The

University
o Of
» Sheffield.

This is a repository copy of Increased reliability in SOA environments through
registry-based conformance testing of Web services.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10854/

Article:

Kourtesis, Dimitrios, Ramollari, Ervin, Dranidis, Dimitris et al. (1 more author) (2010)
Increased reliability in SOA environments through registry-based conformance testing of
Web services. Production Planning & Control: The Management of Operations. Special
Issue on Engagement in Collaborative Networks., 21 (2). pp. 130-144. ISSN 1366-5871

https://doi.org/10.1080/09537280903441922

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

The following paper is a post-print (final draft post-refereeing) of:

Kourtesis, D., Ramollari, E., Dranidis, D., & Pdakis, I. (2010). Increased Reliability in
SOA Environments through Registry-Based Conformafi@sting of Web Services.
Engagement in Collaborative Networks. Special Isauaternational Journal of Production
Planning & Control: The Management of OperationBRL) 21(2), 130-144

Publisher’s version is available at:

http://www.informaworld.com/smpp/content~content=839247

Increased Reliability in SOA Environments through Registry-Based
Conformance Testing of Web Services

D. Kourtesi$, E. Ramollari, D. Dranidi¢?, |. Paraskakis

! South East European Research Centre (SEERC), Rbs€entre of the University of
Sheffield and CITY College

24 Proxenou Koromila Str., 54622, Thessaloniki,egee

Tel: +30 2310 253477, Fax: +30 2310 234205,

Email: dkourtesis@seerc.grgrramollari@seerc.orgoaraskakis@seerc.org

2 Computer Science Department, CITY College, Intésnal Faculty of the University of
Sheffield

3 Leontos Sofou Str., 54626, Thessaloniki, Greece

Tel: +30 2310 528450, Fax: +30 2310 282384,

Email: dranidis@city.academic.gr

Abstract: Organisations wishing to engage in industrialawmdirative networks will typically seek
some guarantees concerning the reliability of thewspective partners before committing to
cooperation. Evaluating reliability can encompassgesal aspects, but one of the most crucial
things to consider from a cooperation perspecswehiether the software systems that support the
business processes of some collaborator actuafigMeeas expected. For organisations that rely
on a service-oriented computing infrastructures #rnhounts to checking whether the functionality
of the respective services is conformant to a givehnavioural specification. Today’s state of the
art lacks standardised methods for creating bebeaficpecifications of Web services, and also
lacks tools for automating the process of behagioconformance checking through testing. This
paper presents a concrete method for creating faspeifications of Web service behaviour and
utilising them within service registries for autamd testing of service implementations in order to
verify and certify their conformance.

Keywords: Web services, registry, behavioural conformatestjng

1. Introduction

Reliability is a fundamental prerequisite for e$itdbng effective cooperation among any two
entities. For this reason, organisations that wisbngage in industrial collaborative networks will
typically seek guarantees concerning the religbdittheir prospective partners before committing
to cooperation. In cases of collaborative networksere some organisation acts as a central
authority for coordination and brokerage, such agu®l Organisation Breeding Environments
(VBESs) (Camarinha-Matos and Afsarmanesh 2005)table of reliability evaluation for prospective
or existing members of the network can be part lid toordinator's overall management
responsibilities. By delegating the task of religpiassessment to an authoritative and accountable
entity, network members can be reassured as téetted of trustworthiness of their prospective
business partners in a consistent and transparemnen This function can promote the
establishment of a proper balance of trust level®ragy organisations in the network, which is
critical for the effectiveness of its operation @igla and Afsarmanesh 2007, Camarinha-Matos
2007).

Kourtesis, D., Ramollari, E., Dranidis, D., & Parakis, 1. (2010). Increased Reliability in SOA Enviments through
Registry-Based Conformance Testing of Web Servigaggagement in Collaborative Networks. Special Issue in
International Journal of Production Planning & Cootr The Management of Operations (JPPZ)(2), 130-144

Evaluating reliability can encompass several défeérperspectives and several layers of abstraction
which incorporate both business-focused and tecoigyefocused dimensions. However, under all
circumstances, one of the most crucial aspectensider from the perspective of cooperation and
interoperability is whether the software systemst thigpport the business processes of some
collaborator actually behave as expected. Expectsittoncerning the way in which the systems of
a prospective business partner should function anae for several different reasons.

Firstly, a business partner may be required to aomfto some specific industry standard that

prescribes a particular interaction protocol for fherties engaged in a business process. An
example could be conformance to information intengi@gadescription standards such as ebXML-
MSS (Message Service Specification), which prowededor-independent means for exchanging
messages among business information systems fasthydverticals (such as automotive or

finance) and cross-industry collaborations. Anotieample could be business process description
standards such as ebXML-BPSS (Business Procesdfi€uemn Schema) and RosettaNet PIP

(Partner Interface Process), which focus in praygdiompany-independent and generic definitions
of how business collaborations can be realisedrel@cally (e.g. stock replenishment).

Secondly, the software systems of a business pariag be required to adhere to some specific
behaviour as explicated in a service provision i@mt The contract can represent an agreement
over functional or non-functional aspects of sezvilelivery which is binding for the interactions of
the business partner with a specific member ohttevork, or with every member of the network.
The contract may have resulted from a bilaterabtiajon among the partner and some network
peer (i.e. a member or the coordinator of the bollative network), or may represent a public
statement and commitment on behalf of the partarcerning the way in which services are to be
delivered, as a means to promote interoperability.

Moreover, expectations concerning the behavioua biisiness partner’'s systems may arise as the
result of various imperatives for compliance widgard to legal, fiscal or trading standards and
regulations. The policy compliance and IT managdnigarature features an abundance of
standards that could serve as examples. Relevampliemce guidelines that affect enterprise IT
include laws on the protection of personal inforiorat(e.g. US Personal Data Privacy & Security
Act of 2005) which define standards in businesstmas to ensure data privacy and security, or
legislations like Sarbanes-Oxley Act (SOX) and E8f@X which define rules that affect the
management of electronic records.

For collaborative network infrastructures basedd@ervice-Oriented Architecture and Web service

technology standards, the task of verifying that shftware systems of some collaborator operate
as expected requires testing that the functionafithe respective Web services is conformant to a
given behavioural specification. A proof of confante among these two would constitute a

measurable trust element (Msanjila and Afsarmar&vb) towards facts-based assessment of
trust levels for organisations participating inetwork. For functional conformance checking to be

possible, two requirements are set:

e A method is required for creating platform-indepemd specifications of Web service
functionality. The method should be expressive ghaio allow representing the behaviour
of non-trivial Web services that fulfil arbitrarilgomplex business processes and may
therefore need to be conversational and statefatebver, the method should be formal, so
as to allow generating exhaustive test cases tlifites for proving whether a Web service
implementation is functionally equivalent to itspective specification, or not.

e Tool support is required for exploiting the behawal specifications created with the
abovementioned method, in order to generate tesiscand perform the actual tests against
deployed Web services. The tools should be advaeoedigh to allow automating the

procedures of test case generation and functi@séing to the greatest extent possible. By
integrating such tools in the infrastructure of hawitative entities within collaborative
networks such as coordinators and brokers, effecive efficient reliability evaluation
could be made possible.

Despite the existence of several standards arouglnl 8&rvice technologies, a standardised method
for creating formal behavioural specifications oheersational and stateful Web services has yet
failed to emerge. A number of individual approacthese been proposed in the literature for
modelling the behaviour of such services in a weat tvould allow generating test cases, but none
of them provides guarantees for completeness anldeiog able to verify functional equivalence.
In the absence of a suitable method, today’s sthtee art also lacks appropriate tool support for
automating the process of behavioural conformaneefication through testing. Today’s
commercial solutions for Web service testing andfication are primarily manual and demand a
significant investment of resources on behalf ef tisster. For several application areas, this ean b
an important barrier to adoption.

In this paper we present a concrete approachgtatried at overcoming these deficiencies. First of
all, we propose the use of Stream X-machines (Lekyc®93, Holcombe and Ipate 1998) as a
formal modelling method for constructing behaviduspecifications of complex Web services
which are stateful and conversational. Apart friihi@ir expressive power, a significant advantage
of Stream X-machines (SXMs) compared to other féismes for modelling of external system
behaviour is in their associated method for teseageneration and verification. The sequences of
test cases that can be generated from a SXM maaebe proven to be exhaustive and able to
reveal all inconsistencies between a given spetiio and an implementation under test (Dranidis
et al. 2007). Another major advantage of using SXdtsNeb service behaviour verification is the
availability of a comprehensive suite of tools fmwutomated generation of test cases and their
execution on deployed Web services.

On the grounds of the availability of this maturethod and supporting tool suite, we put forward
an approach for augmenting the management infrasteiof authoritative entities in collaborative
networks, such as brokers and coordinators in ®lir@rganisation Breeding Environments. We
propose to extend the functionality of Web serviegistries that are part of the management
infrastructure of such entities, with capabilities functional testing and behavioural verification.

We envisage the development of enhanced Web semgstries that are able to process a Web
service’s SXM behavioural specification at the tioighe service’s publication, generate test cases
from the model, execute the tests, and based orefiponses of the service evaluate whether it is
functionally equivalent to the associated spediiicga in order to provide certification. Successful
certification, as a result of successful conforneamerification of service-based systems against
their specifications, is perceived as an objeatneasure and indicator of credibility for the seevic
provisioning organisation, and as such, constitategep towards building relationships of trust
within a collaborative network. Beyond the aboves ®nvisage an approach that also promotes
efficiency after the phases of certification andd/éervice discovery, during service selection. The
SXM specification and the generated test casedaatege used not only for verification at the
registry’s side, but also for validation at the respor's side. Specifically, the tool suite that
supports the approach presented in this paperenabtvice requestors to “simulate” the behaviour
of a Web service and evaluate its usefulness withealty testing it, but rather, by executing the
test cases generated earlier by the registry dgdiesservice’s SXM specification and inspecting
the outputs that are generated by the model, @sdegicated SXM animator tool.

This paper represents an extension to our recerk aoreported in (Kourtesis et al. 2008), and is
organised as follows. Section 2 discusses relam#t wm the domain of model-based Web service

testing and verification. Section 3 provides anrewsv of the Stream X-machine modelling
formalism that is the basis of our approach. Sact#oprovides a detailed walkthrough of our
proposed method for Web service behaviour modeklling testing using a case study from the
domain of manufacturing supply networks. Sectigorévides an overview of the whole approach
for registry-based testing, verification and ceéifion of Web services, presenting the approach
from the perspectives of the provider, the registng the requestor, and emphasising on their
associated activities. Section 6 concludes thergapsummarising the main points of the presented
work and outlining objectives for future research.

2. Related Work

A number of approaches have been proposed in rgeand for the verification of Web services by
employing model-based testing. In (Sinha and ParadR06) a method is proposed for annotating
a WSDL document with concepts from an OWL ontologgpresenting inputs, outputs,
preconditions and effects, and automatically tratingl the resulting WSDL-S specification into a
semantically-equivalent extended Finite State Maeh{EFSM) model. A set of manual or
automated techniques for generating test cased lmas¢he EFSM model is also provided. The
techniques vary in terms of adequacy criteria, aye and completeness.

The use of an EFSM modelling formalism for desagpihe dynamic behaviour of a Web service is
also proposed in (Keum et al. 2006), where a mamaaledure is suggested for deriving the EFSM
model from a WSDL description. The proposed EFSMiehas an FSM extended with memory,
predicate conditions and computing blocks for stiegtesitions. With proper tool support the EFSM
model can be used for automatically generating Bézhice test cases with increased test coverage
that includes both control flow and data flow. Tégthors provide experimental results showing
that their method has the potential to find moneltfacompared to other methods, but notably
without completeness guarantees.

The number of research works proposing the incatpmr of Web service model-based testing and
verification functionality in service registries mther limited. The addition of a lightweight

verification mechanism to UDDI service registrieasifirst proposed in (Tsai et al. 2003). The key
idea was to attach so-called “test scripts” to Welvice specifications for both service registry and
service consumers to use. Before publishing aserdvertisement at the service registry or before
consuming a service the associated test scriptsl dmubised to test the actual service and verify its
behaviour. The proposed approach is very abstradtdmes not prescribe the use of a specific
formal or informal method of representing servieddviour, nor one for generating the test scripts.

In (Bertolino et al. 2005) the authors proposeamigwork with an enhanced UDDI registry that
generates test cases for Web services, executes #m& monitors the interactions between the
service under test and other services already teegis with the framework in order to verify
conformance to the published specification. Emgh&splaced on verifying that a Web service is
interoperable with other registered services, deditamework is called an “audition framework” in
the sense that a Web service undergoes a montirtakbdefore being admitted. The authors suggest
that the behavioural service specification shoddekpressed as a UML 2.0 Protocol State Machine
(PSM) diagram that can be semi-automatically tramséd into a Symbolic Transition System
(STS) on which existing automated test generatiethods can be readily applied. The utilisation
of the proposed behavioural specification formalisfor matchmaking among service
advertisements and requests is left undefined.dv&y is assumed to be supported by the typical
means available in UDDI, i.e. keyword-based searchcategorisation.

In (Heckel and Mariani 2005) the authors propo$kigh-quality service discovery” approach that
incorporates automatic testing and verificatioMadb Services before allowing their registration to
the service registry. The authors propose Grapmsfoamation (GT) rules as the modelling
formalism to be used for constructing behaviouslige specifications. Conformance test cases
are to be automatically generated from the provisigecification and executed against the target
Web Service. If the test is successfully passezls#ivice can be registered. Apart from testing and
verification the GT-based service specifications ba also used for matchmaking among services
and service requests that have been also express&ll rules. The proposed approach does not
prescribe the use of UDDI or any other specificvieer registry specification as the technical
infrastructure to support the approach.

A significant drawback in the above model-basedfi¢ation approaches is that the test case
derivation methods they employ cannot guaranteeptaianess in testing of the Web service
implementations. In contrast, the Stream X-macheséng method on which our approach relies, is
proven to generate a complete set of test caseésc#mreveal all inconsistencies among an
implementation under test and an SXM specificaffpate and Holcombe 1997). Moreover, a
novel proposition in our approach is the use of ltkbavioural service specification by service
requestors to perform validation after discoveryrirdy the phase of service selection, through
model animation, or even through model checkindiddéion is an important utility for prospective

service consumers, since it can assist them ictsgethe most appropriate services from a list of
candidates, regardless of the matchmaking and disgonethod that was used to deliver this list.

3. Stream X-machines

Stream X-machines (SXMs) are a computational modphble of representing both the data and
the control of a system. SXMs are special instarafethe X-machines introduced in 1974 by
Samuel Eilenberg (Eilenberg 1974). They employ agdimmatic approach of modelling control
flow by extending the expressive power of finitatstmachines. In contrast to finite state machines,
SXMs are capable of modelling non-trivial data stowes by employing a memory attached to the
state machine. Moreover, transitions between staesot labelled with simple input symbols but
with processing functions. Processing functiongirexinput symbols and read memory values, and
produce output symbols while modifying memory valu&he benefit of adding the memory
construct is that state explosion is avoided aeditimber of states is reduced to those states which
are considered critical for the correct modellifigh® system’s abstract control structure. A divide
and-conquer approach to design allows the modklde some of the complexity in the transition
functions, which can be later exposed as simplévIS At the next level.

A Stream X-machine is defined as an 8-tupie/{ Q, M, @, F, qo, Mp) where:

e Y and/ is the input and output finite alphabet respetjive

¢ Qs the finite set of states;

e M is the (possibly) infinite set called memory;

e &, which is called the type of the machine SXM, fn#e set of partial functions (processing
functions)e that map an input and a memory state to an oatpdia new memory staig,:
2 XM — ' xM;

¢ F is the next state partial function that given destand a function from the type, provides
the next statel; : Qx® — Q (F is often described as a state transition diagram);

e goandmy are the initial state and memory respectively.

Apart from being formal as well as proven to posgbs computational power of Turing machines
(Holcombe and Ipate 1998), SXMs offer a highly efifee testing method for verifying the
conformance of a system’s implementation agairgpexification. Stream X-machine models can
be represented in XMDL (X-Machine Definition Langed, a special-purpose markup language
introduced in (Kapeti and Kefalas 2000) or in XMM@L-an object based extension of XMDL
introduced in (Dranidis et al. 2005). XMDL-O enablen easier and more readable specification of
Stream X-machines and it is the language that weausing in this paper. Additionally, a suite of
supporting tools (JSXM) has been developed (Drar2@i09) which can be used for the animation
of SXM models and model-based automated test gemera Specifications in JSXM have an
XML-based representation which facilitates natimeegration with Web technologies and related
XML-based Web service standards. In the remaintithi® paper we however utilise XMDL-O for
illustration, because it is less verbose than thdL>ased syntax and allows for easier
understanding by the reader.s

In order to model the behaviour of a Web servicagia Stream X-machine, the modeller must
perform data-level and behaviour-level analysis derive the appropriate SXM modelling
constructs. Parallels can be drawn between a gkadégb service and a Stream X-machine, since
they both accept inputs and produce outputs, whdeing from one internal state to another. SXM
inputs correspond to SOAP request messages, ouputspond to SOAP response messages, and
processing functions correspond to Web service adipgr invocations in specific contexts (an
operation invocation may map to more than one @®ing function). In addition, the modeller has
to define the memory structure, not only as a swibstfor internal state, but also to supply sample
test data that can become part of the generateddgaences. SXM-based modelling is applicable
in the context of complex conversational Web s@wiwhere the result obtained from invoking a
Web service operation depends not only on the coessrmput, but also on the internal state of
the service.

4. Case study: Manufacturing Supply Network

4.1 Web service description

In order to illustrate our formal modelling and comhance testing approach, we use an example
inspired from the domain of manufacturing supplyweeks, where a manufacturer orders new raw
materials from a supplier partner. To perform thisnsaction, the manufacturer’s production
scheduling system interacts with the supplier’s opecessing system which is made available as
a Web service. The transaction is performed in abanof steps and in accordance with a
conversation protocol. Th8upplyOrderWeb service consists of the following operationgin
logout , createOrder , cancelOrder , addltem , removeltem , getQuote , rejectOrder , and
confirmOrder , which can be called in sequences permissiblehbyconversation protocol. We
have selected on purpose a Web service with commdaviour and operating on complex data
repositories, in order to be closer to the kind$\ab services that are expected to be found in the
industry.

Before the manufacturing system can perform angmgit first has to be authenticated by invoking
thelogin operation, with a request message containing emase and a password. Tlgout
operation logs the manufacturer out of the system ands the temporarily-created session.
Normally, in accordance with theRUD (create-read-update-delete) lifecycle of data dbjete
manufacturer should be able to create a new oatef,read, update, or delete an existing order.
However, for simplicity, in this scenario we onlyodel the creation of a new empty order with the
createOrder ~ operation. The manufacturer can populate the nagwplg order by adding items

specifying their id and requested quantities, thiodige repetitive invocation of thadditem
operation. Order items can also be removed or tderocancelled altogether, after which the
manufacturer has to create a new order. ddutem operation is fulfilled without checking for
availability in the inventory, since this checkpsrformed in the end when the manufacturer is
ready to complete the supply order, by invoking gt@uote operation. TheetQuote operation
returns an order quotation (unless the order ist@mpsting the items that are ordered, their
availability and their prices. This gives the mau@irer the choice to proceed with the
confirmation of the order, even if it is partialyifilled (because some items are out of stock), or
alternatively reject the order. ThetQuote operation temporary locks the ordered items of the
requested (or available) quantities in the invgnteo that no other client simultaneously accessing
the system can order them until the current orsiepnfirmed or rejected. Upon confirmation of the
supply order, the item quantities that are fulflllare subtracted from the inventory and the
transaction ends.

4.2 Formal modelling with a SXM

The SupplyOrdetWeb service is a stateful service, since it maistaession state and the results of

operation invocations are dependent on previouscavons. Figure 1 depicts the associated finite
automaton of the SXM model created for BigpplyOrdenVeb service. It has to be noted that the

transitions on the diagram are not labelled by \8tvice operations but by processing functions of
the SXM. Although some of the operations, suchraateOrder, are modelled as single processing
functions, other operations, such as removeltera, modelled by more than one processing

functions that are triggered under different cands.

For example, inpubginRequest ~ may trigger either a transition that leads toithial state or a
transition that leads to thauthenticated state. Those two transitions have to be labelled b
unique processing functions, elgginFailed andloginOK . Similarly, inputgetQuoteRequest
triggers three different transitiongetQuoteEmpty , when none of the items in the order are
available;getQuotePartial when the items in the order are only partiallyilde (the client can
still proceed to confirming the order); apéetQuoteFulfilled , when all of the items in the order
are available and the order is completely fulfilldédthough the latter two transitions have the same
initial and final states, they have been modellepasately to be distinguished as different cases
during the test generation process.

addOrderLine

increaseItemQty
loginFailed
cancelOrder

' loginOK createOrder addOrderLine ' "
. authenticated ‘ empty_order - filling_order

logout cancelOrder removelastItem

removeOrderLine

decreaseItemQty

getQuoteEmpty

getQuotePartial
getQuoteF rejectOrder

pending_conf

confirmOrder

‘ order_placed '

Figure 1 — Associated finite automaton for SiwgplyOrdeMWeb service SXM model

In the following, XMDL-O (Dranidis et al. 2005) ceds used to illustrate parts of the specification,
while the full specification is provided in the Agpdix. The states and transitions of the
SupplyOrder Stream X-machine model are definedMDX-O as follows:

#states = {initial, authenticated, empty_order, fil ling_order, pending_conf, order_placed}.
#init_state {initial}.

#transition (initial, loginFailed) = initial.

#transition (initial, loginOK) = authenticated.

#transition (authenticated, logout) = initial.

#transition (authenticated,createOrder) = empty_ord er.
#transition (empty_order,cancelOrder) = authenticat ed.

The memory of the SXM model is structured as adfstiser accounts objects, a list of inventory
item objects, and a list of order item objects. Sehbsts are initialized to sample values, whiah ar
used only during the testing process. The memoryimitidl memory are defined in XMDL-O as
follows:

#class Account {
username; string,
password: string,

}.

#class Inventoryltem {
id: string,
qty_in_stock: naturalO,
qty_on_hold: naturalO,

#class Orderltem {
id: string,
gty_requested: naturalO,
gty_reserved: naturalO,

I3

#objects:
accountl: Account,
accounts: set_of Account,
inventorylteml: Inventoryltem,
inventoryltem2: Inventoryltem,
inventory: set_of Inventoryltem,
order: set_of Orderltem.

#init_values:
accountl.username <- "usrl”,
accountl.password <- "pwd1",
inventorylteml.id <- 1001,
inventorylteml.qty_in_stock <- 100,
inventoryltem1.gty_on_hold <- 0,
inventoryltem2.id <- 1002,
inventoryltem2.qty_in_stock <- 50,
inventoryltem2.qty_on_hold <- 0,
accounts <- {account1},
inventory <- {inventorylteml, inventoryltemz2},
order <- emptySet.

XMDL-O also supports structured inputs, which aretedmined through events and their
parameters. For example, a login request messaggrising of a username and password is
modelled as:

#event loginRequest(usr:string, pw:string).

The outputs are modelled as abstract messages find de enumerated type. In the SupplyOrder
example the outputs are:

#output (messages).

#type messages = {loginOk, loginFailed, loggedOut, orderCreated, orderCanceled, itemAdded,
itemQtylIncreased, itemRemoved, removeFailed, itemQt yDecreased, lastitemRemoved, quoteEmpty,
quotePartial, quoteFulfilled, orderRejected, orderC onfirmed}.

The type® of the Stream X-machine is the set of processimgtfons labelling transitions. Each
processing function receives input symbols andseaemory values, and produces output symbols
while modifying memory values. In XMDL-O the guacdnditions are defined in théclause,
while the memory updates in one or mopelateclauses.

One of the simplest processing functiongrisateOrder , which is simply triggered by an input
(createOrderRequest()) and produces an outputderCreated). There is no guard condition or
memory updates.

#fun createOrder(createOrderRequest())=
(orderCreated).

Processing functiorginOK receives a complex input comprising of a usernanta password.
The list operationselect(condition, list) returns those items in the list for which the
condition is satisfied. The results are used tem&ne whether a user account with the provided
username exists, and then the provided passwarohipared with the password of the found user
account. Although there are no memory updates,upud is produced, and a state transition is
triggered.

#fun loginOK(loginRequest(?usr,?pw))=
if not_isempty ?found and ?current_user.pw=?pw
then
(loginOk)
where
?found <- select (usr=?usr, accounts) and
?current_user <- head(?found).

An example of a significantly complex processingdtion isgetQuoteFulfilled , Which returns

an order quote to the Web service client, wherthalorder items of the requested quantities are
available. For testing purposes we model the ouligua simple messageudteFulfilled). The
guard condition triggering this processing functi®iighly complex, since it has to iterate through
all order items and check their availability in tim¥entory. A compound conjunction on all the
elements of the list is performed with the conjimtperation, which has the form:

conjunction (fn 2x => (condition, list

where?x is a variable that binds to elements of thelisgtandcondition is a Boolean expression
involving elemenpx.

10

In addition, processing functiagetQuoteFulfilled performs updates on the inventory as well as
on the order list. The quantities on hold are iasesl for each item in the inventory, and the
increase is also recorded for eautaeritem in the qty_reserved attribute. These updates are

specified in XMDL-O with the map list operation, whimaps a list of elements into another list
and returns the result. It has the form:

map (fn2x=> expression list

where?x is a variable that binds to elements of theligst The result of the mapping is a list of the
values of the expressions after variable substituivith the elements of the list. In the inventory
update, this mapping is conditional and f(?x) ubessyntax:

if condition then valuel else value2.

The complete XMDL-O code (with comments) f@tQuoteFulfilled is as follows:

#fun getQuoteFulfilled(getQuoteRequest())=
/*

if for each id in the order, the requested quanti ty is less than or equal to
the guantity in stock minus the quantity on hold
(ie. The product is available in the requested quantity)

*/
if conjunction (fn ?id =>
(?invline.qty_in_stock - ?invline.qty_on_hold > ?line.qty_requested
where
?line <- select(id="?id, order) and
?invline <- select(id="?id, inventory)

?’order_ids)
then
(quoteFulfilled)

update
/*
update the items in the inventory which are order ed;
increase quantity on hold by requested quantity
*/
inventory <- map
(fn ?invitem =>

(new Inventoryltem(?invitem.id, ?invitem.qty_in_ stock,
?invitem.qty_on_hold + ?increase)
where
?orditem <- head(select(id=?invitem.id,orders) and
?increase <- (if ?invitem.id belongs ?order_id S

then ?orditem.qty_requested else 0)

),

inventory)
and
/*

update the lines in the order; set the quantity r equested.
*/

order <- map

(fn orditem =>

(new Orderltem(?orditem.id, ?orditem.qgty_requ ested,

?orditem.qty_requested)
):
order)
where
?order_ids <- project(id, order).

For the complete specification of all processingchions, the reader can refer to the Appendix.

11

4.3 Test generation

The SXM testing method is a generalization of thenéthod (Chow 1978) and works on the basis
that both specification and implementation couldréeresented as Stream X-machines with the
same type F (i.e. both specification and implenteréehave the same processing functions), where
F satisfies two fundamental design for test coadgi (i) completeness with respect to memory —
all processing functions can be exercised fromraeynory value using appropriate inputs, and (ii)
output distinguishability — any two different preseng functions will produce different outputs if
applied on the same memory/input pair.

For our testing approach to be applicable, Web semperations must follow the request-response
message exchange pattern, i.e. they must retiespmmse message for every request message they
receive by the consumer. This makes it possibfalfib the condition for output distinguishability,

and also enables the testing engine to understémchyprocessing functions have been activated
during an execution path based on the respondée skrvice.

The first step for test generation is to constthettest set of input sequences by applying the W-
method on the associated finite state automataneo$XM, by considering processing functions as
simple inputs. The test s&t for the associated automaton consists of sequenicpsocessing
functions and is given by the formula:

X=S(o U o U .. U & U{e)W

whereW is a characterization se&$,a state cover of the associated finite automatodk is an
estimate of maximum path length between redundaates in the implementation. A
characterization set is a set of sequences of gsougfunctions for which any two distinct statés o
the machine are distinguishable and a state cewaiset of sequences of processing functions such
that all states are reachable from the initial est&tor example, th&V, S and @ sets in the
SupplyOrdeMWeb service example are:

W = {<loginOK>, <createOrder>, <addOrderLine>, <get QuoteFulfilled>, <confirmOrder>}

S = {<>, <loginOK>, <loginOK, createOrder>, <loginO K, createOrder, addOrderLine>, <loginOK,
createOrder, addOrderLine, getQuoteFulfilled>, <log inOK, createOrder, addOrderLine,
getQuoteFulfilled, cofirmOrder>

@ = {<loginOK>, <loginFailed>, <logout>, <createOrde r>, <cancelOrder>, <addOrderLine>,
<increaseltemQty>, <removeOrderLine>, <decreaseltem Qty>, <removeError>,
<removelLastOrderLine>, <getQuoteEmpty>, <getQuotePa rtial>, <getQuoteFulfilled>,

<rejectOrder>, <confirmOrder>}

For k=0, the resulting test set X3gso U { e)W. This test set consists of sequences of processing
functions, which have to be converted to sequendesbstract inputs. This is achieved by the
fundamental test function as described in (Holconabe Ipate 1998). For example, for the
sequence<loginOK, createOrder, addOrderLine, getQuoteFulfil led, confirmOrder> ,

the generated sequence of inputs is:

<loginRequest(“usrl”, “pwd1"), createOrderRequest() , addltemRequest(*1001”, 1),
getQuoteRequest(), confirmOrderRequest()>

Since the specification is not input-complete, smhthe sequences are not realizable, so that they
are left out.

12

For the XML-based representation of Stream X-maemodels the described test-set generation
process is automated by the JSXM tool (Dranidis 2008e tool can be used to animate models,

generate abstract XML test cases, and map theaabs#ist cases to JUnit test cases automatically.
We have also utilised various libraries (such asadhe WSDL2Java) to automatically generate

Java Web service client stubs that can invoke Wahice operations by calling the stubs’ Java

methods. Therefore, by running the generated Jidsit cases on the client stubs we actually
execute them on the Web services under test.

5. Overview of the Approach

The approach that we put forward in this paperégistry-based testing and certification of Web
services involves all three types of stakeholdersa iSOA environment, i.e. service providers,
service registries, and service requestors (cong)mAs depicted in figure 2, the role of each

stakeholder is associated with a number of aawitin brief, we propose that the behaviour of a
Web service should be formally modelled at the mlesside, in order to facilitate registry-side

verification at the time of service publication aredjuestor-side validation at the time of service
selection. In the following three sections we pnésen overview of the activities performed by each
stakeholder in the scheme.

Test set
generation

Service

Registry

o Discovery

o Publication
request

o o Testing

Certified and
candidates Verification

o Service validation
and selection

o Formal
. Bindin 7 specification
Service o 9 Service

Requester >

Provider

Figure 2 — Stakeholder roles and ordering of a¢isiin the proposed approach

5.1 Construction of Web service behavioural specification

The objective of the service provider at this stegeo construct a formal model reflecting the
behaviour of the service to be published (actidityn figure 2) using the Stream X-machine
(SXM) formalism as described in sections 3 andhe $XM model is encoded in XMDL-O (or
in the corresponding XML representation supportgd JSXM) and stored in an external

13

document that must be subsequently “linked” with #ervice’s WSDL document. The

association among the two document artefacts caestablished by employing the SAWSDL
(Semantic Annotations for WSDL) (Farrell and Lau2€®©7) specification and its mechanism
for annotating Web service descriptions with pasit® externally maintained semantically-rich
specifications. In order to indicate the assocmafietween the two documents, an SAWSDL
modelReference annotation pointing to the URL of &M specification document must be
placed within the wsdl:portType definition of thergice’s WSDL document.

The process of constructing an SXM model from a WSBscription can be automated to a
great extent by describing Web service inputs, dstgareconditions and effects (IOPE) using
Semantic Web technologies, and then pointing toetrs@snantic descriptions from within the
WSDL document through SAWSDL annotations. Web serMDPE can be described through a
combination of ontology language for representingrapon inputs and outputs, and rule
language for representing operation preconditiomksedfects as logical expressions.

The description of a method for representing Watvise inputs and outputs in an OWL-DL
ontology and pointing to them from within a WSDL datent via SAWSDL annotations is
provided in (Kourtesis and Paraskakis 2008). We lads@ developed a method for representing
preconditions and effects using RIF-PRD (Rule kttange Format - Production Rule Dialect)
in conjunction with OWL-DL, and utilise both for deéing a Stream X-machine behavioural
specification (Ramollari et al. 2009).

Modelling of IOPE semantics in the above manner l[dawt only assist in increasing the
automation of the SXM model construction processt tould also serve as a basis for
performing behaviourally-aware service matchmakioig high-precision retrieval of services,
thus extending the method and tools presentedoniti€sis and Paraskakis 2008b).

Nevertheless, regardless of the method used tdraehthe SXM specification, manual or semi-
automated one, as soon as the SXM model is condpbetd the WSDL document has been
semantically annotated, the provider must submitoitthe service registry for publication

(activity 2).

5.2 Generation of test cases, testing, and certification

The objective of the service registry at this stegto verify that the service implementation is
functionally conformant to its associated spectfar® and if this holds, provide a certification
for the service advertisement. All activities withthe service registry are automated, and their
ordering is as follows. Firstly, the registry preses the incoming SAWSDL description and
creates a service advertisement with a status oflipg certification. Secondly, the attached
SXM specification is used for deriving a completet ®f test cases that can reveal all
inconsistencies in the service implementation tovéefied (activity 3). Lastly, the executable
tests are run by the registry’s SOAP testing enging if the results are successful (i.e. if the
produced outputs match the expected ones) theceemdvertisement obtains certification status
(activity 4).

As already mentioned, an important advantage ofSik® testing method which serves as the
foundation of our approach is that it is guaranteedenerate a complete, finite set of test cases
that can reveal all inconsistencies among an SXMipation and an implementation under
test. This is an important criterion for entrustithg process of verification and certification to
the registry. The automated test generation is augg by the JSXM suite of tools (Dranidis
2009).

14

An additional advantage in our approach that reldte our technological framework is the
availability of an open source and standards-bad&b service registry (Kourtesis and
Paraskakis 2008b) which can be extended with chjedifor functional testing and behavioural
verification.

5.3 Validation and service selection

The next activity in the process is for the serviequestor to formulate a discovery query and
submit it to the service registry (activity 5). Thegistry will perform some form of
matchmaking based on the available advertisemeardstize specified request, and return the
results (activity 6). The discovery and matchmakimgthod by which the candidate services will
be derived is independent from the rest of the @gughr, and can be based on any existing
method. However, a semantically-enhanced servicechmaking method such as the one
described in (Kourtesis and Paraskakis 2008) wbeldtrongly encouraged, since it is free of
ambiguity, takes more information into consideratiand has the potential of resulting in more
accurate matches. In any case, if the registrymstmore than one certified services as matching
candidates, the requestor must go through a seseieetion process (activity 7).

As already discussed, the SXM specification thatssociated with each of the certified
candidate services can be used not only for regsstie verification, but also for requestor-side
validation during service selection. A method tlestables behavioural validation is model
animation through appropriate tools. During animatihe requestor feeds the SXM model with
sample inputs while observing the current statensitions, processing functions, memory
values, as well as outputs. The sample inputs torts@ded for driving the animator can be the
actual test data that were generated and usedelsetivice registry at the phase of verification.
This would relieve the service requestor from theden of re-generating the data from the SXM
specification. The animation process is readilypsufed by the existing JSXM tools (Dranidis
2009).

6. Conclusions

Reliability is a fundamental prerequisite for comg®mn among peers in a collaborative network,
especially in the context of industrial collabovatinetworks where economic benefits are at
stake. For reasons of efficiency, it is typicallyeferable to delegate the task of evaluating the
reliability of prospective or existing network meetb to entities which act as central authorities
for coordination and brokerage, such as coordisator Virtual Organisation Breeding
Environments (Camarinha-Matos 2007). This allowsvoek members to be reassured as to the
level of trustworthiness of their prospective besis partners by a trusted entity that operates in
an accountable and transparent manner.

Evaluating reliability can encompass several déifeiperspectives and layers of abstraction, but
one of the most crucial aspects that a centraloaiyhneeds to consider, from a cooperation
perspective, is whether the software systems thpp@t the business processes of some
collaborator behave as expected. Expectations congethe way in which a system should
function may arise for several reasons, such atbnoance to a particular interaction protocol
as prescribed by industrial standards, adherenteetterms of a service contract, or compliance
to policies and regulations. For organisations ftely on a contemporary service-oriented

15

computing infrastructure, evaluating reliabilityllsafor checking that the functionality of the
provisioned Web services is conformant to theipaisdéed behavioural specifications.

Despite the existence of several standards arouetl ¥érvice technologies, a standardised
method for creating behavioural specifications agbAservices is currently lacking, along with

tools for automating the process of behaviouralf@wnance checking through testing. This

paper presents a concrete approach that is ainmeetoming these deficiencies and supporting
the operations of network brokers and coordinatyysaugmenting Web service registries

through the utilisation of formal methods for régisbased functional testing and certification of

Web services.

Formal engineering methods for modelling systemabiur, verifying specifications and
testing implementations are considered to be ambegmost central contributions to the
advancement of collaborative networks (Camarinhae®&12005). In this paper we proposed the
use of Stream X-machines (SXMs) as a powerful mimdeformalism for constructing the
behavioural specification of Web services at thevgler-side, in order to facilitate registry-side
verification at the time of service publication, aeduestor-side validation at the time of service
selection.

The particular strengths of the presented appraamrhpared to other works in the literature, can
be summarised in the following. Firstly, a sigrdifit advantage of Stream X-machines compared
to other behavioural modelling and testing fornmalsis in their associated complete testing
method, which is guaranteed to reveal all incoamskes among a specification and an
implementation under test, and confirm functiorguiealence. Secondly, the SXM specification
and the generated test sets can be used not onlsedistry-side verification, but also for
requestor-side validation after discovery and durservice selection. Thirdly, the proposed
approach can be readily supported by a number isfieg tools for SXM modelling, test case
generation, verification, and validation, as wedl @an existing open source service registry
implementation for performing semantically-enhanpeblication and discovery of services.

Objectives for future research include the consdiah of existing techniques, methods and
tools into a comprehensive application frameworkpegimental validation of the overall
approach through a wide range of case studies, dave¢lopment of suitable connecting
components and user-friendly interfaces to yield alrinclusive solution with industrial
applicability.

Acknowledgments

This research work was partially supported by FUSI@usiness process fusion based on
semantically-enabled service-oriented businessicgtians), a research project funded by the
European Commission’s 6th Framework Programme D Rnder contract number FP6-1ST-
2004-170835 (http://www.fusion-strep.eu/).

References

1.Bertolino, A., Frantzen, I., Polini, A. and Tretnsad., 2006. Audition of Web Services for
Testing Conformance to Open Specified Protocofgchitecting Systems with
Trustworthy Components, Springer LNCS 393&5.

2.Camarinha-Matos, L.M. and Afsarmanesh, H., 2005llaBorative Networks: a New
Scientific DisciplineJournal of Intelligent Manufacturingl6, 439-452.

16

3.Camarinha-Matos, L.M., 2007. Collaborative Networks Industry: Trends and
Foundations. In: P.F. Cualand P.G. Maropoulos, edBigital Enterprise Technology:
Perspectives and Future Challengblew York: Springer, 45-56.

4.Chow, T.S., 1978. Testing Software Design ModellsdFinite State MachinesEEE
Transactions on Software Engineerjidg 178-187.

5.Dranidis, D., Eleftherakis, G., and Kefalas P., 20@bject-based Language for
Generalized State MachineAnnals of Mathematics, Computing and Teleinfornsatic
(AMCT) 1 (3), 8-17.

6.Dranidis, D., Kourtesis, D. and Ramollari, E., 2066rmal Verification of Web Service
Behavioural Conformance through Testirgnnals of Mathematics, Computing &
Teleinformatics (AMCT)1 (5), 36-43.

7.Dranidis, D., 2009. JSXM: A Suite of Tools for Mddgased Automated Test Generation:
User ManualTechnical Report WP-CS01-08ITY College.

8.Eilenberg, S., 1974Automata, Languages and Machines, VolumBéw York: Academic
Press.

9.Farrell, J. and Lausen, H. (eds), 2007. Semantmofations for WSDL and XML Schema
(SAWSDL). W3C Recommendation.

10.Heckel, R. and Mariani, L., 2005. Automatic Confamae Testing of Web Services.
Fundamental Approaches to Software Engineeringngpr LNCS 344234-48.

11.Holcombe, M. and Ipate, F., 199&orrect Systems: Building Business Process
Solutions Berlin: Springer Verlag,

12.Ipate, F. and Holcombe, M., 1997. An integratiostitey method that is proved to find all
faults. International Journal of Computer Mathematiés8, 159-178.

13.Kapeti, E. and Kefalas, P., 2000. A Design Languagel Tool for X-Machine
Specification. Advances in Informatid8roceedings of the 7th Hellenic Conference on
Informatics (HCI '99) 134-145.

14.Kefalas, P., 2000. X-Machine Definition LanguageetManual, version 1.@echnical
Report WP-CSO07-Q@ITY College.

15.Keum, C., Kang, S. and Ko, LY., 2006. GeneratirggtTCases for Web Services using
Extended Finite State Maching&esting of Communicating Systems, Springer LNCS
3964 103-117.

16.Kourtesis, D. and Paraskakis, I., 2008. Web Semiseovery in the FUSION Semantic
Registry.Business Information Systems 2008, Springer LNBEB%—296.

17.Kourtesis, D. and Paraskakis, 1., 2008. CombinidyVsSDL, OWL-DL and UDDI for
Semantically Enhanced Web Service Discoverfie Semantic Web: Research and
Applications, Springer LNCS 502614—-628.

18.Kourtesis, D., Ramollari, E., Dranidis, D. and B&eakis, ., 2008. Discovery and
Selection of Certified Web Services through Regiftased Testing and Verificatiom:
L. Camarinha-Matos and W. Pickard, e&®rvasive Collaborative Network8oston:
Springer, 473-482.

19.Laycock, G., 1993. The Theory and Practice of Spation-Based Software Testing.
Thesis (PhD). Department of Computer Science, Usityeof Sheffield.

17

20.Msanjila, S.S., Afsarmanesh, H., 2007. ModellingiskrRelationships in Collaborative
Networked Organisations.International Journal of Technology Transfer and
Commercialisation6 (1), 40-55.

21.Msanjila, S.S., Afsarmanesh, H., 2007. HICI: An Aggch for identifying Trust
Elements - The Case of Technological Perspectiv¥/BiEs. Proceedings of the"2
International Conference on Availability, Reliabyliand Security (ARES 200767-764.

22.Ramollari, E., Kourtesis, D., Dranidis, D. and Smp A.J.H., 2009. Leveraging
Semantic Web Service Descriptions for Validation Ayytomated Functional Testing.
The Semantic Web: Research and Applications, SeribCS 5554, 593-607.

23.Sinha, A. and Paradkar, A., 2006. Model-based Fomat Conformance Testing of Web
Services Operating on Persistent Data. Proceedih@orkshop on Testing, Analysis
and Verification of Web Services and Applicatiom&\y-WEB’06), 17-22.

24.Tsai, W.T., Paul, R., Cao, Z., Yu, L., Saimi, AdaXiao, B., 2003. Verification of Web
Services using an Enhanced UDDI Serveroceedings of 8th IEEE International
Workshop on Object-oriented Real-time Dependalbdtefys (WORDS 20Q3)31-138.

18

Appendix

In this appendix we provide the full specificatiof the Stream X-machine model for the
example Web service that was presented in thisrpapeg XMDL-O notation.

Inputs

#event loginRequest(usr:string,pw:string).
#event logoutRequest().

#event createOrderRequest().

#event cancelOrderRequest().

#event
addltemRequest(itemld:string,gty:natural0).
#event
removeltemRequest(itemld:string,qty:naturalO

#event getQuoteRequest().
#event confirmOrderRequest().
#event rejectOrderRequest().

Outputs
#output (messages).

#type messages
{loginOk,loginFailed,loggedOut,orderCreated,
orderCanceled,itemAdded,itemQtylncreased,ite
mRemoved,removeFailed,itemQtyDecreased,lastl
temRemoved,quoteEmpty,quotePartial,quoteFulf
illed,orderRejected,orderConfirmed}.

States

#states = {initial, authenticated,
empty_order, filling_order, pending_conf,
order_placed}.

#init_state {initial}.
Transition Function

#transition (initial,loginFailed)=initial.
#transition (initial,loginOK)=authenticated.
#transition (authenticated,logout)=initial.
#transition
(authenticated,createOrder)=empty_order.
#transition
(empty_order,cancelOrder)=authenticated.
#transition
(empty_order,addOrderLine)=filling_order.
#transition
(filling_order,cancelOrder)=authenticated.
#transition
(filling_order,addOrderLine)=filling_order.
#transition
(filling_order,increaseltemQty)=filling_orde
r.

#transition
(filling_order,removeOrderLine)=filling_orde
r.

#transition
(filling_order,decreaseltemQty)=filling_orde
r.

#transition
(filling_order,removeError)=filling_order.
#transition
(filling_order,removeLastOrderLine)=empty_or
der.

#transition
(filling_order,getQuoteEmpty)=filling_order.

#transition
(filling_order,getQuotePartial)=pending_conf

#transition
(filling_order,getQuoteFulfilled)=pending_co
nf.

#transition
(pending_conf,rejectOrder)=filling_order.
#transition
(pending_conf,confirmOrder)=order_placed.

Memory

#class Account {
username: string,
password: string,

}.

#class Inventoryltem {
id: string,
gty_in_stock: naturalO,
gty_on_hold: naturalO,

}.

#class Orderltem {
id: string,
gty_requested: naturalO,
gty_reserved: naturalO,

}.

#objects:
accountl: Account,
accounts: set_of Account,
inventorylteml: Inventoryltem,
inventoryltem2: Inventoryltem,
inventory: set_of Inventoryltem,
order: set_of Orderltem.

#init_values:
accountl.username <- "usrl",
accountl.password <- "pwd1",
inventorylteml.id <- 1001,
inventorylteml.qty_in_stock <- 100,
inventorylteml.qty_on_hold <- 0,
inventoryltem2.id <- 1002,
inventoryltem2.qty_in_stock <- 50,
inventoryltem2.qty_on_hold <- 0,
accounts <- {accountl1},
inventory <-
inventoryltem2},
order <- emptySet.

{inventoryltem1,

Processing Functions

#fun loginOK(loginRequest(?usr,?pw))=

if not_isempty ?found and
?current_user.pw=?pw

then

(loginOk)

where

?found <- select (usr=?usr, accounts)
and

?current_user <- head(?found).

#fun loginFailed(loginRequest(?usr,?pw))=
if isempty ?found

19

then

(loginFailed)

where

?found <- select (usr=?usr, accounts).

#fun logout(logoutRequest())=
(loggedOut).

#fun createOrder(createOrderRequest())=
(orderCreated).

#fun cancelOrder(cancelOrderRequest())=
(orderCanceled).

#fun addOrderLine(
additemRequest(?itemld,?qty))=
if isempty ?found
then
(itemAdded)
update
order <- new Orderltem(?itemld,?qty,0)
addsetelement order
where
?found <- select (id=?itemId, order).

#fun increaseltemQty(
addltemRequest(?itemld,?qty))=
if not_isempty ?found
then
(itemQtylncreased)
update
?orderline.qty_requested <-
?orderline.qty_requested + ?qty
where
?found <- select (id=?itemld, order) and
?orderline <- head(?found).

#fun removeOrderLine(
removeltemRequest(?itemld,?qty))=
if not_isempty ?found and
?orderline.qty_requested < 2qty
then
(itemRemoved)
update

order <- ?orderline delsetelement order
where

?found <- select (id=?itemld,order) and

?orderline <- head(?found).

#fun decreaseltemQty/(
removeltemRequest(?itemld,?qty))=
if not_isempty ?found and
?orderline.qty_requested > ?qty
then
(itemQtyDecreased)
update
?orderline.qty_requested <-
?orderline.qty_requested - ?qty
where
?found <- select (id=?itemld, order) and
?orderline <- head(?found).

#fun removeError(
removeltemRequest(?itemld,?qty))=
if isempty ?found
then
(removeFailed)
where

?found <- select (id=?itemId, order).

#fun removelLastOrderLine(
removeltemRequest(?itemld,?qty))=

if not_isempty ?found and
?orderline.qty_requested < ?qty and ?count =
1

then

(lastitemRemoved)

update

order <- ?orderline delsetelement order
where

?found <- select (id=?itemld,order) and

?orderline <- head(?found) and

?count <- cardinality order.

#fun getQuoteEmpty(getQuoteRequest())=
if conjunction (fn ?id =>
(?invline.qty_in_stock-
?invline.qty_on_hold=0)
where
?inviine <-
inventory), ?order_ids))
then
(quoteEmpty)
where ?order_ids <- project(id, order).

head(select(id="id,

#fun getQuotePartial(getQuoteRequest())=
if
disjunction
(?invline.qty_in_stock-
?invline.qty_on_hold<?line.qty_requested
where
?line <- select(id="?id, order) and
?invline <- select(id=?id, inventory)),
?order_ids)
and
disjunction
(?invline.qty_in_stock-
?invline.qty_on_hold>0)
where
?invliine <- select(id=?id, order),
?order_ids)
then
(quotePartial)
update
inventory <- map (fn ?invitem -> (new
Inventoryltem(?invitem.id,
?invitem.qgty_in_stock, ?invitem.qty_on_hold
+ ?increase)
where ?increase <- (if ?invitem.id
belongs ?order_ids
then
minimum (
?qty_available)
else 0))) and
?orditem
head(select(id=?invitem.id,orders)) and
?qty_available <-
?invitem.qgty_in_stock-?invitem.qty_on_hold,
inventory)

(fn 2id =>

(fn 2id =>

?orditem.qty_requested,

and

order <- map (fn Zorditem -> (new
Orderltem(?orditem.id,
?orditem.qty_requested, ?reserved)) where

?reserved <- minimum(
?orditem.qty_requested, ?qty_available) and
?qty_available <-

?invitem.qty_in_stock-?invitem.qty_on_hold
and

?invitem <- head(select(id=7orditem.id,
inventory)), order)

where ?order_ids <- project(id, order).

#fun getQuoteFulfilled(getQuoteRequest())=
if conjunction (fn ?id =>
(?invline.qty_in_stock-
?invline.qty_on_hold
where
?line <- select(id="?id, order) and
?invline <- select(id=?id, inventory)),
?order_ids)
then
(quoteFulfilled)
update
inventory <- map (fn ?invitem => (new
Inventoryltem(?invitem.id,
?invitem.qty_in_stock, ?invitem.qty_on_hold
+ ?increase)
where ?increase <- (if ?invitem.id
belongs ?order_ids
then
?orditem.qty_requested else 0))
and
?orditem <-
head(select(id=?invitem.id,orders)),
inventory)

>?line.qty_requested

and

order <- map (fn orditem => (new
Orderltem(?orditem.id,
?orditem.qty_requested,
?orditem.qgty_requested)), order)

where

?order_ids <- project(id, order).

20

#fun rejectOrder(rejectOrderRequest())=
(orderRejected)

update

inventory <- map (fn ?invitem -> (new
Inventoryltem(?invitem.id,
?invitem.qty_in_stock, ?invitem.qty_on_hold
- ?decrease)

where ?decrease <- (if ?invitem.id

belongs ?order_ids then
?orditem.qgty_reserved else 0))) and
?orditem <-
head(select(id=?invitem.id,orders)),
inventory)
and

order <- map (fn ?orditem -> (new
Orderltem(?orditem.id,
?orditem.qty_requested, 0)), order).

#fun confirmOrder(confirmOrderRequest())=

(orderConfirmed)

update

inventory <- map (fn ?invitem -> (new
Inventoryltem(?invitem.id,
?invitem.qty_in_stock - ?decrease,

?invitem.qty_on_hold)

where ?decrease <- (if ?invitem.id
belongs ?order_ids then
?orditem.qty_reserved else 0))) and

?orditem <-
head(select(id=?invitem.id,orders)),
inventory).

