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An Active Strategy for Plane Detection

and Estimation with a Monocular Camera

Paolo Robuffo Giordano, Riccardo Spica, and François Chaumette

Abstract— Plane detection and estimation from visual data is
a classical problem in robotic vision. In this work we propose
a novel active strategy in which a monocular camera tries to
determine whether a set of observed point features belongs to
a common plane, and, if so, what are the associated plane
parameters. The active component of the strategy imposes
an optimized camera motion (as a function of the observed
scene) able to maximize the convergence in estimating the
scene structure. Based on this strategy, two methods are then
proposed to solve the plane estimation task: a classical solution
exploiting the homography constraint (and, thus, almost com-
pletely based on image correspondances across distant frames),
and an alternative method fully taking advantage of the scene
structure estimated incrementally during the camera motion.
The two methods are extensively compared in several case
studies by discussing the various pros/cons.

I. INTRODUCTION

Plane detection and estimation from raw visual data is a

classical problem in sensor-based robot control, especially in

the context of mobile robotics. Indeed, planes are widespread

in artificial (man-made) and natural environments, and there-

fore constitute the typical 3D structure one tries to segment

in order to, e.g., plan safe paths among planar obstacles (e.g.,

vertical walls), or navigate by keeping a desired attitude

or distance from special planes (e.g., ground plane for

flying robots). The ability to classify planes in the perceived

environment is therefore an important feature for several

sensor-based applications.

When dealing with images taken by a (possibly moving)

camera, a number of approaches has been developed for

solving the problem of detecting and identifying planes from

visual data. Several methods for instance exploit known

correspondances across frames to identify point features (or

directly pixels) as whether belonging to a common plane

together with the associated plane parameters. These meth-

ods usually rely on special geometric constraints linking two

views of a planar scene such as the well-known and widely

used homography constraint [1]. Other methods, instead,

attempt to directly measure (using special sensors such as

the RGB-D) or recover (exploiting structure from motion

algorithms) a ‘depth map’ of the observed images, for then

dealing with the issue of clustering and extracting planes

from clouds of 3D points.
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Examples from the first category can be found in [2]–[4]

where the homography constraint in its various forms (dis-

crete and/or continuous version) is employed. For instance,

in [3] the homography constraint is exploited to classify

features belonging to the (dominant) ground plane for a

mobile robot equipped with a camera. The method however

requires an initialization step to determine the location of the

ground plane at the beginning of the motion. The authors

in [2] address a similar problem but by including a Kalman

filtering step that exploits the temporal correlation between

consecutive images to improve the estimation of the homog-

raphy matrix. Also, special constraints of the employed robot

(a ground wheeled mobile robot) are used to simplify the

problem. In [4] the continuous version of the homography

constraint is instead used to segment the optical flow detected

by a flying robot into clusters belonging to different planar

patches. Finally, within the second category of methods

dealing with 3D point clouds one can mention [5]–[7] and

references therein. In these cases, the problem is rather on

how to fit planes to sets of 3D points and on how to cluster

them according to some reasonable ‘planarity measure’.

With respect to this state-of-the-art, the problem addressed

in this paper is the following: given a monocular camera

observing a (possibly time-varying) set of N feature points

in the scene, find an active strategy able to determine, in an

optimized way, whether the N points belong to a common

plane and what are the associated plane parameters (distance

and normal vector). No special assumptions are made on the

N points, nor special constraints are assumed for the camera

motion. The sought strategy is termed active in the sense

that, following the framework proposed in [8], it aims at

controlling online the camera motion (as a function of the

observed scene) in order to optimize the convergence rate of

the plane estimation task. In this sense, our method differs

from most of the previous literature which assumes a camera

moving in an ‘non-informed’ way, i.e., without attempting to

affect online its motion for facilitating the plane estimation.

The rest of the paper is then organized as follows: Sec-

tion II briefly reviews the theoretical framework of [8], while

Sect. III introduces and details the proposed strategy for

plane detection and estimation. Here, two alternative methods

are proposed: a first solution based on the classical homog-

raphy decomposition, and a second solution fully exploiting

the structure of the scene estimated exploiting the framework

in [8]. The two methods are then extensively compared in

Sect. V with several simulation case studies which point

out the respective pros/cons. Interestingly, the (widely-used)

homography decomposition results highly sensitive to non-



idealities in the scene, with the other proposed method being

instead much more robust to real-world conditions. Sect. VI

then concludes the paper.

II. REVIEW OF ACTIVE STRUCTURE FROM

MOTION

In this section, we briefly summarize the active estimation

framework proposed in [8]. Let (s, χ) ∈ R
m+p be the state

of a dynamical system in the form
{

ṡ = fm(s, u) +Ω
T (t)χ

χ̇ = fu(s, χ, u)
(1)

where s and χ represent, respectively, a measurable and

unmeasurable component of the state, and u ∈ R
v is the

system input vector. In formulation (1) vector χ is required

to appear linearly in the dynamics of s (first equation), and

matrix Ω(t) ∈ R
p×m to be a known and sufficiently smooth

time-varying quantity.

Structure from Motion (SfM) problems can be recast to

formulation (1) by taking s as the set of visual features

measured on the image plane, u = (v, ω) as the camera

linear/angular velocity in camera frame, and χ as a suitable

(and locally invertible) function of the unknown structure of

the scene to be estimated1. Furthermore, for SfM problems

one has Ω(t) = Ω(s, v(t)) with, in particular, Ω(s, 0) ≡ 0:

as well-known, the camera linear velocity v plays a key role

for the convergence of SfM algorithms.

For a system in form (1), a possible estimation scheme

can be devised as follows: letting (ŝ , χ̂) ∈ R
m+p be the

estimated state, ξ = s−ŝ, z = χ−χ̂, consider the following

observer
{

˙̂s = fm(s, u) +Ω
T (t)χ̂+Hξ

˙̂χ = fu(s, χ̂, u) + αΩ(t)ξ
(2)

with H > 0 and α > 0. Note also that observer (2) does not

require knowledge of ṡ (i.e., measurement of velocities on

the image plane), but it only needs measurement of s (the

‘visual features’) and of (v, ω) (the camera linear/angular

velocity in the camera frame).

Following the derivations in [8], one can show that, by

a proper (state-dependent) choice of gain H , the dynamics

of the estimation error z(t) = χ(t) − χ̂(t) (the error in

estimating the structure of the scene χ) is equivalent to that

of the following second-order linear and diagonal system

η̈ + 2
√
αSη̇ + αS2η = 0, (3)

where η ∈ R
p, S = diag(σi) ∈ R

p×p, and 0 ≤ σ2
1 ≤

. . . ≤ σ2
p are the p eigenvalues of the square matrix ΩΩ

T .

The convergence rate of system (3) is then dictated by the

quantity ασ2
1 , with σ2

1 being the smallest eigenvalue of ΩΩ
T .

Since in the SfM case Ω = Ω(s, v), one can show that [8]

˙(σ2
1) = Jvv̇ + Jsṡ, (4)

1For instance, in the point feature case [9], χ can be taken as the inverse
of the feature depth Z, and, for image moments of planar scenes, χ can
be taken as the normal vector of the observed plane scaled by its distance
from the camera optical center [10].

where the Jacobian matrices Jv ∈ R
1×3 and Js ∈ R

1×m

have a closed form expression function of (s, v) (known

quantities). It is then possible to invert (4) w.r.t. vector v̇ so

as to act on σ2
1(t), e.g., for maximizing its value. We note

that this step represents the active component of the strategy

since, in the general case, inversion of (4) will yield a camera

velocity v(t) function of the system measured state s(t).
We conclude by providing the explicit expressions of the

above machinery for the point feature case (which is the case

considered in the next developments). Assume a calibrated

pin-hole camera, and let s = (x, y) = (X/Z, Y/Z) be the

normalized perspective projection of a 3D point (X, Y, Z)
onto the image plane. Formulation (1) can be applied by

taking χ = 1/Z with, thus, m = 2 and p = 1, and














fm (s, u) =

[

xy −

(

1 + x2
)

y

1 + y2 −xy −x

]

ω

Ω (s, v) =
[

xvz − vx yvz − vy
]

fu (s, χ,u) = vzχ
2 + (ywx − xwy)χ

. (5)

Furthermore, one has

σ2
1 = ΩΩ

T = (xvz − vx)
2 + (yvz − vy)

2 (6)

as the single eigenvalue of ΩΩ
T , and in (4)

{

Jv = 2
[

vx − xvz vy − yvz (xvz − vx)x+ (yvz − vy) y
]

Js = 2
[

(xvz − vx)vz (yvz − vy)vz
] .

(7)

III. DETECTION AND ESTIMATION OF A PLANE

FROM A SET OF POINT FEATURES

Let P i = (Xi, Yi, Zi) be N 3D points expressed in the

camera frame, and let pi = (xi, yi, 1) = (Xi/Zi, Yi/Zi, 1)
be the corresponding normalized feature positions on the

(assumed calibrated) camera image plane. The problem ad-

dressed in this paper is how to optimally determine whether

the N points P i belong to a common plane, and what are

the associated plane parameters (normal and distance). We

now detail two possible strategies to achieve this goal.

A. Plane reconstruction from estimated 3D points

Assume that an estimation Ẑi of the unknown depth Zi

of each point is available. Then, from each measured point

feature pi one can recover an estimation P̂ i = Ẑipi of the

corresponding 3D point P i in the current camera frame. Let

P : nTE + d = 0 be the equation of the sought plane,

with n ∈ S
2 and d ∈ R representing the unit normal vector

and distance in camera frame. For the estimated points P̂ i

to belong to P , it must hold

nT P̂ i + d = 0, i = 1 . . . N. (8)

Equation (8) can be rearranged in matrix form as






P̂
T

1
1

.

.

.
.
.
.

P̂
T

N 1







[

n
d

]

= A

[

n
d

]

= 0 (9)

with A ∈ R
N×4. Assuming N ≥ 4, the linear system (9) has

a unique solution (up to a scalar factor) iff rank(A) = 3.

Let UASAV
T
A = A be the singular value decomposition



of matrix A, with σ2
1,A ≤ · · · ≤ σ2

4,A being the associated

singular values. The inverse of the condition number σA =
σ2
1,A/σ

2
4,A can be taken as a normalized measure of the

planarity of the N points P̂ i (rank(A) = 3 ⇐⇒ σA = 0).

Furthermore, as well-known, a (least-square) solution of the

homogeneous system (9) is given by v̄ = (v̄1, . . . v̄4), the

column of V A associated to σ2
1,A. From v̄ one can then

recover
[

n

d

]

= ± v̄
√

v̄21 + v̄22 + v̄23
, (10)

i.e., by imposing ‖n‖ = 1. The final sign ambiguity can be

resolved by fixing the sign of d according to the adopted

convention.

Summarizing, given a collection of N (estimated) 3D

points P̂ i, one can obtain a measure of their planarity by

computing σA (σA = 0 if they belong to the same plane,

σA > 0 otherwise), and then from (10) obtain a unique

solution for the plane parameters (n, d) which best fits the

N points. Clearly, one still faces the issue of obtaining the

N estimations P̂ i from the measured feature points pi.

Section IV explains how to optimally solve this problem

exploiting the active estimation framework of the previous

Sect. II.

B. Plane reconstruction from the homography decomposition

As a (well-known and widely-used) alternative method,

one can also exploit the homography constraint for recover-

ing the plane normal n from a moving camera observing N
feature points, see [1]. In short, let 0FC be the camera frame

of reference at the beginning of the motion, FC the camera

frame at the current time (i.e., after some displacement has

taken place), and (R, T ), R ∈ SO(3), T ∈ R
3, be the

rotation matrix from 0FC to FC and the position of 0FC

w.r.t. FC and expressed in FC , respectively. Let also 0pi

and pi represent the measured locations of the i-th feature

point in frames 0FC and FC .

Assuming again a planar scene P : nTE + d = 0, it is

well-known that the following relationship holds for all the

N image pairs (0pi, pi)

[pi]×H
0pi = 0, i = 1 . . . N, (11)

where [x]×y = x × y and H = R +
T

d
nT ∈ R

3×3 is the

so-called homography matrix, which encodes the structure of

the scene (plane parameters) and the displacement among the

two frames. Equation (11) can be rearranged as bTi H
s = 0

where bi = 0pi ⊗ [pi]× ∈ R
9×3 (with ⊗ indicating the

Kronecker product), and H
s = (H11, H21, . . . , H33) ∈

R
9. By now letting B = (b1, . . . , bN ) ∈ R

3N×9 be

the collection of all the N bi, one can compactly rewrite

equation (11) for all measured pairs as

BH
s = 0. (12)

Similarly to before, equation (12) has a unique solution, up

to a scalar factor, iff rank(B) = 8. Letting then σ2
1,B ≤

. . . ≤ σ2
9,B be the singular values of B, one can take again

the inverse of the condition number σB = σ2
1,B/σ

2
9,B as

an alternative measure of planarity besides the previously

introduced σA.

A (least-square) solution H
s of (12) can again be found

by exploiting the singular value decomposition of B (by

taking the column of V B associated to σ2
1,B). Using stan-

dard algorithms [1], it is finally possible to decompose the

associated recovered homography H into two physically

possible solutions (R1, T 1/d, n1) and (R2, T 2/d, n2).
However, the ambiguity among these two solutions can only

be resolved by exploiting prior knowledge of the scene (e.g.,

approximated known direction of n in one of the two frames,

or comparison against the homography estimated from a third

frame).

We note that the above machinery only involves observed

image pairs (0pi, pi), and thus allows to compute σB and to

recover the plane normal n without requiring knowledge of

the (unknown) depths Zi as in the previous case. Knowledge

of the scene 3D structure is nevertheless still needed for

obtaining the plane distance d: from the recovered n and

the estimated P̂ i, a simple possibility from (8) is indeed

d = −
∑N

i=1
nT P̂ i

N
. (13)

C. Final considerations

Let us denote with method A (based on the estimated

P̂ i) and method B (based on the classical homography

decomposition) the two techniques discussed in the previous

Sect. III-A and Sect. III-B. It is interesting to draw the

following comparison:
1) Assumptions: while method A only relies on a frame-

by-frame tracking of the point features, method B requires

the correspondences of several points across distant frames

(the initial and the current ones). Furthermore, method A

can straightforwardly cope with the loss/gain of feature

points (e.g., because of visibility constraints as shown in

Sect. V-C), while method B needs to either always keep

(a subset of) the initial features within visibility, or to

periodically reinitialize the initial frame at the current one

(thus, temporarily suffering from a small baseline);
2) Complexity: the planarity measure σA is obtained from

the svd decomposition of the N × 4 matrix A in (9), while

evaluation of σB requires the decomposition of the 3N × 9
matrix B in (12). For large N one can then prefer σA

(method A) in terms of reduced algebraic computational

load;
3) Convergence rate: method A relies, in all its steps, on

the estimated 3D points P̂ i. Therefore, during the transient

phase of the depth estimation error (i.e., when Zi − Ẑi is

still large), no reliable results can be expected by method A,

while method B can in principle be successfully employed

for recovering n and computing σB as soon as the camera

has undergone a sufficient displacement w.r.t. its initial pose;
4) Accuracy: Method A provides a unique solution for n

(eq. (10)), while method B results in two physically possible

n1 and n2 which must then be disambiguated. Finally, and

as it will be shown extensively in Sect. V, the homography

decomposition of method B results highly sensitive to non-

idealities of the observed scene (e.g., when the observed



points P i are approximately, but not exactly, planar), with

method A being instead much more robust to these issues.

In conclusion method A results superior to method B in

all aspects apart from the potentially slower convergence

rate, which is anyway traded for a much higher robustness

w.r.t. non-idealities as those found in real-world conditions.

IV. OPTIMAL DEPTH ESTIMATION FOR A SET OF

POINT FEATURES

We now address the issue of optimally recovering the

unknown depths Zi of the N observed point features pi by

optimizing the camera motion. We stress, again, that this

‘optimized depth estimation’ only relies on the measured pi

and on the (assumed known) camera velocity (v, ω). We

also note that the N points P i are not required to be planar

for applying the following strategy, but they can be arranged

in any spatial configuration (as long as they can be tracked).

In case of N point features, one can directly apply

observer (2) by defining s = (p1, . . .pN ) ∈ R
m and

χ = (1/Z1, . . . , 1/ZN ) ∈ R
p, with m = 2N and p = N .

Since the dynamics of each si = pi is only affected by

its associated unknown χi = 1/Zi, this is equivalent to

implementing in parallel N instances of (2), one for each

tracked feature (i.e., N instances with m = 2 and p = 1).

Indeed, we can also note that, for N points, matrix Ω takes

the expression

Ω =















x1vz − vx 0 0 . . . 0
y1vz − vy 0 0 . . . 0

0 x2vz − vx 0 . . . 0
0 y2vz − vy 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 . . . xNvz − vx
0 0 0 . . . yNvz − vy















T

, (14)

with, therefore,

ΩΩ
T =













σ2

1,1 0 . . . 0

0 σ2

1,2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . σ2

1,N













= diag(σ2

1,i),

where

σ2
1,i = (xivz − vx)

2 + (yivz − vy)
2 (15)

is the eigenvalue determining the convergence speed of the

estimation error zi(t) = χi(t) − χ̂i(t) = 1/Zi(t) − 1/Ẑi(t)
for the i-th feature point, see (5–6).

In order to optimize the error convergence of the whole

error vector z(t), one can simply aim at maximizing the

mean σ2 =
∑N

i=1
σ2
1,i/N . Let Jv,i and Js,i be the Jacobian

matrixes associated to each σ2
1,i as given in (7). One then

has

˙(σ2) =
1

N

(

N
∑

i=1

Jv,iv̇ +

N
∑

i=1

Js,iṡi

)

.

Maximization of σ2 can then be obtained by choosing v̇ as

v̇ = v̇σ =
kσ
N

N
∑

i=1

JT
v,i −

(

N
∑

i=1

Jv,i

)†
N
∑

i=1

Js,i
ˆ̇si, kσ > 0,

(16)

where † denotes the pseudo-inverse operator. Note that

in (16) the (not directly measured) ṡi is replaced by an

estimation ˆ̇si obtained by evaluating (1) on χ̂i. This, indeed,

avoids the need of obtaining the (possibly noisy) image

velocity ṡi by, e.g., numerical differentiation.

V. RESULTS

In this section we report five simulated case studies meant

to illustrate the proposed machinery for plane detection and

estimation. In all simulations, we considered a free-flying

camera delivering images at 30 Hz (the update rate for

obtaining vector s) and controlled at 100 Hz (the update

rate for imposing the camera velocity commands (v, ω)).
The vector of visual features s was corrupted, component-

wise, with a uniformly distributed random noise of 2 pixels.

In all simulations we considered presence of a plane P
with n = (0, 0, 1) and d = −1 [m] in 0FC , and tested

methods A and B in five different combinations: (i) cases I–

II involve a perfectly planar scene made of N = 10 points

P i lying exactly on P and randomly generated from a

uniform distribution of radius 0.2 [m] (therefore, all points

start with Zi(t0) = 1 [m]). The camera is also assumed to

have an unlimited field of view (fov). Case I implements the

optimization action on σ2, while case II does not implement

any optimization action; (ii) cases III and IV involve a (more

realistic) approximately planar scene made again of N = 10
points generated as in cases I–II, but by then corrupting their

position with an additional uniformly distributed noise of

amplitude 0.05 [m] along the direction of n (thus, simulating

presence of an uncertainty of 5% in the planarity assumption

of points P i w.r.t. the initial camera pose). The camera is

again assumed to have an unlimited fov. Case III implements

the optimization of σ2 while case IV does not implement it;

(iii) the last case V involves again an approximately planar

scene as in the previous cases III–IV, but considers a limited

camera fov. The possibility of losing/gaining features over

time when exiting/entering the camera fov is then taken into

account. This case implements the optimization action on σ2.

As for the optimization of σ2, we note that each σ2
1,i

in (15) depends on the norm of the camera linear velocity v

(the larger the camera speed ∼ ‖v‖, the faster the estimation

error convergence for a given set of gains). In order to

obtain a fair comparison among all cases, we thus considered

the maximization of σ2 under the constraint ‖v‖ = const.
This was obtained as follows: letting κ = 1

2
‖v‖2, κdes =

1

2
‖v(t0)‖2, we replaced (16) with

v̇ =
v

‖v‖2 k1 (κdes − κ) + k2

(

I − vvT

‖v‖2
)

v̇σ (17)

with k1 > 0 and k2 ≥ 0. Cases I–III–V were then

implemented with k1 > 0 and k2 > 0 (maximization of σ2),

while cases II–IV with k1 > 0 and k2 = 0 (no action on σ2).

Finally, the camera angular velocity ω was exploited in all

cases for keeping the centroid of the observed point features

pi at the center of the image plane (as σ2 = σ2(v, s), one

can freely chose ω to fulfil additional goals).



A. Camera with unlimited field of view and perfect planar

scene (cases I-II)

For illustrating the results of cases I–II, let us denote

with (n̂A, d̂A) and (n̂B , d̂B) the estimation of the plane

parameters (n, d) obtained with method A and method B,

respectively, and then define edA
= d − d̂A, edB

= d −
d̂B , enA

= arccos(nT n̂A), enB
= arccos(nT n̂B) as the

corresponding estimation errors2. The following values were

used in the simulations: k1 = 10 and k2 = 50 (for case II)

in (17), α = 200 in (2), and v(t0) = (−0.05, 0.05, 0.1)
with, thus, ‖v(t0)‖2 = 0.015. The initial values for the

estimations Ẑi(t0) were taken as the real Zi(t0) plus a

uniformly distributed random noise of amplitude 0.5 [m].

The results of the four cases are reported in Figs. 1(a–l)

from which we can then draw the following considerations:

first of all, note how the convergence speed of the depth

estimation error z(t) is much slower in case I w.r.t. case II

(Fig. 1(c) vs. Fig. 1(d)). Thanks to the active maximization

of σ2 in the latter case, convergence of the depth estimation

errors is approximately reached in about 4 [s]. We recall that

in both cases the camera was traveling with the same linear

velocity norm ‖v(t)‖ = ‖v(t0)‖: the faster convergence of

z(t) was then only due to the ‘active optimization’ of the

direction of v as dictated by (17). One can find a similar

pattern in the behavior of the N eigenvalues σ2
1,i in Figs. 1(e–

f): note how in case I (Fig. 1(e)) all eigenvalues stay below

0.001, with some of them decreasing over time, while in

case II (Fig. 1(f)) the eigenvalues are actively regulated

towards the common value ‖v(t0)‖2 = 0.015 (as explained

in [8], when pi ≃ (0, 0) one has maxσ2
1,i = ‖v‖2).

Coming to the planarity test and the estimation of the

plane parameters (n, d), from Figs. 1(g–h) one can see

that σB(t) ≃ 0, ∀t (red solid line), while σA(t) converges

to zero only when vector z(t) has reached convergence

(compare Figs. 1(g–h) with Figs. 1(c–d)). Both criteria

then successfully recognize the N points as belonging to a

common plane but, clearly, σB outperforms σA. This is not

surprising since, as explained in Sect. III-C, the quantity σB

is obtained in terms of sole image measurements (0pi, pi),
while σA requires a good enough knowledge of the estimated

3D points P̂ i (and, thus, provides a reliable answer only

when z(t) is close to convergence).

A similar behavior can be found in Figs. 1(i–j) for the

errors enA
(solid blue line) and enB

(dashed red line).

The estimated normal n̂B of method B (homography de-

composition) coincides almost immediately with n. The

initial ‘noisy’ behavior of enB
(t) is due to the lack of

a large enough baseline w.r.t. the simulated image noise

added to the measurement s which negatively affects the

homography decomposition. Finally, having obtained a good

normal estimation n̂B allows to symmetrically obtain a good

estimation d̂B from (13). This is shown in Figs. 1(k–l)

where the errors (edA
, edB

) are reported. We can again note

how edB
(t) (dashed red line) quickly converges to 0 when

compared to edA
(t) (solid blue line).

2Here, for simplicity we always assumed ability to disambiguate among
the two physically possible solutions of method B.
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Fig. 1: Simulations with unlimited camera fov and perfect planar

scene (case I on the left, case II on the right). (a–b) camera 3D

trajectory; (c–d) behavior of the depth estimation error z(t); (e–f)

behavior of the N eigenvalues σ
2

1,i; (g–h) behavior of the planarity

measures σA (solid blue line) and σB (solid red line); (i–j) behavior

of enA
(solid blue line) and enB

(dashed red line); (k–l) behavior

of edA (solid blue line) and edB (dashed red line)

Summarizing, these results clearly show two facts: on the

one hand, they illustrate the benefits of the optimization



action on σ2 for improving the convergence of z(t). On

the other hand, they also indicate method B (based on the

classical homography decomposition) as apparently superior

for what concerns both the planarity test and the estimation

of the plane parameters (n, d). This latter conclusion is,

however, completely different when considering the (more

realistic) situation of an approximately planar scene of the

next cases III–IV.

B. Camera with unlimited field of view and approximately

planar scene (cases III-IV)

The results are reported in Figs. 2(a–l). Here, Figs. 2(g–h)

show again the planarity criteria σA and σB : being the scene

not exactly planar, both measures correctly reach a constant

non-zero value which represents the confidence level in

considering the points P i as belonging to the same plane.

Note, however, that now σB (solid red line) has a transient

behavior qualitatively equivalent to σA (solid blue line).

Thus, both quantities provide a similar level of information

before reaching their respective ‘steady-state’. Furthermore,

when considering the errors enA
and enB

in Figs. 2(i–j) we

can note another interesting result: while enB
(t) (dashed red

line) has a highly erratic behavior (indicating a quite unre-

liable estimation of n̂B), enA
(t) (solid blue line) converges

towards 0 (here, the error is computed w.r.t. the normal n

best fitting the real N points P i). Analogous considerations

also hold for the errors edA
(solid blue line) and edB

(dashed

red line) in Figs. 2(k–l): edA
(t) correctly converges to 0 while

edB
(t) does not converge at all.

These results then allow to conclude that, in the more

realistic condition of an approximately planar scene (with an

error of ≈ 5% w.r.t. the camera initial distance to the plane),

method B is not able to provide a reliable estimation of the

plane parameters (n, d) as opposite to method A which,

instead, shows an unsatisfactory performance. This is most

likely because the homography decomposition of method B

only relies on image correspondences and is, thus, highly

sensitive to non-idealities such as image noise or non perfect

planarity of the observed points, while method A exploits

the estimation of the point depths Ẑi for then drawing

conclusions from an (estimated) cloud of 3D points in the

current camera frame.

C. Camera with limited field of view (case V)

In this last simulation we considered a camera with a

limited fov for introducing the possibility of losing/gaining

point features during the camera motion because of the

visibility constraint. This was meant to test the robustness

of the proposed estimation strategy when relaxing the (often

unrealistic) assumption of being able to track the same set

of point features over time. The simulation involved a total

of N = 15 points arranged in an approximately planar

scene, and the active optimization of σ2. Only method A

was employed for recovering the plane parameters (n̂A, d̂A)
since, as explained, method B requires keeping a sufficient

number feature points always within the camera fov.

Whenever during motion a new point feature pi entered

visibility, its estimated depth Ẑi was initialized so as to force
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Fig. 2: Results of the simulations with unlimited camera fov and

approximately planar scene (case III on the left, case IV on the

right). Case III is shown on the left side and case IV on the right

side. The pattern of the plots is the same as in Figs. 1(a–l).

P̂ i = Ẑipi to belong to the current estimation of the plane

given by (n̂A, d̂A), i.e., by choosing

Ẑi = −d̂A/(n̂
T
Api). (18)

The identity of each feature exiting visibility was not retained
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Fig. 3: Results of the simulations with limited camera fov (case V). (a) camera 3D trajectory; (b) behavior of the depth estimation error

z(t); (c) behavior of the N eigenvalues σ
2

1,i; (d) behavior of the planarity measures σA; (e) behavior of enA
; (f) behavior of edA ; (g)

behavior of np, the total number of features in visibility. The vertical jumps in the various plots indicate loss/gain of point feature which

exit/enter the image plane

and, when re-entering in the image plane, it was treated as

a newly acquired point. The simulation was run with the

same gains of the previous cases and by taking v(t0) =
(−0.1, 0.1, 0) with, thus, ‖v(t0)‖2 = 0.02.

Figures 3(a–g) show the results of the simulation: Fig. 3(a)

depicts the camera trajectory in space with the arrow indi-

cating its optical axis. Figure 3(b) shows the convergence of

the estimation error z(t) and Fig. 3(c) the behavior of the

N = 15 eigenvalues σ2
1,i over time. Note, again, how all σ2

1,i

approximately reach and keep the value ‖v(t0)‖2 thanks to

the active optimization of σ2. The vertical jumps in the plots

represent features which have left/entered the image plane,

with their estimated depths being either discarded (Ẑi = 0)

or reset as in (18).

Figure 3(d) depicts the behavior of the planarity mea-

sure σA(t), and Figs. 3(e–f) the estimation errors edA
(t)

and enA
(t). We can again note how method A is able to

successfully determine the (approximate) planarity of the

observed points and the associated plane parameters despite

the additional visibility constraint which forces features to

randomly enter/exit the camera fov (note, again, the several

jumps in the plots indicating loss/gain of some features).

Finally, Fig. 3(g) shows the total number of tracked features

np over time (which keeps varying as expected).

VI. CONCLUSIONS

In this paper we have presented and critically compared

two methods for determining whether a set of point fea-

tures belongs to a common plane and the associated plane

parameters. The first method exploits an estimation of the

point depths for retrieving the ‘best plane’ fitting a set of

3D points, while the second method is based on the classi-

cal homography decomposition and, thus, strongly depends

on correspodances across distant image frames (initial and

current ones) or on a reinitialization of the initial frame.

Both methods also rely (to different extents) on a newly

developed active SfM strategy which allows to optimize

online the camera trajectory in order to maximize the SfM

convergence rate. An extensive set of simulation results in

realistic conditions was then presented for assessing the

pros/cons of both methods: the results showed the poorer

performance of the classical homography-based approach

w.r.t. the other approach.

We are currently aiming for an experimental validation

of this approach by also investigating the use of different

kinds of visual features (e.g., dense/discrete image moments),

as well as more sophisticated strategies able to cope with

outliers and/or presence of multiple planes in the scene.
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Hough Transform for Plane Detection in Point Clouds: A Review and
a new Accumulator Design,” 3D Res, vol. 2, pp. 32:1–32:13, 2011.

[8] R. Spica and P. Robuffo Giordano, “A Framework for Active Estima-
tion: Application to Structure from Motion,” in 52nd IEEE Conf. on
Decision and Control, 2013.

[9] A. De Luca, G. Oriolo, and P. Robuffo Giordano, “Feature depth
observation for image-based visual servoing: Theory and experiments,”
Int. Journal of Robotics Research, vol. 27, no. 10, pp. 1093–1116,
2008.

[10] P. Robuffo Giordano, A. De Luca, and G. Oriolo, “3D structure
identification from image moments,” in 2008 IEEE Int. Conf. on
Robotics and Automation, Pasadena, CA, may 2008, pp. 93–100.


