCT tool doesn’t provide authentication and user registration
management mechanisms. Moreover, it is Java-based software and does not correspond to the
need of a web portal.

BonFIRE’s portal [11] is a web portal that has been developed in the Bonfire project. BonFIRE’s
portal covers the main functionalities of discovery, reservation and resource provisioning. But it

2
e 22 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

doesn’t support SFA, which is adopted in the Fed4FIRE federation architecture. One can notice
another disadvantage, which is the lack of modular approach as there are no plugins to enhance
the diversity of testbeds’ resources.

Flack is a piece of software developed in the GENI project (USA) [12]. Flack covers the main
functionalities of authentication, discovery and resource provisioning over SFA compliant
testbeds. However, it doesn’t provide user registration management as the GENI Clearinghouse
covers this functionality. One can notice another disadvantage, which is the lack of modular
approach as there are no plugins and only a map view of resources. Moreover, Flack is Flash-
based software that does not correspond to the need of a web portal.

NEPI [8] and LabWiki [9] are more focused on experiment control than on resources discovery.
Thus these tools cannot be selected as a basis for developing Fed4FIRE’s portal, as resource
discovery is a key feature and requirement for the portal. And although these tools might be
complementary, providing resource control during experiment, this is not in the scope to the
portal’s functionalities.

MysSlice [14] provides a user authentication and management system based on SFA. Therefore, it
is able to use SFA Registry as a central identity provider for the federation. It provides the main
functionalities for authentication, discovery, reservation and resource provisioning over several
testbeds. It has a gateway system that makes it straightforward to add new tools and testbeds.
MysSlice is able to act as a broker to contact multiple testbeds and measurement sources that are
aggregated in order to provide a consistent layout to the user. It provides both a Web interface
and an APL. It has plugins developed to fit the needs of a wide diversity of testbeds. It already has
an active community of developers including partners of Fed4FIRE project. For all these reasons,
MysSlice has been selected as portal for Fed4FIRE’s first architecture iteration cycle.

Approach Advantages Disadvantages Selected
as final
approach
MysSlice [14] e Active community of developers and X
users

® Only inclusion of additional methods
needed, no changes to existing code
required

® Reasonable implementation effort
needed

® Provides both web Ul and API

® Modular design with plugins &
gateways

® Act as a proxy to contact multiple
testbeds and measurement sources,

is able to aggregate content

2
e 23 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Approach Advantages Disadvantages Selected
as final
approach
® SFA compliant
e User management
e Authentication
e Discovery
® Reservation
® Resource provisioning
Lab Wiki [13] e User friendly web Ul Focused on
Experiment Control
NEPI [8] e User friendly Ul No web Ul
e API Focused on
Experiment Control
FiTeagle VCT | ® User friendly Ul No web Ul
[6] e RESTAPI
® Resources description
e Experiment description
e Authentication
e Discovery
® Resource provisioning
® SFA compliant
BonFIRE Portal | ® Provides both web Ul and API Not SFA compliant
[11] ® Resources description No modular
e Experiment description approach, i.e.
e Authentication implementation
e Discovery effort needed
® Rservation beyond adding
® Resource provisioning modules
Flack [12] e Authentication Flash Web Ul
e Discovery No modular
® Resource provisioning approach, i.e.
® SFA compliant implementation

effort needed

beyond adding
modules No user

management

2
%o

FED4FIRE

24 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Approach Advantages Disadvantages Selected
as final
approach

e No API
Build from e Total amount of
scratch needed

implementation
effort exceeds the
available manpower
by far.

Table 4: Comparison of available tools for implementing Fed4FIRE’s portal

3.2.3 Description of selected tool

From the previous evaluation, MySlice seems to best fit the needs of the Fed4FIRE requirements
to provide access to the federation though a portal. In the following, MySlice is evaluated more
deeply regarding specific Fed4FIRE operational and usability requirements. However, as described
in section 3.2.4, several modifications of MySlice are to be met in order to provide all the features
that Fed4FIRE federation requires.

Open platform approach

MysSlice follows an open platform approach [17], which consists of a thin layer that provides the
glue between existing components. MySlice [14] is a running prototype offering a single and
consistent interface for authentication, resource browsing/selection, and measurements. An open
community model invites developers to contribute and share extensions.

MysSlice as a portal

MysSlice sits at the edge of the federation and aims to be a trusted entity facing a community of
experimenters. This privileged situation makes it possible to simplify access and enhance the
portal user’s experience, for instance, by handling complex procedures on his behalf, or pre-
processing and caching data. It acts as an intelligent mediator that makes the bridge between the
experimenter and the set of (generally distributed) available components. MySlice aims to hide
some complexity of SFA from the experimenters/users. MySlice as a portal includes several
functionalities such as user registration, account management and authentication, managing
credentials on behalf of a user. An experimenter registered in MySlice is identified through a local
user account in the MySlice database and references to his credentials. Experimenter’s credentials
are obtained from a platform known by MySlice. This platform needs to trust MySlice to act on
behalf of its users. In Fed4Fire, a testbed’s (local) SFA Registry or a central one can provide
credentials (WP2 Architecture [1]).

MysSlice is only one centralized and convenient way to access a federation of testbeds. There
might be other mechanisms, e.g. direct utilization of APIs in a programmatic fashion, or other

2
e 25 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

tools more suitable to specific experimenters. Thus the availability of the federation as a whole
doesn’t depend on MySlice, the portal respectively. A failure or outage of the portal does not
result in complete unavailability of the entire testbed federation (no single point of failure).

MysSlice as a client tool

MySlice as a client tool provides a single tool to experimenters, which works across different
platforms. It allows users to search, browse and reserve resources through a command line
interface or a Web based graphical user interface. A novice user can therefore easily use the web
Ul. However, a more advanced user would be able to query the more powerful command line
interface.

Combine multiple sources of data
One of MySlice’s added values stems from of its capability to combine multiple data sources and
services. The result in some cases provides information beyond the testbed itself.

MySlice provides a generic data description model, simple semantics for descriptions, and a
lightweight communication protocol. A common abstraction to help users browse through and
interact with a large amount of data sources is challenging. MySlice was built on the Manifold
interconnection framework [16]. The current prototype features both the SFA and TopHat [18]
measurement gateways, which are combined to augment the value for users. New platform APIs
can be connected through a system of gateways. MySlice uses these various gateways to query
different platforms using a common semantic.

As shown in Figure 4, experimenters can submit queries that get optimally and transparently
dispatched to the different services capable of formulating an answer.

MySlice
2:Query language
?
? (] Metadata
Platform A M
|| | |
® Platform B ||
A R g : "
,:. . Platform C M

Platform D ||

Figure 4: MySlice Gateways for dispatching queries across multiple platforms

Figure 4 also shows five of the most important interactions between MySlice, experimenters and
platforms:

2
R 26 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

1) MysSlice is able to contact several platforms and to gather metadata about the information
provided by these.

2) User submits a query to MySlice either through the web interface or through the API.

3) The user’s query is optimally and transparently dispatched to the different platforms.

4) The answers provided by the different platforms are aggregated as a single result.

5) The user receives a result to his query.

Expose the richness of heterogeneous testbeds

Another important capability of MySlice is its ability to adapt to resources and services
specificities through a plug-in system, achieving a proper balance between the needs to present
uniform interfaces and to expose the full richness of heterogeneous environments. MysSlice is able
to adapt to various data properties through this plugin system. Indeed, new plugins have been
developed (more info on MySlice’s Developer Website [22], including MySlice Plugin Developer
Guide [19]) to fulfil specific needs such as representing testbed resources on a map (if latitude
and longitude properties are available) or a 3D representation (if x,y,z coordinates are provided by
the testbed) or a scheduling table (if scheduling information is provided for specific resources).

Through its current web interface MySlice provides resource visualization, filtering, selection and
reservation functions that assist an experimenter in a structured analysis and interpretation of
data. The reservation plugin is based on the joint work between Nitos and PlanetLab. This various
functionalities are achieved through a plug-in system that enables a unified access to
heterogeneous data sources, balancing the needs to present uniform interfaces and taking
advantage of any heterogeneity of testbeds.

Architecture
The MysSlice architecture is modular and flexible. It is composed of three parts: Core, APl and
Web. The architecture of MySlice, as depicted in Figure 5, allows testbed owners to design

gateways beneath the core library and plug-ins on top of the web framework.

% 27 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

Conclusion

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Standard & cross-platform

JavaScript 23 Joomlal

technologies
| | |Plugins| | | \
| S,
ks \ s
- " Php,
Modular web framework ‘ & jQuery
. A J)
| \
! N |
AP L Dy
\& A J | - AL XMPP
' (in progress)
- » N
Core library ‘
3 J

f

| |Gateways| |

Figure 5: MySlice Architecture

@ python

Building a portal for testbed federation has long been a desired, but challenging enterprise. We

propose an open and running platform based on the combination of existing and proven

components. It provides the necessary glue between various components of interest to ensure

their interoperability and proposes a consistent interface supporting, through extensions, the full

experiment lifecycle. This architecture also encourages developers to build custom plugins and

gateways specific to their needs. As an open platform, MySlice has a growing community of

contributors. The required modifications of MySlice are described in the following subsection.

3.2.4 Required additional implementations

Table 5 describes planned enhancements of MySlice implemented in cycle 1 and beyond.

Functionality

Cycle 1

Further Cycles

Content

MysSlice is using Joomla [20].
This CMS allows easily to add
content to the portal.

Identify what contents, links
and tutorials are most
required and suitable
(collaboration with WP9
“dissemination”).

Guide users to the First Level
Support (WP8).

Develop the testbed and tools

2
%o

FED4FIRE

28 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I
SEVENTH FRAME!
ROGRAMM!

P

WORK

E

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Functionality

Cycle 1

Further Cycles

directories within the portal
as specified in section 3.3 and
3.4,

Registration

The current status of the
registration functionality is as
follows: a user can register to
a testbed (PlanetLab,
Onelab...), a MySlice admin
user can create a local
account on MysSlice through

its command line interface.

Create an SFA registry (central
identity provider) for
Fed4FIRE federation that will
allow users that do not
already have credentials at
testbeds to connect to the
portal

If a user already has a testbed
credential, then testbeds
should issue SFA compliant
certificates, which can be
used in the federation (D7.1).
Develop adequate plugins for
MysSlice
registration functionality on

to offer a basic

e Further

develop the
adequate plugins for
MySlice to offer a
convenient access for
users and improve the

registration functionality

Authentication

Authentication to MySlice
web Ul is handled through
login and password. A
decision has to be made in
WP7 “trustworthiness” to

choose the login process.

the portal.

Handle one login process
according to WP7
requirements (OpenlD,

Mozilla Persona, SFA
certificate, ...)

Generate key pairs on the
portal, to avoid the bootstrap
process through a script
Automatic delegation if the
portal generated a private key
for the user during

registration

e Handle additional login

processes

Authorization & Access
policies

Up to the testbed

Integration of testbeds in
MysSlice

Manually approving users on
the Fed4FIRE
grant access to the portal and

registry will

to testbeds that agreed for an
immediate access of users.

e Ask users to fulfil specific

testbed’s policies, for
example providing
required personal
information

Allow Testbed’s Pl or
Admins to validate or
disable Fed4FIRE user

g
%o

FED4FIRE

29 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Functionality Cycle 1 Further Cycles
accounts
Testbed resources e Allow users to browse, filter, | ® Some partners will
Relies on SFA mechanisms add or remove resources in a develop plugins to
slice and to create and update expose specific resources
a slice across different of their testbeds (e.g.
testbeds of Fed4FIRE’s OpenFlow resources)
federation. e These new plugins will
e Develop plugin that provides have to be extended to
the functionality to reserve be generic and flexible
resources, as specified in enough to be adopted by
section 3.5. other partners
e Additional testbeds will be | e Integration and handover
plugged into MySlice between MySlice and
experiment control tools
such as NEPI and OMF
will be developed

Table 5: MySlice enhancement in 1% cycle and further evolution

3.2.5 Specifications

Content

On the portal, background information will be provided to the experimenters in the context of the
Fed4FIRE federation. First of all, the portal will offer information regarding the testbeds that
belong to the Fed4FIRE federation. Links to the project’s website and training material will be put
on the portal. The portal will also display a catalogue-like view on the testbeds through a specific
plugin that implements the human readable version of the testbed directory as specified in
section 3.3. The portal will also gather information regarding the different tools that can be used
within the Fed4FIRE federation through a specific plugin that implements the tools directory. As
specified in section 3.4, this directory is integrated into the portal. It will be based on Wiki
technology. Finally, the portal will also provide assistance to the experimenters by guiding them
towards the Fed4FIRE First Level Support service which is developed within WP8.

Registration

Users will be able to register to the Fed4FIRE federation. This first functionality will allow
experimenters registration, but user accounts and login processes will be based on requirements
defined by WP7 “trustworthiness”. As the portal relies on SFA mechanisms, a registry database
will be needed. MySlice is able to handle several authentication sources. Partners will have the
choice between trusting the Fed4Fire Registry as an authority that will have the right to register
users for the whole federation or will have to peer their own registry to federate it (WP2
Architecture [1]). Note that the actual deployment of the Fed4FIRE registry is a task within WP7,

2
e 30 of 151

S —
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

where the current evolution is to use a registry-only installation of SFA Wrap for this purpose.
When registering new users under the authority of the Fed4FIRE Registry, then the portal
provides a webpage where the user can fill in some basic personal information such as username,
password, affiliation, and E-mail address. Once submitted by the user, the portal will be able to
push this information into the Fed4FIRE Registry. Note that in the first cycle this registration page
will not yet support advances features such as automatic verification of given personal data, the
possibility to request additional personal information if this is needed by a specific testbed that
the user wants to access, etc. However, these advanced features are considered to be important,
and will be tackled in cycles 2 and 3.

Authentication

The portal will handle one login process according to WP7 requirements. The technology that will
be adopted cannot be defined at the moment, since WP7 will only provide its requirements in
D7.1, which has the same submission deadline as this deliverable D5.1. However, based on the
ongoing discussions currently being held in WP7, some technologies seem to emerge as obvious
candidates for this login process. These are to use OpenID or Mozilla Persona, which both are
existing single-sign-on solutions, or to use the SFA certificate of the experimenter to gain access to
the portal. In this last case, users should import that valid certificate, signed by a CA belonging to
the federation, in their browser. Once this has been done, the user should be automatically
authenticated when surfing to the portal, without needing to input a username and password. Of
course, this also requires that the portal is aware of the root certificates of the different Fed4FIRE
testbeds. In practice, this means that the portal has to be able to retrieve these from the
Certificate Directory. However, as previously mentioned, a definitive technological choice and
corresponding specification can only be made once WP7 has finalized its requirements and
recommendations.

Next to the issue of portal login, authentication is also related to the usage of X.509 certificates in
SFA. In short, Fed4FIRE experimenters must first of all have a valid public/private keypair. Based
on these keys, they have to create a valid self-signed X.509 certificate. This certificate then has to
be signed by the preferred identity provider. This provider has to be part of the Fed4FIRE. In
practice most testbeds will operate their own identity provider. Besides, a central identity
provider will be deployed within Fed4FIRE: the Fed4FIRE Registry. Once the certificate is signed,
the experimenter can use this certificate for authentication when performing SFA API calls within
the Fed4FIRE federation using a locally running user tool that is aware of the certificate. However,
when the portal will act as a SFA user tool on behalf of the experimenter, then the user must
delegate its credentials to the portal. In practice, this requires a small change to the X.509
certificate of the user, in order to enable delegation mode on the credential. Since user-
friendliness is a key element for Fed4FIRE, this process should be hidden for novel experimenters
as much as possible. Therefore it is needed that the portal knows how to automatically create the
public/private keypair and the self-signed Fed4FIRE certificate. It should be able to push this self-
signed certificate to the Fed4FIRE registry, and retrieve the version that is signed by the Fed4FIRE
registry. Finally, the portal should be able to adapt this signed certificate to allow delegation.
Based on current discussions being held in WP7, several technical routes can be followed when
implementing this functionality. One is to implement this all in a Java applet which is started from

2
e 31 0of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

the portal but runs locally on the computer of the experimenter. This is more secure, since the
private key never leaves the experimenter’s computer. However, it is unclear if this approach is
feasible in terms of efforts, since none of the consortium members have experience which such
an approach. An alternative would be to create the keys and the certificate on the server side of
the portal. This is just as convenient for the experimenter, but considered to be less secure since
the private key will have been present on this server. However, for this approach several existing
implementations are known, resulting in a higher confidence regarding the feasibility of this
approach in terms of needed efforts. A final implementation approach will be defined once some
more technical experience was gained with the different possibilities. This will be done in close
cooperation with WP7.

Authorization & Access policies

Users that are registered (and manually approved on the Fed4FIRE registry) or already have an
account on one testbed of the federation will be allowed to access the portal. They will also
automatically gain the right to access Fed4FIRE testbeds which agreed to immediately provide
access to users. However, some testbeds might have defined some specific authorization rules
that might need more personal information about the experimenter (e.g. role within the
organization: master student, PhD student, post-doc, professor, etc.) In that case the portal will
request the experimenter to provide this additional information. In development cycle 1 of
Fed4FIRE, only manual approval of new registrations on the Fed4FIRE registry will be supported.
This is a responsibility of WP7. The functionality on the portal that is needed to support the rules-
based authorisation is planned for cycles 2 and 3.

Testbed resources

The portal will present resources provided by the facilities in a user-friendly way and expose the
diversity of testbed’s resources through different plugins (tables, map, testbed map, detailed
information about resources). The portal will allow users to browse, filter, add or remove
resources in a slice and to create and update a slice across different testbeds of Fed4FIRE’s
federation. It will also provide the functionality to reserve resources, as specified in section 3.5. In
order to include the resources of all Fed4FIRE’s testbeds, these testbeds will be added to the
portal and thoroughly tested in a sequential manner. Since this addition will always rely on the
same SFA mechanisms, this is considered to be feasible in terms of needed efforts.

MysSlice’s Application Programming Interface

On its northbound interface, MySlice exposes itself to other tools through the MySlice API.
Appendix A: Development status of MySlice API describes the development status of MySlice’s
API, API calls, actions and data formats.

3.2.6 Requirements for testbeds to interwork with the Portal
Testbeds aiming to integrate with the portal should comply with the following requirements:
® They need to expose their testbed through SFA (section 3.6), taking into account the
specifications imposed by the Testbed directory (section 3.3), the Tools directory
(section 3.4) and the Reservation broker (section 3.5).
® They should contribute to plug-ins development to expose specific features of their
testbed (see MySlice Plugin Developer Website [22])

% 32 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.3 Testbed directory

3.3.1 General description

Fed4FIRE defines the testbed directory as follows: “A testbed directory which is readable by
humans and by computers to have an overview of all testbeds in the federation®, as stated in D2.1
(First federation architecture) [1]. Therefore we do not interpret the testbed directory here as a
registry service where all resources accessible from the federated facilities are listed. In such a
registry service, information on the capabilities of a particular resource would be included, as well
as information on its requirements, e.g. in terms of interconnectivity or dependencies.

To be in line with the architecture that Fed4FIRE is pursuing, the intention is to make all critical
services as distributed as possible. This means that resource discovery is performed by enabling
direct interaction between the user tools and the different testbeds belonging to the federation.
However, central components can be provided by the federation for the convenience of the
experimenter.

To be more concrete, when an experimenter wants to discover resources, his/her user tool of
choice will directly contact all known testbeds within the federation. Each testbed will list its own
resources, including the capabilities of the specific resources, and the information on its
requirements. The user tool of the experimenter will then combine all received lists in a single
view. Now the question is: how will the user tool know whom to contact? One possibility is that
the experimenter manually configures the IP addresses of the aggregate manager of all testbeds
of his/her interest. This is a very reliable and sustainable solution, since this approach will remain
functional even if the central federation service would be out of service and because, as explained
in section 3.3.5 a scheduled task can automatically provide this information. As long as
experimenters collect or exchange appropriate IP addresses, they will be able to continue using
the different testbeds in the federation. However, if these lists of IP addresses would be made
available in a central location, this makes it more convenient for the experimenter to make sure
that all testbeds of the federation will be included in his/her discovery queries.

This is exactly the functionality that we expect the Testbed Directory to provide. It is a central
service that provides the pointers to the different testbeds belonging to the Fed4FIRE federation.
So in case of the machine readable flavour, it can be considered as a central service that exposes a
list of IP addresses corresponding with the aggregate managers of the different Fed4FIRE
testbeds. Very simply put: the machine readable flavour is a yellow pages of Fed4FIRE testbeds. In
the human readable version, it provides textual high-level descriptions of these testbeds,
optionally a picture, and a URL pointing to a particular testbed homepage where more detailed
information is provided.

3.3.2 Evaluation of possible approaches for implementation

2
e 33 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Different approaches for the implementation of the testbed directory have been considered. Both
a clean slate design and the reuse of several existing software implementations and specifications
have been taken into account.

The first option is to implement both the machine and the human readable version of the testbed
directory from scratch as a central component. The main advantage of this approach is the
guarantee that all requirements will be covered by such a clean-slate implementation. The
disadvantage is that it is not the most efficient approach in terms of effort. It requires to develop
the machine readable listing and webpage-based human readable version from the ground up,
while it is not inconceivable that existing solutions could be suitable as an implementation basis.
The fact that this option considers the testbed directory as a central component also leads to an
operational overhead, since this requires a central collection and processing of all required inputs.

The second option that was explored is to implement the machine readable version from scratch,
while linking to the training material on the project website for the human readable variety. Such
an approach covers all requirements, and leverages the efforts invested in the definition and
publication of the training material. On the short term this seems like a viable solution. However,
on the long term it becomes clear that this is not a sustainable solution: after the end of the
Fed4FIRE project, it cannot be guaranteed that the training material will be further updated. So, if
the federation would continue to exist as a legal body and operational federation after the end of
the project (which is one of the goals of the project) then additional efforts would have to be
invested at the federation level in order to have an up to date testbed directory.

The third option is to start from the existing listing capabilities available in the MySlice API for the
machine readable version. For the human readable version, the approach would be to include the
corresponding information in the testbed-level part of the Rspec, and to create a MySlice plugin
which extracts this information from the testbed Rspecs, and compiles an overview on a single
webpage. This approach covers all imposed requirements, is more efficient in terms of effort than
the previous options, and it is sustainable on the long term. The downside is that the extended
Rspecs will become longer since it will contain all testbed directory information. This level of
redundancy is however not needed nor desirable since these Rspecs are communicated from and
towards the testbeds at a high rate.

The fourth considered option is to start from the existing listing capabilities available in the
MySlice APl for the machine readable version. For the human readable version, each testbed
exposes the testbed descriptions (text, image, URL to more detailed information) on their SFA
interface through the GetVersion SFA call. This call is normally used by SFA clients to query
static configuration information about this aggregate manager implementation, such as APl and
RSpec versions supported. It can be considered as the SFA API call that provides testbed-level
information. Therefore from all SFA API calls listed in the GENI Aggregate Manager API Version 3
specification [25], GetVersion is considered as the most appropriate place to expose the
testbed descriptions that will be used by the testbed directory. Given that this information would
be returned by each testbed as part of the GetVersion API call, Fed4FIRE could then develop a

e 34 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

MysSlice plugin that extracts this information from the retrieved results, and compiles an overview
on a single webpage. It inherits all advantages of the third option, while not extending the Rspecs
with redundant information. The downside is that this approach requires the extension of the
XML-RPC struct that is returned by the GetVersion SFA call. This means that there is a small
deviation from the SFA API. However, this is not an issue; since the GENI API [26] states the
following “Implementations can add additional members to the return struct as desired. The
prefix geni_ is reserved for members that are part of this APl specification. Implementations
should choose an appropriate prefix to avoid conflicts. Aggregates should document any

additional return values.”

The fifth option taken into account is to start from the existing listing capabilities available in the
MySlice APl for the machine readable version. For the human readable version, each testbed
exposes the testbed descriptions (text, image, URL to more detailed information) on their SFA
interface through a new SFA API call that is specifically intended for the retrieval of a description
of the testbed. This approach inherits all advantages of the fourth option, while not resulting in a
deviation of the already defined SFA API calls. However, since new SFA methods will be required
for integration in the Fed4FIRE federation, this approach loses the advantage of SFA compatibility.
Therefore the needed actions should be taken to have these new API calls included in an official
new release of the GENI Aggregate Manager API. This seems unfeasible within the stringent time
constraints of cycle 1.

Therefore it is chosen to pursue solution 4 (extended struct returned by the SFA GetVersion
method) in cycle 1, and to already start preparations to achieve solution 5 (introduce new

specific methods to the SFA API) in cycle 2.

This analysis is summarized in Table 6:

Approach Advantages Disadvantages Selected
as final
approach

Implement both from e Guaranteed to cover the e Not the most efficient

scratch as a central requirements way terms of effort

component e Overhead in central

collection and
processing of all

information
Implement machine ® Guaranteed to cover the e Not sustainable:
version from scratch, requirements additional efforts
link to the training ® Leverage of the efforts would have to be
material on the project invested in the definition invested at the
website for human and publication of the federation level once

%o 35 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

readable

training material

Fed4FIRe project is
over

Machine readable uses
the MySlice API,
human readable info
in the Rspec

Guaranteed to cover the
requirements

Best reuse of previous
implementation efforts
Sustainable

Longer Rspec, which
is communicated very
often

Machine readable uses
the MySlice API,
human readable info in
the struct returned by
GetVersion

Guaranteed to cover the
requirements

Best reuse of previous
implementation efforts
Sustainable

No additions to Rspec

Extended return value
for the GetVersion
call,hence alteration
of SFA API

Machine readable uses
the MySlice API,
human readable info in
new specific SFA calls

Guaranteed to cover the
requirements

Best reuse of previous
implementation efforts

Not longer fully
compatible with SFA

e Sustainable

e No additions to Rspec

® No change to the existing
API call implemenations

Table 6: Comparison of potential approaches for implementing the Testbed Directory

3.3.3 Description of selected tools

For the machine-readable version of the Testbed Directory, we will reuse the existing listing
capabilities available in the MySlice API. Any tool or user will be able to send a Query to MySlice
APl which will list the platforms of the Fed4FIRE federation from its database and return the
answer. The corresponding data has to be manually included once by the operator of the testbed
directory. This operator can be the same as that of the portal, since it uses the same MySlice
technology at its base. However, it is important to stress that this machine readable part of the
Testbed Directory is considered to be a distinct part of the Fed4FIRE architecture, and not a part
of the portal. Therefore it could also be operated by another party, which in this case would have
to deploy a specific MySlice instance intended for the implementation of the Testbed Directory.
But despite of the choice of operator, the testbeds themselves will always be responsible for the
provisioning of this information to the testbed directory operator. Since this only has to be done
once per testbed, no automation of this process is put in place.

For the human readable version, each testbed is expected to include the required information in
the testbed-level part of its SFA driver. The human readable Testbed Directory will then be a
MysSlice plugin on the Fed4FIRE portal that contacts all testbeds listed in the machine-readable

% 36 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

version, retrieves the corresponding information, and displays it on a single webpage. To improve
performance, this information will be cached by MySlice, and updated according to a regular
update interval. This way, all testbeds do not have to be queried every time the Testbed Directory
webpage is accessed. This regular update of the MySlice platform table will be performed by a
periodic SFA GetVersion call to all Fed4FIRE testbeds.

Note that the option of extending the SFA APl with a dedicated API call intended to retrieve the
testbed description was identified in the previous section as the most desirable solution in the
long run. But to maintain compatibility with SFA, it is needed that this extension is officially
included in a new version of SFA. It will be investigated how the needed contacts can be
established to pursue this option in cycle 2 and 3. For cycle 1 this approach is considered not
feasible within the given time constraints.

3.3.4 Required additional implementations

Each partner should be SFA compliant and respond to the GetVersion APl call with a
description of the testbed. The XML-RPC struct returned by this call should be extended to include
the needed information. Therefore the GetVersion method must be overridden in the SFA Driver
of the Testbed.

Each partner will also have to provide minimal information to insert in the platform table of the
MySlice database: name of the testbed and URL of its Aggregate Manager.

The MySlice database has to be extended to contain the testbed directory information. Besides, a
MySlice update script will be needed to retrieve the descriptions from the testbeds on a regular
basis and stores them in the database. Finally, a MySlice plugin has to be written that takes the
data from the database and displays this information about the Fed4FIRE testbeds on a single
webpage. The actual look and feel of this webpage will be specified during the development
process, based on initial feedback by possible users on some initial mock-ups of the webpage.

3.3.5 Specifications

Application Programming Interface
The MySlice API can be queried through this python call which will return the needed information
to construct the human-readable listing of the testbeds:

Query (action="'get', fact table='platform', filters=[], params=None,
fields=["'platform', 'platform description', 'platform url homepage',

'platform url picture'])

Similar, the query to retrieve the information related to the
machine readable directory looks as follows:

Query (action="'get', fact table='platform',6 filters=[], params=None,
fields=["'platform', 'platform url'])

The same calls can be triggered through an XMLRPC call:

% 37 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Connection to XMLRPC server

import xmlrpclib

srv = xmlrpclib.ServerProxy ("http://hostname:7080/",
allow none=True)

Authentication token
auth = {"AuthMethod": "password", "Username": "mylogin",
"AuthString": "mypassword"}

srv.Get (auth, "platform", [], {}, ["platform",
"platform description", "platform url homepage",
"platform url picture"])

srv.Get (auth, "platform", [], {}, ["platform", "platform url"])

The description of the testbed stored in the MySlice database will rely on the GetVersion SFA call
[27]. This API call remains exactly the same as defined by the GENI Aggregate Manager API
Version 3, the only difference is that the returned XML-RPC struct is extended as described in the
next section.

GetVersion

Syntax:
struct GetVersion([optional: struct options])

Functionality:
Get static version and configuration information about this aggregate. Return includes:
* The version of the GENI Aggregate Manager APl supported by this aggregate manager
instance.
* URLs for other versions of this APl supported by this aggregate
* The RSpec formats accepted at this aggregate
* Other information about the configuration of this aggregate.
* Fed4FIRE extension: short description of the testbed, URLs to picture and homepage, list of
tools that are officially endorsed by the testbed.

Parameters:
options: Optional

Returns:

Originally a struct where the value member is Version Information, in the Fed4FIRE context this
same struct is extended with information needed by the testbed directory and the tools directory.
Such extensions are allowed in the context of SFA.

2
e 38 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Data Formats

The MySlice internal Database will store the testbeds list. The information related to the machine
readable variety will be entered manually by the database manager. This will be the name of the
testbed, and the corresponding IP address of its aggregate manager.

Testbeds descriptions regarding the human readable version of the testbed directory will be
cached in the same database, as this information does not change often. It will be updated
periodically through a scheduled task. This automatic task will be implemented in cycle 1, and will
periodically perform a SFA GetVersion call to all testbeds that were manually entered in the
MySlice database in the context of the machine readable version of the directory. Based on the
retrieved information, the database will be updated accordingly. The corresponding table in the
database will contain the following fields:

Olplatform id|INTEGER|1] |1
l|platform|VARCHARI|O] |0

2|platform longname|VARCHARI|O] |0
3|platform description|VARCHAR|O] |0
4|platform url|VARCHAR|O]|]|O
5|deleted|BOOLEAN|O]| |0
6|disabled|BOOLEAN|O] |0
7|status|VARCHAR|O| |0

8|status updated|INTEGER|O]| |0
9|platform has agents|BOOLEAN|O] |0
101 first | INTEGER|O] |0
11]1last|INTEGER|O] |0

12 |gateway type|VARCHAR|O] |0

13 |gateway conf|VARCHAR|O] |0

14 |auth type|VARCHAR(9) [0 |0

15| config|VARCHARI|OQO| |0
l6|platform url homepage|VARCHAR|O] |0
17|platform url picture|VARCHARI|O]| |0

Note that several of these fields are not directly needed by the Testbed Directory, but were
already present in this MySlice data model to support other MySlice functionalities.

Extended XML-RPC struct returned by GetVersion

In the GENI AM API v3, it is defined that the GetVersion SFA API call returns a XML-RPC struct that
describes which version of the Aggregate Manager API is running locally, the RSpec schemas
supported, and the URLs where other versions of the AM API are running. In Fed4FIRE, this XML-RPC
struct is extended with information related to both the testbed and the tool directories. In order to
be as clear as possible in this specifications document, we include both extensions in this section
regarding the testbed directory. In the section about the tool directory, we will refer to the
extended definition given below.

The extension defined in this document is related to the member of the returned XML-RPC struct

2
e 39 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

that is called value. The members geni api, code and output are not affected by the
Fed4FIRE extension.
The value member by itself is again an XML-RPC struct. It contains the following members:

® geni api:an integer indicating the revision of the Aggregate Manager API that an aggregate
supports. In this deliverable we are extending version 3 of the API

® geni api versions: an XML-RPC struct indicating the versions of the Aggregate Manager
API| supported at this aggregate, and the URLs at which those API versions can be contacted.
This element is required, and shall include at least 1 entry indicating the local aggregate
manager URL and the version of the APl supported at that URL.

® geni request rspec versions: an array of data structures indicating the RSpec types
accepted by this AM in a request

e geni ad rspec versions: an array of data structures indicating what types of RSpec
advertisements may be produced by this AM in ListResources.

® Geni credential types: not documented on the GENI AM APl v3 wiki page, but
included in its sample output. Therefore it is mentioned here. In the example, this is an array of
data structures that indicate the credential types accepted by this AM.

e geni single allocation: not documented on the GENI AM APl v3 wiki page, but
included in its sample output. Therefore it is mentioned here. In the example, this is an integer
that indicates if the AM can operate on individual slivers.

e geni allocate: not documented on the GENI AM API v3 wiki page, but included in its
sample output. Therefore it is mentioned here. In the example, this is a String that indicates if
the AM can do multiple Allocates.

To support the Fed4FIRE testbed and tools directories, the value XML-RPC struct is extended with

the following members:

e f4f describe testbed: a String containing a human-readable description of the
testbed. The intention of this field is to provide rather high-level introductory information to
the testbed.

e f4f testbed homepage: a String containing the absolute URL to the testbed homepage
or any other webpage that provides more detailed information about the testbed than what
will be included in the member Fed4FIRE describe testbed.

e f4f testbed picture: a String containing the absolute URL to a picture of the testbed
that should be presented in the overview of all Fed4FIRE testbeds as presented by the testbed
directory.

e f4f endorsed tools: an array of data structures indicating the tools that are officially
endorsed by the testbed. This data structure contains the following members

e tool name: aString that contains the name of the tool.

e tool logo:a String containing the absolute URL to the logo of the tool.

e tool homepage: a String containing the absolute URL to the tool homepage or
any other webpage that provides more detailed information about the tool.

e Tool version: a String indicating the latest version of the tool that is officially

endorsed.

% 40 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Sample output (Fed4FIRE extension annotated in green)

{
geni api = 3 # This is AM API V3
code = {
geni code = 0 # Success
am_type and am code are optional. Leaving them out.
}
value =

{
geni api = 3 # Match above

geni api versions = {
'3'" = <This server's AM API absolute URL>
'2'" = <Prior API version still supported at a slightly different URL

- optional but included here>

}

geni request rspec versions = [{

type = "GENI" # case insensitive

version = "3" # case insensitive

schema = "http://www.geni.net/resources/rspec/3/request.xsd" #
required but may be empty

namespace = "http://www.geni.net/resources/rspec/3" # required but may
be empty

extensions = ["http://hpn.east.isi.edu/rspec/ext/stitch/0.1/stitch-

schema.xsd", <other URLs here>] # required but may be empty

H

geni_ad rspec_versions = [{

type = "GENI" # case insensitive

version = "3" # case insensitive

schema = "http://www.geni.net/resources/rspec/3/ad.xsd" # required but
may be empty

namespace = "http://www.geni.net/resources/rspec/3" # required but may
be empty

extensions = ["http://hpn.east.isi.edu/rspec/ext/stitch/0.1/stitch-

schema.xsd", <other URLs here>] # required but may be empty

H

geni credential types = [{ # This AM accepts only SFA style credentials for
API v3
geni type = "geni sfa" # case insensitive
geni version = "3" # case insensitive
}]
geni_single allocation = 0 # false - can operate on individual slivers. This

is the default, so could legally be omitted here.

geni allocate = "geni many" # Can do multiple Allocates. This is not the
default value, so is required here.

f4f describe testbed = "This is a specific description of a particular
testbed. In this text it is briefly explained what it is about, on a high level.
This is exactly the text that will be displayed by the testbed directory."

f4f testbed homepage = "http://www.afederatedtestbed.eu"
f4f testbed picture = "http://www.afederatedtestbed.eu/overview.jpg"
f4f endorsed tools = [{

tool name = "Tool X"

tool logo = "http://www.firetoolx.eu/logo.jpg”

tool homepage = "http://www.firetoolx.eu"

tool version = "3.2.2"

2
R 41 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

4]
}

tool name = "Tool Y"

"http://www.firetooly.eu/logo.jpg”
tool homepage = "http://www.firetooly.eu"
tool version = "2.1.2"

tool logo

output = <None>

3.3.6 Requirements for testbeds to adopt the specified testbed directory solution
Testbeds aiming to support this functionality should comply with the following requirements:

2
%o

FED4FIRE

They should expose their testbed through SFA
They should extend the XML-struct returned by the GetVersion call as defined
in this deliverable. More concrete it should contain a small description, and links
to an online image and the testbed homepage.

They should make sure that their AM runs on a static IP address, and they have to
provide this address to the operator of the Testbed Directory

42 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013 SEVENTH ERAMEW

PR

EWORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.4 Tool directory

3.4.1 General description

Fed4FIRE defines the tool directory as follows: “A tool directory which gives an overview of
available tools for the experimenter”. Taking this definition as a starting point, the first question
to answer is: what is the scope of this directory? Is it limited to an enumeration of the tools
especially developed to enable federation within Fed4FIRE? Examples of such tools could be the
portal, the reservation engine, the testbed directory and the certificate directory. Another
approach could be to extend the scope of the tool directory towards all FIRE tools that could be
applied usefully on any of the Fed4FIRE federated facilities. This could be any tool, both those that
were adopted officially by the federated testbeds and those that were unknown to the testbed
owners but identified by experimenters and/or tool providers as working on the federated
testbeds.

In consultation with the entire project consortium, the scope of the tool directory was defined to
be of the second category. The tools directory should provide pointers to FIRE tools of all kinds,
both to the officially endorsed ones and to those tools that emerged naturally from the FIRE
community. However, some mechanism should be in place in order to enable testbed providers to

indicate the tools that they officially endorse on their testbed.

3.4.2 Evaluation of possible approaches for implementation

Different approaches for the implementation of the tools directory have been considered. The
first option is to merely provide a link to the training material. Such an approach is of course very
efficient in terms of needed effort. However, it does not reach the intended scope, since the
training material is limited to tools especially developed to enable federation within Fed4FIRE.
Besides, this approach results in a management overhead for the federation, since all tools
information has to be maintained in a single central component. It is also not sustainable: after
the end of the Fed4FIRE project, it cannot be guaranteed that the training material will be further
updated. So if the federation would continue to exist as a legal body and operational federation,
which is the objective of Fed4FIRE, additional efforts would be needed at the federation level in
order to have an up to date tools directory.

The second considered option is to adopt the same approach as for the testbed directory: all tool
builders expose the information regarding the tools through an SFA interface. The benefit of this
approach is the fact that all tools within the scope can be covered, and that the information is
maintained by the tool owners. Hence there is no central management overhead, and this
solution is considered sustainable on the long term. However, this approach seems rather
unpractical. In this case, it would be required that each tool provider sets up an AM to provide
information about the tool. However, an AM is intended for the management of a testbed, not
the dissemination of information. Another disadvantage is the fact that experimenters cannot
provide information. Similar to the approach taken for the testbed directory, a minor deviation of
the SFA API (extension of the struct returned by the GetVersion API call) can also here be

considered as a drawback.

e 43 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The third possible approach is to gather all tools-related information on a public Wiki page on the
Portal. As a result, the Tool Directory would become a part of the Portal from an architectural
point of view. This approach inherits the same advantages as the previous option: all tools within
the scope can be covered, no central management overhead exists and it is sustainable on the
long term. Moreover, this solution is straightforward to implement, and allows experimenters to
contribute. The only disadvantage is the fact that since anyone can edit, it is hard to distinguish
between official Fed4FIRE information (tools endorsed by each testbed) and information provided

by the FIRE community.

The last considered approach is a combination of the previous two: the testbeds expose officially
endorsed tools through their SFA interface, while a public Wiki page is foreseen on the public
section of the Fed4FIRE Portal for gathering of information about all FIRE tools. This way the
advantages of solution three can be kept, while having a clear distinction between official
Fed4FIRE and FIRE community information. The only disadvantage that remains is the minor
deviation of the SFA API, more specific in the return value of the GetVersion API call. However,
as also mentioned in case of the testbed directory, this is not an obstacle since GENI explicitly
states that returned XML-RPC structs can freely be extended as long as the extension is well

annotated and documented.

Therefore this last approach was adopted for cycle 1. Similar to the testbed directory, cycles 2
and 3 will also target the official extension of the SFA APl with an API call especially intended to
list the tools endorsed by a testbed.

directory approach:

have all tool builders
expose info through
SFA

Information is managed
by the tool builders: no
central overhead and
sustainable on the long
term.

Approach Advantages Disadvantages Selected
as final
approach

Link to training e Optimal reuse of e Limited to tools

material manpower especially developed

within Fed4FIRE
e Overhead of central
data maintenance
e Not sustainable.
Adopt testbed Can cover the entire scope | ® Unpractical. This would

require that each tool
provider sets up an AM
to provide information
about the tool.

e Experimenters cannot
provide information.

e Extended return value
for the GetVersion

2
%o

FED4FIRE

44 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

call,hence alteration of
SFA API

Gather all tools-
related information
on a public Wiki
page on the Portal

Can cover the entire scope
Information is managed
by the tool builders: no
central overhead and
sustainable on the long
term.

Straightforward to
implement

Experimenters can
contribute

Hard to distinguish
between official
Fed4FIRE information
and information
provided by the FIRE
community.

The testbeds expose
officially endorsed
tools through their SFA
interface, public Wiki
page on the Portal for
gathering of
information about all
tools

Can cover the entire scope
Information is managed
by the tool builders: no
central overhead and
sustainable on the long
term.

Straightforward to
implement
Experimenters can
contribute

Clear distinction between
official Fed4FIRE and FIRE
community information.

Extended return value
for the GetVersion
call,hence alteration of
SFA API

Table 7: Comparison of potential approaches for implementing the Tool Directory

3.4.3 Description of selected tools

FED4FIRE

Regarding the exposure by each testbed of its endorsed tools through the SFA APl call
GetVersion, it is sufficient to refer to the section regarding the testbed directory. It was
already explained there that this method is the most suitable place in the SFA APl to provide
information about the testbed itself. For the tools directory, the returned data structure is
extended to include the information about the tools endorsed by the testbed. The MySlice plugin
that provides the testbed directory compilation will be able to annotate for each testbed which
tools are officially endorsed. Hence from the experimenter point of view, this part of the tools

directory is in fact displayed as a piece of the testbed directory web page.

The public Wiki page on the other hand will be a separate section on the portal, clearly
identifiable as a tools directory that gathers inputs from the entire FIRE community. Wiki is
considered as a sound technical basis for such a public forum, since it has a proven track record in
many other projects regarding information gathering and collaborative document writing

4
%o

45 of 151

S —
SEVENTH FRAMEWORK

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

(Wikipedia being one of the most famous examples). In fact, Ward Cunningham, the developer of
the first wiki software, described the essence of the Wiki concept [28] as follows:

e A wiki invites all users to edit any page or to create new pages within the wiki Web site,
using only a plain-vanilla Web browser without any extra add-ons.

e Wiki promotes meaningful topic associations between different pages by making page link
creation almost intuitively easy and showing whether an intended target page exists or
not.

e A wiki is not a carefully crafted site for casual visitors. Instead, it seeks to involve the
visitor in an ongoing process of creation and collaboration that constantly changes the
Web site landscape.

3.4.4 Required additional implementations

Regarding the endorsed tools, the to-be-developed MySlice plugin for the testbed directory
should include the functionality needed by this part of the tools directory. More concrete: for
every testbed that is displayed, a list of endorsed tools should be extracted from the data
structure returned by the GetVersion call, and annotated on the webpage. The available
information regarding each tool is its name, URL to its homepage and URL to its logo. The MySlice
plugin should annotate this information to each testbed displayed in the testbed directory in a
suitable manner. Each testbed of course should make sure that when overriding their GetVersion
return method as demanded by the testbed directory, that they also include this information

regarding endorsed tools.

Regarding the Wiki page, no real implementation work is needed. The Fed4FIRE portal will be
based on MysSlice, which on its turn is based on the Joomla content management system (CMS)
[20]. This is a very popular CMS, many extensions for it can be downloaded as open source
software from the Internet. Such extensions that enable a Wiki system within the Joomla
framework already exist. One example is JWiki [31]. And even if the integration of a wiki inside the
MySlice-based Portal would prove to be harder than anticipated, an acceptable backup plan
would be to setup a dedicated wiki for the tools directory (e.g. a MediaWiki installation), and link

to it from the Portal.

The most important part of the Wiki installation will be the initial structure of the content. Here
any tool maker will be able to post some information regarding the functionality of the tool, on
which testbeds it has been reported working, link to the homepage, etc. It is not inconceivable
that without a good structure, the amount of content will quickly become too large to result in a
usable tool directory. Therefore the base content structure of this Wiki-based tools directory is
crucial. It should make a clear distinction between sections intended for novel experimenters, for
experienced experimenters, and for testbed owners/developers. Keeping an eye on this structure
during the course of the Fed4FIRE project (and beyond) can be considered as one of the biggest
efforts needed for the Wiki portion of the tools directory.

3.4.5 Specifications

% 46 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The listing of endorsed tools through each testbed’s SFA interface requires an extension of the
data structure returned by the SFA API call GetVersion. However, the approach adopted in
the context of the testbed directory also extends this specific data structure. To avoid any
possible confusion by defining the extension of this data structure in two different parts of this
deliverable D5.1, it was chosen to gather all extensions to this data structure in one place: the
section regarding the testbed directory. Hence the reader is referred to that section for the
specification of the data structure extensions related to the listing of the endorsed tools. Note
that this is the only change needed to the SFA API to support the listing of endorsed tools.

Regarding the usage of a public Wiki page on the Fed4FIRE portal, no specifications can be
defined, since no API is provided or needed by this component. Regarding editing, all pages will be
unprotected, meaning that anyone can write to them. The editing policy of Wikipedia is adopted
[108]. In terms of the structure of the wiki, a first draft is given below. Note that this will evolve
over time as more and more content is being put on the wiki by the FIRE community members.

* Novel experimenters
o Graphical resource discovery, reservation and provisioning tools
= Fed4FIRE portal
= FlTeagle [55]
= Flack [12]
* Experienced experimenters

o Command line resource discovery, reservation and provisioning tools

= SFI[29]
= Omni[29]
o Experiment control tools
= OMF [63]
= NEPI[8]
o Monitoring and measuring tools
= OML[64]

= Zabbix [65]
= CollectD [66]
* Testbed owners and developers
o SFA support
= SFA wrap [60]
= AMsoil [62]
= SFA test suite
o Reservation engines
= Fed4FIRE future reservation broker (see section 3.5)
o MySlice plugin development [19]

%o 47 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.4.6 Requirements for testbeds to adopt the specified testbed directory solution
Testbeds aiming to support this functionality should comply with the following requirements:
® They should expose their testbed through SFA
® They should extend the XML-struct returned by the GetVersion call as defined in
section 3.3. More concrete it should contain a list of endorsed FIRE tools. For each tool, the
following information is needed: name, and links to an online hosted logo and the tool
homepage.

o |[f they are also tool builders, they should create an informational section about their tools
on the Wiki part of the tool directory.

4
%o 48 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.5 Future reservation broker

3.5.1 General description

The goal of this component is to provide the functionality of a reservation system for
various reservation types of resources in Fed4FIRE facilities. The outcome is an overarching
service that experimenters can utilize to reserve resources, which in turn will contact each
individual facility and ask for a reservation. The taxonomy of the various types of reservation is
provided in Table 8.

The distinction between the various types of reservation is made upon two different dimensions:
(1) time and (2) guarantee of resources. With reference to the time-based dimension, we
differentiate between instant, advance and elastic reservations, while for the guarantee of
resources dimension we differentiate between hard and best-effort reservations. An intersection
of the two dimensions is possible (e.g. instant reservation for resources provisioned on a best-
effort basis). Considering the two dimensions identified for resources reservation, different
service levels will be supported. For example, based on the time dimension, resources reservation
service may be denoted as silver, gold, and premium to characterize its duration. Similarly the
guarantee of resources dimension may be used to define different service levels. However service
level differentiation will be looked into detail at a following cycle of the broker implementation.
Note that based on this distinction, the name “Future reservation broker” in fact is not entirely
suitable, since this component will at least support both instant and advanced reservations.
However, to be aligned with D2.2 (First federation architecture), we maintain the naming as
defined there, since in this deliverable D5.1 we are actually defining the specifications of D2.2.
However, in the next iteration of the architecture we will make sure that this component is
renamed to “Reservation broker”.

Type Description

. Guaranteed resources availability (usually realized by
Hard Reservation .
exclusive access on the resource).

Best-effort Resources are provisioned on a best-effort basis, shared
Reservation among allocated experimenters’ requests (non-exclusive

Guarantee of
resources

access on the resource).

Advanced Reservation | Advanced reservation mechanisms of resources by the
experimenters utilizing a calendar service.

Instant Reservation Resources are reserved from the time the experimenter's

Time

request arrives at the reservation system.

Elastic Reservation The time constraint is not hard, the reservation system may
look for the 1st available times slot where all resources are

4
e 49 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

available (within a pre-specified time interval and for a given
duration).

Table 8: Taxonomy of reservation types

In the Fed4FIRE federation environment, experimenters will be able to reserve resources via
(Figure 6):

1. The resource brokering service (Future Reservation Broker) that will be integrated into
the central Fed4FIRE facility. The Future Reservation Broker will support all types of
reservations, described in Table 7, by helping to match and optimize the timeframe and
resources requirements, set by the experimenter over one/multiple testbeds.

2. Appropriate experimenter tools. Experimenters may use existing tools to either directly
reserve resources that belong to a specific testbed (e.g. using testbed-specific
experimenter’s tool) or use appropriate tools that allow directly reserving resources
from federated testbeds e.g. SFI [29].

Based on the time dimension, the testbeds that are part of theFed4FIRE federation environment
are primarily classified (Table 8) to facilities that already make use of a scheduling service and
facilities with an online system for immediate reservation of resources. Moreover on Table 8 we
identify the testbed's functionality regarding the guarantee of resources dimension.

Facility Instant Advance Elastic Hard Best-Effort
Reservations | Reservations Reservations Reservation | Reservation

PlanetLab X X(Reservable - X(Reservable | X

[33] Nodes) Nodes)

NITOS [34] - X - X -

VIRTUAL X - - X -

WALL [35]

FuSeCo [37] X - - X -

OFELIA [59] X - - - X

w-ilab.t [36] | X - - X -

NETMODE - X - X -

[38]

NORBIT [39] | - X - X -

2
e 50 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

SmartSantan | X - - - X
der [41]

GRID5000 X X X X -
[40]

Bonfire [10] | X(Virtual X(Physical - X -

Machines) Machines)

NIA/KOREA - X - X -
[42]

Table 9: Currently supported reservation types of Fed4FIRE’s testbeds

Considering that both testbed types (testbed with/without a scheduling service) are SFA-enabled,
the Broker interacts with the testbeds via the SFA interface. The aforementioned functionality is
depicted in Figure 6. Specifically, in the first case, the scheduling service of the testbed acts as a
slave broker for the Future Reservation Broker (master). In the latter case, the testbed must
export a pre-selected set of testbed resources to the Future Reservation Broker, or deploy a local
scheduling solution which can act as a slave broker for the Future Reservation Broker.

Brokers

Figure 6: Fed4FIRE Reservation System

Testbed

b4
 a 51 of 151

FED4FIRE Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The main components that the Future Reservation Broker will interact with are the following,
listed here in a top-down fashion, as depicted in Figure 7:

1) Portal: The authenticated user via the portal interacts with the Future Reservation Broker
in order to discover the available resources from the federated testbeds. The user, at the
end of cycle 1 will be able to make in advance reservation of resources utilizing the
broker.

2) Identity provider: During the resource discovery phase, resources for each authenticated
user are filtered according to rules set by the testbed providers on user access.

3) Certificate Directory: In order to retrieve the appropriate information from the identity
provider, the Broker needs to establish a chain of trust with testbeds’ identity providers.

Central
location(s)

Figure 7: Future Reservation System interactions with Fed4FIRE central location components

3.5.2 Evaluation of possible approaches for implementation

Three different approaches were evaluated for the future reservation broker functionality. All
approaches are based on the adaptation of existing tools/software. The three tools that were
examined are the following:

4
Pe 52 of 151

FED4FIRE Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

NITOS/NICTA Broker: The NITOS Scheduler [43] has evolved along with OMF [63] and with the
collaboration of NICTA to what is called a “Broker”. This name was chosen to indicate the extra
functionalities beyond scheduling of resources reservation. The purpose of the joint work with
NICTA was to provide an inherent scheduling functionality to OMF and capabilities like an SFA API
for easy federation of OMF testbeds.
The architecture includes components covering the following functionalities:

Communication (Broker’s main API)

Authentication / Authorization

Scheduling

Liaison to the underlying resources
Even though the Broker has been designed in a way to work flawlessly with OMF, it doesn’t retain
any strict connections to it. The modular design, enables the Broker to be flexible enough in order
to adapt in platforms that expose a different API than the OMF6 messaging protocol (SFA is one of
the alternative options).
The NITOS broker can be also used in a hierarchical reservation system where a main Broker can
be contacted directly from a client and reserve resources that have been assigned to the main
Broker by another (slave) Broker.

GRID5000 Scheduler: At its core, Grid’5000 [40] uses OAR as a scheduler [44]. The
implementation chosen is to run an independent OAR instance on each site, and to wrap OAR’s
REST APl into a slightly higher level REST API specific to Grid’5000.

OAR is a batch scheduler and resource manager. As a scheduler, it supports many standard
features: interactive jobs (get resources now), batch scheduling (run the following job (maybe
sleep to give control to the experimenter) when resources fitting the description are available and
advance reservation. Moreover, OAR supports best-effort jobs, where resources are only made
available to a user as long as no standard usage is requested). As a resource manager, it will
configure resources at the start of jobs to ensure exclusive access to the job owner, and clean-up
at the end of the job to ensure a clean state for the next user. Also, it will detect problems with
resources (when they are no longer reachable or exhibit incorrect behaviour) and adapt
scheduling to take into account these suspect nodes. OAR has a simple notion of users: it will keep
track of a login associated to each job, and configure a pair of SSH keys to be used by that user to
gain exclusive access to nodes. It can also be instructed to use the user’s standard public key (or
any public keys chosen by the submitter). There is no support for signed assertions of x.509v3
certificates.

As Grid’5000 is running OAR on each site, some tools are provided to help experimenters use
resources on more than one site. For each resource, the current status (free or used) and future
reservations are made available to users over Grid’5000’s REST API, so they can build their own
broker. For example, OAR-GRID is a tool to reserve resources from different sites of Grid'5000.
OAR-GRID's principle is very simple, on each wanted clusters a reservation is preceded (in OAR). If
one of them does not succeed then all previous reservations are cancelled as well as the global
operation. Moreover, a grid resources discovery tool (called disco) is also available. The tool
enables resources discovery at a precise date (including now) for any amount of time.

% 53 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Finally, a thin REST API for Grid’5000 has been developed over the native OAR REST API that
provides notifications to inform users or services when a job starts. This notification system can
send mails, XMPP messages or POST requests to user specified URLs.

NETMODE Scheduler: The service oriented wireless resource management framework, denoted
as NETMODE scheduler [38], is deployed at the Network Management and Optimal Design
Laboratory of the National Technical University of Athens, Greece. NETMODE Scheduler adopts
spectrum slicing which enables the co-existence of multiple virtual topologies, with minimum
interference via efficient spectrum utilization. Specifically an experimenter can only use nodes
and wireless channels that have not been reserved by another user for the same time period.
The architecture includes components covering the following functionalities:

¢ Communication (NETMODE Scheduler Web Services API)

* Authentication / Authorization

* Scheduling

The NETMODE Scheduler utilizes the OMF resource provisioning framework. Moreover, a formal
description of resources is used in order to create a system capable of selecting, reserving and
configuring resources in an automated manner. Therefore a resource specification language
(ProtoGENI V2 format RSpec) has been adopted and extended for wireless experimentation.

A summary of the advantages and disadvantages of the examined approaches is illustrated in
Table 10:

Approach Advantages Disadvantages Selected as
final
approach

NITOS/NICTA ® Integrated with OMF (in | ¢ Partially supported RBAC

Broker/Schedul progress)

er ® Provides SFA support
Supports PlanetLab
extended RSpecs X

® Provides hierarchical
scheduling

® Reasonable extra
implementation effort
needed

e Open source (No issues

with IPR)
GRID5000 e RESTful API * Does not provide SFA
Scheduler e Admission rules for functionality

policy * large implementation

4
% 54 of 151

S —
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* Mature technology effort needed
NETMODE ® Web services API (SOAP) | * Does not provide SFA
Scheduler ® Supports ProtoGENI v2 functionality
RSpecs * large implementation
® Open source (No issues effort needed
with IPR)

Table 10: Comparison of potential approaches / eligible tools for realising Fed4FIRE’s reservation system

As we can observe from Table 10, the NITOS Broker/scheduler is the most complete scheduling
system in terms of the provided functionalities (SFA enabled, use of RSpecs, integrated with OMF,
hierarchical scheduling) compared to the other two solutions, whereas it can be easily extended
to cover the requirements for the future reservation system as posed in D2.1 [1].

3.5.3 Description of selected tools

In this section, the architectural design and supported functionalities of the NITOS Broker are
presented in detail. As mentioned in the previous section, the NITOS Broker consists of several
modules, each of them responsible for different functionalities. Figure 8 depicts the main
components of the Broker and their interactions. The Broker entity is deployed in the testbed and
is responsible for brokering testbed’s resources. The different AMs that can be seen in Fig. 11 can
be part of the same testbed/organisation (e.g. an AM for an indoor testbed and an AM for an
outdoor testbed) or can belong to different testbeds/organizations. The latter refers to the
hierarchical scheme of the Broker where a “master” Broker resides outside of a testbed and acts
on behalf of the “slave” Broker which is deployed in organization’s testbed. This kind of
deployment is scheduled for the second phase of cycle 1 when the Authentication/Authorization
scheme will be agreed among all testbeds such that A/A could take place in a central location.

Trust Boundary

Broker
REST-based =
Chent TT——al»n
= create(RSpecs, slice/account, poiicy)
=0l > .
create(RSpecs rrml]‘—g1 E-',) S
I i B3| a8
= -3 —> Scheduler
SFA ’ = =22 — ™\ —
Client [+]] . e
l o = 2 A \ ["* =
O S o ‘ \’
—3 e 4 DB
= ‘ /|
OMF-based | o — :'3 | S
Client — - L 4 /
AM liaison

[}}5_ XMPPRe_

/

e —
r S [XMPP]
AM 1‘ ’AM 2 Broker

[}

i

AM 3

Figure 8: NITOS Broker Architecture

2
R 55 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Communication

The Communication block concentrates all the available interfaces (APIs) of the Broker. This is the
main entry point for the client queries with respect to resource discovery, reservation and
provisioning. The Communication block is comprised of an XML-RPC interface for SFA clients, an
XMPP interface based on the pubsub service of the OMF messaging system and a REST API for
other uses if needed, described in the following in more detail:

XML-RPC

The XML-RPC [45] is the basic interface for the SFA clients and supports the methods implied by
the latter. Right now the supported version is that of the ProtoGENI [78] implementation, while
the PGv2 RSpecs [80] have been extended to support in advance reservation information.
Ultimately it will support the SFA flavour that it will be decided for the Fed4FIRE project. In the
following examples of advertisement (Table 11) and request (Table 12) RSpecs are provided.
Manifest RSpecs at the time are implemented as advertisement RSpecs including the resources of
the slice.

<?xml version="1.0"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/2"
xmlns:omf="http://schema.mytestbed.net/sfa/rspec/1"
type="advertisement" generated="2012-12-18T18:08:08+02:00"
expires="2012-12-18T18:18:08+02:00">
<node id="aeal0b%a5-e90e-5fd6-9224-847f0alb37cb"
omf:href="/resources/aealb9a5-e90e-5£fd6-9224-847£f0alb37cb"
component id="urn:publici
d:IDN+mytestbed.net+node+aecalb9a5-e90e-5£d6-9224-847£f0alb37cb"
component manager id="authority+am" component name="n0">
<available now="true"/>
</node>
<node 1d="70dce487-582e-5e56-a3ed-al541ed73826"
omf:href="/resources/70dced87-582e-5e56-a3ed-al541ed73826"
component id="urn:publici
d:IDN+mytestbed.net+node+70dced487-582e-5e56-a3ed-al541ed73826"
component manager id="authority+am" component name="nl">
<available now="true"/>
</node>
<node i1d="2564c0a3-dd23-551f-a25c-1af767£45a81"
omf:href="/resources/2564c0a3-dd23-551f-a25c-1af767£45a81"
component id="urn:publici
d:IDN+mytestbed.net+node+2564c0a3-dd23-551f-a25c-1af767£45a81"
component manager id="authority+am" component name="n2">
<available now="true"/>
</node>
</rspec>

Table 11: Advertisement RSpec — NITOS/NICTA Broker

2
R 56 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

In the following Table 12 an example of request RSpecs is provided.

<?xml version="1.0"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/2"
xmlns:omf="http://schema.mytestbed.net/sfa/rspec/1" type="request"
xmlns:olx="http://schema.nitlab.inf.uth.gr/sfa/rspec/1">
<olx:lease lease name="11" olx:valid from="2013-01-08T20:00:00Z"
olx:valid until="2013-01-08T20:00:002"/>
<node component id="urn:publicid:IDN+openlab+node+nodel"”
component name="nodel" olx:lease name="11">
</node>
</rspec>

Table 12: Request RSpec — NITOS/NICTA Broker

Furthermore, this interface can be also used for linking Brokers such that the “master” Broker will
send requests through the XML-RPC interface to the “slave” Broker. More details for the
hierarchical use of the Broker will be in a following section.

XMPP
The XMPP [79] interface is used by OMF-based clients (utilizing the OMF6 messaging protocol).
Specifically the “create” and “inform” messages are used. Specifically, the user will ask the Broker

|ll

to “create” some resources and the latter will “inform” about the success or not of the request.
In the same fashion as in the XML-RPC case, PGv2 RSpecs are used for resource discovery,
reservation and provisioning.

Furthermore, this interface can be also used for linking Brokers such that the “master” Broker will
send requests through the XMPP interface to the “slave” Broker. More details for the hierarchical

use of the Broker will be described in a following section.

RESTful
The design of the communication block allows having also a RESTful [81] interface. This allows for
3rd party clients can be supported at later stages.

Authentication / Authorization

The “A/A” component is the policy enforcement point of the testbed. Its main purpose is to check
the user's incoming messages, depending on the communication APl used, and set the
authorization context. After the reception of a message the “A/A” parses the credentials and
extracts the necessary information for policy enforcement.

The credentials in SFA consist of an owner and a target (X509 certificate based), expiry time and a
list of zero or more privileges. The same concept exists also in the SFA implementation of
Planetlab Europe.

A simple credential [82]might look like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<signed-credential>
<credential xml:id="refl">

2
R 57 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

<type>privilege</type>
<serial>12345</serial>
<owner urn>urn:publicid:IDN+emulab.nettusertgary</owner urn>

<target urn>urn:publicid:IDN+emulab.net+slicet+mytestslice</target u
rn>

<expires>2010-01-01T00:00:00</expires>

<privileges>

<privilege>

<name>*</name>
<can delegate>1</can delegate>

</privilege>

</privileges>
</credential>
<signatures>

---XML Signature elements (signatures and certificates) go here--

</signatures>
</signed-credential>

In the case of the SFA credentials we can derive the affiliation of the user by the HRN (e.g.
“topdomain.subdomain.username”). This describes a chain of trust where the topdomain signs
the certificate of the subdomain, which in turn signs the certificate of the user. The “A/A” can
validate the user’s credentials by verifying the signatures and the certificates in a chained way.

The user proves itself with assertions included in his initial request (e.g., request to list resources
available on the testbed). The assertions are of the type [subject, predicate, object] (e.g.
DonatosMemberOf UTH says UTH-HQ). The A/A can simply check the user's signature with the

corresponding authority (e.g. UTH-HQ). The assertions can be tracked in the following chain way:
1. MSG isType REQ from ?user
2. ?user memberOf ?project says ?pa
3. ?pa endorsedBy Openlab says OpenLabAuth.

This way, the A/A can make a decision whether to deny or grant access to a user’s REQ.

Scheduler

The Scheduler receives a request for resources reservation within a specific timeframe and
decides how to match the user's request. At the moment, it supports Hard Reservations with
regards to time (as shown in Table 11). Hence it simply checks the availability of the resources in
the given timeframe and if they are available, it reserves them on behalf of the user for a slice.
More complex examples include user/testbed imposed constraints such as minimum duration,
preferable duration, minimum resources, and preferable resources. In addition it could prioritize
requests based on user information/privileges. Following the selection of resources and the
storing of the reservation information in the DB, the Scheduler informs the AM Liaison about the
new reservation in order to schedule a provisioning event before the reservation starting time.
Finally, the Broker informs the user about the result of his request.

2
R 58 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The following Table 13 provides an example of a request to reserve a node from 2013/1/8 19:00
till 2013/1/8 20:00

<?xml version="1.0"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/2"
xmlns:omf="http://schema.mytestbed.net/sfa/rspec/1" type="request"
xmlns:olx=" http://schema.nitlab.inf.uth.gr/sfa/rspec/1">
<olx:lease lease name="11" olx:valid from="2013-01-08T19:00:00Z"
olx:valid until="2013-01-08T20:00:002"/>
<node component id="urn:publicid:IDN+openlab+node+nodel"”
component name="nodel" olx:lease name="11">
</node>
</rspec>

Table 13: Node Reservation Request Example

The following is the confirmation that your lease is accepted and is assigned with a uuid for future
reference.

<?xml version="1.0"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/2"
xmlns:omf="http://schema.mytestbed.net/sfa/rspec/1"
type="advertisement" xmlns:olx="
http://schema.nitlab.inf.uth.gr/sfa/rspec/1">

<olx:lease lease uuid="550e8400-e29b-41d4-a716-446655440000"
olx:valid from="2013-01-08T19:00:002" olx:valid until="2013-01-
08T20:00:00Z"/>

<node component id="urn:publicid:IDN+openlab+node+nodel"”
component name="nodel" olx:lease uuid="550e8400-e29%0-41d4-a716-
446655440000" />

</rspec>

Table 14: Node Reservation Confirmation Example

AM Liaison

The AM Liaison is responsible for keeping in sync the scheduler database with all the available
resources from the AM(s) and serves all the resource allocation requests. Two types of
communication methods are defined:

1. Via the SFA APl in the case of SFA-enabled testbeds. RSpec PG v2 format is used in order to
communicate with the AM.

2. OMF messaging system which is based on the XMPP protocol in order to send “create”
messages to the corresponding AMs whenever a reservation is about to start.

Last but not least, the Liaison can send requests to an underlying Broker (hierarchical
architecture) using one of the available interfaces (XMPP or SFA).

2
R 59 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The schema of the database is being generated automatically by the usage of ORM (Object-

relational mapping). The main objects that constitute the core of the information model are the
following:

* OResource

* OProperty

* OAccount

* OComponent

®* QOlease

Figure 9 depicts the basic components of the information model:

3
@()uoup) contains »

contains »

©0Componen(\j;r provided_by » G:)OPro;ectL1 7\\; parent_project »
— ' _<,/
-\\

0,1 \ 1 *|
7
“.charged_to» /4 account lmemberb
e F ’
LN /. '
| \"l /"'l ‘~
‘ ,
| leased_by» OA t u
| 0y @ ccoun , © serv
I"v ./’/
\\ v//'
\ /
\ / 4 holds_lease
\ //
\ /1

\
@OLease

Figure 9: Components of Reservation Information Model

“OResource” is the general class for describing a resource along with the “OProperty” class. All
the resources inherit the “OResource” class like the “OLease” which is a resource with its own
properties. The “OAccount” and the “OComponent” also inherit the “OResource” class. More
specific the “OResource” class contains the following information:

* id (Serial)
* type (Class type e.g. OAccount, OlLease)
* uuid (UUID)

* name (String)
* urn (String)
* resource_type (String)

has n Properties (This way we declare that an object of the class “OResource” has
multiple objects of the class “OProperty”)

belongs to an OAccount (This way we describe the relationship between the
“OResource” class and the “OAccount” class.

2
R 60 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

“OProperty” class contains the following attributes:
* id (Serial)
* name (String)
¢ value (String)
* belongs to a OResource (This way we declare that an object of the class “OProperty”
belongs to an object of the class “OResource”)

“OComponent” class describes the resources that have a management interface. All the physical
resources are considered OComponents and whenever there is a new resource it should extend
this class. The attributes of the class are the following:

¢ domain (String)

¢ exclusive (Boolean)

* status (String)

* provides n times its self (This helps describing the virtualization of a resource. Even
when the resource is not virtualized, conceptually the experimenter is provided a clone
of the resource)

* has n OlLeases (This way we describe that a “OComponent” can have multiple
reservations “OlLease” objects.)

“OLease” is the class which describes the reservations with the following attributes:
¢ valid_from (DateTime)
* valid_until (DateTime)
* has n OComponents (This way we declare that an object “OLease” can have multiple
instances of the class “OComponent”)

Here is an example of adding a “Node” resource to the above information model. All you have to

do, is to extend the class “OComponent” and add your properties (“OProperty”):
class Node < OComponent
oproperty :hardware type, String, :required => false
oproperty :available, Boolean, :default => true
oproperty :interfaces, :interface, :functional => false
“:functional => false” declares that the property has an array of
values.

Hierarchical usage of the Broker

The NITOS broker can also be used in a hierarchical reservation system where a main Broker can
be contacted directly from a client and reserve resources that have been assigned to the main
Broker by another (slave) Broker.

In a scenario where the hierarchical architecture is being used (a main Broker and a slave Broker),
the messages are being forwarded from the main Broker to the slave Broker intact. If a user
requests an advertisement of the resources, then the main Broker is able to provide that without
contacting the slave Broker, because it has already all the available resources of the slave Broker

2
R 61 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

in its database (in particular the resources that the slave Broker provided for brokering to the
main Broker).

Upon receiving a valid request from the experimenter, the main Broker serves this request by
making an SFA call to the underlying Broker forwarding the user’s RSpec. The slave Broker is
configured to accept all requests from the master Broker if it includes resources that have been
allocated to the latter. In this way both Brokers maintain the same information in their databases
regarding the resources the user has requested. The manifests generated on this two level
reservation system are identical, therefore the master Broker returns the manifest created at its
level without the need to extract the manifest from the slave Broker.

In order to support hierarchical scheduling, the slave Broker(s) must accept all requests from the
“master” Broker. When a testbed owner decides to assign a subset of the testbed’s resources for
brokering to the “master” Broker, there is a need to populate the database of the “master”
Broker with this subset. The “master” should have the same information model with the “slave”
Broker (s). The population of the database is manual for the moment.

In Figure 10 a simple deployment of the Broker on a testbed which is SFA enabled is depicted

User of Testbed
SFA Client

Reguest RSpec + Lease Tags
(XMLRPC)

Communication (XMLRPC, XMPP RESTI)
AA

Schecduler

Roguest RSpec
Loase Tags AM Eaison
Goneric SFA wrapper for p SFA XMPP
Teatbed
Manifest
SFA AM
——
Rogisty G
Testbed-Driver
Tested SFA enabled Testbed +

1
|
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
(XMLRPC) 1
1
|
1
1
1
1
1
1
|
1
1
|
1
1
1
1
1
1

Broker

Figure 10: Broker inside an SFA-enabled testbed

Figure 11 illustrates the hierarchical use of the master Broker on this testbed.

4
e 62 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

User of Testbed
SFA Client

Request RSpec + Lease Tags | | Manifest
(XMLRPC)

Communication (XMLRPC, XMPP, RESTHul)
AR

———————————————

Testbed SFA enabled Testhed +

Figure 11: Hierarchical use of the Broker

Implementation Status

So far, the XML-RPC interface is implemented along with the AA component (currently under
testing). The RSpec parsing mechanism and the information model of the DB are fully functional.
The Scheduler has a basic functionality for reserving and releasing resources based on a calendar
service.

3.5.4 Required additional implementations

The Broker will have ready the following functionalities before the end of cycle 1, which will allow
for its initial deployment. Beyond the XML-RPC interface the following two interfaces XMPP and
REST will be finished so that OMF testbeds will be able to adopt the Broker without any further
effort as it will be provided out of the box.

2
."d. 63 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The extension of NITOS Scheduler as part of the Broker will be further enhanced with more
scheduling algorithms beyond the “First Come First Served” simple policy. Furthermore, anyone
will be able to introduce his own custom made conflict resolution algorithm for reservations.

Also, the implementation of the AM Liaison will provide the connection with the reserved
resources. AM Liaison is the component responsible to send any provisioning commands to the
resources or to their component managers. The broker’s interfaces will be consistent with the
XMPP OMF protocol and the SFA API.

A plugin for the portal also needs to be developed that acts as the front-end of the deployed
Fed4FIRE Future Reservation Broker. This plugin has to be able to indicate the availability of
resources over time, and has to allow experimenters to request the different types of reservations
that are supported by the Broker.

Finally, the implemented Future Reservation Broker will also be packaged in such a way that it can
easily be used by testbeds as their local reservation engine. This means that testbeds that do not
yet provide reservation support in their testbed management software will be able to easily
include this by installing this specific version of the Future Reservation Broker locally. This can be
of particular interest to testbeds which do not yet support reservations, but which also do not
want to outsource this task to the central Fed4FIRE Future Reservation Broker. In this specific
packaging of the Broker there will be the need to omit specific functionalities in order not to
conflict with the existing testbed management software. However, some more analysis and tests
should be performed in the context of this use case. Therefore it is considered to be too
preliminary to define the final specifications of this particular Broker package right now.

In summary the functionalities implemented by the end of cycle 1 are listed in Table 15:

Communication Interfaces XMPP
XML-RPC (SFA)
REST
Authentication and Mapping SFA credentials to native Broker’s permissions

Authorization

Scheduler Simple “First Come First Served” implementation for serving
reservation requests

AM Liaison XMPP interface for controlling OMF6 RCs
Database The basic information model described in section 3.4
Testbed-local flavour Testbeds will be able to use a specific flavour of the Broker as

a local reservation engine for their testbed.

Table 15: Resource reservation functionalities to be implemented for cycle 1

3.5.5 Specifications

e 64 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

1) Resource Description
An appropriate resource description format will be adopted, as dictated by Task 5.2, to facilitate
resource reservation for request types presented in section 3.5.1, for every testbed in the
federation. As an initial step, the XML-based resource specification language RSpec (Protogeni
v2) has been extended to support In advance reservations. Specifically the RSpec request schema
has been extended with the element “lease”; an example of a reservation as such can be seen
below:
<?xml version="1.0"7?>
<rspec xmlns="http://www.protogeni.net/resources/rspec/2"
xmlns:omf="http://schema.mytestbed.net/sfa/rspec/1" type="request"
xmlns:olx="http://schema.nitlab.inf.uth.gr/sfa/rspec/1">
<olx:lease lease name="11" olx:valid from="2013-01-08T19:00:00Z"
olx:valid until="2013-01-08T21:00:002"/>
<node component id="urn:publicid:IDN+openlab+node+nodel"”
component name="nodel"
olx:lease name="11">
</node>
</rspec>

The lease extension (in the form of .xsd) can be seen below:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:olx="
http://schema.nitlab.inf.uth.gr/sfa/rspec/1"
elementFormDefault="qualified"
targetNamespace="http://schema.nitlab.inf.uth.gr/sfa/rspec/1">
<xs:element name="lease">
<xs:complexType>
<xs:attribute name="lease name"/>
<xs:attribute name="lease uuid"/>
<xs:attribute name="valid from" use="required"/>
<xs:attribute name="valid until" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

2) Communication Interfaces
The SFA API [25] serves as the main APl for enabling federation among the heterogeneous
testbeds of Fed4FIRE. Furthermore it enables the hierarchical usage of the Broker. The Broker's
SFA APl is described hereafter.

API

* GetVersion
o Get static version and configuration information about this aggregate.
* ListResources
o Return a listing and description of available resources at this aggregate, or
resources allocated to a named slice at this aggregate.

2
R 65 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* CreateSliver
o Allocate resources as described in a request RSpec argument to a slice with the
named URN.
* DeleteSliver
o Delete any slivers at the given aggregate belonging to the given slice, by stopping
the resources if they are still running, and then de-allocating the resources
associated with the slice.
* SliverStatus
o Get the status of a sliver or slivers belonging to the given slice at the given
aggregate.
* RenewSliver
o Renews the resources in all slivers at this aggregate belonging to the given slice
until the given time, extending the lifetime of the slice.
¢ Shutdown
o Perform an emergency shut down of a sliver or slivers at this aggregate belonging
to the given slice.

The XMPP interface of the broker leverages the new OMF 6 messaging protocol [OMF6] which
consists of the following fundamental messages:

Create Message

Configure Message

Request Message

Release Message

Inform Message

3) Scheduler
The scheduler should cater for in advance reservations and simple “First Come First Served”

policy.

4) Database
The database of the master reservation broker should be synchronized with the slave broker.

5) AM Liaison
The master broker should be able to communicate via the appropriate protocol (XMPP, SFA)
with the underlying AMs.

3.5.6 Requirements for testbeds to interact with the Future Reservation broker
Testbeds aiming to support this functionality should comply with the following requirements:
e SFA-enabled with a scheduling solution, or
® SFA-enabled without a scheduling solution

% 66 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

For the first case, in order to comply with the hierarchical scheme, the testbed’s existing
scheduler needs to act as a slave broker for the Future Reservation Broker (master).
In the latter case, the testbed must export a pre-selected set of testbed resources to the Future
Reservation Broker, or deploy a local scheduling solution which can act as a slave broker for the
Future Reservation Broker. In the latter case a possibility is to apply the specific package of the
Future Reservation Broker that is intended to be used as a local reservation engine.

2
R 67 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.6 Exposing testbeds through SFA

3.6.1 General description

SFA defines the minimal set of interfaces and data types that permits a federation of slice-based
network components to inter operate. Component owners declare policies for resource allocation
and usage on the network under their control. Users allocate and access resources across the
entire network. In D2.1 (First Federation Architecture) it was decided that all Fed4FIRE testbeds
should be exposed through SFA. Main drivers behind this decision were the fact that the SFA
framework complies with all the imposed architectural requirements, and the fact that the
majority of the Fed4FIRE testbeds already had SFA support on their own roadmaps. Therefore, the
main idea is that we leave testbeds the freedom to choose how they want to implement this SFA
interface on top of their testbed management systems. However, for testbeds who have not yet
dug deeper into the SFA route, WP5 should provide generic tools that allow them to also adopt
SFA with limited efforts and in a relatively short amount of time. In this section we will define
which tools will be provided in that case.

Unlike the other sections, this does not present a tool that serves as a solution for a demanded
functionality. Here is presented a solution that each testbed must adopt in order to achieve the
FED4FIRE requirements. So, the particular technical specification must be decided by each
testbed.

3.6.2 Evaluation of possible approaches for implementation
As explained in the previous section, SFA provides a common interface to expose testbed
resources to the outside world. Several approaches can be adopted when implementing this
interface for a given testbed:
® SFA Aggregate Manager / SFA (GENI [61], PlanetLab [33], AMsoil [62], genericSFA [1])

— (i2CAT,INRA)

OMF Provisioning [63] - (NICTA)

Emulab [67]/ Virtual Wall [34] (iMinds)

Teagle Framework [68] / Orchestration Engine and PTM [69]

Table 16 and Table 17 summarize the main characteristics of these different solutions. The
evaluated criteria are the following:

Supported functions: Here the basic supported functionalities of the tool are listed.

® APIs: The APIs that the tool can communicate with.
® Extensibility: The analysis on how the tool can be extended.
® Orch. Functionality: Here it is described if the tool has orchestration functionality

and how it works if so.

® Resource description: A brief explanation of how the resources are described
through the tool.

® Arch. Specification: Corresponds to a short description of the current architecture of
the tool.

® Prog. Lang: The programming language in which the tool was built.

% 68 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

® Supported standards: The different standards, which the tool is capable to work
with.
Where is used: Where the tool is used, in which testbed or scenario.

Licenses: Under what license the tool is distributed.

Authorization and
authentication,
database, policies
(pyPElib), monitoring.

Full SFA API:
Authentication,
Authorization, Policies
(sfatables)

Resources CRUD
and other
functionalities
depending on the

Slice CRUD. Additional resource type
Components:
Scheduler, Ul,
Monitoring...

GENI/SFA, OCF GENI, SFA RESTful (REST-

based client), XML-
RPC (SFA Client),
XMPP (OMF-based
client)

Extensible through
plugins

Extensible through
drivers

Testbed-specific
provisioning code
can be added as
another service
module software.

No

No (maybe in
future versions)

GENI v1 for OpenFlow
OCF RSpec for VMs

OEDL

Skeleton code for AM
implementation.

Generic class for AM
Testbed specific code

Provisioning
implemented as

in a driver ‘services’ provided
by an OMF
Aggregate
Manager.
Python Python Ruby
GENI SFA v1 SFA v1, ProtoGeni v2 XML-RPC API

69 of 151

Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FED4FIRE

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

& v3

provided by the
OMF Provisioning
complies with the
SFA Client API
designed by GENI

OFELIA, FIBRE and

PlanetLab, Nitos,
EXPERIMENTA testbed | Federica, SenslLab
(Fit, F-Lab, OpenLab, Winlab,
Fibre, NOVI)

NITOS, INRIA,
PlanetLab, NICTA,

GitHub licensing
policy.

Not applicable. MIT license

Slice CRUD, Start/Stop,
information; Authorization and
access control

Table 16: Comparision of eligible tools for exposing testbeds through SFA — part 1

CRUD, Start/Stop, AA,
Persistence

GENI API, The GENI AM API is
intended to be compatible with the
SFA

SFA AM, Database REST + GUI,
PTM/ReqgProcessor REST + CLI +
GUI, RA REST + GUI, OMA
PolicyEngine

GENI defines the Aggregate
Manager API (SFA), but the AM can
drive all kinds of sources

Extensible through arbitrary
Resource Adapters (RAs)

depends on the AM, but e.g. the
AM of Emulab can orchestrate
guestions as '5 machines with this
topology'

Dedicated Orchestration Engine,
capable of resolving
dependencies and orchestrating
provisioning requests across
multiple testbeds and resources

GENI RSpec, OpenFlow RSpec

Resource Adapter Description
Language (RADL)

SFA arch Centralized database and
orchestration, distributed
PTMs/Ras (tree model)

Python, XMLRPC, flash, ... Python, Java, Groovy

70 of 151

Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Open Mobile Alliance (OMA)
Policy Evaluation, Enforcement,
and Management (PEEM)

GENI Panlab, Fraunhofer, TUB, UoP

GENI License policy. Apache 2.0

Table 17: Comparison of eligible tools for exposing testbeds through SFA — part 2

Armed with this knowledge, it is now possible to analyze which of the different technical solutions
would seem to be the most appropriate to cover the needs in Fed4FIRE of exposing all testbeds
through SFA.

The first option is to implement this from scratch. This is however not the optimal solution since
this requires large investments of manpower, while solutions already exist that could greatly
reduce the amount or needed work.

A second solution is to replace the existing testbed management system by one that already
exposes itself through SFA. One possibility could be to deploy Emulab [67] on the testbed. This
testbed management software framework is able to expose reserve and provision nodes, and has
a proven track record of providing all this functionality through SFA. This is a technically feasible
solution, but this feasibility depends on the specific characteristics of the testbed. If its current
testbed management system provides functionalities that are not provided by Emulab, then
additional implementations are needed to guarantee that there is no loss in functionality because
of the switch of management system. Therefore it is not considered to be a good generic all round
solution that can be provided by WP5 to any testbed that is new in the SFA world.

Another existing testbed management software framework that already supports SFA in
production is that of PlanetLab Europe [49]. However, this is again a testbed-specific
implementation, while the Generic SFA Wrapper [60] is in fact the generalized version of this
(originally) PlanetLab Europe implementation. Therefore it does not make sense to focus on the
specific PLE testbed management software in this context.

A third testbed management software framework that supports SFA is FITeagle [55]. However,
the SFA capabilities of this framework were in fact implemented using the Generic SFA Wrapper.
Therefore, just as for the PlanetLab Europe case described above, it again wouldn’t make sense to
focus on the testbed-specific form (in this case FITeagle) in this context.

The fourth testbed that can be considered is OMF [63], since it promises to provide SFA support
natively in one of its next releases. This solution is however characterized by the same
disadvantages as the Emulab solution: when replacing the existing testbed management software
with OMF, it cannot be excluded that quite some efforts will be needed in order to maintain the
already provided level of functionalities. So it is just not generic enough to be considered in this
context.

When focusing on generic solutions that can assist testbeds in their quick and seamless transition
to the SFA domain, two possibilities remain: the Generic SFA Wrapper, and the AMsoil solution.

2
R % 71 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

As mentioned before, the Generic SFA Wrapper can be introduced as the generalized
implementation of the SFA interface on top of PlanetLab Europe. This functionality has already
proven to be mature, and is now packaged in such a way that it can be used relatively easily to
wrap an existing testbed management framework with an SFA interface. What the wrapper
basically does is providing a finished implementation of the SFA side, and providing some empty
stubs at the testbed side. This is called the testbed driver. So testbeds just have to fill in these
stubs with appropriate calls to their existing testbed management software in order to implement
SFA support for their testbed. So this is a mature and generic solution to expose any testbed
through SFA with as little efforts as needed. The Generic SFA Wrapper is therefore considered as
one of the candidate tools that will be provided by WP5 to the testbeds.

The other solution, AMSail, is currently being developed in the context of the FP7 OFELIA project.
In this project, a complete redesign of the existing testbed management framework is currently
being implemented. Native SFA support is one of the key characteristics of the new design. It is
currently being developed in a two-phased approach: first a generic testbed management
framework including SFA support is being written, and then it is adapted and extended in order to
be capable of managing the Ofelia testbeds. The intention is that the generic framework already
provides the majority of the needed functionality, and that the step towards the actual testbed is
rather small. One could however do the same for other testbeds: replace the existing
management software by one based on AMSoil, where only limited adaptations have to be
implemented to support the specific testbed. So instead of wrapping your testbed, your are
replacing it by a generic, SFA supporting testbed management software framework. Although this
solution is not yet as mature as the Generic SFA Wrapper, it is considered to be a valuable
alternative approach that testbeds might warm up to. Therefore the AMSoil approach is the
second candidate that is considered to be suitable to be provided to the testbeds by WP5.

Table 18 summarizes the previous conclusions:

A lot of effort needed.
Other solutions exist that

Covers all requirements.

could lead to less needed
efforts.

Covers all requirements. Not generic: some cases
Mature implementation of | might require a lot of
the SFA interface. effort.

Covers all requirements. Not generic: some cases
Mature implementation of | might require a lot of
the SFA interface. effort.

b4
 a 72 of 151

FED4FIRE Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Generic SFA wrap is the
generic derivative of this
implementation, so no
incentive to rely on the
PLE specific
implementation.

Covers all requirements.
SFA part already provided.

Not generic: some cases
might require a lot of
efforts.

This is implemented using
the Generic SFA Wrapper,
so no incentive to rely on
the FITeagle specific
implementation.

Covers all requirements.

Not generic: some cases
might require a lot of
efforts.

Covers all requirements.
Mature implementation of
SFA.

Generic solution - minimal
efforts needed at testbed
side.

Additional management
layer instead of
introducing native SFA
support - additional
maintenance efforts
might be needed on the
long term.

Covers all requirements.
Native solution -> easier to
maintain.

Generic solution - minimal
efforts needed at testbed
side.

Not yet mature.

3.6.3 Description of selected tools

oo

FED4FIRE

Table 18: Evaluation of possible approaches for enabling SFA across Fed4FIRE’s testbeds

73 of 151
Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

After considering all the tools elaborated upon in the previous section, we consider two ways to
provide an SFA API to the testbeds. Both are based on tools that can be easily adopted in order to
make a testbed fully SFA compliant. The suggested tools are AMsoil [62] and SFAWrap [60]. Both
tools will be described in more detail in following sections. There are no clear advantages or
disadvantages between both tools, although they cover different needs, so the decision of which
one to choose is more based on the actual needs of each testbed.

As mentioned before, the Generic SFA Wrapper can be introduced as the generalized
implementation of the SFA interface on top of PlanetLab Europe. This functionality has already
proven to be mature, and is now packaged in such a way that it can be used relatively easily to
wrap an existing testbed management framework with an SFA interface. What the wrapper
basically does is providing a finished implementation of the SFA side, and providing some empty
stubs at the testbed side. This is called the testbed driver. So testbeds just have to fill in these
stubs with appropriate calls to their existing testbed management software in order to implement
SFA support for their testbed. So this is a mature and generic solution to expose any testbed
through SFA with as little efforts as needed. It is therefore considered as one of the candidate
tools that will be provided by WP5 to the testbeds. Since the Generic SFA Wrapper is already in
use at several testbeds, we consider the provisioning of the Generic SFA Wrapper from WP5 to
all interested testbeds feasible within cycle 1.

The other solution, AMSoil, is currently being developed in the context of the Ofelia project. In
this project, a complete redesign of the existing testbed management framework is currently
being implemented. Native SFA support is one of the key characteristics of the new design. It is
currently being developed in a two-phased approach: first a generic testbed management
framework including SFA support is being written, and then it is adapted/extended in order to be
capable of managing the Ofelia testbeds. The intention is that the generic framework already
provides the majority of the needed functionality, and that the step towards the actual testbed is
rather small. One could however do the same for other testbeds: replace the existing
management software by one based on AMSoil, where only limited adaptations have to be
implemented to support the specific testbed. So instead of wrapping your testbed, you are
replacing it by a generic, SFA supporting testbed management software framework. Although this
solution is not yet as mature as the Generic SFA Wrapper, it is considered to be a valuable
alternative approach that testbeds might warm up to. Therefore the AMSoil approach is the
second candidate that is still considered to be a suitable mechanism to be provided to the
testbeds by WP5. However, based on the current implementation status, AMSoil is not
considered to be ready for deployment on the testbeds during cycle 1.

Description of SFAWrap

Overview

SFAWrap is one of the most visible and renowned reference implementation of the Slice-based
Federation Architecture (SFA) [1], the emerging standard for networking experimental testbed
federation. Put on top of testbed’s control and management frameworks, SFAWrap provides

Rty 74 of 151 Il

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

those testbeds with SFA compatibility allowing them to expose their resources to the federation
community.

SFAWrap defines the minimal set of interfaces and data types that permit a federation of slice-
based network components to interoperate. Component owners declare policies for resource
allocation and usage on the network under their control. Users allocate and access resources
across the entire network.

Slices are the primary abstraction for accounting and accountability: resources are acquired and
consumed by slices, and external program behaviour is traceable to a slice. And, a slice is defined
by the set of resources spanning a set of network components, plus an associated set of users
that are allowed to access the resources for the purpose of running an experiment. By formalizing
the interface around the slice, resource owners and users are free to cooperate more easily.
Owners simplify the administrative overhead of making their systems easily accessible to more
users, and users gain access to interesting systems without the overhead of setup and
administration.

SFAWrap Components:
The following Figure 12 depicts the main components SFAWrap overall architecture.

\ W WRAP

SM
/sfaadmin\
R / \ AM
: Testbed X Driver :

P i

Testbed X
Users Resources g
Mgt - Mﬂ_t Scheduler «..

Figure 12: Overall architecture of SFAWrap (R: Registry, AM: Aggregate Manager, SM: Slice Manager)

Registry (R):

The Registry is an XMLRPC over HTTPS service that exports exactly the Registry API. The Registry is
responsible for maintaining and serving SFA records namely: Authorities, Users and Slices, and
also issues the related certificates and credentials.

The Registry can be deployed in a standalone mode in order to be used only to issue user and slice
credentials.

Aggregate Manager (AM):

The Aggregate Manager is an XMLRPC over HTTPS service that exports exactly the Aggregate
Manager API. The Aggregate Manager is responsible for performing all the slice instantiations and
also, allowing testbed aggregates to advertise their resources and attach those latter to slices.

Slice Manager (SM):

2
R 75 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

The Slice Manager is an XMLRPC over HTTPS service that exports also the Aggregate Manager API,
but that has no real testbed attached directly. Instead, it acts as a proxy that is aware of a pre-

configured set of other services, either Aggregate Manager or in turn Slice Manager.
="
4/'/ \
B @ —"

- N7
m

Legend
& AM AP link
@ GO e

Figure 13: The Slice Manager and its function in the federation

This means that a given client would essentially need (to be configured with) only one single entry
in the federation, and then discovers a portion of the overall picture that depends on that entry
point. As depicted in Figure 13, the Slice Manager will be in our opinion a very convenient option
to master complexity over time and scale. It is also a very good illustration of the decentralized

nature of the SFA infrastructure.

Testbed Driver:

The testbed driver is the part of SFAWrap that deals with the testbed specificities and talks to the
testbed management framework. Depending on how users and resources are managed within the
testbed itself, the driver will need to translate the Aggregate Manager API and the Registry API
methods in order to match respectively with the testbed resources allocation/provisioning and

the testbed users management and access policies.

Below is the UML diagram of the ‘driver’ class:

DRIVER

+ hrn: String

+augment_records_with_testbed_info()
+ register()

+ remove()

+ update()

+ update_relation()

2
R 76 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

+ testbed _name()

+ aggregate_version()
+ list_slices()

+ list_resources()

+ sliver_status()

+ create_sliver()

+ delete_sliver()

+ renew_sliver()

More developer oriented details are depicted below in the abstract ‘driver’ class implementation :

DRIVER CLASS

class Driver:

def init (self, config):
this is the hrn attached to the running server
self.hrn = config.SFA INTERFACE HRN

igsaassdsssadadiisaaasdsiaaadaniaaadnddi
#H#HH#FEESE registry oriented ####H##HS
igsaassssssaasdiisaaasdiiaaadaniaaaanddi

the following is used in Resolve (registry) when run in full mode
after looking up the sfa db, we wish to be able to display
testbed-specific info as well

def augment records with testbed info (self, sfa records):
return sfa records

incoming record, as provided by the client to the Register API
call

expected retcod 'pointer'

'pointer' is typically an int db id, that makes sense in the
testbed

environment

-1 if this feature is not relevant

def register (self, sfa record, hrn, pub_ key)
return -1

incoming record is the existing sfa record
expected retcod boolean, error message logged if result is False

def remove (self, sfa record):
return True

incoming are the sfa record:
(*) old sfa record is what we have in the db for that hrn

2
R 77 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

(*) new sfa record is what was passed in the Update call

expected retcod boolean, error message logged if result is False

#

NOTE 1. about keys

user may have several ssh keys on the testbed but we need to pick

one to generate its cert, the manager code actually picks one
(the

first one), and it seems safer to pass it along rather than

depending on the driver code to do the same

#

NOTE 2. about keys

when changing the ssh key through this method the gid gets
changed

too

def update (self, old sfa record, new sfa record, hrn, new key):
return True

callack for register/update

this allows to capture changes in the relations between objects
the ids below are the ones found in the 'pointer' field

this can get typically called with

'slice' 'user' 'researcher' slice id user ids

e

'authority' 'user' 'pi' authority id user ids

def update relation (self, subject type, target type

,relation name,

subject id, link ids):
pass

FHEHH A H A A
44444 aggregate oriented #####HEH
FHEHH A
a name for identifying the kind of testbed

def testbed name (self): return "undefined"

a dictionary that gets appended to the generic answer to

GetVersion

'geni request rspec versions' and 'geni ad rspec versions' are
mandatory

def aggregate version (self): return {}
the answer to ListSlices, a list of slice urns

def list slices (self, creds, options):
return []

answer to ListResources

2
%o

FED4FIRE

78 of 151

WORK

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013 SEVENTHERAMEY

E

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

first 2 args are None in case of resource discovery
expected : rspec (xml string)

def list resources (self, slice urn, slice hrn, creds, options):
return "dummy Driver.list resources needs to be redefined"

the answer to SliverStatus on a given slice

def sliver status (self, slice urn, slice hrn):
return {}

the answer to CreateSliver on a given slice
expected to return a valid rspec
identical to ListResources after the slice was modified

def create_sliver (self, slice urn, slice hrn, creds, rspec_ string,
users, options):
return "dummy Driver.create sliver needs to be redefined"

the answer to DeleteSliver on a given slice

def delete_ sliver (self, slice urn, slice hrn, creds, options):
return "dummy Driver.delete sliver needs to be redefined"

the answer to RenewSliver
expected to return a boolean to indicate success

def renew_sliver (self, slice urn, slice hrn, creds,
expiration time, options):
return False

SFAADMIN

“sfaadmin” is a command line tool that allows administrator and operators to perform Slice or
Registry operations (via the Aggregate Manager APl or the Registry API) within an admin context
without the use of credentials.

SFI

“sfi” is a user-oriented command line tool that manages a set of credentials on behalf of the user,
and uses them when performing Slice or Registry operations (via the Aggregate Manager API or
the Registry API).

RSpecs

Testbed resources within SFAWrap, which are heterogeneous in the context of federation, are
described using RSpec (Resource Specification). The RSpec exposes the resources in terms of :
Type, Capabilities, Provisioning Policy and Access Policy. It also depicts the testbed in terms of
time-based resource reservation in order to advertise about the availability of those resources for

a given timeslot.

g
e 79 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Currently, SFAWrap supports three versions of RSpecs, namely:
* PlanetlLab RSpecs in three different implementation: SFAvl, PROTOGENIv2 and GENIv3.
* NITOS RSpecs.
* SenslLab RSpecs.

SFAWrap Implementation

Initially SFAWrap code was targeting PlanetlLab testbeds only. With this in mind, the whole code
was redesigned to reach the design that is depicted in Figure 14. On this picture, the dark pink
boxes represent the core of the generic wrapper; the light gray boxes represent the pieces of
code that implement the 'plugin' system; and the dark blue boxes represent the testbed-specific
code that needs to be written in order to provide an implementation.

=

trust storage managers

: ‘rspets
~ SSL & iregistry APIs . version }
erypro DB §1REG API | AM API mgt |
oot data % = o N
i model virtual driver interface xsd specs

e Lo

testbed-

' —

- 2

D o = . X

;g 28 dependént driver
8 g | =8 i

Figure 14: SFAWrap design

In more details, and as depicted in Figure 14 the various parts of the generic code [46] are:

trust: This package implements all the gory details related to SSL certificates, GIDs, and hierarchy
management in terms of the chain of trust; this of course could also be used as a standalone
library if the need arises.

storage: This package implements the data model underlying all the entities in the registry
system, and namely Authorities, Users and Slices. As an implementation note, let us stress that we
have taken advantage of the sqlalchemy library [48], which allowed us to very easily add
relationships into the model, that formerly only involved a flat table of records. As a matter of
fact, the registry needs to know at least which users belong in which authority, and which of them

are allowed to act as this authority (in other words, have Pl authorization), as well as which users
are in a given slice.

2
R 80 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

managers: This package provides a reference implementation of the 3 available services, namely
the Aggregate Manager, Registry and Slice Manager. Although the last one does in essence not
exhibit any relationship to a given testbed (being exposed only to SFA entities), the first two do
strongly depend on the testbed being wrapped. This is where the notion of a testbed driver
comes in. The testbed driver is expected to fulfil the already defined virtual interface. A
configuration mechanism then allows selecting the driver to use at runtime.

rspecs: This package provides an abstraction in order to manipulate resource descriptions in a
way that does not depend too much on the version of the RSpec formalism being used (as for
legacy, clients have the option to choose among several formalisms). There is also a provision for
testbed operators to provide their specific RSpec formalism(s) in the XSD format.

More hands-on information about how to use the system from a programmer’s point of view can
be found at [47].

SFAWrap Flavours
Currently, SFAWrap is used in six different flavours, in other words, SFAWrap is running on top of
six heterogeneous testbeds and providing them with a common control plane interface.

Those six flavours are:
* PlanetlLab Europe [49] (UPMC/INRIA - France)
* NITOS [51] (CERTH - Greece)
* Senslab [52] (INRIA - France)
* Federica [53] (i2CAT - Spain)
* FlTeagle [55] (TUB - Germany)
* OSIMS [56] (University Of Patras - Greece)

3.6.4 Specifications for SFAWrap

SFAWrap API's:
SFAWrap implements the Aggregate Manager APl and the Registry API.

Aggregate Manager API

The Aggregate Manager APl focuses on defining the primitives that an Aggregate Manager (AM)
which in the SFA jargon refers to a testbed management infrastructure - has to provide to
advertise resources and to allocate resources to Slices in order to be SFA-compliant.

The Aggregate Manager API is the control plane interface by which experimenters discover,
reserve and control resources at resource providers. It does not include resource specific
interactions, application level interactions, or monitoring and management functions.

Currently, SFAWrap fully supports AM APl v2 and there is an ongoing work to support AM API v3
[58].

e 81 of 151 [
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

AM API v2 Methods:

Syntax:
struct GetVersion([optional: struct options])

Functionality:
Get static version and configuration information about this aggregate. Return includes:
The version of the GENI Aggregate Manager APl supported by this aggregate manager
instance.
URLs for other versions of this APl supported by this aggregate
The RSpec formats accepted at this aggregate
Other information about the configuration of this aggregate.

Parameters:
options: Optional

Returns:
a struct where the value member is Version Information

Syntax:

struct ListResources(string credentials[], struct options)

Functionality:

Returns a listing and description of available resources at this aggregate, or resources allocated
to a named slice at this aggregate. The resource listing and description provides sufficient
information for clients to select among available resources, or to use reserved resources. These
listings are known as RSpecs.

Parameters:
credentials[]: An array of caller credentials

options: Indicate the set of resources that the caller is interested in, or the format of the result

Returns:
a struct where the value member is an Advertisement RSpec

A 82 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Syntax:

struct CreateSliver(string slice_urn,
string credentials(],
string rspec,
struct users|],
struct options)

Functionality:

Allocates resources as described in a request RSpec argument to a slice with the named URN.
This operation is expected to start the allocated resources asynchronously after the operation
has successfully completed. Callers can check on the status of the resources using SliverStatus.
Resources will be reserved until a particular time, set by the aggregate according to policy. That
expiration time will be no later than the expiration time of the provided slice credential. This
method returns a listing and description of the resources reserved for the slice by this
operation, in the form of a manifest RSpec.

Parameters:
* slice_urn: The URN of the slice to which the resources specified in rspec will be
allocated
* credentials: An array of caller credentials
* rspec: Request RSpec to allocate
* users: List of users

* options: Optional

Returns:
a struct where the value member is a Manifest RSpec

DeleteSliver

Syntax:

struct DeleteSliver(string slice_urn,
string credentials[],
struct options)

Functionality:

Deletes any slivers at the given aggregate belonging to the given slice, by stopping the
resources if they are still running, and then deallocating the resources associated with the slice.
When complete, this slice will own no resources on this aggregate - any such resources will
have been stopped.

Parameters:

2
e 83 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

slice_urn: The URN of slice to deallocate from
credentials: List of credentials
options: Optional

Returns:
a struct where the value member is a Boolean

SliverStatus

Syntax:
struct SliverStatus(string slice_urn, string credentials[], struct options)

Functionality:

Get the status of a sliver or slivers belonging to the given slice at the given aggregate. Status
may include other dynamic reservation or instantiation information as required by the resource
type and aggregate. This method is used to provide updates on the state of the resources after
the completion of CreateSliver, which began to asynchronously provision and start the

resources.

Parameters:

slice_urn: The URN of slice
credentials: List of credentials
options: Optional

Returns:
a struct where the value member contains the status of the overall reservation

RenewsSliver

Syntax:
struct RenewsSliver(string slice_urn, string credentials[], string expiration_time, struct options)

Functionality:

Renews the resources in all slivers at this aggregate belonging to the given slice until the given
time, extending the lifetime of the slice. Aggregates may limit how long reservations may be
extended. Initial sliver expiration is set by aggregate policy, no later than the slice credential
expiration time.

Parameters:

* slice_urn: The URN of slice

4
e 84 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* credentials: List of credentials
* expiration_time: The date-time when the reservation should be extended until.

* options: Optional

Returns:
a struct where the value member is a Boolean

Registry API:

It might be helpful to stress that only the AM APl is currently defined as part of GENI. In fact the
original SFA document [1] also defined a PKI-like infrastructure for managing identities. Although
the initial naming referred to this as Management Authorities, the name that is most often used
these days to refer to this is the notion of Registry. A Registry is in essence a trusted body that
issues certificates (or GIDs) to users or sub-authorities, and Registries are organized in a tree that
implements the underlying hierarchical naming space, and play a fundamental role in the web of
trust among the federation. So it is of course mandatory to run at least one such Registry in a
production federation.

Further Specifications of SFAWraps SFA Registry Methods can be found in Appendix B: Further
Specifications for SFAWrap Registry APl Methods.

Description of AMSoil

Introduction
AMSoil is one of the available tools that can be used by testbeds in order to implement an SFA
API.

In the OFELIA project [59] it was agreed to build the OpenFlow islands control framework by
following the SFA [1] architecture. During the OFELIA Control Framework (OCF) development, the
need to create a new and faster way to adapt the new resources to the OCF, and consequently to
SFA was identified. In order to solve this they developed an AM base class named AMsoil [62].

AMsoil is a framework for building aggregate managers; the aim is to support AM developers in
creating software for managing resources. AMs are the work-horse between the client (e.g. gcf's
OMNI [29]) and the actual resource.

AMsoil contains a set of tools which AM developers need on a regular basis including:
Configuration management
APl management (e.g. via XML-RPC)
Context storage
Policy management

% 85 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Asynchronous task management
Internal notification system

It provides communication interfaces, management of bookings, configuration facilities, logging
facilities and an authentication and authorization mechanism. The main goal is to decouple the
implementation efforts on APl changes, new resource types and base class improvements.

AMsoil encapsulates the core functionality of an Aggregate Manager (AM) and provides a
resource-independent extension mechanism to implement AM. Due this decouple, it could be
logically divided in two parts: a common part and a resource-specific part.

The base class shall serve as base for all AM implementation and it is structured to:

* Be a starting point for quickly developing an AM.

* Handle all operations which are resource independent.

* Evolve the common functionality without having to change the resource-specific
management.

* Support different interfaces.

* Support different Authentication and Authorization-schemes.

* Be pluggable for other plug-ins such as policy management, logging, etc.

* Extendable for other functionalities without affecting the commonly developed AMsoil
code.

AMsoil design:
As previously stated, there are common parts and resource specific parts within the AMsaoil.
Figure 15 shows how the AMsoil has been designed in order to obtain enough disengagement

between these parts:

2
R 86 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Communication API

resource-specific logic

data

GENI/SFA OFELIA e
over XML-RPC over REST over ???
Allocation base logic Common logic
auth?
GENI certificates policy engine
database
basic data resource specific monitoring

gofer/Helper

central logging

configuration

South-bound communication (other AMs/agents)

Figure 15: AMsoil Architecture

Figure 15 shows that north and south boundaries are the communication layers. The north one

allows users (or other AMsoils) to communicate with AMsoil and its aim is to support different

kinds of APIs. The same could be said about the south boundaries. Regarding the common part,

we can see in the architecture design that it supports more features than only some resource

creation. The objective is to have management of reservations, configuration facilities, logging

facilities and an authentication and authorization mechanism. These features are plugin-based. A

plugin provides a feature to the AM. If a feature is already provided by the testbed, then the

plugin is not needed.

For further understanding, we will explain the typical workflow for a resource creation request:

1 An RPC (Remote Procedure Call) receives the request and processes the input and looks up

Adapters in the AdapterRegistry.

2 The AdapterRegistry returns a list of Adapters which support certain contracts regarding
RPC calls.
3 The Adapter then translates between the resource management and the RPC calls (e.g.

translating to XML). The AdapterRegistry is the only instance which knows about the

concrete shape of a Resource and the formats a RPC requires.

2
%o

87 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I
SEVENT

H FRAM!
0G|

PROGRAM|

EWORK
ME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

4 When adapting the RPC request, the Adapter asks the ResourceManagerRegistry for
ResourceManagers which support the resource type which is asked for.

5 The ResourceManager is a "database" for Resources so you can call, find and reserve on it.

6 Finally, the Resource is concerned about the concrete handling of resources (e.g. starting,
keeping allocation times).

This is depicted in Figure 16:

adapter lookups
(RPC specific)
i

RPC specific request

resource manager lookups

(type specific)
Adapter S ResourceManagerRegistry

resource lookups/reservation
(in the database)

creation/deletion
Resource Resourci ager

operational
actions

Figure 16: Typical AMsoil workflow for resource provisioning

The idea behind this architecture is that the RPC shall only deal with communication layer matters
and the ResourceManager should offer a decent APl which ensembles requirements of this
concrete resource type. The actual Resource then should know how the concrete resource needs
to be handled. And finally to have ResourceManagers and RPCs work together we need a
translator: the Adapter.

Furthermore, the component of this architecture will be explained grouped in common and
specific part.

The common part
It manages tasks which are needed by each AM, such as identification, authentication and
authorization, interface compliance, communication with resources and its managers.

4
i, 88 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

e The Adapter then translates between the resource management and the (e.g.
translating to XML). The AdapterRegistry is the only instance aware of the concrete
shape of a Resource and the formats a RPC wants.

e When adapting the RPC request, the Adapter asks the ResourceManagerRegistry for
ResourceManagers which support the resource type it is asked for.

e The ResourceManager is a "database" for Resources, so you can call, find, and reserve
on it.

The resource-specific part

It implements the actual handling of each resource, e.g. talking to an agent and allocating
resources. AMsoil is used as a container which incorporates the VM Manager functionality as a
resource-specific part. This way, a more standard OCF VM Manager will be achieved.

® An RPC receives the request and processes the input and looks up Adapters in the
AdapterRegistry.

e The AdapterRegistry can return a list of Adapters which support certain contracts
regarding RPC calls.

e Finally, the Resource is concerned about the concrete handling of resources (e.g.
starting, keeping allocation times).

Additional information is provided in [62].

Development status

AMSoil is currently under development, and right now only the core functionalities are
implemented, also because of the structure based on plugins the API of the AMsoil tool is always
dependent on which tool is used or implemented.

Currently AMsoil supports GENI AM API, version 2. By separating the actual resource
management logic and the APIl, AMsoil decouples these two interfaces. This makes it easy to
implement additional APIs later on and enforces re-usable code for resource management and
APl handling

3.6.5 Specifications for AMSoil

AMSoil Specifications and Examples can be found in Appendix C: Further AMSoil specifications
and examples

3.6.6 Required additional implementations

2
R 89 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Certificates

provide the federation with
a central server containing
all the trusted roots
certificates that SFAWrap
will need to be able to
import.

Functionality Cycle 1 Further Cycles
Support of GENI AM APl v3 e Add the support for the

GENI Aggregate Manager

APl v3.
Import Trusted Roots e WP7:"Trustworthiness” will

3.6.7 Requirements for testbeds to adopt SFAWrap

Testbeds aiming to be wrapped with SFAWrap in order to be SFA compliant need to:

e Implement their testbed driver for SFAWrap by overriding the driver class of SFAWrap.

® In case the testbed manages a user base, the list of users with their respective SSH Public

Keys and associated slices, will need to be imported to the SFAWrap Registry.

® In case the testbed is exposing specific resources that are not supported by the current

SFAWTrap RSpecs, the testbed will need to implement its own version of RSpecs.

3.6.8 Requirements for testbeds to adopt AMsoil
There are no specific requirements for testbeds aiming to adopt AMsoil in order to be exposed

through SFA. Besides having an Aggregate Manager-like structure or similar in which each

component can be encapsulated inside the AMsoil base-class, they should be testbeds which also

require the other functionalities provided by AMsoil. If the testbed already have those

functionalities, they can be replaced by those provided by AMsoil, that is, replacing the testbed’s

current management software. Or, in an easier option, adopt SFAWrap. l.e. the component for

managing a kind of resource is fit into the base-class getting their calls translated to SFA and also

gaining the other functionalities provided by AMsoil.

As for the technical requirements, they can be summarized as:

e Have a Python v.2.7 or higher version installed

e Install the plugin dependencies defined in the repository webpage [3]

e Follow the instructions described in the previous section or in the code repository.

4
e

FED4FIRE

90 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK

PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.7 Experiment control

3.7.1 General description

In the context of experiment control in Fed4FIRE, two main aspects can be identified. The first one
is the need for a federated resource control layer. The second one is the need for an experiment
controller which makes use of this control layer to actually control the experiment. Both aspects
are introduced in this section in more detail.

3.7.1.1 Federated resource control layer

A desired outcome of Fed4FIRE is to enable experimenters to easily access and control resources
offered by a large range of facilities using a single experiment control tool. However, facilities
have different management software, and provide different interfaces and ways of accessing and
controlling resources. In order to make it possible for a single experiment control tool to control
resources on facilities using different management software, some form of resource control
federation is needed across the facilities. This is to say that, for it to be possible for a number of
experiment control tools to operate on a large number of facilities at a reasonable cost, without
having to implement specific code to interact with each different facility, a common interface or
protocol to interact with resources must exist in all facilities.

Before we can start defining and implementing higher level features for experiment control, and
test them over a large range of facilities, this federated resource control layer must be defined,
since it provides the base building block for experiment control federation.

There are many ways in which such resource control federation can be achieved; a simplistic one
would be to impose on testbed owners to use the same management software for all testbeds.
This is however not an option since a significant effort has been invested in developing such
software and is it not feasible nor desirable to produce a management software that would satisfy
the requirements of all facilities within the duration and budget of the project.

A better alternative is to support a common resource control interface in all facilities which can
co-exist with existing management software. This alternative is in line with the choice of a
heterogeneous federation architecture taken in D2.1, where it says “Heterogeneous federation:

in this architecture, each testbed keeps its own management software, but interfaces on top of
the testbed software are specified, standardized and made interoperable to a federation.”

A standardized resource control protocol will permit to control resources provided by federated
facilities using different management software in a uniform way.

The novel federated resource control protocol (FRCP) is such a protocol. It consists of a message
being sent by a requester to a component (or resource). The component may accept the message
and perform the requested associated actions. For the message exchange with the resources
(physical or application resources), the necessary resource controller (RC) implementation,
supporting the set of defined messages, should be running in the different resources of the
facility. However, for cycle 1 there is a lot of work already done by NICTA, defining the messages
characteristics for the FRCP, and several resource controllers suitable for a wide range of testbed,
in the context of OMF 6 development.

2
e 91 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

During the first cycle, taking into account that defining the protocol specification can take several
years, as it was the case for SFA, our efforts will be addressed in analysing and testing the NICTA
implementation of the FRCP. But at the same time, different partners in this project such as INRIA
and TUB, already started the discussions that will lead to standardization. The current description
of the protocol can be found in the appendix.

Existing testbed management software should implement an interface compatible with the
federated resource control protocol. A reference implementation of such interface will be
provided in this document, based on the previous experience in supporting the RC for virtual
machines in PlanetLab testbeds.

Testbed owners can opt to adopt the reference interface, or alternatively to implement a new
one if this doesn't suit the needs of their facility. However it is not expected that all available
resources on all testbeds will be controlled from a single experiment control engine at the end of
cycle 1.

Experiment controller engines compatible with FRCP will be able to access and control resources
provided by federated facilities out of the box. The following Figure 17 shows FRCP in the context
of WP5 components.

7S

D

ﬁesource Discovery Experiment Orchestration and Control \
and Provisioning
B

Portal Experiment Controllers

(NEPI | (OMFEC)
_

Discovery and

frexisionng Resource Control I

[Federated Resource Control Protocol J

FRCP
4
Testbed Management R
[MyPLc j [Teagle J [OMF j [otherj
. J
@ Testbeds)
PlanetLab PanLab Nitos/Nicta ~ other

\ SIP SPF 4P 'ff)/

Figure 17: FRCP in the context of Experiment Lifecycle Components

Some main considerations and requirements for the FRCP implementation identified in WP5 are
the following:
* Testbeds should not be required to change their management software and extra software
should be kept to a minimum

* |t should be possible to control any type of resources

% 92 of 151 A
SEVENT WORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* The current FRCP defines a mechanism for signing each message to securely bind the
message to a 'sender'. While it is outside the scope of the FRCP specification, the
recommended 'best practice' is to use PKI public/private key encryption with X509
credentials. Further details of FRCP authentication and authorization have to be worked out
in collaboration with WP7.

* Centralized infrastructure should be kept to a minimum

* Each facility should remain to be independent and not depend on any new infrastructure

* FRCP is not management software, it is not supposed to re-implement management
software functionalities, only provide an interface to control resources

* FRCP implementation should be kept as modular as possible, so any modules can be
adapted independently to the requirements of the facility

3.7.1.2 Experiment control engine

The experiment control engine or experiment controller (EC) is a user tool where the user can
describe experiments, and the EC is responsible for the experiment orchestration. The EC can
benefit from existing tools to solve different stages from the experiment life cycle, for example in
can benefit from a SFA frontend to discover and provision resources from a testbed facility. It can
also query a central measurement repository to retrieve results from the experiment. The idea of
the EC is not to implement every step necessary to deploy an experiment, but to support the
required framework.

To be able to control resources in a uniform way, any candidate experiment control engine must
support the chosen FRCP. Additionally, the following list of features should be taken into account:

1) Description language. The EC must provide an experiment description language which
allows running experiments programmatically through scripts. The ability to alternatively
describe experiments graphically is also desirable.

2) Authentication, authorization, access policies. This feature depends on WP7. Long
running experiments should be able to be controlled by more than one person/agent.
Each FRCP message is associated with a single entity (the one signing the message), but
it’s up to the policy of the receiver to decide to act or not.

3) Resource description and discovery. This feature depends on T5.2. Resource description,
which should initially be done using RSpecs and discovery through SFA or a SFA proxy such
as MysSlice.

4) Resource reservation. This feature depends on T5.3. Resource reservation can be
achieved through SFA, since SFA is able to handle both, shared and exclusive resources.
SFA through the control and management software from the testbed will interact with the
corresponding scheduler.

5) Resource access. This feature refers to, once the resource is provisioned by SFA, the
mechanism to provide the experiment controller with the information needed to access
the resource (i.e. to which service to talk to, to control the resource)

2
e 93 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

6) Resource bootstrapping (e.g. copy initial image on node). Further discussions are needed
in order to be able to define if this feature will need to be performed by the experiment
controller or is the testbed and the provisioning system that will take care of it.

7) Time base and state based task execution. This feature will be clearer once native FRCP
task scheduling capabilities are defined.

8) Measurements. Interfaces and mechanisms in which monitoring data will be available for
the experiment controller are being defined in WP6. Hence this feature depends on WP6.

The experiment controller during the first cycle will focus on addressing items 1 and 7. This means
that, to execute tasks defined by the user and to run applications, we will assume that at the
moment that the experiment controllers comes into play, that all the necessary previous steps of
the experiment lifecycle have already been executed using other functional elements of the
Fed4FIRE architecture. In other words, from the experiment controller viewpoint it is expected in
the first cycle that resources will be already provisioned and ready to be accessed and controlled
at the moment that the experiment controller is activated.

In the context of the next cycles, it is important to mention that (as set out in item 6) there is a
diffuse boundary defining who is in charge of setting up resources for the experiment. The FRCP
could be in charge of resources related to services and applications, but it seems more logical that
the testbed facilities as part of the provisioning process, involving their control and management
software, install the necessary RC, and guaranty the access once the resource must be
provisioned, to be able to accede and control them. This needs further discussion and
clarification.

3.7.2 Evaluation of possible approaches for implementation
As introduced in the previous section, the proposed architecture for experiment control
federation has two main components:

1) the federated resource control protocol (FRCP)

2) the experiment control engine (or experiment controller)

This section will evaluate the different possible implementation approaches for both of them.

Evaluation of the Federated Resource Control Protocol (FRCP)
For the federated resource control protocol five approaches have been analyzed
a) to adopt the FRCP protocol defined in the Architectural Foundation For Federated
Experimental Facilities (AFFEF) proposed by NICTA [86],
b) to adopt FITeagle T1 interface [87],
c) toadopt ORCA [89],
d) to adopt BonFire architecture [88],
e) to create a new solution from scratch.

Approach a) is based on the adoption of AFFEF, and the FRCP protocol that is part of it. This FRCP
protocol may be used by any software components for controlling and orchestrating distributed

% 94 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

resources, such as testbed devices, sensor nodes or measurement software. This protocol is
currently used by OMF6 entities, and may be implemented by any other software project to
interact with other FRCP-enabled components. The basic protocol consists of a message being
sent by a requester to a component (or resource). The component may accept the message and
perform the requested associated actions. This may lead to further messages being sent to an
observer. This separate observer is introduced to allow for different messaging frameworks. The
protocol consists of five messages: inform, configure, request, create, and release. The FRCP
messages can be described using either an XML or JSON format. The main advantage of this
approach is that NICTA is already working to adapt the OMF testbed management and control
framework to support AFFEF (and hence the corresponding FRCP layer) in OMF version 6. OMF is
already in use by several testbeds participating in FED4FIRE (e.g. NORBIT [39], NITOS [51], w-ilab.t
[36], NETMODE [38]) and has shown to be interoperable with other testbed management
software (e.g. MyPLC [50] used in PlanteLab Europe [49]). Furthermore, the AFFEF proposal
satisfies cycle 1 requirements for experiment control.

Approach b) is based on the FITeagle T1 interface. FITeagle [6] is the central coordination instance
that holds together all PanlLab test labs providing maximum range of testing and prototyping
possibilities. Through FITeagle [6], it is possible to browse resources provided by Panlab Partner
labs, configure, deploy, and register new resources to be provided by the federation.

FITeagle offers the Virtual Customer Testbed (VCT) Tool [87] and a Portal for user interface, it
incorporates a repository implementation, allows search and configuration of testbed
components, allows the remote provisioning of testbed resources and scheduling for booking
resources. The PanlLab testbed resources can be physical machines, virtual machines, different
types of software and devices.

The architecture consists in different components such as the Domain Managers, for controlling
resources inside a domain, the Resource Adaptors used as devices drivers to translate federation
level management commands to resource specific communication (e.g. SNMP, CLI, proprietary)
and the T1 Teagle interface which instructs domain managers via a common control framework,
and user interfaces for infrastructure design, configuration, and setup.

ORCA [89] lies at the base of approach c). ORCA is a software framework and open-source
platform for managing a programmatically controllable shared substrate, which may contain any
combination of servers, storage, networks, or other components. This class of systems is often
called cloud computing or utility computing.

The ORCA software is deployed as a control framework for a prototype GENI facility. GENI can be
seen as an ambitious futuristic vision of cloud networks as a platform for research in network
science and engineering.

An ORCA deployment is a dynamic collection of interacting control servers (actors) that work
together to provision and configure resources for each guest according to the policies of the
participants. The actors represent various stakeholders in the shared infrastructure: substrate
providers, resource consumers (e.g., GENI experimenters), and brokering intermediaries that
coordinate and federate substrate providers and offer their resources to a set of consumers.

% 95 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

ORCA is based on the foundational abstraction of resource leasing. A lease is a contract involving
a resource consumer, a resource provider, and one more brokering intermediaries. Each actor
may manage large numbers of independent leases involving different participants.

Approach d) adopts the BonFIRE architecture [88]. BonFIRE is an EU project which is designing,
building and operating a multi-site cloud-based facility on top of six infrastructure testbeds
operated by six project partners. The infrastructure sites offer heterogeneous Cloud resources,
including compute, storage and network.

The BonFIRE architecture is designed to support research on applications, services and systems
targeting in particular, but not exclusively, the Internet of Services (loS) community. It has key
functionalities such as monitoring at infrastructure and virtual machine level, experiment
management with a single declarative experiment descriptor, elasticity, and resource
management for deployment of application software over a variety of differently configured
resources (compute, storage, and network).

BonFIRE is geared towards experimentation and research into Cloud/loS, and offers the facilities
to easily create, manage and monitor experiments, whilst giving the experimenters more
information and control of Cloud resources than what is offered by other public Cloud providers.
Interactions with BonFIRE are done via a RESTful interface based on the Open Cloud Computing
Interface (OCCI) [90], referred to as the BonFIRE API. Each of the infrastructure sites in BonFIRE
are accessed through this API, which makes it very easy to conduct multi-site, geographically
distributed, experiments. Moreover, all resources on all infrastructure sites are accessed with a
single BonFIRE sign-on that you set up when you register an account.

Finally, approach e) assumes that the federated resource control protocol adopted by Fed4FIRE is
a clean slate design, where the entire protocol is designed and implemented from scratch during
the course of the project.

These five approaches have been carefully compared with each other. This analysis is presented in
Table 19. The outcome of this comparison is that in Fed4FIRE, the FRCP protocol that is part of
AFFEF, and hence of OMF6, will be adopted as the federated resource control protocol.

Approach Advantages Disadvantages Selected
as final
approach

Adopt OMF 6 (AFFEF) ® Llarge active community of |e Interface with SFA for YES

[85], [86] developers and users resource discovery,

e Support for basic resources allocation and

such as nodes, VMs, provisioning is currently
interfaces, applications, under development
OpenFlow switches. e Testbeds not using OMF
e Straightforward as their management
development of additional software will need to
new Resource Proxy either adopt OMF or add

2
e 96 of 151

S —
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

modules for other type of
resources

Scale to hundreds of
resources

Open Resource Model and
Communication Protocol,
allowing third party
implementation of
compatible resource proxies
or experiment controllers
Can coexist with other
testbed management
software

Natively supported in
FED4AFIRE OMF testbed
including Norbit, Nitos, w-
ilab.t and Netmode.
Additionally, compatibility of
OMF with PLE and GENI
testbeds has been shown.

extra interfaces to make
their software compliant
with the AFFEF

Adopt Teagle T1
interface [87]

Already a working federation
Provides abstractions to
wrap resources and testbeds
Native support for FED4FIRE
testbed (FuSeCo)

e An interface re-work is
been planned and there is
the intention to possibly
adopt FRCP

e Centralized portal type
access

e No information of

scalability tests

Adopt ORCA [89]

Part of the GENI project
which has wide spread in
United States

e Federation only covers
resource discovery and
provisioning through
distributed negotiation
between testbeds

e No real resource control
interface

e Does not support SFA

Adopt BonFIRE [88]

Already working federation
Supports multiple clients
tools

Native supports for three
FEDAFIRE testbeds (Grid
5000, Virtual Wall, EPPC)

® Mostly cloud oriented
(OCCl interface)

e Assumed more or less
uniform types of
resources (VMs)

e Centralized portal type

4
e

FED4FIRE

97 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK

PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

access

® Resource configuration
and control capabilities
are not that flexible
(mostly only during set-up
with an init script)

Clean slate e Clean design e Total amount of needed
implementation e Easy to extend in the future implementation effort
e OMF (or AFFEF exceeds the available

compatibility) is not imposed| manpower
as management software for
testbeds

Table 19: Comparison of potential candidates for realizing Experiment Control in Fed4FIRE

Evaluation of the Experiment Controller
As presented in Table 20, three approaches have been analysed for realizing the experiment
control engine (or experiment controller)

a) to use OMF EC,

b) to use NEPI experiment control framework and

c) to create a new experiment control engine from scratch.

From the three approaches, both approaches a) and b) have strong advantages. The OMF EC
offers native support for OMF testbed management software, which is in use by many Fed4FIRE
testbeds, and was selected as the base implementation for FRCP. However, adopting NEPI as an
alternative experiment control engine is also desirable since NEPI allows to access and control
potentially any type of resource, including emulated and simulated resources (e.g. ns-3 simulated
nodes). Furthermore, NEPI supports resources discovery and provisioning through SFA, supports a
graphical representation of the experiment model, supports interactive experiment configuration,
and supports execution in background mode. More details regarding both these experiment
controllers are given in section 3.7.3.

It is important to note that the choice of these two experiment controllers does not impair the
existence of other experiment controllers that might wish to provide support for FRCP and thus
work with the federation.

Based on this analysis, it is concluded that both OMF EC and NEPI are suitable tools as
experiment controllers. Hence they will both be adopted as Fed4FIRE experiment control tools.
The choice of using the one or the other will be related to the type of experiment.

2
R 98 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

language to describe
experiments and
automatically execute them
through an experiment
controller

Large user community
already familiar with OEDL
(OMF experiment
description language)
Native support for OMF
management software

Approach Advantages Disadvantages Selected
as final
approach

Use OMF EC [91] e High-level domain-specific |® Atthe moment, it can’t |YES

easily support arbitrary
resources not running an
OMF RC (e.g. ns-3
simulated nodes)

Use NEPI [8]

Supports OMF 5.4
Support resource discovery
and provisioning through
SFA

Can potentially support
arbitrary resources
(including simulated and
emulated resources)
Graphical experiment
representation
Interactive configuration
Runs in background mode

e Doesn’t support all OMF
features as the OMF EC
does

YES

Clean slate
implementation

Possibility of providing a
new design that is better
suited for FED4FIRE specific
requirements

e Total amount of needed
implementation effort
exceeds the available
manpower

Table 20: Comparison of potential approaches for implementing Fed4FIRE’s experiment control

3.7.3 Description of selected tools
In the previous section, an analysis was performed and a set of existing tools was chosen as the

starting point for the implementation of both the Federated Resource Control Protocol and of the

Experiment Controller. In this section, more profound details are given regarding these tools, and

which of the needed functionality is already provided by them.

4
e

FED4FIRE

99 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

OMF Description

Overview

OMF is a generic framework which allows the definition and orchestration of experiments using
shared (already provisioned) resources from different federated testbeds. OMF was originally
developed for single testbed deployments, but has recently been extended to support multiple
deployments and the following features. First, it provides a domain-specific language based on an
event-based execution model to fully describe even complex experiments, such as ones involving
cars or phones moving out of range of all control networks. OMF also defines a generic resource
model and concise interaction protocol, which allows third parties to contribute new resources as
well as develop new tools and mechanisms to control an experiment. It has a distributed
communication infrastructure supporting the scalable orchestration of thousands of distributed

and potentially disconnected resources.

In addition to these recent features, OMF also easily integrates with systems from other
complementary testbed frameworks. Indeed, it interfaces with SFA (work-in-progress) to allow
researchers to discover and provision resources to be used in their experiments. It is also
compatible with measurement resources developed using the OML instrumentation and
monitoring system. Finally it can also be paired with a web-based interface to act as a digital
laboratory notebook and capture study cycles involving multiple experiments, through the use of

additional wiki, versioning and statistical analysis capabilities.

Architecture

Research Collaborators within a study X

© Reso:ncc‘l (8] | Exp 1 © Exp 2
Description / ‘ Du.u fiption Description:
=
Pl E—».__N\ Experimenter LEC A/V|S+A Experimenter | V% EC
— R (N
‘ | SCHD }— S : \‘PASE _-l SCHD
lVIS+N‘ — —;}____; tu-3 ubr.fh.Subs.ane / ——
. i | Messaging ‘ S
© 2 ee LRC :' \‘\—u- Sysem 1" | [re] [R
/BN Tt — :
(s ' | 5y G
(R (R Res) (R
h (oe) () | | 2 \‘ | (foe) (s
Aggregate oML H—H OML 7ﬂL i
Gpietalor \AggregaleA 1 OML | ;\ J [ON Aggregate B

FED4FIRE

Figure 18: OMF Architecture

The above figure presents an overview of OMF architecture. At the centre of this architecture is a
distributed publish-and- subscribe messaging system (pub/sub), which is realised by a set of
Peering Servers (PS). OMF use a topic-based messaging pattern where resources or groups of
resources are represented by topics. Communication among all entities is achieved by publishing
and subscribing to the respective topics.

100 of 151

2
%o

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013 SEVENTH ERAMEWORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Any resource is associated with a Resource Controller (RC); the RC runs on the resource, a
resource controller for wireless node is installed in a wireless node allowing control over it. For
applications running in this node, a resource control of the kind application, will allow execution
and control, start, stop, etc, over the application running. The RC is the proxy for one or more
bare-bone resources. The RC subscribes to the topics associated with its resources and translates
messages it receives from other entities to resource specific interactions. The RC normally also
includes a policy component which first checks the validity of an incoming request.

An experimenter describes her experiment using a domain-specific language, and passes this
description to an Experiment Controller (EC). This EC interprets the experiment description and
uses the pub/sub system to send requests to the involved RCs and to receive reports from them
on the experiment’s progress. These RCs instruct the resources to execute the tasks within these
requests and relays their outcomes. If a resource is instrumented, it may collect filtered
measurements as instructed by the RC based on the experiment description. These data are sent
to measurement entities using the OML Measurement Library, which can process them and store
or forward them to other OML components. These OML entities are themselves resources, which
understand the same communication protocol as the RCs and thus can also be organised and
controlled via the EC and the experiment description. The experimenter may use additional
software (Vis & A) to visualise the experiment’s progress and analyse its collected measurements.
More information about this is expected from WP6.

Resource Model and Life-Cycle

Our first design decision is to consider every entity participating in an experiment as a resource,
independent on who is providing it. A resource has a set of properties and an associated life-cycle.
It communicates with other resources through well-defined messages. It will be part of the first
cycle to consolidate and justify that this approach is appropriate.

A new resource is created by an existing resource receiving a create message. It is initially in the
inactive state, and may transition to the active state either immediately or at some later stage.
Given the large variety of resources there is no support for ‘action’ commands such as ’start’ or
‘doX’. Instead, resources are requested, through a configure message, to adjust their internal
operations, so that the observable properties reach a certain value. In other words, we request
the outcome and leave the 'how’ to the resource. Some resources may only accept configuration
requests in the inactive state, and some properties may only be set at creation time, as part of the
create message. The request message asks a component to report on its status via an inform
message. Finally, a component is discarded when it receives a release message.

Creating new resources by sending it to an existing one establishes a clear policy context in which
we can decide if the request is valid or not. This results in a parent-child between the creator and
the created. As a consequence and to maintain a proper accountability chain, a parent can only
cease to exist when all its descendants have been released as well. In our current implementation,
every resource maintains a list of its children and when receiving a release message it will forward
it to its children as well. The initial release request will only succeed if all descendants have
released themselves.

To support scalability we also introduce a group resource which maintains a set of other
resources. In practice, this type of resource is simply a group messaging mechanism represented

2
e 101 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

by a pub/sub topic. All members of a group are requested to also subscribe to the respective
group topic and process the received messages accordingly. Given the one-way communication
pattern of pub/sub there is no additional semantics associated with group resources. For instance,
there is no implied guarantee that a message sent to a group will be received by all its members.
In fact, that guarantee does not even exist for individual resources. The life-cycle model can be
extended with sub-states and transitions for any given type of resources. For example, a mobile
robot resource might have the sub-states active/moving-forward or active/rotating.

Publish and Subscribe Messaging

We implemented the OMF pub/sub messaging system using the XMPP protocol and existing
XMPP servers such as OpenFire. This system is composed of distributed servers peering with each
other, and hosting topics. Authenticated clients can connect to a server, subscribe to any topics
hosted by any servers and publish messages to them. XMPP’s server-to-server protocol ensures
that a message published to a topic is forwarded to all of its subscribers regardless of which server
they are connected to.

Authentication and Authorisation

OMF needs to guarantee the publisher’s identity for all messages. It uses end-to-end
authentication based on the well-established practice of digital signature backed by a PKI
infrastructure. Each OMF entity has a set of public and private keys, signs its generated messages
with its private key, and verifies the signatures of received messages with the originator’s public
key. Public keys of a slice’s entities are exchanged at resource provisioning between the users and
the resources, or obtained via a trusted scheme such as a certificate authority or web of trust. The
former method is currently implemented in deployed OMF testbeds. The other method is under
evaluation as it may not scale to a high experiment churn involving large resource numbers.
PlanetLab uses a similar key-based authentication scheme, which allowed OMF RCs to be
deployed on its slivers.

An OMF entity also needs to verify that the originator of a message has sufficient rights for any
enclosed requests. For example, although a user acquired the right to use a spectrum analyser to
collect some data, it may be limited to use only some frequency ranges. We propose to attach a
set of assertions or their resolvable references to each message, which establish the originator’s
rights. In any case, this proposal needs to be examined in the light of federation wide
authorisation to determine whether it is suitable.

In the previous example, the user’s request will have a first assertion from her institution
confirming her affiliation to it, then a second assertion from the owner of the resource giving
rights on a set of ranges to affiliates of that institution for a reserved time period. All assertions
are signed by their originators and verified using the same key mechanism as above. Some
assertions such as the last one in this example may be generated during the resource reservation
and provisioning phase. This scheme can be considered a restricted, but light-weight variant of
ABAC. It is restricted as it does not allow for additional rules to be attached to assertions and it is
light-weight as most assertions will only be passed by reference and is based on widely adopted
industry standards.

2
R 102 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Experiment and Resource Controllers

As previously mentioned, the EC is the entity responsible for orchestrating the experiment. It
interprets an experiment description from the user, developed using a domain-specific language,
and sends related commands to RCs using the pub/sub communication scheme and our defined
resource protocol.

The RC was designed to implement the resource model mentioned earlier. This generalises its
source code to support different types of resources, such as virtual machines, mobile phone
applications, or wireless sensors in a consistent manner. It also provides a reference
implementation of our resource model and protocol, which serves as a base for custom RC
implementations by third parties.

OMF experiments are fully event-driven, i.e. the experimenters define events associated with
tasks in their experiment. These events are synchronisation barriers based on either time or
values of properties or measurements from resources, when their conditions are met the tasks
associated to them are executed. An example event could be “when all traffic generator have sent
10Mps of data” and the associated tasks could be “pause them, decrease rate by X, and resume
them”.

The communication stack of all OMF entities supports the above messaging system and structure.
This allows the EC and RCs to be on different network domains, removes the need for a
permanent connection between them, and provides scalable group communication. It also
enables new experiment capabilities, such as disconnected experiments (e.g. a mobile resource
temporarily out of range of an EC), or long-running surveys (e.g. EC connecting episodically to RCs
in a x-month data collection). Finally, the EC and RC entities also support the authentication
scheme described above, which allowed RCs to be readily deployed on PlanetLab, and enabled
orchestration of federated experiments.

Interface with Resource Discovery and Provisioning, and other tools

The use of a distributed pub/sub scheme as the core communication system of OMF allows it to
easily interface with existing resource discovery and provisioning solutions. Indeed, the scheduler,
registry and aggregate manager functionalities often defined in contributions from the GENI or
FIRE initiatives can all be adapted to exchange messages using the OMF pub/sub system.

However to make the pub/sub system a central architectural component for Fed4FIRE, we need
to carefully evaluate performance and impact in the communication process.

The challenge remains then in the sequence of interactions between these entities and the OMF-F
ones in order to provide a seamless transition between the discovery and provisioning phase to
the experiment orchestration phase. There is an ongoing collaboration with the developers of the
NITOS Scheduler and the PlanetLab Europe SFA to address these challenges. As an example of this
work in progress, we are developing an SFA-compliant OMF module, which should be released
soon.

Similarly, this core communication system allowed the interface of OMF with a web-based digital
laboratory notebook, which provides integrated functionalities allowing the record of research
notes and experiment designs, the versioning of experiment descriptions and associated
software, their automatic orchestration, and the processing of the result with a powerful
analytical and statistical tool.

2
R 103 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

NEPI description

Overview

NEPI, the Network Experimentation Programming Interface, is a life-cycle management tool for
network experiments. The idea behind NEPI is to provide a single tool to design, deploy, and
control network experiments, and gather the experiment results. Going further, NEPI was
specially conceived to function with arbitrary experimentation platforms, so researchers could use
a single tool to work with network simulators, emulators, or physical testbeds, or even a mixture
of them.

NEPI supports conducting hybrid-experiments, by deploying overlay topologies across many
testbeds and communicating them through special tunnelling components.

To accomplish this, NEPI provides a high-level interface to describe experiments that is
independent from any experimentation platform, but is able to capture platform specific
configurations. Experiment definitions can be stored in XML format to be later reproduced, and
modified according to experimentation needs.

Experiment execution is orchestrated by a global experiment controller, that is platform
independent, and different platform-dependent testbed controllers, creating a control hierarchy
that is able to adapt to platform specific requirements while providing an integrated control
scheme.

Experiment life-cycle support

NEPI is a life-cycle management tool for network experiments. It covers the design, deployment,
control and result gathering stages of the network experiment life-cycle as defined within the
NEPI context:

Validation (V Des|gn - \
==
XML | XMdL experiment
) escription
Instantiation _T_ P
Configuration ¢ Deployment
Comunication ————
Monitoring C Control)
Modification S
e ——————
Results _ Results gathering

Figure 19: NEPI - Experiment Lifecycle Management

Along with what was established in section 3.7.1, during the first cycle, NEPI will focus on
supporting design, and control through the federated resource control protocol. To support the
whole experiment life cycle, the appropriate course of actions will be defined after development

4
%o 104 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

cycle one, when authentication, authorization, discovery, provisioning, reservation and
measurements according with other WPs are in more mature state.

Design

During the design stage the user constructs the experiment description using interconnected box
components. A box component is defined by a type and by the experimentation platform (or
testbed) it is associated to. An example of a box component is a PlanetLab Node box. The user can
alter the experiment configuration by setting values on the box components attributes. NEPI will
automatically validate connections between boxes and boxes attributes. Box components have a
list of traces, which represent result files that can be activated to be generated during experiment
execution. An example of trace is a tcodump on a Network Interface box. The experiment
description can be persisted to XML format. This description will be the input to NEPI's
Experiment Controller to perform the deployment of the experiment. NEPI also supports graphical
design through its GUI, Network Experiment Frontend (NEF).

Deployment

During deployment, NEPI uses the information on the XML description generated during design to
instantiate, configure, and connect experiment components (resources). An ExperimentController
object is responsible for processing the XML description, instantiating a specific TestbedController
object for each testbed instance present in the experiment description, and issuing the right
commands to each of the TestbedControllers so they can create the necessary experiment
components (Nodes, Interfaces, Tunnels, etc). For example, an XML describing a PlanetlLab
testbed instance will trigger the instantiation of a PlanetLab TestbedController. Then, a nested
description of a PlanetLab Node box will make the ExperimentController object send a message to
the PlanetLab TestbedController object to handle the 'creation' (i.e. provisioning) of a PlanetLab
Node resource. In turn, the PlanetLab TestbedController will locate the specified node and add it
to the user's PlanetlLab slide. Similarly, an XML describing a ns-3 simulated Node connected to
another Node through PointToPointNetDevices, will trigger the creation of a ns-3 [93]
TestbedController instance the ns-3 C++ objects in s process running the ns-3 simulation. The
experiment deployment consists of well-defined steps that resolve concrete operations. Globally,
these steps are:

1) Testbed set-up and configuration
2) Component instantiation
3) Component configuration
4) Connection of components inside a testbed
5) Connection of components from different testbeds
6) Launch of applications
Control

The Control stage occurs after deployment, when the experiment is running. During this stage, the
user can interact with the ExperimentController object and modify experiment parameters in real-
time. The Experiment and Testbed controllers are able to execute in remote locations and
communicate via special messages. NEPI's API also provides methods to obtain information on the
state of the running applications or other components.

2
e 105 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Results Gathering
Results can be retrieved, from any remote controller, in a centralized way, at any moment from
the moment the experiment starts running.

Experiment design

NEPI uses a Boxes and Connectors modelling abstraction to construct the experiment design. Each
supported experimentation platform defines a set of box types (identified by a Factoryld), which
represents the conceptual constructive blocks of an experiment. These boxes can be associated
through named ports called connectors. Each connector in a box has a different function. The
experiment description is thus constructed out of a graph which has Boxes as vertex. The boxes
present in the experiment description and the connections between those boxes will define the
experiment topology, both at a physical (infrastructure) and application (services) levels.

Boxes also have a set of attributes that allow defining the experiment configuration, and traces
that allow defining experiment results to be collected.

hode app|
Ping |O (| Node Node
iface O O iface
node O O node

pPP| PPP

Iface |O+—+0O| IHace

Figure 20: NEPI's Boxes and Connectors Modelling

All the information describing the Boxes, their Attributes, Traces and Connectors for each
experimentation platform is defined in metadata files. At least one of those metadata files must
exist for each supported platform. These metadata files also provide information to validate
attribute values and allowed connections between Box connectors.

Object model

The main classes that participate in the experiment description are:

e ExperimentDescription: Groups the description of the different parts of the experiment
that might be executed in different testbed instances.

e TestbedDescription: Describes the topology, applications, and configuration of the part
of the experiment to be executed in a particular testbed instance.

e FactoriesProvider: Provides the box classes definitions for a concrete testbed type. (Ex:
ns-3, PlanetlLab)

e Boxes: Functional units that describe an experiment. (Ex: Node, Interface, Application,
Channel)

2
R 106 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Experiment script

NEPI provides an experiment description language in Python to programmatically describe and
execute experiments. Additionally, a graphical user interface called Network Experimentation
Frontend (NEF) [94] allows to graphically design and run experiments. The following is a step by
step (Step 1..Step 8) example of a NEPI script of a simple Ping experiment using ns-3 simulator
using NEPI Python libraries.

1. Import the necessary Python classes from NEPI design modules.
from nepi.core.design import ExperimentDescription,
FactoriesProvider

2. Instantiate the ExperimentDescription object.
exp desc = ExperimentDescription()

3. Instantiate a FactoryProvider for a particular testbed type (Ex: ns-3).
testbed id = "ns3"
ns3 provider = FactoriesProvider (testbed id)

4. Instantiate a TestbedDescription and configure it.
ns3 desc = exp desc.add testbed description(ns3 provider)
ns3 desc.set attribute value ("homeDirectory",
"/tmp/experiment home")
ns3 desc.set attribute value("SimulatorImplementationType",
"ns3::RealtimeSimulatorImpl")
ns3 desc.set attribute value ("ChecksumEnabled", True)

5. Instantiate and connect some Boxes. (Ex: 2 ns-3 nodes connected though a point to point

channel)
nodel = ns3 desc.create("ns3::Node")
ipv4l = ns3 desc.create("ns3::Ipv4L3Protocol")
arpl = ns3 desc.create("ns3::ArpL3Protocol")
icmpl = ns3 desc.create("ns3::Icmpv4L4Protocol")
nodel.connector ("protos") .connect (ipv4l.connector ("node"))
nodel.connector ("protos") .connect (arpl.connector ("node"))
nodel.connector ("protos") .connect (icmpl.connector ("node"))
ifacel = ns3 desc.create("ns3::PointToPointNetDevice")
queuel = ns3 desc.create("ns3::DropTailQueue")
nodel.connector ("devs") .connect (ifacel.connector ("node"))
ifacel.connector ("queue") .connect (queuel.connector ("dev"))
node2 = ns3 desc.create("ns3::Node")
ipv42 = ns3 desc.create("ns3::Ipv4L3Protocol")
arp2 = ns3 desc.create("ns3::ArpL3Protocol")
icmp2 = ns3 desc.create("ns3::Icmpv4L4Protocol")
node2.connector ("protos") .connect (ipv42.connector ("node"))
node2.connector ("protos") .connect (arp2.connector ("node"))
node2.connector ("protos") .connect (icmp2.connector ("node"))
iface2 = ns3 desc.create("ns3::PointToPointNetDevice")
queue2 = ns3 _desc.create("ns3::DropTailQueue")

2
R 107 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

node?2.connector ("devs") .connect (iface2.connector ("node"))
iface2.connector ("queue") .connect (queue2.connector ("dev"))

channel = ns3 desc.create("ns3::PointToPointChannel")
ifacel.connector ("chan") .connect (channel.connector ("dev2"))
iface2.connector ("chan") .connect (channel.connector ("dev2"))

6. Set IP addresses on the network interfaces.
ipl = ifacel.add address()
ipl.set attribute value ("Address", "10.0.0.1")

ip2 = iface2.add address ()
ip2.set _attribute value ("Address", "10.0.0.2")

7. Enable Trace results.
iface2.enable trace ("P2PAsciiTrace")

8. Add and configure an application. (Ex: Ping)
app = ns3 desc.create("ns3::V4Ping")
app.set attribute value ("Remote", "10.0.0.2")
app.set attribute value("StartTime", "Os")
app.set attribute value ("StopTime", "2s")
app.connector ("node") .connect (nodel.connector ("apps"))

Experiment execution

NEPI uses a hierarchical control structure to orchestrate experiment execution. A single
ExperimentController instance takes care of the global supervision of the experiment.

The user will communicate with this global controller, which in turn communicates with the
testbed specific controllers, the TestbedController instances, which are in charge of supervising
specific testbed instances.

| TodController A |-~~~ -~1 Testbed A

¢

l client F---- >[' ExpController :\

emm

A

S "

: ThdController B :}- ----- » Testbed B

Figure 21: NEPI — Object Model

Object model
The main classes that participate in controlling the experiment execution are:

2
e 108 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 SEVENTH FRAMEWORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

e ExperimentController: Global experiment orchestrator. It takes care of instantiating the
different TestbedController instances and instructing them to create all the experiment
components and connections.

e TestbedController: Testbed instance orchestrator. It takes care of performing testbed
specific tasks, such as component creation and interconnection.

Experiment script
In order to deploy and control the experiment in NEPI it is be necessary to add specific lines of
code to the previous design script.

1. Import the ExperimentController class
from nepi.core.execute import ExperimentController

2. Obtain the XML experiment description
xml = exp desc.to_xml ()

3. Instantiate an ExperimentController object, using the XML description, and start it
controller = ExperimentController (xml, "/tmp/experiment dir")
controller.start ()

4. Wait until some event occurs in the experiment. (Ex: The Ping application is finished)
while not controller.is finished(app.guid):
time.sleep(0.5)

5. Get the trace result content
ping result = controller.trace(iface2.guid, "P2PAsciiTrace")
print ping result

NEPI and OMF EC can coexist, and will be chosen by the user, depending the need of each
experiment.

3.7.4 Required additional implementations

As the first step to support the adopted federated resource control model and experiment
controllers in cycle 1, new implementations and/or adaptations of them are needed. It is also
possible that the testbeds should extend their management software with specific components.
All these required additional implementations are described in this section.

NEPI support for MySlice (and the diversity of Rspec)

In the course of last year NEPI implemented an API to talk SFA directly, but with the appearance
of MysSlice, it was decided to rewrite this API to convert it into a MySlice Client in python to query
MySlice API. The idea is to benefit from the filters and query convenience that MySlice API

2
R 109 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

provides, to solve the discovery, reservation and provisioning of resources, instead of parsing big
Rspec.

Formerly NEPI had to query SFA deployments through the SFI client and parse the Rspec results.
These Rspec are different from testbed to testbed with the complexity that this involves.
Currently NEPI supports two Rspec definitions, PlanetLab Europe and NITOS Rspec.

With the development of NEPI's integration with MySlice a set of queries of interest had been
tested, but the metadata available to ask to the different testbed resources, is associated to their
description of resources in their corresponding Rspec. Therefore, as long as there are differences
between how the same resources and properties are named, a post analysis of the query result
must be implemented in NEPI, for every testbed available through SFA, which is the same as
saying through MySlice. At the same time, MySlice is under development right now, so the NEPI-
MysSlice integration is in testing version, and therefore has to be supported completely with the
release of MySlice.

NEPI support for OMF 6

NEPI is already supporting OMF 5.4 but needs to be extended to support the stable version of
OMF 6. Presently NEPI is supporting communication with XMPP servers, and functionalities like
create a topic, delete, subscribe, send message, etc. These can be reused for exchanging
messages using the new control protocol.

NEPI development should focus on supporting the messages associated to the federated resource
control protocol (FRCP), not only the creation of these messages, but also the processing and
control model to support the architecture characteristics of the protocol, e.g.: how to model the
different resources proxies and access them through a common resource controller.

Meanwhile provisioning is not handling the complete setup of the resources. Therefore NEPI will
also need to support the image loading and saving for the nodes participating in the experiment,
either using OMF commands or developing the corresponding method. The image will create
resource proxies and controllers for the desired experiment.

OMF 6 stable version release

At the moment OMF 6 is in its beta release, but in order to be installed in testbeds it should be in
its stable version. With the installation of the stable version, the testbed will provide the interface
to interact with the federated resource control protocol in order to exchange the generic
messages to control their resources. This is a strong requirement to be able to run the prototype
demo experiment targeted in cycle 1.

OMF EC according to new architecture of OMF 6

With the release of OMF 6 and its new design and architecture, a new OMF experiment controller
should be provided that supports it. For example, it should be able to create the new messages
according to the FRCP. See API for more details in FRCP description, and what kind of messages
the EC should support. Probably in the case of NEPI and OMF EC, as both support OMF 5.4, the
new messages system will be an extension to the already supported one.

% 110 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

OMF6 compatibility in testbeds

Testbed owners need to provide OMF6 compatibility in their testbeds, either deploying OMF 6 as
management software for the testbed, or deploying the corresponding interface (OMF 6 based) of
the federated resource control protocol. Only some testbed owners, currently using OMF 5.4 as
control and management software for their facilities already commit to deploy OMF 6 when
stable.

Another important issue to address, is new developments of resource controllers. In case the
ones existing in OMF 6 stable release do not cover all testbed resources functionalities, the
testbed owner will have to provide the corresponding resource controllers. The new resource
controllers can be adaptation and inherit from existing ones.

In summary, functionalities implemented by the end of cycle 1 regarding experiment control are
listed in Table 21: Experiment Control functionalities to implemented for cycle 1

NEPI Support for SFA frontend MySlice
NEPI Support for OMF 6 and the FRCP
OMF 6 OMF 6 stable release, including OMF 6 EC and authorization support.

Evaluation of the pub/sub messaging system

Fed4FIRE Testbeds Installation of OMF 6 stable release, or testbeds’ implementation of
the FRCP (Resource Controllers and pub/sub system)

Fed4FIRE Testbeds Implementations of the corresponding Resource Controllers for
testbed specific resources

Table 21: Experiment Control functionalities to implemented for cycle 1

3.7.5 Specifications

A the moment, this section only covers the functional specification for experiment control since
the technical specification for the federated resource control protocol and for the experiment
control engine will be the same as those defined by AFFEF in OMF6. These specifications will only
be finalized at the time that OMF6 is released as a stable version. This release is expected soon.
Future cycles of Fed4FIRE however will attempt to refine these specifications and the developer
documentation for the experiment controller.

Following the same convention as in the beginning of the experiment control section of this
deliverable, the functional specification is divided into two parts, the necessary requirements to
support federated resource control, and the necessary dependencies to support the different
experiment control engines.

2
e 111 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Federated resource control protocol

As it was already discussed, the benefit for testbed owners to adopt the federated resource
control protocol lies in the ability to achieve federation for experiment control.

For the federated resource control protocol, as it is right now defined by NICTA in OMF, there has
to be support for a pub/sub messaging system, in particular the testbed owner should provide an
XMPP server. This XMPP server should be accessible from a private network, in order to connect
with the testbed resources and resources controllers, but also it has to be connected to a public
network, to allow the experiment controller to talk to the resources through it. The XMPP server
could be installed in a DMZ to minimize security risks.

In previous implementations of OMF the same requirements apply for the aggregate manager, at
present similar considerations for the broker should be taken into account.

The testbed should provide compatible disk images for their resources. In case the user does not
need a particular image for his/her experiment, he/she should have the option to install a
compatible OS.

Resources should be able to support PXE network booting, and for image loading to resources,
the image server should be able to be contacted from the experiment controller.

In order to control testbed resources, the corresponding resource controllers should be
implemented as part of the testbed deployment of the FRCP. This will be the responsibility of the
testbed owner.

To illustrate the above specifications, previous efforts to introduce support for the OMF
messaging system in the PlanetlLab testbed are elaborated in Appendix D: Use case: introducing
support for the OMF messaging system in the PlanetLab Europe testbed. All the considerations
mentioned in this use case should be studied and addressed by the different testbed owners. This
experience could prove to be a convenient starting point for other facilities that will have to
introduce support for the OMF based Federated resource control protocol.

An initial message syntax for the federated resource control protocol can be found in Appendix E:

Further NEPI specifications and examples. Here also requirements for installing NEPl and OMF6 EC
can be found.

Experiment Control Engine API
Example of experiments using the OMF 6 EC can be found in [96] and [97].

The methods to be used in NEPI scripts to design and execute an experiment in case that the
OMF6 FRCP protocol is applied are listed below:

create

Syntax:
def create(self, factory_id, guid = None)

Functionality:

2
e 112 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Creates a new Box object.
See class TestbedDescription in src/nepi/core/design.py

Parameters:
factory_id: Box type identifier
guid: optional global unique identifier to set to the Box

Returns:
The box object of certain type, e.g.: Node

set_attribute_value

Syntax:
set_attribute_value(self, name, value)

Functionality:
Sets an attribute value in a Box object
See class Attribute in src/nepi/core/attributes.py

Parameters:
name: attribute name
value: attribute value

get_attribute_value

Syntax:
get_attribute_value(self, name)

Functionality:
Gets an attribute value in a Box object
See class Attribute in src/nepi/core/attributes.py

Parameters:
name: attribute name

value: value

Returns:

Attribute value

add_address

Syntax:
def add_address(self)

Functionality:

3
ot | 113 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK

PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Add a network address to a Box that allows addresses

see class in UserAddressableMixin /src/nepi/core/factory.py

Syntax:
def add_route(self)

Functionality:
Add a routing entry to a Box that allows routes

see class UserRoutableMixin in /src/nepi/core/factory.py

Syntax:
def connect(self, connector)

Functionality:
Establishes a connection between two connectors of different Boxes
see file src/nepi/core/design.py

Parameters:
connector: Connector object

Syntax:
def enable_trace(self, trace_id)

Functionality:
Activate a trace on a Box.

see class Box in src/nepi/core/design.py

Syntax:
def start(self)

Functionality:
Starts experiment execution. Launches deployment.

see class TestbedController in src/nepi/core/execute.py

b 4
.53. 114 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Syntax:
def stop(self)

Functionality:
Stops experiment execution without releasing resources
see class TestbedController in src/nepi/core/execute.py

Syntax:
def shutdown(self)

Functionality:

Shutdowns experiment controller releasing all resources

see class TestbedController in src/nepi/core/execute.py

Syntax:
def set(self, guid, name, value, time = TIME_NOW)

Functionality:
Sets resource attribute value during runtime
see class TestbedController in src/nepi/core/execute.py

Parameters:
guid: resource id
name: attribute name

value: attribute value

Syntax:
def get(self, guid, name, time = TIME_NOW)

Functionality:
Gets resource attribute value during runtime
see class TestbedController in src/nepi/core/execute.py

Parameters:
guid: Global Unique Identifier of the resource
name: attribute name

4
e 115 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Returns:
Resource attribute

status

Syntax:
def status(self, guid)

Functionality:
Returns status of resource during runtime
see class TestbedController in src/nepi/core/execute.py

Parameters:
guid: Global unique identifier of resource

Returns:
Status of resource

is_finished

Syntax:
def is_finished(self, guid)

Functionality:
Determines wheather a resource has finished its task.
See class TestbedController in src/nepi/core/execute.py

Parameters:
guid: Global unique identifier of resource

Returns:
Boolean value indicating weather the resource has finished its task or not

3.7.6 Requirements for testbeds to adopt the FRCP

Testbeds aiming to support this functionality should comply with the following requirements:
® Install the OMF 6 stable release as their testbed management software, or
® Implement as explained for PlanetLab their own version of the FRCP, to be able to control
resources using the messages described above (create, inform, release, etc) and support
the pub/sub messaging system
® Implement the corresponding resource controllers in case OMF 6 does not provide them,
to be able to control their specific resources through an experiment controller

2
e 116 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

3.8 Support of existing experimenter front-ends and tools

Choosing SFA as the common control plane protocol allows to support the usage of existing SFA-
compliant experimenter front-ends and tools. The next sections briefly list the existing tools that
experimenters will also be able to use at the end of cycle 1. Note that the previous sections
specified the different functional components of the Fed4FIRE architecture for the testbed,
testbed management and broker levels. Together these levels can be considered to form the core
Fed4FIRE architecture that this document has to specify. This section however is related to the
experimenter level tools, which can be considered as optional components that will make use of
the core architecture. Hence the need for detailed tools comparisons and specifications is less
stringent in this case. This explains why the remainder of this section is structured differently than

the previous sections of this chapter.

3.8.1 Teagle Framework Components: VCTTool and FCI

From the Teagle framework, as described in [105], two components are going to be supported.
One the one hand the VCTTool that is used as a graphical user interface (GUI) for experimenters
to specify the requested resources including their configuration parameters and
interdependencies within a virtual customer testbed (VCT), see Figure 22. On the other hand the
federation computing interface (FCI), which is further described in[106], to control the requested
resources of a given VCT by generating C or Java classes, see Figure 23.

Currently, the VCTTool supports SFA by communicating with the Teagle core components that
translate the requests to and responses from SFA-enabled domains by using an adapter. It is
envisioned to integrate SFA support directly in the VCTTool in order to communicate with the
according domains directly and to integrate the GUI as a plugin within MySlice. Although FCI
currently supports SFA authentication and slice/resource browsing, further support is envisaged
to manage slices through the FClI APl (start/stop) and aggregate resources within a slice.
Furthermore, FCl is planned to have a closer integration with the rest of the federated services by
exploiting MySlice services.

% 117 of 151 s
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

_Eie Tools Bocking Help
°*SHddEax e
R | [selectic + [
Available Components:
MeshNode -

Figure 22: VCTTool with example VCT

€ IFCiservice

@ getOffice(EString,EString EBoolean) : Office

@ CreateResource(EString EString EString,ResourceRequest) : EString

@ UpdateResource(EString, EString, EString EString,ResourceRequest) : EString
@ DeleteResource(EString,EString,EString,EString,ResourceRequest) : EString
@ getParameterValueOfResource(EString,EString,EString,EString) : EString

@ getOffice(AuthorizationKey EBoolean) : Office ~ 224

g ' { Panlab
panlab —:HW

LN

: U

(SFAC S
N — SFA

57 testbeds
FC' ‘o) | i 3 \\)
A —_—

e { u — M y PLC : Planetlab
N R i
Pe v 1 Jclouds/EC? W
B FCiCredentials }—M’"“"‘m‘”‘“ E ~ OMF £

ey R = L ES ' |
= Satonord' 52';’23 W OMF ! enabled
' test
o credoptions

E StringTostringMa
& key : EString
© value : EString

Figure 23: FCI Architecture Overview

3.8.2 Flack

A 118 of 151

FEDAFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

2

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Flack is a piece of software developed in the GENI project (USA) [12]. It is a visual client for
ProtoGENI and federated GENI aggregate managers. Flack covers the main functionalities of
authentication, discovery (example screenshots: Figure 24 and Figure 25) and resource
provisioning over SFA compliant testbeds. It also allows the experimenter to create, open and
update slices. It also provides the functionality to retrieve and display the utilized Rspec during
different steps of the experiment lifecycle (Figure 26), which can be valuable throughout the

development and integration process of Fed4FIRE.

In theory, Flack should be able to handle Fed4FIRE testbeds out of the box, since both rely on SFA.
However, this will be verified at the moment that the testbeds have deployed their SFA interface
during the course of development cycle 1. It is not inconceivable that Flack should be slightly
updated to cope with possible implementation or versioning issues that emerge when Flack is
tested against the different Fed4FIRE testbeds. If such needed small updates of Flack would be
identified, then they will be implemented during cycle 1. This will allow the usage of the Flack tool
together with the Fed4FIRE testbeds by the end of cycle 1.

Discover resources publicly: Completed

i)

of
8 Log n »
Slices l
umnagm [©4aa |
o

LJShow/che

@
e
- e]
B [_even |

[[seeiab.geni emulab.net
[F2] foniab tores smistab net
[P2] voenionsiab obn

i e
—

© OpenStreatMap contributors

Figure 24: Flack - High level resource discovery using a map view

Discover resources publicly: Completed

viass E2[@] +

e @ | =
[& Login
VSIices

= - 4
‘emulab.net

-
[vewseec |-

+ @ pc266
Sh B Onlyu sznams{_] Slicable CPU Types| 3000
7 ED [80211 268

(]| emulab-bog

Hierarchy

pc
delay v

Sliver Types
raw-pe
emulab-openvz

2
[

s

=

¥

3
ﬁ

=

9

A

[>

l I

A|
TN 7
l—l—| >

© OpenStreatMap contributors .

Figure 25: Flack - Detailed resource discovery per site

%o

FED4FIRE

119 of 151
© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Discover resources publicly: Completed

vass g2[@] -

emel es emu < (IS PERTT]

gl o | m | o
[& Login | emulab.net x
Slices + Advertisement for pc266 [] savetofiie | Copytocipnoars [=] 3¢
s Only[_| Availante[_] Sticable node component_manager_id="um:publicid:IDN+emulab.net+authority+cm” component_name="pc266" component_id="um:publicid1DN A
o) Al D (¢ o) Exclusive() Shared -emulab.net+node+pc266” exclusive="true" xmins:xsi="http:/ww.w3.0rg/2001/XMLSchema-instance"” xmins="http:/iwww.protogeni.netiresources/ =1
o = d kol i rspeci2” xmins:emulab="http >
| LD [8o2n1 -] <hardware_type name="pc3000
s <emulab:node_type type_slots="1"7>
] showHide (] | emuian-obg j =
= 5 < -pe>
| | CPu >=| 600 hz _J m:publicidIDN+emulab net+image+emulab-ops FEDORAT0-STD" os="Fedora" version="10" description="Standard 32-oit

8 [pc2so
& B pe26
& [pc2so
$ @ pe2st
@ [pc262
% @ p263
8 [pc2ss

<7 [peass
% B p2e7
& [pcse

[=]

<disk_image name="um publicidDN+emulab.net+image+emulab-ops:UBUNTU10-LAMP" os="Linux version="10.04" description="UBUNT
with LAMP for protogeni®/>

<disk_image name=" DN+emulab. pS:UBUNTU10-84-KRG" 0s="Linux" version=" description="ubuntu krg
exported for ProtoGeni‘>

FEDORAg-64-OVZ-STD'
<disk_image name="um:publicid-IDN+emulab.net+image+emulab-ops:RHL-STD" 0s="Linux" version="" description="Any of RedHat Linux"
default="rue’>
<lsliver_type>
<hardware_type name="
<emulabinode_type typ
<hardware_type>
<hardware_fype name="delay
<emulabnode_type type_slots="2"/>
<Ihardware_type>
<hardware_type name="delay-pc3000">
<emulabinode_type type_slots="2">

<disk_image name="urn:publicidIDN+emulab.net+image+emulab-ops:FBSD72-STD" 0s="FreeBSD" version="7.2" description="FreeBSD 7.2'/>
<disk_image name="urn:publicid:IDN+emulab.net+image+emulab-ops:UBUNTU10-STD" os="Linux" version="10" description="Ubuntu 10 32-bit’>
u10

<disk_image name="urn:publicid:IDN+emulab.net+image+emulab-ops:FEDORAS-64-OVZ-UPD" 0s="Fedora" version="8" description="Update to

3.8.3 Omni
Omni is a GENI command line tool for reserving resources at GENI Aggregate Managers (AMs) via
the GENI AM API [107]. The Omni client also communicates with Clearinghouses (also known as

Control Frameworks or CFs) to create slices, and enumerate available GENI AMs. A Clearinghouse

</hardware tipe>
o

F g N

1000 mi '

Figure 26: Flack - Immediate access to the applied Rspecs

© OpenStreetMap contributors -

is a framework of resources that provides users with GENI accounts (credentials). Users can use

these credentials to reserve resources in GENI AMs. Any AM APl compliant aggregate should work
with Omni. These include SFA, ProtoGENI, OpenFlow and GCF.

$ omni.py createsliver aliceslice myRSpec.xml
INFO:omni:Loading config file omni config
INFO:omni:Using control framework pgeni
INFO:omni:Slice urn:publicid:IDN+pgeni.gpolab.
expires within 1 day on 2011-07-07
INFO:omni:Creating sliver(s) from rspec file
INFO:omni:Writing result of createsliver for
INFO:omni:Writing to ‘aliceslice-manifest-rspe
INFO:omni:
INFO:omni: Completed createsliver:

Options as run:
aggregate: https://www.emulab.
framework: pgeni
native: True

Args: createsliver aliceslice myRSpec.xml

Result Summary: Slice urn:publicid:IDN+pgeni
Reserved resources on https://www.emulab.net/p

Saved createsliver results to aliceslice-man
INFO:omni:

Figure 27: Screenshot of the Omni command line tool

In theory (and similar to the Flack case), Omni should be able to handle Fed4FIRE testbeds out of
the box, since both support SFA. However, this will be verified at the moment that the testbeds

have deployed their SFA interface during the course of development cycle 1. It is not

inconceivable that Omni should be slightly updated to cope with possible implementation or

2
%o

FED4FIRE

120 of 151
© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

I —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

versioning issues that emerge when it is tested against the different Fed4FIRE testbeds. If such
needed small updates would be identified, then they will be implemented during cycle 1. This will
allow the usage of the Omni tool together with the Fed4FIRE testbeds by the end of cycle 1.

3.8.4 SFI

SFlis another command line client for SFA interfaces [29] [109]. It is implemented in python as
part of the (freely available) PlanetLab implementation. It provides the functionality to create,
update and display a slice. SFl also supports resource discovery, reservation and provisioning. It
can also be used to release resources, and to start and stop a slice. To illustrate how SFl is to be
used, the help page of the tool is depicted in Figure 28.

In theory (and similar to the Flack and Omni cases), SFl should be able to handle Fed4FIRE
testbeds out of the box, since both support SFA. However, this will be verified at the moment that
the testbeds have deployed their SFA interface during the course of development cycle 1. It is not
inconceivable that SFI should be slightly updated to cope with possible implementation or
versioning issues that emerge when it is tested against the different Fed4FIRE testbeds. If such
needed small updates would be identified, then they will be implemented during cycle 1. This will
allow the usage of the SFI tool together with the Fed4FIRE testbeds by the end of cycle 1.

shell> sfi.py -h
Usage: sfi [options] command [command options] [command args]

Commands: list, show, remove,add,update, nodes, slices, resources,create,delete, sta
rt,stop, reset

Options:

-h, --help show this help message and exit

-r URL, --registry=URL
root registry

-s URL, --slicemgr=URL
slice manager

-d PATH, --dir=PATH config & working directory - default is
/Users/soltesz/.sfi/

-u HRN, --user=HRN user name
—-a HRN, --auth=HRN authority name
-v, —--verbose verbose mode

-p PROTOCOL, --protocol=PROTOCOL
RPC protocol (xmlrpc or soap)

Figure 28: SFI - help page

2
R 121 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FED4FIRE

4 Summary

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

This section provides a summary by first mapping the described solution against the architectural

blue-print of D2.1 (First Federation Architecture) [1], first in the form of a table for functional

mapping and second in the form of mapping components to the graphical representation of their

architectural blue-print of D2.1. Finally the deviations from the original plan / architecture are

described. The document finishes by providing an outlook on foreseen improvements.

4.1 Mapping of architecture to the implementation plan

In this section it is summarized how this deliverable transformed the architecture from D2.1 to an

actual specification for implementation. This is done both in the form of a summary table, and by

repeating the figures of the architecture, but with the adopted tools and clean slate

implementations annotated in there.

Name functional element

Implementation strategy

Portal

Evolution of MySlice

Testbed directory

Extension of SFA APl and MySlice Database, MySlice plugin

Tool directory

Extension of SFA APl and MySlice Database, MySlice plugin, Wiki

Future reservation broker

Evolution of NITOS scheduler

Exposing testbeds through SFA

Initially evolution of SFAwrap, in the mid-term potential use of
AMsoil

Experiment control

Cycle 1: FRCP and EC deployment on testbeds through OMF6
install. Cycle 2: add NEPI which interacts with the deployed FRCP
layer.

Support of existing
experimenter front-ends and

tools

VCTTool and FCI, Flack, Omni, SFI

Table 22: Summary table mapping Fed4FIRE’s architecture to selected solutions for cycle 1

The following Figure 29 maps the selected SFAWrap solution to Fed4FIRE’s architecture

requirement for testbeds to expose a common interface for resource discovery, resource

reservation and resource provisioning.

4
e

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013

122 of 151

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

*f) ﬂ
<
Porlal
(ponal fed4fire.eu)

m B L L., L - Central

Testbed A Testbed B location(s)

Figure 29: Fed4FIRE’s cycle 1 approach for realizing a common testbed interface for resource discovery, reservation
and provisioning

The following Figure 30 illustrates the selected solutions (MySlice as a basis for implementing
Fed4FIRE’s portal, NITOS scheduler for resource reservation, testbed and tool directory being an

extensions of MySlice and the SFA API) for Fed4FIRE’s architectural blue-print regarding resource
discovery, resource reservation and registration.

Retrieve lis
federated
y Iresources

Portal
(portal fedafire.eu)

Broker/Scheduler

e

4'_

e 3
=\
]
Il
f
H
i
H
i -
>
e
i
2
2
a
2
S
g
2
3
8
a
&
3
&
F
a
c
g
8
@

Register new federation users /

authenticate éisting federation ﬁ
_ w SFAWRAP

r eﬂwfésxhcd description

Figure 30: Fed4FIRE’s cycle 1 approach for resource discovery, registration and reservation

Finally Figure 31 illustrates how the selected experiment control tools NEPI and the OMF
Experiment Controller are mapped to Fed4FIRE’s architectural “Experiment Control Server”

b 4
e 123 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

component. As a realization for the required common experiment control interface Figure 31 also
shows the selected FRCP interface.

Q@ @

Define Define
scenario scenario
LIRS L A P (ef‘;
Future reservation ' ¢
broker
0 CONEPL VO @
2 g e (T
o Controller (portal.fed4fire.eu) ool directory
5 .

vnarimanr Lvnarimant
Experiment

B control server control server
Identity |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
Federated Resource Control Protocol !
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Testoed - Certificaters ldentityt‘eiﬁo:‘w
directoryJ directoryJ providerj

(FRCP)

Discovery, reservation, Discovery, reservation, DE’L 3

provisioning provisioning

Gr:

& TEL

Testbed B

Central
location(s)

Testbed

Testbed A

|

|

|

|

|

|

I .

103 | TRk

Rules-based ! I Rules-based -
authorization | authorization

|

1

|

|

|

|

|

Figure 31: Fed4FIRE’s cycle 1 approach for experiment control

4.2 Deviation of supported requirements compared to the architecture
blue-print

At the point of writing there have been no decisions for implementation taken that would result
in the fact that some requirements that D2.1 indicated are actually not supported anymore, or
vice versa.

4.3 Foreseen improvements

This process of writing down the WP5 specifications has revealed that there is a bias in the
current Fed4FIRE architecture towards infrastructures. Current experimenters of facilities are
used to their own tools and this is something Fed4FIRE is respecting by not imposing any specific
tool for experimentation. These users know the technologies these testbeds provide and are used
to dealing with resources within these facilities. However, Fed4FIRE is bringing many
heterogeneous testbeds together including very different technologies and it is unlikely that an
average experimenter is familiar to all these at the same time.

That is why later iterations of this architecture should provide further utilities and services by
introducing a new service layer for the experimenters. Based on a service-oriented architecture

R 124 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

(SOA), testbeds —and especially those considered in WP4— will be able to expose a range of
services over the architecture, decreasing the complexity for the experimenter to directly deal
with resources.

This vision can enormously contribute to sustainability and reusability, allowing experimenters to
take advantage of all the resources and services available in the federation even with limited
knowledge concerning the underlying technologies.

For this purpose, testbeds must expose their available services as standards (such as WebServices,
REST...), so that they can be discovered, negotiated as far as quality is concerned, invoked,
monitored and accounted. Moreover, the possibility should exist for experimenters to select
aggregated services, using services from different testbeds.

With this approach, aggregated services -composed of individually exposed services- would need
to be orchestrated when the experiment is provisioned. For this, Fed4FIRE can introduce over this
service layer new orchestration tools and engines, based on standards such as BPMN [99] or BPEL
[100] (Activiti [102], jBPM [102], Apache ODE [103], Open ESB [104]...)

The tool should be an open, flexible and multiplatform solution for experimenters to design high-
level composed processes/experiments. The services should be located in a repository where
providers (different testbeds) can register and describe them semantically, using the ontology
based in the first iteration of Fed4FIRE. The tool would suggest the most matching services as far
as description is concerned for the experimenter to make a choice.

These new layers (service and orchestration) are not included in the first iteration and need to be
placed in the architecture taking into account that some experimenters need not use services but
resources, which means that we must find a way for both methods to be present at Fed4FIRE.

The following picture represents a preliminary idea of this concept.

HTTP HTTP

=

=227

_ . et

Design, execution _ == ”,

-7 _- _Portal (po
-

Expetignenter
\\

fal fed4fire eu)

A
o
>
© 1
7 T
g |
2 -
[
n i T
()
I I
| Vol !
1 ! |
| (O} |
1 () |
| () |
| I I
| 1] |
| : !
| | 1
i | :
Discovery, resenation, - | Discovery, resenation, | i i
provisioning ! provisioning] ! !
I N,
! | ! !
L | Sk : :
ahe | Rules-based '« |
Rules-based « | i e -
authorization : authorization :
| |
i
1
? % g MR | i (I S (R i
- EOHhEGH &E5E0s5 |
17 v - ! Central
P : !

Testbed A ! Testbed B I location(s)
Figure 32: Possible future iteration of Fed4FIRE architecture

R 125 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

5 References

[1] Fed4FIRE D2.1 “First Federation Architecture”

[2] Fed4FIRE D3.1 “Infrastructures Community Federation Requirements”

[3] Fed4FIRE D4.1 “First Input from Community to Architecture”

[4] Fed4FIRE D8.1 “Fist Level Support”

[5] Larry Peterson, Robert Ricci, Aaron Falk, and Je_ Chase. Slice-Based Federation
Architecture.Technical report, Geni, 2010.
http://groups.geni.net/geni/wiki/SliceFedArch

[6] FlTeagle Virtual Customer Testbed Tool. http://fiteagle.org

[71 Protogenie Emulab’s Flack tool. http://www.protogeni.net/ProtoGeni/wiki/FlackTutorial

[8] Network Experimentation Programming Interface, NEPI. http://nepihome.org

[9] LabWiki. “An Executable Paper Platform for Experiment-based Research”.
http://www.nicta.com.au/pub?doc=4613

[10] BonFIRE Project. http://bonfire-project.eu

[11] BonFIRE Project’s Portal. http://doc.bonfire-project.eu/R3.1/client-tools/portal.html

[12] Geni’s FLACK tool. http://www.protogeni.net/wiki/Flack

[13] LabWiki. http://labwiki.mytestbed.net

[14] MysSlice. http://myslice.info

[15] MysSlice Overview. http://trac.myslice.info/wiki/MySliceOverview

[16] Manifold coordination language fo orchestration. http://projects.cwi.nl/manifold/

[17] Open Platform Architectures. Wikipedia. http://en.wikipedia.org/wiki/Open_platform
[18] TopHat. http://www.top-hat.info/
[19] MysSlice Plugin Developer Guide. http://trac.myslice.info/wiki/PluginDeveloperGuide

[20] Joomla Content Management System. http://www.joomla.org/

[21] Django Content Management System. https://www.django-cms.org/

[22] MysSlice Developer Website. http://trac.myslice.info

[23] MySlice Metadata Documentation.
https://demo.myslice.info/components/com_tophat/css/images/myslice-
metadata2.png

[24] MysSlice Credential Delegation. http://trac.myslice.info/wiki/DelegatingCredentials

[25] SFA API Calls. http://groups.geni.net/geni/wiki/GAPI_AM_API V3

[26] SFA API Return Struct.
http://groups.geni.net/geni/wiki/GAPI_AM_API_V3/CommonConcepts#ReturnStruct

[27] SFA Aggreaget Manager APl Version 3 Details.
http://groups.geni.net/geni/wiki/GAPI_AM_ API_V3 DETAILS

[28] Wiki Concept. http://en.wikipedia.org/wiki/Wiki

[29] SFA command line utility SFI.
http://wiki.maxgigapop.net/twiki/bin/view/GENI/AccessingSlices

[30] GENI OMNI Experimenter Tool. http://trac.gpolab.bbn.com/gcf/wiki/OmniOverview

% 126 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

[31] JWiki—Joomla Example. http://extensions.joomla.org/extensions/social-web/social-
edition/wiki-integration/12982

[32] Wikipedia Editiong Policy. http://en.wikipedia.org/wiki/Wikipedia:Editing policy

[33] PlanetLab. http://www.planet-lab.org/

[34] NITOS testbed. http://nitlab.inf.uth.gr/NITlab/index.php/testbed

[35] VirtualWall. http://www.iminds.be/en/develop-test/ilab-t/virtual-wall

[36] iMinds w-ilab.t. http://www.iminds.be/en/develop-test/ilab-t/wireless-lab

[37] Future Seamless Communication Testbed - FuSeCo Playground. www.fuseco-
playground.org

[38] NETMODE. http://www.netmode.ntua.gr

[39] Norbit Testbed at NICTA. https://mytestbed.net/projects/1/wiki/OMFatNICTA

[40] Grid 5000. https://www.grid5000.fr

[41] Smart Santander. www.smartsantander.eu

[42] Korean Future Internet Infrastrucutre Koren.
http://www.koren.kr/koren/eng/index.html

[43] NITOS Scheduler. http://nitlab.inf.uth.gr/NITlab/index.php/scheduler

[44] OAR Resource and Job Management System. http://wiki-oar.imag.fr

[45] XML Remote Procedure Call. http://en.wikipedia.org/wiki/XML-RPC

[46] SFAWrap codebase. http://git.onelab.eu/?p=sfa.git;a=summary

[47] SFAWrap: developer tutorial. https://svn.planet-lab.org/wiki/SFADeveloperTutorial

[48] Sglalchemy. the python sql toolkit and object relational mapper.
http://www.sglalchemy.org

[49] PlanetlLab Europe. http://www.planet-lab.eu

[50] MyPLC User Guide. www.planet-lab.org/doc/myplc

[51] NITOS. http://nitlab.inf.uth.gr/NITlab/index.php/testbed

[52] SensLab. http://www.senslab.info/

[53] Federica. http://www.fp7-federica.eu/

[54] 12CAT Experimenta / OFELIA island. https://exp.i2cat.fp7-ofelia.eu

[55] FlITeagle. http://fiteagle.org

[56] OSIMS. http://nam.ece.upatras.gr/ppe/?g=node/2

[57] SFA: Geni aggregate manager api version 2.
http://groups.geni.net/geni/wiki/GAPI_AM_API V2

[58] SFA: Geni aggregate manager api version 3.
http://groups.geni.net/geni/wiki/GAPI_AM_API V3

[59] OFELIA project. http://www.fp7-ofelia.eu

[60] SFAwrap. http://www.sfawrap.info

[61] GENI. http://www.geni.net

[62] AMsoil. https://github.com/fp7-ofelia/AMsoil

[63] OMF. https://mytestbed.net/projects/1/wiki/OMFatNICTA

[64] OMF Measurement Library OML. http://oml.mytestbed.net/projects/oml/wiki

[65] Zabbix Open Source Monitoring Solution. http://www.zabbix.com

[66] CollectD System Performance Statistics Collection Daemon. http://collectd.org/
[67] Emulab. http://www.emulab.net/
[68] Teagle. http://trac.panlab.net/trac/wiki/

2
e 127 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

[69] Teagle Orchestration Engine. http://trac.panlab.net/trac/wiki/OrchestrationEngine

[70] BonFIRE. http://www.bonfire-project.eu/

[71] Omni. http://trac.gpolab.bbn.com/gcf/wiki/Omni

[72] OFELIA project: http://www.fp7-ofelia.eu/

[73] SFAwrap: http://sfawrap.info/

[74] AMSoil. https://github.com/fp7-ofelia/AMsoil

[75] SFA Test Suite. https://github.com/planetlab/sfa/tree/master/tests

[76] OMF Protocol Interactions.
http://mytestbed.net/projects/omf/wiki/ArchitecturalFoundation2Protocollnteractions

[77] NEPI Installation Guide. http://nepihome.org/wiki/InstallationGuide

[78] ProtoGenie. http://www.protogenie.com/

[79] Extensible Messaging and Presence Protocol (XMPP).
http://en.wikipedia.org/wiki/XMPP

[80] RSpec. http://www.protogeni.net/ProtoGeni/wiki/RSpec

[81] Representational State Transfer REST.
http://en.wikipedia.org/wiki/Representational_state transfer

[82] Protogeni Credentials.
http://www.protogeni.net/wiki/Credentials?searchterm=privilege

[83] A. Leivadeas, C. Papagianni, E. Paraskevas, G. Androulidakis, S. Papavassiliou, “An
Architecture for Virtual Network Embedding in Wireless Systems”, IEEE First Symposium
on Network Cloud Computing and Applications (IEEE NCCA 2011), Toulouse, France,
November 2011.

[84] SFA Application Programming Interface.
http://groups.geni.net/geni/wiki/GAPI_AM_ API_V2 DETAILS

[85] OMF 6.
https://omf.mytestbed.net/projects/omf/wiki/ArchitecturalFoundation2Protocollnterac

tions
[86] OMF Architectural Foundation.
https://mytestbed.net/projects/omf/wiki/Architectural Foundation

[87] FITTeagle T1 interface specification. http://trac.panlab.net/trac/wiki
[88] BonFIRE Architecture. http://doc.bonfire-project.eu/R3/reference/bonfire-
architecture.html

[89] ORCA Control Framework. https://geni-orca.renci.org

[90] Open Cloud Computing Interface OCCI. http://occi-wg.org/
[91] OMF Experiment Controller. http://omf.mytestbed.net
[92] OpenFire XMPP Server. http://www.igniterealtime.org/projects/openfire/

[93] NS-3 Network Simulator. http://www.nsnam.org/overview/what-is-ns-3/

[94] NEPI’'s Network Experiment Frontend. http://nepi.pl.sophia.inria.fr/wiki/nef

[95] PlanetLab API. https://www.planet-lab.org/doc/plcapitut

[96] OMF Application Proxy. http://mytestbed.net/doc/omf/file. APPLICATION PROXY.html
[97] OMF Resource Proxy. http://mytestbed.net/doc/omf/file. RESOURCE PROXY.html

[98] Jabber / XMPP instant messaging server elabberd. http://www.ejabberd.im/

[99] Business Process Model and Notation.
http://en.wikipedia.org/wiki/Business Process Model and Notation

2
e 128 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R OGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

[100] Business Process Execution Language.
http://en.wikipedia.org/wiki/Business Process Execution_Language
[101] Activiti BPM Platform. http://www.activiti.org
[102] Flexible Busienss Process Management Suite jBPM. http://www.jboss.org/jbpm

[103]Apache Orchestration Director Engine ODE. http://ode.apache.org

[104]Java-based Enterprise Service Bus OpenESB. http://www.open-esb.net

[105]Wahle, S., Tranoris, C., Denazis, S., Gavras, A., Koutsopoulos, K., Magedanz, T., &
Tompros, S. . (2011). Emerging Testing Trends and the Panlab Enabling Infrastructure.
IEEE Communications Magazine, 49(March), 167-175.

[106] Tranoris C., Denazis S. . (2010). Federation Computing: A pragmatic approach for the
Future Internet», 6th IEEEInternational Conference on Network and Service
Management, October 25-29, Niagara Falls, Canada.

[107] Omni. http://trac.gpolab.bbn.com/gcf/wiki/Omni

[108] Wikipedia Editing Policy. http://en.wikipedia.org/wiki/Wikipedia:Editing policy

[109] SFI Tutorial. http:// www.cs.princeton.edu/~jrex/gew/gew-sfi.ppt

e 129 of 151 [
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Appendix A: Development status of MySlice API

For the MySlice API, we adopted an object-oriented model, which has been proven to be general
enough to accommodate for the need of the different interconnected platforms so far. A user will
typically handle a collection, i.e. a set of objects. As shown in Figure 33 an object consists of a
class (a type like slice, resource, traceroute, etc.), one or more fields, among which a key will
uniquely identify the object instance, and zero or more methods. A property will eventually
consist of a sub-collection (e.g. a slice holds a set of associated resources, a traceroute holds a set
of hops, etc.).

Action method filters params fields ts callback
CREATE V) o]
GET Q o V) (V] !
UPDATE o o V] V] !
DELETE o © !
EXECUTE o o (V) o i

Figure 33: Development Status of MySlice API

Field consists of a name, a type/class, a flag to determine whether it is an array, a read-only or
read-write flag, and a description.

Filters (the selection operator, or WHERE) consists of a clause of predicates. A predicate is a (key,
operator, value) triplet, and a clause is a logical expression made from AND and OR operations
separating clauses. Filters will allow us to build a collection.

Fields (the projection operator, or SELECT) enumerates a set of fields that allow to limit the scope
of the objects being manipulated.

Params denotes a set of (key,value) pairs that can be used in queries (e.g. for updating fields is
possible).

Timestamp (ts) and callback elements are optional and respectively allow to specify a time range
for a query (timestamp, interval, keywords), as well as a return channel (for long, asynchronous,

periodic or large queries, or to schedule notification of some events).

Description of Actions using Python notation:

Get

Syntax:
Get(object, timestamp, filters, fields, callback)

2
R 130 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Functionality:
Returns the values of an object
Objects as defined by SFA: users, resources, authorities, slices

Parameters:

object: string

timestamp

filters: table of tables [[‘field’, ‘operator’, ‘value’]]
fields: table of strings

callback: function

Returns:
List of associative arrays

Syntax:
Update(object, filters, params, fields, callback)

Functionality:
Updates an object
Objects as defined by SFA: users, resources, authorities, slices

Parameters:

object: string

filters: table of tables [[‘field’, ‘operator’, ‘value’]]
params: table

fields: table of strings

callback: function

Returns:
List of associative arrays

Syntax:

Create(object, params, callback)

A 131 of 151

FEDAFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Functionality:
Creates an object
Objects as defined by SFA: users, resources, authorities, slices

Parameters:
object: string
params: table
callback: function

Returns:
List of associative arrays

Syntax:

Delete(object, filters, callback)

Functionality:

Deletes an object

Objects as defined by SFA: users, resources, authorities, slices

Parameters:

object: string

filters: table of tables [[‘field’, ‘operator’, ‘value’]]
callback: function

Returns:
List of associative arrays

Syntax:
Execute(object, filters, params, callback)

Functionality:
Executes methods of an object
Objects as defined by SFA: users, resources, authorities, slices

A 132 of 151

FEDAFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Execute

Parameters:

object: string

filters: table of tables [[‘field’, ‘operator’, ‘value’]]
params: table

callback: function

Returns:
List of associative arrays

Data Formats
Data formats used in the APl such as filters or fields have to match the metadata provided by
testbeds as properties.

As gateways will receive and process queries, they need to inform the upper layers about the
functionality they realize by providing corresponding metadata. In other words, such metadata
will give the minimum information about the part of the semantic schema they support, so that it
can be efficiently used to route information correctly between platforms.

Such metadata will consist of the list of objects that are supported together with their properties
and methods, a set of properties that can uniquely identify the object (keys), information
indicating whether the property can be updated or is read-only, as well as some basic operators
that can be applied to the data (and related to the relational algebra): sorting, windowing,
grouping, etc

More detailed information can be obtained from MySlice’s Developer Website [22]. An example
for auto-generated documentation about metadata as discussed above can be obtained here [23].

% 133 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Appendix B: Further Specifications for SFAWrap Registry API
Methods

Syntax:
struct GetVersion([optional: struct options])

Functionality:

Get static version and configuration information about this Registry. Return includes:
* The version of the Registry APl supported
* The root authority HRN of the this Registry
* The URL's of the peers root authorities

Parameters:
options: Optional

Returns:
a struct where the value member is Version Information

Syntax:

string Register(string caller_credentials[], struct object)

Functionality:
Registers an object (Authority, User, Slice) with the registry

Parameters:
¢ caller_credentials: The caller credentials
* object: struct containing the object fields

Returns:
GID string representation

Syntax:

int Update (string caller_credentials[], struct object)

A 134 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R A ORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Functionality:
Updates an object (Authority, User, Slice) in the registry

Parameters:
¢ caller_credentials: The caller credentials

* object: struct containing the object updated fields

Returns:
‘1’ if successful, faults otherwise

Syntax:

int Remove(string caller_credentials[], string object_type, string object_xrn)

Functionality:
Removes an object (Authority, User, Slice) from the registry

Parameters:
¢ caller_credentials: The caller credentials
* object_type: Type of the object to remove
* object_xrn: The XRN of the object to remove

Returns:

‘1’ if successful, faults otherwise

Syntax:
struct Resolve(string object_xrn, string caller_credentials[])

Functionality:
Used to learn the detailed information bound to a Registry object (Authority, User, Slice)

Parameters:
* object_xrn: The XRN (hrn or urn) of the object
¢ caller_credentials: The caller credentials

Returns:
a list of record dictionaries or empty list

b 4
e 135 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Syntax:
struct List(string authority_xrn, string caller_credentials[])

Functionality:
Lists the set of Registry objects (Authority, User, Slice) managed by the named Authority

Parameters:
¢ authority_xrn: The XRN (hrn or urn) of the authority to list
¢ caller_credentials: The caller credentials

Returns:
a list of record’s HRN attached to that authority

Syntax:

string GetSelfCredential(string caller_cert, string object_xrn, string object_type)

Functionality:
a degenerate version of GetCredential used by the client to get his initial credential when he doesn’t
have one.

Parameters:
¢ caller_cert: Certificate of the caller
* object_xrn: The XRN (hrn or urn) of the object
* object_type: Type of the object (Authority, Slice, User)

Returns:
the string representation of a credential object

Syntax:
string GetCredential(string object_xrn, string caller_credentials[], string object_type)

Functionality:
Retrieves the credentials corresponding to the named object (Authority, User, Slice)

A 136 of 151

FED4AFIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Parameters:
* object_xrn: The XRN (hrn or urn) of the object
¢ caller_credentials: The caller credentials

* object_type: Type of the object (Authority, Slice, User)

Returns:
the string representation of a credential object

CreateGid

Syntax:
string CreateGid(string cert_owner_xrn, string caller_cert, string caller_credentials[])

Functionality:
Creates a signed certificate for the object with the registry

Parameters:
* cert_owner_xrn: The XRN of the certificate owner
¢ caller_cert: Certificate of the caller

¢ caller_credentials: The caller credentials

Returns:
GID string representation

2
e 137 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013

S —
SEVENTH FRAMEWORK

PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Appendix C: Further AMSoil specifications and examples
This section explains in detail the specifications of the AMSoil tool, described in section 3.6.3 as
well as an example to further clarify its structure and functionalities.

In Figure 34 we describe the scenario for a DHCP example.

developer code base code
. de 3 X
Communication APY leaws DHCPATlocation i DHCPAllocationData
relies on /‘ﬂrn\rm derives / uses detives / uses
|
RSpec3 extension . : .
Interface yilementation AllocationBase AllocationData

Figure 34: DHCP example

In that scheme we can see the base code, highlighted in grey, while the code implemented by the
developer is highlighted in blue.
e The communication API provides an API Interface for clients.
e AllocationBase
O Provides a base implementation for common tasks.
o Implements / delegates persistence of basic data for allocation.
o Does not assume any specification/communication protocols.
® Resource-specific implementations provide additional logic.
e Extensions provide standardized interfaces for optional, resource-specific logic.
O At least one specification protocol is needed for instantiating an
allocation.

The identification and authentication is implemented by the communication APl. The AM
developer is responsible for authorization and policy management. The communication API is

already implemented in the base class, while the implementation of the policy manager is the
responsibility of the developer.

Communication API DHCPAllocation
authorize /
S identify / authenticate) g apply policies)

Figure 35: AMsoil — Relationship between Communication API and Policy Management

For additionally required implementations the AMsoil component delivers a series of base classes
that the developer should extend in order to adapt it to its needs.

2
R 138 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 seve \FORK

H FRAME!
PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Specifications for AMsoil
Most core and custom functions of AMsoil are encapsulated in plugins. Each plugin may provide
services, which encapsulate the actual functionality. A plugin consists of the following three
things:

® A MANIFEST.json file, specifying the services and dependencies of the plugin

® A plugin.py file which contains a setup() method for initialization and registering services

® The actual implementation of the plugin

Example for a MANIFEST.json:
{

"name" : "RPC Registry",

"author" : "Tom Rothe",

"author-email" : "tom.rothe@eict.de",
"version" : 1,

"implements" : ["rpcserver", "xmlrpc"],
"loads-after" : ["config"],

"requires" : []

In order to use a plugin, the name of the required service must be added in the manifest file. If
the setup method (or an import in the plugin module) requires the service loads-after must be used.
Or if the plugin does only need the service after initialization then requires is used. After that, a

reference to the service must be got and methods which are published must be called:

import amsoil.core.pluginmanager as pm
xmlrpc = pm.getService ('xmlrpc')
xmlrpc.registerXMLRPC ('geni2', GENIV2RPC(), '/RPC2')

It is noted, that methods which can be used from a plugin are usually marked with the decorator
@serviceinterface.

Consider the following example of a plugin implementation:

class FlaskXMLRPC (object) :

@serviceinterface

def registerXMLRPC(self, unique service name, instance,
endpoint) :

Which has been registered in the plugin under the name xmlrpc:

import amsoil.core.pluginmanager as pm
xmlrpc = FlaskXMLRPC (flaskserver)
pm.registerService ('xmlrpc', xmlrpc)

2
R 139 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

While writing plugins for the AMsoil, the tool developer may bind (registerService(...)) basically
everything to a service name. This may be an object, class, dictionary or even a module. So create
a new folder in plugins, create the manifest (be sure to put all services to be implemented in the
implements section), plugin.py and the implementation. Then all that is needed is to call is
registerService(...) in setup method and annotate the things wanted to be used with @serviceinterface.

4
%o 140 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Appendix D: Use case: introducing support for the OMF messaging
system in the PlanetLab Europe testbed

In this appendix previous efforts are described that resulted in the introduction of support for the
OMF messaging system in the PlanetLab Europe testbed. In this example the current stable
version 5.4 of OMF was applied, with the final goal of supporting the OMF messaging system
being to allow the control of PlanetLab resources using the OMF EC.

PlanetLab testbeds consist in providing bare resources as virtual machines, and in leaving
experiment control to third-party tools. The control and management software for PlanetLab is
called MyPLC.

As explained before the OMF PubSub system enables the communication between the EC (user
front-end) and RCs (Resource Controller). This results in four sets of requirements, in order to
make a PlanetLab deployment accessible to an EC:
* the MyPLC software must be able to create and maintain the topics that
correspond to the various entities in the system, and namely nodes, and slices;
¢ for this to be possible at all, there is a need for an XMPP-server to run alongside
the MyPLC;
* there is a need for an instance of the RC to be present in the virtual machines
(named slivers in PlanetLab) that might be controlled through the EC;
¢ finally, there is a need to assess, and if necessary provide, security mechanisms so

that only entitled persons can take control of any given sliver.

Maintaining topics :

It is beneficial to keep the interactions between MyPLC and XMPP as clean as possible, notably
because XMPP, being deeply asynchronous, often leads to convoluted programming techniques.
For that reason it was decided to run a separate service, which comes with the MyPLC software -
and that behaves as a proxy between the MyPLC infrastructure and its related XMPP server. This
service offers an XML-RPC interface to the MyPLC side, and in turn issues the relevant XMPP
commands to the PubSub server.

Running an XMPP server and MyPLC configuration :

There is no strong nor compelling reason for having as many XMPP servers as there are testbeds;
as a matter of fact it is quite doable — and occasionally the system has been used this way during
the early stages — to have a single XMPP server host all the topics that belong in several testbeds.
However, this obviously is not a very scalable approach, and our general recommendation is to
have each testbed operations role out their own XMPP server, that can then peer together much
like SMTP servers would.

This does not have a significant impact on the MyPLC software itself, since it is quite possible to
deploy any standard XMPP implementation - provided that it supports topics for group

% 141 of 151 s

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

communication. This support of topics now tends to be the norm but it was not the case a couple
of years ago, so the use of a recent release is highly recommended.
PlanetLab experimented with 2 major implementations:

* ejabberd is an implementation written in erlang. For PlanetLab there was not any
particular issue while using ejabberd, but contacts at NICTA, who run their own OMF-
based testbed, have reported issues when scaling up with the number of messages;

* this is the reason why Planetlab eventually opted for openfire, which is a java
implementation that currently runs under xmpp.planet-lab.eu, the XMPP server that is
used as a companion to PlanetlLab Europe.

Deploying RCs:
The whole point in deploying XMPP is to have the EC send messages to the resources to be

controlled, in the PlanetLab case virtual machines, or slivers.

For the whole communication scheme to be completed though, it is also needed to ensure that
messages will correctly reach their destination. This destination is an instance of a RC on the
target slivers.

As a general rule, the PlanetLab software tries very hard to not interfere with the running slivers,
but this was considered a valuable exception where the infrastructure could fruitfully implement
additional services, that is to say, take care of pre-installing and pre-configuring a working
instance of the RC, so that experimenters do not have to worry about anything and can use the EC
right away after having created their slivers using the MyPLC API. All this is done only when
explicitly requested so at slice-creation time, so that only users who want the RC service will have
it running on their slivers.

In terms of the installed software, ruby code as published by OMF is used, it is only re-packaged
for convenience. Service configuration is performed by a dedicated plugin to the regular
PlanetLab node manager, that is completely straightforward as it is essentially a matter of
exposing the address of the XMPP SERVER, as configured in PLC OMF XMPP SERVER, to the RC
configuration file.

Communication Security:

The way the OMF EC was usually deployed was to be run from inside the OMF “gateway”. This
gateway is a simple yet effective way to implement security, in the sense that users receiving an
account would essentially get a login account on this gateway, which then allows them to access
the real OMF resources, that otherwise have no general Internet connectivity. All this had lead to
the fact that, in a purely OMF context, there was no need to implement any security mechanism
in the XMPP exchanging mechanism, because essentially people in position to use the XMPP
service at all had already been authenticated.
For PL characteristics this assumption does not hold anymore, and PL had to come up with the
following scheme for making the system secure:
* The native XMPP authentication scheme was considered, but rejected for PL needs,
because it is both weak and adds extra complexity;
* rather, it was decided to perform an end-to-end encryption, based on ssh keys because
they are already present in the PlanetLab authentication scheme;

e 142 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* changes had been made to the PlanetLab software, so that the authenticated keys for
each sliver become visible from the sliver itself; they were not, and it turns out this was a
very welcome feature for people who did not care about OMF as well. This way the RC
can make sure that the incoming message truly has been signed with a private key that
matches those of the people entitled to use the sliver;

* and, the other way around, since a resource may have to send messages back to the EC,
each sliver that is “OMF-friendly” generates its own keypair, and exposes the
corresponding public key through the PLCAPI method GetSliceSshKeys2 , so the EC can
also check the authenticity of messages coming back from resources.

) 143 of 151 i
SEVENTH FRAMEWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Appendix E: Further NEPI specifications and examples

This section first explains the message syntax for the federated resource control protocol (FRCP).
For the experiment control engine, the methods to support the new design and architecture are
listed in section 3.7.5.

The content of a message is described in an XML format with the following convention.
<MSG_NAME xmlns="http://schema.mytestbed.net/omf/X.Y/protocol"
msg_id= ID>

</MSG_NAME>

with:
* X.Y =the version of the protocol

* MSG_NAME = the name of message, either "create", "configure", "request"”, "inform", or
"release"

* ID = a globally unique ID for this message

The element may then have child elements, which further describe various message properties
specific to the message type. We define two different ways to declare the value of a message
property. The simple version provides the value as a text element with an optional 'type' attribute

if the value is not of type 'xsd:string'.
<MSG_NAME ... >
<PROP_ NAME type="TYPE">VALUE</PROP NAME>

</MSG_NAME>

The more descriptive way employs a list of child elements to describe the property in more
details. Basic elements are 'type' and 'value', but can also include 'unit', 'precision’, or 'min-value',
'max-value' if the property is used a constraint in a 'request' message.

<MSG_NAME ... >
<PROP_NAME>
<type>TYPE</type>

<value>VALUE</value>
</PROP_NAME>

</MSG_NAME>
The specific parameters/child elements are described below for each message type.
In addition to these specific parameter/child elements, a message may also carry an optional

'guard' element, which carries constraint information. When a such a guard element is present, an
entity will only act on a received message if it satisfies the described constraints.

Create Message

%o 144 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

A create message is sent to a resource to ask it to create another resource. The creator is referred
to as the parent (P) and the newly created resource as the child (C). This message may contain
optional pairs of (key, value), if so then the created resource C should have its property key to the
given value.

Parameters
* resource_type = the type of child resource to create, valid existing type could be queried
from the parent resource or discovered out-of-band
¢ (k, v) = the key for the property 'k' to set for the child resource and the associated value
'v' to use

Behaviour

1. Upon receiving a create message, the resource P must decide if it will create the
requested child resource. This decision may requires P to check if it is technical capable of
creating the type of resource requested, and/or it its governing policy allows it to do so.

2. If P decides to create C, then P must select a globally unique ID for C, map this globally
unique ID to a new topic address (using the previously described mapping convention),
and create that respective topic in the pubsub system

3. P must then allocate the new resource C, depending on C's type this could involve tasks
such as starting up a new VM, starting up a new application, activating a device/interface.
Our proposed architecture does not provide any guarantee on this allocation process, i.e.
it could take an arbitrary duration, it could fail for x reasons, etc... However nothing
prevents institutions providing resources to offer such kind of guarantees

4. P must publish an inform message to its own topic to provide feedbacks on the creation

request. The inform message must have the following parameters:

context_id = the ID of the original create message related to this inform message
inform_type = the type of inform message, either "CREATION_OK" or "CREATION_FAILED"
resource_id = the globally unique ID of the newly created resource C

© N o w

resource_topic = the topic address of the newly created resource C

Example for creating a virtual machine:
<create xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
message id="1lab3f0">
<resource_ type>virtual machine</resource type>
<property key="vm_ type">xen</property>
<property key="os" type="string">ubuntu-
11.10</property>
<property>
<key>memory</key>
<type>fixnum</type>
<value>2</value>
<unit>GB</unit>
</property>
</create>

%o 145 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

<inform xmlns="http://omf.mytestbed.net/omf/6.0/protocol"
message 1id="27ab23">

<context id>lab3f0</context id>

<inform type>CREATION OK</inform type>

<resource_id>foo</resource_ id>

<resource_ address type="xmpp">foolbar</resource address>
</inform>

Starting an application

<publish node='vml'>
<create xmlns=http://schema.mytestbed.net/omf/6.0/protocol
message 1d="962acb">
<resource_type>application</resource_type>
<property key="path">/bin/ls</property>
<property key="option">-la</property>
</create>
</publish>

Configure Message

A configure message is sent to a resource to ask it to set some of its properties to some given

values.

Parameters:

¢ (k1, v1) = the key for the 1st property to set and the associated value to use

¢ (ki, vi) = the key for the i-th property to set and the associated value to use

Behaviour:

2
%o

FED4FIRE

Upon receiving a configure message, the resource should try to set its property named key to
the given value for each pair of (key, value) included in the message.
The resource must publish an inform message to its own topic (i.e. the topic derived from its
unique resource ID), which provides feedbacks on the configure request
* that inform message must have the following parameters:
o context_id = the ID of the original configure message related to this inform
message
inform_type = the type of inform message: "STATUS"
the list of properties to configure and their required values. Each item on that list
may be either a simple structure as:
* key =>name = the name of the property, e.g. k1
* value => value = the new value for this property
* oran optional extended structure as:
* key =>name = the name of the property, e.g. k1
* current =>value = the current value of the property
* target => value = the target value for the property, this is the value requested in the last
configure message which included this property

146 of 151

© Copyright FOKUS and other members of the Fed4FIRE consortium 2013 SEVENTH ERAMEWORK

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* msg => string = an optional text message giving additional information on the property or
its setting, e.g. success, error, ongonig, etc...

* progress => integer = an optional value from [0,100] indicating the progress of the
property setting (with 100 = completed)

Note about a resource's state:

* As described below, the current state of the resource is held in a specific property named
'state’

* This 'state' name is reserved and must not be used to identify any other properties of a
resource

* The state property could have the top-level values "ACTIVE" or "INACTIVE", or any
resource-specific values corresponding to resource-specific sub states, such as
"ACTIVE/RUNNING", "ACTIVE/PAUSED", etc...

Example:
<configure xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="37d76£f">
<property key="bitrate" type="string">512</property>
<property key="protocol" type="fixnum">UDP</property>
<property key="pkt size" type="string">1024</property>
</configure>
<configure xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="3a8lel0">
<property key="state" type="string">ACTIVE/PAUSED</property>
</configure>
<inform xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg id="2e6c38">
<context id>3a8lel0</context id>
<inform type>STATUS</inform type>
<property key="state" type="string">ACTIVE/PAUSED</property>
</inform>

Optional Extended Inform Format:
<inform xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_ id="2e6c38">
<context id>3a8lel0</context id>
<inform type>STATUS</inform type>
<property key="state" type="string">
<current>ACTIVE/RUNNING</current>
<target>ACTIVE/PAUSED</target>
<msg>switching state in progress</msg>
<progress>70</progress>
</property>
</inform>

Request Message:

4
%o 147 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* Arequest message is sent to a resource to ask it to publish some information about some
of its properties.
* Parameters:
* publish_to = an optional name of an additional topic address to which the reply
message should be published to
* k1 =the key for the 1st property for which information is requested

¢ ki =the key for the i-th property for which information is requested

Behaviour:

Upon receiving a request message, the resource should publish an inform message, which
provides information on the properties included in the request message

This inform message should be published to the resource's own topic (i.e. the topic derived from
its unique resource ID) by default.

If the publish_to parameter is set in the original request message, then the replying inform should
also be published to the topic address given in that parameter

That inform message must have the same format as the inform message published in reply to a
configure message.

- Example:
<request xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="eadafb">
<property key="bitrate" />
<property key="protocol" />
<property key="pkt size" />
</request>
<request xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="3432ea">
<publish to>foolbar</publish to>
<property key="state" />
</request>
<inform xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="£d3e77">
<context id>3432ea</context id>
<inform type>STATUS</message_ type>
<property key="state" type="string">ACTIVE</property>
</inform>

Release Message

A release message is sent to a resource to ask it to release (i.e. terminate) one of its resource
children.

- Parameters:

resource_id = the globally unique ID of the resource children to release

Behaviour:

4
%o 148 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

* Upon receiving a release message with the ID of one of its child, a resource must contact
that child and instruct it that it will be imminently released. This gives the opportunity for
the child resource to perform any cleanup tasks if required.

* Once the child is ready to be released, the parent resource must initiate the child's
termination and remove its corresponding pubsub topic.

* Once the child has been successfully released, the parents must publish an inform
message to its own topic to confirm the child's release

* that inform message must have the following parameters:

* context_id = the ID of the original release message related to this inform message

* inform_type = the type of inform message: "RELEASED"

* resource_id = the globally unique ID of the child resource which was released

o Important Note: Any children of the child resource currently being released must
all be released first! Thus once a resource receives a release instruction from its
parent, it must releases all of its own children resource before notifying its parent
that it is itself ready to be released.

Example, the following release message is sent to the pubsub topic of the parent of the resource
"foo":
<release xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="806a7e">
<resource_ id>foo resource</resource id>
</release>
<inform xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="5d5a46">
<context id>806a7e</context id>
<inform type>RELEASED</inform type>
<resource_ id>foo resource</resource id>
</inform>

Inform Message
An inform message is published by a resource wishing to provide some information about some of
its properties, or about some previous tasks that it was instructed to do.
Parameters:
* context_id = optional, if this inform message is a reply to another message, then this must
be set to the ID of that original message
* inform_type = the type of this inform message, either "CREATION_OK",
"CREATION_FAILED", "STATUS", "RELEASED", "ERROR" or "WARN"
* additional parameters depending on the type of this message
see above create message for parameters related to "CREATION_OK" or "CREATION_FAILED"
inform messages
see above configure message for parameters related to "STATUS" inform message
see above release message for parameters related to "RELEASED" inform message
"ERROR" and "WARN" are used for sending generic error or warning inform messages, for
example to report errors generated from application execution. Can use "reason" parameter to
provide some useful error/warning explanation.

%o 149 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

Behaviour:

* A resource may publish an inform message spontaneously to report about some of its
properties

* A resource must publish an inform message as a reply to previously received create,
configure, request, or release messages

* A resource must publish its inform message on the topic address mapped from its globally
unique ID. If this inform message is a reply to a previous message with a publish_to field set in
it, then a copy of this inform message must also be publish to the topic address specified in
that field.

Examples: see above examples for other message types

Optional Guard Element

All the messages described above may also include an optional 'guard' element. When present,
this element contains itself a Hash of properties and values (implemented as sub-elements similar
to the above configure message). When an entity receives a message with a guard element, it
must act on the message (according to the above described behaviours for each message) ONLY if
all of its properties mentioned in the guard element have the same values as the one mentioned
in the guard element.

Thus, if a guard element contains a Hash with two properties and their corresponding values
pl=vl and p2=v2, the message recipient will only act on the message if it has a p1 property of
value v1 and a p2 property of value v2. If not, it will discard the message.

Example of a Configure Message with a guard element:
<configure xmlns="http://schema.mytestbed.net/omf/6.0/protocol"
msg_id="37d76£f">
<property key="bitrate" type="integer">512</property>
<property key="protocol" type="string">UDP</property>
<property key="pkt size" type="integer">1024</property>
<guard>
<propery key='protocol' type='string'>UDP</property>
<propery key='state', type='string'>running</property>
</guard>
</configure>

Requirements for installing NEPl and OMF6 EC
To install OMF 6 in testbeds this is the dependencies the testbed should support:
* Ruby 1.9 to be installed on the hosts running the resource proxies and the experiment
loader
* OMF 6 requieres Ruby Gems
* For the XMPP-based Publish-and-Subscribe the recommended server is OpenFire (>3.7.1)

In the case of NEPI experiment controller, the dependencies below must be met on the system
prior to installing NEPI and its modules:

* NEPIrequires:

2
R 150 of 151

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 R CRAMME

FP7-1CT-318389/FOKUS/REPORT/PUBLIC/D5.1

- python>=2.6
- ipaddr>=2.1.5
* NETNS requires:
- Linux kernel >=2.6.36
- bridge-utils
- iproute
* NEF requires:
- libgt4 >=4.6.3
- python-qt4 >=4.7.3
* ns-3requires:
- python-dev

The installation of OMF 6 includes the OMF EC, therefore, fulfilling the ruby dependencies
described above is enough for running the experiment controller.

% 151 of 151 s
SEVENT EWORK

FED4FIRE © Copyright FOKUS and other members of the Fed4FIRE consortium 2013 PROGRAMME

