
HAL Id: hal-00949521
https://hal.archives-ouvertes.fr/hal-00949521

Preprint submitted on 21 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A behavioural theory for a π-calculus with preorders
Daniel Hirschkoff, Jean-Marie Madiot, Xian Xu

To cite this version:
Daniel Hirschkoff, Jean-Marie Madiot, Xian Xu. A behavioural theory for a π-calculus with preorders.
2014. �hal-00949521�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49675676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00949521
https://hal.archives-ouvertes.fr

A behavioural theory for a

π-calculus with preorders
(long version)

Daniel Hirschkoff1, Jean-Marie Madiot1, and Xian Xu2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 East China University of Science and Technology, China

Abstract. We study the behavioural theory of πP, a π-calculus featur-
ing restriction as the only binder. In contrast with calculi such as Fusions
and Chi, reduction in πP generates a preorder on names rather than an
equivalence relation. We present two characterisations of barbed congru-
ence in πP: the first is based on a compositional LTS, and the second is
an axiomatisation. The results in this paper bring out basic properties
of πP, mostly related to the interplay between the restriction operator
and the preorder on names.

1 Introduction

The π-calculus expresses mobility via name passing, and has two binders: the
input prefix binds the value to be received, and restriction is used to delimit the
scope of a private name. The study of Fusions [13], Chi [6], Explicit Fusions [16]
and Solos [10] has shown that using restriction as the only binder is enough to
express name passing. In such calculi (which, reusing a terminology from [8], we
shall refer to as fusion calculi), the bound input prefix, a(x).P , is dropped in
favour of free input, ab.P . This yields a pleasing symmetry between input and
output prefixes; moreover, one can encode bound input in terms of free input as
(νx)ax.P .

In [8], the analysis of capability types [14] for fusion calculi has shown that
an important modification to existing fusion calculi is necessary in order to be
able to define meaningful type systems, beyond the simple discipline of sorting.
This has led to the introduction of πP, a π-calculus with preorders. Like existing
fusion calculi, πP features restriction as the only binder, and free input and
output prefixes. The calculus differs however from existing name-passing calculi.
The most important difference is that interaction does not have the effect of
equating (or fusing) two names, but instead generates an arc process, according
to the following reduction relation:

ca.P | cb.Q −→ a/b | P | Q .

The arc a/b expresses the fact that anything that can be done using name b can
be done using a as well (but not the opposite): we say that a is above b. Arcs
induce a preorder relation on names, which can evolve along reductions.

Arcs can modify interaction possibilities: in presence of a/b, a is above b, hence
a process emitting on b can also make an output transition along channel a. In
general, an output on channel c can interact with an input on d provided c and
d are joinable, written cg d, which means that there is some name that is above
both c and d according to the preorder relation To formalise these observations,
the operational semantics exploits conditions, which are either of the form b 6 a
(a is above b), or a g b (a and b are joinable).

[8] shows that capabilities make sense in a fusion calculus if preorders replace
equivalence relations (‘fusions’). Accordingly, [8] presents a type system with in-
put/output types and subtyping for πP. Name preorders have an impact on how
processes express behaviours. It is necessary, beyond types, to understand the
consequences of introducing this new construct, whose behaviour does not seem
to be reducible to known situations. [8] defines barbed congruence, written ≃,
and presents some laws for ≃, suggesting that the behavioural theory of πP dif-
fers from the one of other fusion calculi. As an illustration, consider the following
law, which is valid in πP (and in the π-calculus):

a(x).b(y).(x | y) ≃ a(x).b(y).(x.y + y.x) .

x (resp. y) stands for an output (resp. input) where the value being transmit-
ted is irrelevant. In Fusions, unlike in the π-calculus, the process that creates
successively two fresh names x and y cannot prevent the context from equating
(“fusing”) x and y; hence, in order for the equivalence to hold, it is necessary to
add a third summand on the right, [x = y]τ . In πP we could program the pos-
sibility for the context to equate x and y, by changing the continuation process
x | y. This example suggests that πP gives a better control on restricted names.
(Note that a different approach is adopted in [3,4] to address this question.)

In order to gain a better understanding of such phenomena, the main purpose
of the present work is to deepen the study of the behavioural theory of πP, in an
untyped setting. We define a structural Labelled Transition System (LTS) for
πP, and show that the induced notion of bisimilarity, written ∼, characterises
≃ (Section 3). It can be noted that [8] presents a characterisation of barbed
congruence, using an LTS that is rather ad hoc, because it is based on the
definition of the reduction relation. Unlike the latter, the LTS we present here
is structural. The LTS reveals interesting aspects of interaction in πP.

An important observation is related to the interplay between arcs and the
restriction operator. It is for instance possible for a process to react to an input
offer on some channel, say c, without being actually able to perform an output on
c. This is the case for P0

△
= (νa)(av | a/c)), as P0 | cu reduces to v/u (P0 could

do an output on c if the arc a/c was replaced with c/a). This phenomenon leads
to the addition of a new type of labels in the LTS, corresponding to what we
call protected actions. As expected, protected actions correspond to observables
in the reduction-based semantics supporting the definition of ≃.

Arc processes do not have transitions, but, as mentioned above, they induce
conditions involving names, which in turn influence the behaviour of processes.
Accordingly, strong bisimilarity, ∼, not only tests transitions, but also has a
clause to guarantee that related processes entail the same conditions. The LTS

2

includes a label [ϕ]τ , expressing “conditional synchronisation”. [ϕ]τ transitions
have a special treatment in the definition of ∼.

We provide a second characterisation of barbed congruence, by presenting a
set of laws that define an axiomatisation of ≃ (Section 4). Algebraic laws help
analysing the behaviour of the constructs of the calculus and their interplay.

We discuss the main ideas in the axiomatisation. In a rather expected way,
the prefixes in the calculus correspond to the labels of the LTS. This means in
particular that we include prefixes for protected inputs and outputs. One of the
salient aspects of the axiomatisation is the existence of a state component in
processes, corresponding to the preorder induced by arcs. To manipulate the
state component of processes, several laws in the axiomatisation can be used
to rewrite prefixes using arcs, which makes it possible to express all transitions
induced by a prefixed process. Another set of laws express persistence of the state
component in processes (the state can only be extended along computation).

Moreover, the restriction operator prevents the state from being globally
shared in general: for instance, in process P0 above, name a can be used instead
of c, but is only known inside the scope of (νa). All in all, the handling of
restriction in our axiomatisation requires more care than is usually the case, due
to the necessity to express the “view” that subprocesses have on the preorder of
names. As we show in Section 4, this has an influence on the overall structure
of the presentation of the axiomatisation.

Beyond the LTS and the axiomatisation, which are the main contributions
of this paper, we present two results that are related to our study of ≃ in πP:

– Protected actions can be viewed as cocapabilities, in the sense of capability
types. We define an i/o type system with cocapabilities for πP.

– We show that our approach for the axiomatisation of πP can be adapted
to provide an axiomatisation of behavioural equivalence for the calculus of
Explicit Fusions, which features a fusion construct for processes.

The paper describes our results and sketches the most important proofs. We
refer to [9] for a more detailed presentation of the technical details. Related work
is discussed along the paper, where it is relevant.

2 πP: Reduction-Based Semantics

2.1 The Calculus: Preorders and Processes

We consider a countable set of names a, b, c, . . . , x, y, . . . , and define conditions
(ϕ), extended names (α, β), prefixes (π) and processes (P,Q) as follows:

ϕ ::= a 6 b
∣∣ a g b α, β ::= a

∣∣ {a} π ::= α(x)
∣∣ α(x)

∣∣ [ϕ]τ
P,Q ::= P | Q

∣∣ (νa)P
∣∣ a/b

∣∣ ∑
i∈I πi.Pi

In a sum process, we let I range over a finite set of integers. 0 is the inactive
process, defined as the empty sum. We use S to range over sum processes of
the form

∑
i πi.Pi, and write π.P ∈ S if π.P is a summand of S. We sometimes

3

decompose sum processes using the binary sum operator, writing, e.g., S1 + S2

(in particular, S + 0 = S). We abbreviate π.0 as π, and write α(x).P simply as
α.P when the transmitted name is not relevant, and similarly for α. (νa) binds
a in the restricted process, and prefixes α(x) α(x) bind x in the continuation
process. The set of free names of P , fn(P), is defined in the usual way. P{b/a} is
the process obtained by substituting a with b in P , in a capture-avoiding way.

There are two forms of ϕ conditions: a 6 b is read “b is above a” and a g b
is read “a and b are joinable”. In both cases, we have n(ϕ) = {a, b}. We explain
below how we extend relations 6 and g to extended names. When n(ϕ) = {a},
we say that ϕ is reflexive and we abbreviate [ϕ]τ as τ . Condition b 6 a is ensured
by the arc process a/b.

In a prefix α(x) or α(x), we say that extended name α is in subject position,
while x is in object position. As discussed in Section 1, extended names include
protected names, of the form {a}, which can be used in subject position only.
A prefix of the form [ϕ]τ is called a conditional τ , while other prefixes are
called visible. Bound and free names for prefixes are given by: bn([ϕ]τ) = ∅
and bn(α(x)) = bn(α(x)) = {x}, fn([ϕ]τ) = n(ϕ), fn(α(x)) = fn(α(x)) = n(α)
with n(a) = n({a}) = {a}.

We use an overloaded notation, and define processes representing conditions:

a g b
△
= (νu)(u/a | u/b) a 6 b

△
= b/a .

Γ ranges over sets of at most two conditions. We define Γ ⊢ ϕ, meaning that Γ
implies ϕ, and P ⊲ Γ , meaning that P entails ϕ for all ϕ ∈ Γ :

⊢-refl

Γ ⊢ a 6 a

⊢-in
ϕ ∈ Γ

Γ ⊢ ϕ

⊢-mirror
Γ ⊢ b g a

Γ ⊢ a g b

⊢-trans
Γ ⊢ a 6 b
Γ ⊢ b 6 c

Γ ⊢ a 6 c

⊢-join
Γ ⊢ a 6 b
Γ ⊢ c 6 b

Γ ⊢ a g c

⊢-extjoin
Γ ⊢ a 6 b
Γ ⊢ b g c

Γ ⊢ a g c

⊲-arc

a/b⊲ b 6 a

⊲-combine

P ⊲ Γ Γ ⊢ ϕ

P ⊲ ϕ

⊲-par-l

P ⊲ ϕ

P | Q⊲ ϕ

⊲-par-r

Q⊲ ϕ

P | Q⊲ ϕ

⊲-res

P ⊲ ϕ a /∈ n(ϕ)

(νa)P ⊲ ϕ

As an example, the reader might check that (νu)(u/a | u/b) | b/c ⊲ a g c.

Notation 1 We write Φ(P) = {ϕ | P ⊲ ϕ} the set of conditions entailed by P .

2.2 Reduction Semantics and Barbed Congruence

Definition 1. Structural congruence, written ≡, is the smallest congruence sat-
isfying α-conversion for restriction, and the following axioms:

P | 0 ≡ P (P | Q) | R ≡ P | (Q | R) P | Q ≡ Q | P

(νa)0 ≡ 0 (νc)(νd)P ≡ (νd)(νc)P (νa)(P | Q) ≡ (νa)P | Q if a /∈ fn(Q)

∑

i∈I

πi.Pi≡
∑

i∈I

πσ(i).Pσ(i) σ a permutation of I

4

Relations ≡ and ⊲ are used to define the reduction of processes. We rely on
⊲ to infer that two processes interact on joinable (extended) names. This allows
us to introduce reduction-closed barbed congruence, along the lines of [8].

Definition 2 (Reduction). 7→ is the relation defined by the following rules:
(we write ≡ 7→≡ for relation composition):

α(x).P ∈ S1 β(y).Q ∈ S2 R⊲ α g β x 6= y

R | S1 | S2 7→ R | (νxy)(x/y | P | Q)

a g {b} = {b} g a = a 6 b
{a} g {b} = undefined

[ϕ]τ.P ∈ S R⊲ ϕ

R | S 7→ R | P
P 7→ P ′

P | R 7→ P ′ | R
P 7→ P ′

(νa)P 7→ (νa)P ′
P ≡ 7→ ≡ P ′

P 7→ P ′

We choose as in [8] a generic definition of barbs, uniform over usual process
calculi, instead of the more syntactic characterisation.

Definition 3 (Barbs). The barb ↓a holds for a process P if P | a(x).ω 7→ P ′,
where P ′ is a process in which ω is unguarded, and ω is a special name that does
not appear in P . We define similarly the barb ↓a, using the tester a(x).ω.

Definition 4. Barbed congruence is the largest congruence ≃ satisfying:

– if P ↓a and P ≃ Q then Q ↓a, and similarly for ↓a, and
– if P 7→ P ′ and P ≃ Q then for some Q′, P ′ ≃ Q′ and Q 7→ Q′.

The remainder of the paper is devoted to the presentation of two character-
isations of ≃. We first comment on the definition of πP given above.

[8] discusses an alternative version of reduction, called “eager”, where arcs
can rewrite prefixes, yielding, e.g., d/c | c(x).P 7→ d/c | d(x).P . [8] explains why
the present semantics is more compelling (for instance a(x).a(y) would not be
equivalent to a(x) | a(y) in the eager version).

Our calculus lacks prefixes for free input and output. These can be encoded
using bound prefixes, as follows (name x is chosen fresh):

[ab.P]
△
= (νx)a(x).(P | x/b) [ab.P]

△
= (νx)a(x).(P | b/x) .

In a calculus having both kind of prefixes, we could show that the above encoded
processes behave like primitive free prefixes.

Moreover, it is possible to encode protected prefixes, as follows (u is fresh):

[{a}(x).P]
△
= (νu)(u/a | u(x).P) [{a}(x).P]

△
= (νu)(u/a | u(x).P) .

Remark 5 (Comparison with [8]). Unlike the version of πP presented in [8], our
calculus has sum and primitive bound prefixes. Including such constructs is
customary when studying axiomatisations (bound prefixes are often present as
soon as the calculus has restriction — see e.g. [12,15]). We also have primitive
protected prefixes, to make the technical development of Section 4 simpler. As
discussed above, these are encodable in πP. The same holds for free prefixes,
which are not included in the syntax. An LTS for πP based on free prefixes is
definable, at the cost of a more complex technical development [9].

5

3 A Labelled Transition System for πP

3.1 LTS and Bisimilarity

The LTS defines transitions P
µ
−→ P ′, where the grammar for the labels, µ, is

the same as the one for prefixes π. We comment on the rules, given on Figure 1.
The first two rules correspond to the firing of visible prefixes. The transi-

tion involves a fresh name x, upon which the participants in a communication
“agree”. Name y remains local, via the installation of an arc, according to the
directionality of the prefix. (Adopting a rule with no arc installation would yield
a more complex definition of ∼). The rule for the [ϕ]τ prefix is self explanatory.
The rule describing communication follows the lines of the corresponding rule
for 7→; no arc is installed (but arcs are introduced in the prefix rules).

The three rules mentioning ⊲ are called preorder rules. The two preorder
rules for visible actions exploit 6, which is defined for extended names (as we
did for g above). Note that the condition involving ⊲ is the same in these two
rules. For instance, if P

a(x)
−−−→P ′ and P ⊲ a 6 c, we can derive P

c(x)
−−→P ′. In this

case, P ⊲ a 6 {c} is also derivable, hence P
{c}(x)
−−−→P ′. We can also check that P0

from Section 1 satisfies P0
{c}(x)
−−−→, because av | a/c⊲ c g a (and hence a 6 {c}).

The other preorder rule can be used to modify conditional τs involved in a
transition. As an example, let P1

△
= (a(x).Q | n/u) | (u(y).R | n/a). Process P1

can perform a τ transition: the two arcs can, intuitively, let the output at a and
the input at u interact at name n. Technically, this can be derived by inferring a
[agu]τ
−−−−→ transition (from the output on the left and the input on the right). The
latter can then be turned into a τ transition, exploiting the fact that the whole
process entails a g u. Finally, the congruence rules are as expected.

Definition 6 (∼). A symmetric relation R is a bisimulation if P R Q implies:

– If P ⊲ ϕ then Q⊲ ϕ.

– If P
α(x)
−−−→ P ′, with x /∈ fn(Q), then there is Q′ such that Q

α(x)
−−−→ Q′ and

P ′ R Q′; we impose the same condition with α instead of α.

– If P
[ϕ]τ
−−→ P ′ then there is Q′ such that Q

[ϕ]τ
−−→ Q′ and P ′ | ϕ R Q′ | ϕ.

Bisimilarity, written ∼, is the greatest bisimulation.

This definition is reminiscent of the efficient bisimulation from [16]. Note in
particular the necessity to add ϕ in parallel in the [ϕ]τ

−−→ case.

3.2 The Characterisation Theorem

On the ⊢
i relation We define below ⊢i, an atomic decomposition of ⊢ to be

able to easily work proof inductions. The idea is that Γ ⊢ ϕ is equivalent to
ψ ⊢i ψ1

◦ . . . ◦ ⊢i ψn
ϕ for some reflexive ψ and for some ψ1, . . . , ψn ∈ Γ , where ⊢i ψ

is the relation {(ϕ, ζ) | ϕ, ψ ⊢ ζ}.

6

→-in

x /∈ fn(α) ∪ fn(P)

α(y).P
α(x)
−−−→ (νy)(x/y | P)

→-out

x /∈ fn(α) ∪ fn(P)

α(y).P
α(x)
−−−→ (νy)(y/x | P)

→-tau

[ϕ]τ.P
[ϕ]τ
−−→ P

→-comm-l

P
α(x)
−−−→ P ′ Q

β(x)
−−−→ Q′

P | Q
[αgβ]τ
−−−−−→ (νx)(P ′ | Q′)

→-tau-⊲

P
[ϕ2]τ
−−−→ P ′ P ⊲ Γ Γ, ϕ1 ⊢ ϕ2

P
[ϕ1]τ
−−−→ P ′

→-in-⊲

P
α(x)
−−−→ P ′ P ⊲ α 6 β

P
β(x)
−−−→ P ′

→-out-⊲

P
α(x)
−−−→ P ′ P ⊲ α 6 β

P
β(x)
−−−→ P ′

a 6 {b} = a g b
{a} 6 {b} = b 6 a
{a} 6 b = undefined

→-res

P
µ
−→ P ′ a /∈ fn(µ)

(νa)P
µ
−→ (νa)P ′

→-par-l

P
µ
−→ P ′

bn(µ) ∩ fn(Q) = ∅

P | Q
µ
−→ P ′ | Q

→-sum

πi.Pi
µ
−→ P ′

∑
i
πi.Pi

µ
−→ P ′

Fig. 1. LTS for πP. Symmetric versions of the two rules involving | are omitted.

Definition 7. The predicate ϕ1, ϕ2 ⊢iϕ3 is defined as follows:

a6b, b6c ⊢i a6c a6c, b6c ⊢i agb agb, c6a ⊢i cgb agb, c6b ⊢i agc

b6c, a6b ⊢i a6c b6c, a6c ⊢i agb c6a, agb ⊢i cgb c6b, agb ⊢i agc

Note that the second line is the symmetric variant of the first.

Lemma 8. If ϕ1, ϕ2 ⊢iϕ and ϕ21, ϕ22 ⊢iϕ2 then there exists ϕ′ such that either:

– ϕ1, ϕ21 ⊢iϕ′ and ϕ′, ϕ22 ⊢iϕ, or
– ϕ1, ϕ22 ⊢iϕ′ and ϕ′, ϕ21 ⊢iϕ.

Equivalent formulation: if ϕ21, ϕ22 ⊢iϕ2 then ⊢i ϕ2
⊆ (⊢i ϕ21

⊢i ϕ22
∪ ⊢i ϕ22

⊢i ϕ21
).

Proof. Finite and exhaustive case analysis on the premises; the proof has been
mechanized.

The relations ⊢ and ⊢imean the same:

Lemma 9. If Γ ⊢ ϕ then ⊢i ϕ ⊆ ⊢i ψ1
. . .⊢i ψn

⊢i ζ for some ψ1, . . . , ψn ∈ Γ and
some reflexive ζ.

Proof. By induction on Γ ⊢ ϕ. Lemma 8 provides us with a helpful notion of
composability that covers the rules ⊢-trans, ⊢-join, ⊢-extjoin. ⊓⊔

Corollary 10. If ϕ1, ϕ2 ⊢i ϕ3 then ϕ1, ϕ2 ⊢ ϕ3. Conversely, if Γ ⊢ ϕ then
ψ ⊢i ψ1

. . . ⊢i ψn
ϕ for some reflexive ψ and for some ψ1, . . . , ψn ∈ Γ .

7

Proof. The first part is trivial: each rule for ⊢i is simulated by (three) rules for ⊢.
The second part follows from Lemma 9.

Notation 2 We write ϕ1 ⊢i ϕ2
ϕ3 whenever ϕ1, ϕ2 ⊢iϕ3 and we write ⊢i P for the

union of all ⊢i ϕ for P ⊲ ϕ.

Intuitively, ⊢i P denotes all the implications between conditions that hold
because of the conditions that are entailed by process P in one step.

Lemma 11. ⊢i P |Q ⊆ (⊢i P∪ ⊢i Q)
∗.

Proof. We writeR for the relation ⊢i P∪ ⊢i Q. We prove by induction on P | Q⊲ϕ2

that for all ϕ1 and ϕ3, if ϕ1, ϕ2 ⊢i ϕ3 then ϕ1R
∗ ϕ3. There are three cases. For

⊲-par-l we know that P ⊲ ϕ2 so ϕ1 ⊢i Pϕ3 and for ⊲-par-r we get the same
way ϕ1 ⊢i Qϕ3. The case for the rule ⊲-combine is handled using Lemma 9. ⊓⊔

Lemma 12. If ϕ1(⊢
i
P)

∗ϕ3 then ϕ1 ⊢i Pϕ2 ⊢i Pϕ3 for some ϕ2 such that n(ϕ2) ⊆
n(ϕ1) ∪ n(ϕ3).

Proof. (Sketch). Suppose ϕ1 ⊢i P . . . ⊢
i
Pϕ3. One obtains ϕ3 from ϕ1 by appending

ψ’s such that P ⊲ ψ at the left or at the right of ϕ1. We can in fact append all
left ψs at first (an operation that can be done in one ⊢i P step), and once it is
done, appending all right ψs (the other ⊢i P step).

Lemma 13. Suppose ϕ1 ⊢i ∗Pϕ4 and n(ϕi) = {ai, bi}. For some ϕ2 and ϕ3 we
have ϕ1 ⊢i Pϕ2 ⊢i Pϕ4 and ϕ1 ⊢i Pϕ3 ⊢i Pϕ4 such that n(ϕ2) = {a1, b4} and
n(ϕ3) = {a4, b1}.

Proof. As in the proof of Lemma 12, but we care about whether we do left-right
or right-left.

Lemma 14. If 0⊲ ϕ then ϕ is reflexive, and for all P , P ⊲ ϕ.

Proof. By induction on the derivation of 0 ⊲ ϕ: the only possible rule is ⊲-
combine, which can apply for P as well as for 0.

Lemma 15. If P ⊲ ϕ and there is a ∈ n(ϕ) \ fn(P), then ϕ is reflexive.

Proof. We prove by induction on the derivation of P ⊲ ϕ that n(ϕ) = {a} for
each of those ϕ. We have only one interesting case, for the ⊲-combine rule:
P ⊲ ϕ1, . . . , P ⊲ ϕn and ϕ1, . . . , ϕn ⊢ ϕ. We can suppose w.l.o.g. that Γ only
contains ϕs that have been effectively used by one of the rules for ⊢.

By induction hypothesis, each time a appear in a ϕi, n(ϕi) = {a}. Hence,
as each rule for ⊢ propagates a into each premise, it will be the same for all
the premises, leading at the end to the fact all ϕi are reflexive for a, and hence
n(ϕ) = {a}. ⊓⊔

A context C is a process with one occurrence of the hole; replacing the hole
with P yields a process written C[P].

8

Lemma 16. If Φ(P) ⊆ Φ(Q) then Φ(C[P]) ⊆ Φ(C[Q]).

Proof. By induction on C[P]⊲ϕ′ we prove C[Q]⊲ϕ′, the case for ⊲-combine is
trivial. In all other cases we make a straightforward case analysis on C: it cannot
be a sum, and if it is C ′ | R with the rule ⊲-par-l (or R | C ′ with ⊲-par-r,
or νaC ′ with ⊲-res) then the induction hypothesis is enough. It is immediate if
C = C ′ | R with the rule ⊲-par-r (or R | C ′ with ⊲-par-l), and if C = [] then
we use P ⊲ ϕ⇒ Q⊲ ϕ.

Lemma 17. If P ⊲ ϕ then Φ(P | ϕ) = Φ(P).

Proof. By induction on a derivation of P | ϕ ⊲ ψ for any ψ, we prove P ⊲ ψ.
The ⊲-par-l case is trivial, the ⊲-par-r case uses the fact P ⊲ ψ, and the
⊲-combine case is trivial.

Lemma 18. If P ≡ Q and P ⊲ ϕ then Q⊲ ϕ.

Proof. We prove by induction on the derivation of P ≡ Q that Φ(P) = Φ(Q):
this generalisation is necessary because symmetry is among the axioms of ≡.

In most cases of this induction – the main exceptions being the first two items
below – we prove that ∀ϕ, P⊲ϕ⇒ Q⊲ϕ and ∀ϕ,Q⊲ϕ⇒ P⊲ϕ separately, using
an induction on the judgement −⊲ϕ. The case for ⊲-combine is immediate so
we focus on when the last rule is another one.

1. The congruence rule is handled using Lemma 16.
2. The equivalence rules follow from the fact that ⇔ is itself an equivalence.
3. P | 0 ≡ P : the induction on P | 0⊲ ϕ goes as follows: each ⊲-par-l rule is

removed, and each ⊲-par-r rule is replaced by a proof of 0 ⊲ ϕ ⇒ P ⊲ ϕ
(Lemma 14).

4. P ≡ P | 0: no induction needed, only an application of ⊲-par-l.
5. (P | Q) | R ≡ P | (Q | R): the last rule is ⊲-par-r or ⊲-par-l. In the

former case, we know R ⊲ ϕ so two applications of ⊲-par-r are needed to
prove P | (Q | R) ⊲ ϕ. In the case of rule ⊲-Par-r, we have P | Q ⊲ ϕ; we
perform another induction on P | Q⊲ ϕ to establish P | (Q | R)⊲ ϕ.

6. P | (Q | R) ≡ (P | Q) | R: similar proof.
7. P | Q ≡ Q | P : the last rule is either ⊲-par-l (P ⊲ ϕ) or ⊲-par-r (Q⊲ ϕ),

and we apply respectively ⊲-par-r or ⊲-par-l.
8. Q | P ≡ P | Q: same proof.
9. (νa)P ≡ (νb)P{b/a} when b /∈ fn(P): the last rule, and the one we apply, is
⊲-res and we end up proving that if P⊲ϕ then P{b/a}⊲ϕ when a, b /∈ n(ϕ).
More generally we can prove P ⊲ ϕ ⇒ Pσ ⊲ ϕσ for all (even non injective)
substitution σ since ⊲ and ⊢ are oblivious to substitutions.

10. (νb)P{b/a} ≡ (νa)P : similar proof.
11. (νab)P ≡ (νba)P : the last rule is ⊲-res. We know (νb)P ⊲ϕ with a /∈ n(ϕ).

By induction on (νb)P ⊲ϕ we can prove P ⊲ϕ, from which we can get (νa)P
and then (νba)P .

12. (νba)P ≡ (νab)P : same proof.

9

13. (νaP) | Q ≡ νa(P | Q) with a /∈ fn(Q). If the last rule is ⊲-par-r, coming
from Q ⊲ ϕ, in which case we conclude easily. If the last rule is ⊲-par-l,
coming from νaP ⊲ ϕ, we get P ⊲ ϕ (like in the proof of the previous case)
from which (νa)(P | Q) ⊲ ϕ follows. It is worth noting that if a ∈ n(ϕ), ϕ
must be trivial (a g a or a 6 a).

14. νa(P | Q) ≡ (νaP) | Q with a /∈ fn(Q). This is the most difficult case
in the proof of the present lemma. Intuitively, we need to put together all
contributions from P so that they are independent of Q.

First, as before, from νa(P | Q)⊲ ϕ we get P | Q⊲ ϕ.
We treat the case where ϕ = b0 g c0 (the cases b0 6 c0 and c0 6 b0 are
simpler). The derivation of P | Q ⊲ ϕ at hand is built up using a certain
number of instances of rule ⊲-combine involving processes P and Q, which
we summarise as follows: there exist names b0, . . . , bn and c0, . . . , cm such
that:

– either P ⊲ bn g cm or Q⊲ bn g cm;

– bi 6 bi+1 is derived from P or Q, i.e. either P⊲bi 6 bi+1 or Q⊲bi 6 bi+1,
and the same holds for cj 6 cj+1.

We show that we can construct a derivation where name a is not used, which
means that we eliminate occurrences of a in the bis and the cjs. For this, we
proceed as follows:

(a) we replace every derivation of the shape Q ⊲ γ, where γ is a formula
involving the bis or the cjs, and a ∈ n(γ), with a derivation of P ⊲ γ:
this is possible thanks to Lemma 15 (because a /∈ fn(Q), so γ must be
reflexive).
We obtain this way the property that wheneverQ⊲γ for some γ involving
the bis or the cjs, a /∈ n(γ).

(b) Therefore, if bi = a for some i, we have i > 0 since a /∈ n(φ), and
P ⊲ bi−1 6 bi = a.
If i < n, we also have P ⊲ a 6 bi+1, which allows us to deduce, using
rule ⊲-combine, P ⊲ bi−1 6 bi+1. We thus got rid of an occurrence of a
in the bis.
If i = n, since P ⊲ bn g cm and a = bn, we deduce P ⊲ bn−1 g cm. Also
in this case, we got rid of an occurrence of a in the bis.

(c) We proceed like this as long as a appears in the bis, and do the same to
get rid of all occurrences of a among the cjs.

We are thus left with a set of formulas γ such that: (i) either P ⊲ γ or
Q⊲ γ, and (ii) a /∈ n(γ). Moreover, these formulas can be combined to yield
ϕ = b0 g c0. Whenever we have a derivation of P ⊲ γ, we can use rule ⊲-
res to obtain a derivation of (νa)P ⊲ γ. We then transform all derivations
of formulas from either (νa)P or Q into the corresponding derivation from
(νa)P | Q, using either rule ⊲-par-l or ⊲-par-r.
We conclude by applying rule ⊲-combine n + m times, to finally derive
(νa)P | Q⊲ ϕ.

This concludes the induction on the derivation of P ≡ Q. ⊓⊔

10

Definition 19. We define a relation ⊑
ϕ between labels as follows: (i) α1(x) ⊑

ϕ

α2(x) and α1(x) ⊑
ϕ α2(x) when ϕ = α2 6 α1, and (ii) [ϕ1]τ⊑

ϕ[ϕ2]τ when
ϕ1, ϕ ⊢ ϕ2.We write ⊑P for the smallest preorder containing all ⊑

ϕ when P ⊲ϕ.

Lemma 20. If ϕ1, ϕ2 ⊢ ϕ3 then (⊑ϕ3) ⊆ (⊑ϕ1⊑
ϕ2) ∪ (⊑ϕ2⊑

ϕ1).

Proof. We suppose µ⊑
ϕ3µ′. If µ is a conditional τ , Lemma 8 is enough to con-

clude. Otherwise, we make an exhaustive case analysis on ϕ1, ϕ2 ⊢ ϕ3 and ⊑
ϕ3 ,

there a quite a few, but easy, cases. The proof has been mechanized, but we
write below the main cases after removing some symmetric cases.

1. a 6 b, b 6 c ⊢ a 6 c: from µ⊑
a6cµ′ we know that either (we ignore when

µ, µ′ are output labels, we also write {a} instead of {a}(x)):

c ⊑
a6c a c ⊑

b6c b ⊑
a6b a

{a}⊑a6c{c} {a}⊑a6b{b}⊑b6c{c}
{c}⊑a6c a {c}⊑b6c b ⊑

a6b a
{a}⊑a6c c {a}⊑a6b{b}⊑b6c c

2. a 6 c, b 6 c ⊢ a g b:

{a}⊑agb b {a}⊑a6c c ⊑
b6c b

{b}⊑agb a {b}⊑b6c c ⊑
a6c a

3. a g b, c 6 a ⊢ c g b:

{c}⊑cgb b {c}⊑c6a{a}⊑agb b
{b}⊑cgb c {b}⊑agb a ⊑

c6a c

4. a g b, c 6 b ⊢ a g c:

{c}⊑agc a {c}⊑c6b{b}⊑agb a
{a}⊑agc c {a}⊑agb b ⊑

c6b c

Lemma 21. ⊑P |Q ⊆ (⊑P ∪ ⊑Q)
∗.

Proof. By definition we know that µ⊑
ϕµ′ for some ϕ such that P | Q⊲ϕ. First,

remark that the cases mirror (a g b⊑ϕb g a) and discard (ψ⊑
ϕψ) are handled

immediately.
There exists a trivial ψ such that ψ ⊢P |Q ϕ. By Lemma 11 we know that

⊢P |Q ⊆ (⊢P ∪ ⊢Q)
∗, namely there is a sequence ζ1, ζ2, . . . , ζn (with ψ = ζ1 and

ϕ = ζn) such that ζ1 ⊢R1
. . . ζn−1 ⊢Rn−1

ζn with Ri ∈ {P,Q}. Since ζi ⊢Ri
ζi+1

we know that ⊑
ζi+1 ⊆ (⊑ζi ∪ ⊑Ri

)∗ by Lemma 20.
We write R for ⊑P ∪⊑Q. Hence ⊑

ζi ⊆ R∗ implies ⊑
ζi+1 ⊆ R∗, since ⊑Ri

⊆ R.
Since ψ is trivial ⊑ζ1 = ⊑ψ ⊆ ⊑P , we conclude by induction on n: ⊑ζn = ⊑ϕ ⊆ R∗.

Proof. This breaks into proofs of ⊢P |Q ⊆ (⊢P ∪ ⊢Q)
∗ where ⊢R is the relation

{(ϕ1, ϕ3) | ϕ1, ϕ2 ⊢ ϕ3, R⊲ϕ2} and of ϕ1 ⊢R ϕ3 implies ⊑
ϕ3 ⊆ (⊑ϕ1 ∪⊑R)

∗. ⊓⊔

11

Lemma 22 (Composition of extended 6 and g). On extended names, 6
is transitive and g can be extended on the left (or on the right), but cannot in
general be derived from 6.

1. If α 6β and β 6γ are defined, so is α 6γ and α 6β, β 6γ ⊢ α 6γ.
2. If α 6 β and β g γ are defined, so is α g γ and α 6 β, β g γ ⊢ α g γ.
3. In general α 6 β and γ 6 β do not imply α g γ.

Proof. The first two items needs a careful case analysis:

1. to prove α 6 β, β 6 γ ⊢ α 6 γ, we have four cases for α,β,γ:
(a) a,b,c: then a 6 b, b 6 c ⊢ a 6 c by transitivity of 6,
(b) a,b,{c}: then a 6 b, b g c ⊢ a g c by left extension of g,
(c) a,{b},{c}: then a g b, c 6 b ⊢ a g c by right extension of g,
(d) {a},{b},{c}: then b 6 a, b 6 c ⊢ c 6 a by transitivity of 6.

2. to prove α 6 β, β g γ ⊢ α g γ, we have 4 well-defined cases for α,β,γ:
(a) a,b,c: then a 6 b, b g c ⊢ a g c by left extension of g,
(b) a,b,{c}: then a 6 b, b 6 c ⊢ a 6 c by transitivity of 6,
(c) a,{b},c: then a g b, c 6 b ⊢ a g c by right extension of g,
(d) a,{b},{c}: impossible since {b} g {c} is undefined,
(e) {a},b,c: impossible since {a} 6 b is undefined,
(f) {a},b,{c}: impossible since {a} 6 b is undefined,
(g) {a},{b},c: then b 6 a, c 6 b ⊢ c 6 a by transitivity of 6,
(h) {a},{b},{c}: impossible since {b} g {c} is undefined.

And finally a counterexample for (3) is when α = β = γ = {a} since we always
have {a} 6 {a} but {a} g {a} is undefined. ⊓⊔

Corollary 23. If α(x)⊑P α1(x) and α g β is defined, then α1 g β is defined
and [α g β]τ ⊑P [α1 g β]τ .

Proof. Remark that α(x)⊑P α1(x) is equivalent to P ⊲α1 6 α and by definition
of ⊑P , it is enough to prove α g β, α1 6 α ⊢ α1 g β which is an instance of the
Lemma 22.

Remark 24. For visible labels, ⊑P needs to be closed neither by transitivity nor
by reflexivity, as the first item of Lemma 22 indicates.

Lemma 25. If A⊲ϕ and A is a parallel composition of preorder processes, then
there are some ϕ1, . . . , ϕn ∈ A and a reflexive ψ such that ⊑

ϕ = ⊑
ψ
⊑
ϕ1 . . .⊑ϕn .

Proof. First remark that if ψ1 and ψ2 are reflexive, then there is some ψ such that
⊑
ψ1⊑

ψ2 ⊆ ⊑
ψ. Also remark that for all ϕ, if ψ1 is reflexive, then there is a reflexive

ψ2 for which ⊑
ϕ
⊑
ψ1 ⊆ ⊑

ψ2⊑
ϕ. It is now enough to prove the weaker statement

with reflexive ψs interleaving with the ϕis. Moreover this weaker statement is
transitive so we can just use induction on A⊲ ϕ now:

– a/b⊲ b 6 a: trivial (⊑b6a ⊆ ⊑
b6a).

– the case for ⊲-par-* is trivial as well,

12

– ⊲-combine needs an induction of its own:
• ⊢-refl A⊲ a 6 a: ϕ is then indeed reflexive
• ⊢-in ϕ ∈ A: indeed ⊑

ϕ ⊆ ⊑
ϕ,

• ⊢-mirror ⊑
agb = ⊑

bga.
• ⊢-trans since a 6 b, b 6 c ⊢ a g c we use Lemma 20.
• ⊢-join same as above with a 6 b, c 6 b ⊢ a g c
• ⊢-extjoin same with a 6 b, b g c ⊢ a g c. ⊓⊔

Lemma 26. If µ⊑P |Qµ
′ and a /∈ fn(µ), fn(µ′), fn(Q) then µ⊑(νaP)|Qµ

′.

Proof. We use use Lemma 21 to get a sequence µ0, µ1, . . . , µn with µ = µ0 and
µ′ = µn and µi⊑

ϕiµi+1 with for each i, P ⊲ϕi or Q⊲ϕi. Suppose a ∈ fn(ϕi) and
Q⊲ϕi, then wlog. since ϕi is trivial and we can suppose that in fact P ⊲ϕi. We
then regroup all subsequences ϕi, . . . , ϕj entailed by P together (and we do the
same with Q) to obtain after some reindexing: µj1⊑Pµj2⊑Qµj3⊑P . . . such that
for all k, a /∈ fn(µjk). Then we can write in fact µj1⊑νaPµj2⊑Qµj3⊑νaP . . . and
we can conclude that µ⊑(νaP)|Qµ

′.

Lemma 27. If µ⊑P |Qµ
′ and a /∈ fn(µ), fn(Q) then for some λ such that a /∈

fn(λ), µ⊑(νaP)|Qλ⊑Pµ
′.

Proof. As in the proof of Lemma 26 we get µ = µj1⊑Pµj2⊑Q . . .⊑Pµjn = µ′

except a may appear in µ′ = µjn , but not in any other µ = µjk if k < n. We
choose λ = µjn−1

, the rest is the same.

Lemma 28. If ϕ1 = α g γ is defined and ϕ2 ⊢i Pϕ1, then either

1. for some β, β(x)⊑ψα(x) and ϕ2 = β g γ, or
2. for some β, β(x)⊑ψγ(x) and ϕ2 = α g β (this case being unnecessary if

fn(α) 6⊆ n(ϕ2)).

Lemma 29. If P
µ
−→ P ′ and η ⊑P µ then P

η
−→ P ′. Conversely, whenever P

η
−→

P ′ there exists µ such that η ⊑P µ and P
µ
−→ P ′, of which we can have a proof of

smaller size that does not end with a preorder rule.

Proof. Both direction are proved by simple inductions.

Notation 3 We adopt the following notation in writing derivations, to denote
either an application of the first part of Lemma 29 (i.e. an application of several

preorder rules), or a recursive case analysis on the rules deriving P
µ
−→ P ′ until

a non-preorder rule is reached, by application of the second part of Lemma 29.

P
µ′

−→ P ′

[µ⊑Pµ
′]

P
µ
−→ P ′

Lemma 30 justifies the fact that we can use the shortcut τ for a [ϕ]τ transition
with “some reflexive ϕ” as well as “any reflexive ϕ”.

13

Lemma 30. The following are equivalent:

1. P
[ψ]τ
−−→ P ′ for some reflexive ψ,

2. P
[ψ]τ
−−→ P ′ for all reflexive ψ,

3. P
[ϕ]τ
−−→ P ′ and there is a name a ∈ n(ϕ) \ fn(P).

Proof. First remark that if ψ is reflexive then for all Γ , Γ ⊢ ψ, which means
[ϕ]τ⊑P [ψ]τ for any ϕ, so we only need to prove (iii) ⇒ (i) which is equivalent to
saying [ψ]τ⊑P [ϕ]τ for some reflexive ψ, which in turn follows from Lemma 15.

⊓⊔

Lemma 31. If (νa)P
µ
−→ P1 then P1 = (νa)P ′ for some P ′ such that P

µ
−→ P ′.

Proof. Using Lemma 29 we know that (νa)P
µ1
−→ P1 for some µ1 such that

µ⊑νaPµ1, and that this transition is coming from a reduction P
µ1
−→ P ′ with

P1 = (νa)P ′. Since Φ(νaP) ⊆ Φ(P) we know µ⊑Pµ1 so we can derive P
µ
−→ P ′.

We are now ready to prove that transitions commute with ≡: The next
lemma follows from an analysis similar to the proof of Lemma 18. Lemma 41 is
the most complex case in the proof of congruence of ∼, for which Lemmas 18
and 41 are needed. Lemma 42 is useful for the completeness proof.

Lemma 32. If P ≡ Q and P
µ
−→ P ′ then Q

µ
−→≡ P ′.

Proof. More generally, we prove by induction on the derivation of P ≡ Q that

for all µ, ((P
µ
−→ P ′ ⇒ Q

µ
−→≡ P ′) and (Q

µ
−→ Q′ ⇒ P

µ
−→≡ Q′)).

Then in most cases we begin by an induction on the derivation of P
µ
−→ P ′. We

factor out the cases corresponding to preorder rules using Lemma 29 twice: once

to get µ1⊑Pµ and P
µ1
−→ P ′ on which we can use the induction hypothesis to

prove Q
µ1
−→ Q′ ≡ P ′, and once to get Q

µ
−→ Q′, since µ1⊑Qµ (Lemma 18). Hence,

we can always assume that the last rule is not a preorder rule and therefore
decomposes the structure of P .

1. Congruence: we suppose the result holds for P ≡ Q, and we prove it for

C[P] ≡ C[Q]. Assuming (∀µ, P
µ
−→ P ′ ⇒ Q

µ
−→≡ P ′) we prove, by induc-

tion on C[P]
µ
−→ P1, that C[Q]

µ
−→ Q1 ≡ P1. We assume the last rule is

deconstructing C[P] into smaller parts (as if it were an induction on C):
(a) C = []: immediate.
(b) C = Σπi.Ri + ρ.C ′: if a πi branch is chosen, P1 does not depend on P

and C[Q]
µ
−→ P1. If the ρ branch is chosen P1 = (νx)(ϕ | C ′[P]) where ϕ

is an arc. Then C[Q]
µ
−→ (νx)(ϕ | C ′[Q]) ≡ P1.

(c) C = νaC ′: immediate (the side condition is the same, and if P1 ≡ Q1

then νaP1 ≡ νaQ1).
(d) C = C ′ | R and the last rule is par (or symmetrically): we obtain

C ′[P]
µ
−→ P2 with P1 = P2 | R and by induction C ′[Q]

µ
−→ Q2 ≡ P2.

Using par, C ′[Q] | R
µ
−→ Q2 | R ≡ P1.

14

(e) C = R | C ′ and the last rule is par (or symmetrically): same, but easier.
(f) C = C ′ | R or C = R | C ′ and the last rule is one of the communication

rules, e.g. →-comm-l:

C ′[P]
a(x)
−−−→ P2 and R

c(x)
−−→ R′ with P1 = (νx)(P2 | R′). By induction,

C ′[Q]
a(x)
−−−→ Q2 ≡ P2 so by applying→-comm-l again, C ′[Q] | R

[agc]τ
−−−−→≡

(νx)(P2 | R′).
2. Equivalence properties: reflexivity and transitivity are straightforward; sym-

metry is handled by the generality of the statement.
3. P | 0 ≡ P : straightforward: the last rule must be →-par-l.
4. P ≡ P | 0: straightforward.
5. (P | Q) | R ≡ P | (Q | R): there are a lot of cases, of which the first below

is the only trivial one:

(a) →-par-r: R
µ
−→ R′ so two applications of →-par-r are enough to get

P | (Q | R)
µ
−→≡ (P | Q) | R′.

(b) →-par-l, preorder rules and Lemma 29 to get µ⊑P |Qµ1, then a →-par-

r rule to get Q
µ1
−→ Q′. Getting back P | (Q | R)

µ1
−→ P | (Q′ | R)

is easy, what is more tricky is to get right the label µ: for that we use
again Lemma 29 thanks to the fact that µ⊑P |(Q|R)µ1, in turn implied
by µ⊑P |Qµ1 (since Φ(P | Q) ⊆ Φ((P | Q) | R) = Φ(P | (Q | R)) by
rule ⊲-par-l and Lemma 18).

par-l

par-r
Q

µ1
−→ Q′

P | Q
µ1
−→ P | Q′

[
µ⊑P |Qµ1

]

P | Q
µ
−→ P | Q′

(P | Q) | R
µ
−→ (P | Q′) | R

Q
µ1
−→ Q′

Q | R
µ1
−→ Q′ | R

par-l

P | (Q | R)
µ1
−→ P | (Q′ | R)

par-r

[
µ⊑P |(Q|R)µ1

]

P | (Q | R)
µ
−→ P | (Q′ | R) .

(c) →-par-l, preorder rules and Lemma 29 to get µ⊑P |Qµ1, then a →-par-

r rule to get P
µ1
−→P ′. Only the top of the proof tree is modified (from

Q to P), the rest of the derivation is the same.
(d) →-com-l rule (ϕ = αg γ), preorder rules on the left premise to get µ =

α(x)⊑P |Qα1(x)1, then a →-par-r rule to get Q
α1(x)
−−−→Q′. By Lemma 23

we can have ϕ1 = α1 g γ such that [ϕ]τ⊑P |Q[ϕ1]τ from which we con-
clude as previously [ϕ]τ⊑P |(Q|R)[ϕ1]τ to get the final transition from
Lemma 29. Same proof for →-com-r.

com-l

par-r
Q

α1(x)
−−−→ Q′

P | Q
α1(x)
−−−→ P | Q′

[
α(x)⊑P |Qα1(x)

]

P | Q
α(x)
−−−→ P | Q′ R

γ(x)
−−−→ R′

(P | Q) | R
[ϕ]τ
−−→ νx((P | Q′) | R′)

Q
α1(x)
−−−→ Q′ R

γ(x)
−−−→ R′

Q | R
[ϕ1]τ
−−−→ νx(Q′ | R′)

com-l

P | (Q | R)
[ϕ1]τ
−−−→ P | νx(Q′ | R′)

par-r

[
[ϕ]τ⊑P |(Q|R)[ϕ1]τ

]

P | (Q | R)
[ϕ]τ
−−→ P | νx(Q′ | R′) .

15

(e) →-com-* rule, preorder rules, then a →-par-l rule: it is the same proof
as above: the transition with the label [ϕ1]τ from P | (Q | R) is easy to
obtain, the rest is the same.

6. P | (Q | R) ≡ (P | Q) | R: similar proof.
7. P | Q ≡ Q | P : the last rule is either:

(a) →-par-r or →-par-l, that complement each other, or
(b) →-com-l rules, resulting in a process of the form (νx)(P ′ | Q′) with

P
α(x)
−−−→P ′, Q

γ(x)
−−−→Q′ and µ = [α g γ]τ . The application of the rule →-

com-r will give the transition [γ gα]τ which is convertible to µ through
the rule →-tau-⊲ since α g γ ⊢ γ g α.

8. Q | P ≡ P | Q: same proof.
9. (νa)P ≡ (νb)P{b/a} when b /∈ fn(P): this case boils down to a proof of if

P
µ
−→ P ′ then Pσ

µσ
−−→ P ′

σ where σ is an injective substitution (whose domain
does not intersect with bn(µ)).

10. (νb)P{b/a} ≡ (νa)P : similar proof.

11. (νab)P ≡ (νba)P : last rule is →-res, we get (νb)P
µ
−→ P1, then using

Lemma 29 we get (νb)P
µ1
−→ (νb)P ′ and P

µ1
−→ P ′ with µ⊑Pµ1, and again

with Lemma 29 we get P
µ
−→ P ′ and apply →-res twice.

12. (νba)P ≡ (νab)P : same proof.
13. (νaP) | Q ≡ νa(P | Q): the last non-preorder rule can be of two kinds:

(a) the last rule is a →-par-* rule. If Q does the transition, we are done.
If νaP does the transition µ, then we get a transition µ1 with µ⊑νaPµ1

from P using Lemma 29. P | Q can also make the transition µ1, and since
µ⊑νaPµ1 implies µ⊑νa(P |Q)µ1 we get the transition µ from νa(P | Q).

(b) If the last rule is a →-com-* rule then µ = [ϕ]τ , and νaP does some
transition µ to what must be νaP ′ with P

µ1
−→P ′ and µ⊑νaPµ1. Compos-

ing P with Q (in the case of →-com-*) yields a transition [ϕ1]τ with
[ϕ1]τ⊑νaP [ϕ]τ which implies [ϕ1]τ⊑νa(P |Q)[ϕ]τ , so Lemma 29 is again
used twice.

14. νa(P | Q) ≡ (νaP) | Q: in this case, again, one must pay close attention to
interference between restriction and preorder judgements. From the transi-
tion µ from νa(P | Q) we get the same transition from P | Q, but after an
application of Lemma 29 we have µ⊑P |Qµ1 with a transition µ1 that can be

broken into either P
µ1
−→ P ′ or Q

µ1
−→ Q′ (in the case of a →-par-* rule), or

both P
µ
−→ P ′ and Q

χ
−→ Q′ (in the case of a →-com-* rule). The problem

is, we have to recover all the contributions from P in such a way that νaP
can achieve as much. Notably µ or µ1 may mention a. We treat the three
cases separately:
(a) the case of the →-par-r rule has two subcases. First when a /∈ fn(µ1),

it boils down to Lemma 26. If µ1 is a visible action then the object of
µ1 must stay fresh, but we know already that obj(µ1)∩ fn(P) = ∅ which
implies obj(µ1) ∩ fn(νaP) = ∅.
The case a ∈ fn(µ1) is not possible when µ1 is a visible action because
then, fn(µ1) ⊆ fn(Q) and a /∈ fn(Q). In the case µ1 is of the form [ϕ1]τ ,

we apply Lemma 30 to get that Q
τ
−→ Q′ and thus (νaP) | Q

τ
−→ (νaP) |

16

Q′ from which we can easily derive any transition between the same
processes with any label of the form [ϕ]τ (and µ must be of this form).

Q
µ1
−→ Q′

P | Q
µ1
−→ P | Q′

[
µ⊑P |Qµ1

]

P | Q
µ
−→ P | Q′ a /∈ n(µ)

(νa)(P | Q)
µ
−→ (νa)(P | Q′)

Q
µ1
−→ Q′

(νaP) | Q
µ1
−→ (νaP) | Q′

[
µ⊑(νaP)|Qµ1

]

(νaP) | Q
µ
−→ (νaP) | Q′

(b) The case of rule →-par-l: the action µ1, coming originally from P ,
may contain a but we use Lemma 27 to obtain a transition along λ, to
which we can apply Q’s original role in the transformation of µ1 into µ
(combined to the role of νaP).
The following derivations illustrate the reasoning exposed above.

P
µ1
−→ P ′

P | Q
µ1
−→ P ′ | Q

[
µ⊑P |Qµ1

]

P | Q
µ
−→ P ′ | Q a /∈ n(µ)

(νa)(P | Q)
µ
−→ (νa)(P ′ | Q)

P
µ1
−→ P ′

[λ⊑Pµ1]

P
λ
−→ P ′ a /∈ n(λ)

νaP
λ
−→ νaP ′

(νaP) | Q
λ
−→ (νaP ′) | Q

[
µ⊑(νaP)|Qλ

]

(νaP) | Q
µ
−→ (νaP ′) | Q

(c) The case of the →-com-l rule (→-com-r being symmetric): this time
µ = [ϕ]τ is obtained from some [ϕ1]τ such that [ϕ]τ⊑P |Q[ϕ1]τ (as usual,
using Lemma 29) and [ϕ1]τ is obtained from two transitions: P

α(x)
−−−→P ′

and Q
γ(x)
−−−→Q′ with ϕ = α g γ. We write µ for α(x) and χ for γ(x).

Lemma 27 allows us to decompose ⊑P |Q into [ϕ]τ⊑(νaP)|Q[ϕ2]τ⊑P [ϕ1]τ .
We use Lemma 13 to decompose ϕ2 ⊢∗

P ϕ1 into ϕ2 ⊢P ϕ3 ⊢P ϕ1

such that fn(µ) ∩ n(ϕ3) = ∅. We apply Lemma 28 to get β such that
β(x)⊑Pα(x) and ϕ3 = β g γ. Since a /∈ n(ϕ3), we know that a /∈ n(β), so
we can apply the restriction rule on the transition along β(x). Further-
more, since ϕ2 ⊢P ϕ3 and a is in none of both, we know by transitivity
that [ϕ]τ⊑(νaP)|Q[ϕ3]τ . We write η for β(x) below:

P
µ
−→ P ′ Q

χ
−→ Q′

P | Q
[ϕ1]τ
−−−→ (νx)(P ′ | Q′)

[
[ϕ]τ⊑P |Q[ϕ1]τ

]

P | Q
[ϕ]τ
−−→ (νx)(P ′ | Q′) a /∈ n(ϕ)

(νa)(P | Q)
[ϕ]τ
−−→ (νa)(νx)(P ′ | Q′)

P
µ
−→ P ′

[η⊑Pµ]

P
η
−→ P ′ a /∈ n(η)

νaP
η
−→ νaP ′ Q

χ
−→ Q′

(νaP) | Q
[ϕ3]τ
−−−→ (νx)((νaP ′) | Q′)

[
[ϕ]τ⊑(νaP)|Q[ϕ3]τ

]

(νaP) | Q
[ϕ]τ
−−→ (νx)((νaP ′) | Q′)

17

This concludes the induction.

Lemma 33. If P ⊲ ϕ then P | ϕ ∼ P .

Proof. We prove that R = {(P | ϕ, P) | P ⊲ ϕ} is a simulation (R−1 is clearly

one). Suppose P | ϕ
µ
−→ P1. Using Lemma 29 we get µ1 such that µ⊑P |ϕµ1,

and a proof of P | ϕ
µ1
−→ P ′ with a non preorder rule as last rule. This rule

must be a par rule coming from P so in fact P1 = P ′ | ϕ with P
µ1
−→ P ′. Since

Φ(P | ϕ) = Φ(P) by Lemma 17 we know that µ⊑Pµ1 and we apply Lemma 29

again to get P
µ
−→ P ′ and indeed P ′ | ϕ R P ′.

Lemma 34. ≡ is a bisimulation.

Proof. Almost direct consequence of Lemmas 18 and 32. The correspondence
between transitions is exact, hence the only non-trivial case is for the [ϕ]τ tran-
sition because one would want P ′ | ϕ ≡ Q′ | ϕ instead of just P ′ ≡ Q′. This
holds because ≡ is a congruence.

Definition 35 (Bisimulation up to ∼). A relation R is a bisimulation up
to bisimilarity if it validates the clauses of the usual bisimulation, except when
requiring that P1 R Q1 we only require P1 ∼ P2 and Q1 ∼ Q2 with P2 R Q2.

Lemma 36. If R is a bisimulation up to bisimilarity, then R ⊆ ∼.

Proof. We prove ∼R∼ is a bisimulation. The only unusual transition µ is when

µ = [ϕ]τ , but from P ∼ P1 R Q1 ∼ Q and P
µ
−→ P ′ we know:

– that P1
µ
−→ P ′

1 and (P ′ | ϕ) ∼ (P ′
1 | ϕ) from the ∼ game,

– that Q1
µ
−→ Q′

1 and (P ′
1 | ϕ) ∼R∼ (Q′

1 | ϕ) from the R up-to game,

– that P
µ
−→ P ′ and (Q′

1 | ϕ) ∼ (Q′ | ϕ) from the second ∼ game.

So the case for a [ϕ]τ transition is no more difficult than usual: we conclude by
transitivity of ∼.

Lemma 37. P ∼ Q implies (νa)P ∼ (νa)Q for all a.

Proof. We prove R
△
= {(νaP, νaQ) | P ∼ Q} is a bisimulation up to bisimilarity

(Lemma 36), which is relatively easy using Lemma 31. The only interesting case

is for a conditional τ transition. If νaP
[ϕ]τ
−−→ νaP ′ then P

[ϕ]τ
−−→ P ′ and using

∼, Q
[ϕ]τ
−−→ Q′ with (P ′ | ϕ) ∼ (Q′ | ϕ). Since we want to relate (νa)P ′ | ϕ

and (νa)Q′ | ϕ we ∼-rewrite them into (νa)(P ′ | ϕ) and (νa)(Q′ | ϕ) (using
Lemma 34) which are indeed related through R. The condition about ⊲ is en-
sured by compositionality of ⊲ (Lemma 16).

Definition 38 (Bisimulation up to ∼ and ν). A relation R is a bisimulation
up to restriction and bisimilarity if it validates the clauses of the usual bisim-
ulation, except that the outcomes of the transitions, P1 and Q1, are requested
to satisfy P1 ∼ (νã)P2 and Q1 ∼ (νã)Q2 with P2 R Q2, where ã stands for a
(possibly empty) tuple of names.

18

Lemma 39. If R is a bisimulation up to restriction and bisimilarity then R ⊆
∼.

Proof. We writeRν for {(νã)P, (νã)Q) | P RQ}. We know thatR ⊆ S
△
= ∼Rν∼

so it is enough to prove that S is a bisimulation. Suppose P ∼ (νã)P1 R
ν (νã)Q1 ∼

Q with P1 R Q1. We start from a transition P
µ
−→ P ′, we use the bisimulation

game on ∼ and Lemma 31 to deduce (νã)P1
µ
−→ (νã)P ′

1 with P1
µ
−→ P ′

1 and (P ′ |
A) ∼ ((νã)P ′

1 | A) with A = ϕ if µ = [ϕ]τ or A = 0 otherwise. Using the bisim-

ulation up-to on R we obtain Q1
µ
−→ Q′

1 with (P ′
1 | A) ∼ (νc̃)P2 Rν (νc̃)Q2 ∼

(Q′
1 | A) for some P2 R Q2. We also get (νã)Q1

µ
−→ (νã)Q′

1 from which using

the game on the second ∼, Q
µ
−→ Q′ with ((νã)Q′

1 | A) ∼ (Q′ | A).
We now compose what we have: (P ′ | A) ∼ ((νã)P ′

1 | A) and (P ′
1 | A) ∼

((νc̃)P2). We can get from the latter ((νã)P ′
1 | A) ∼ ((νãc)P2) using Lemmas 34

and 37, and then compose them using transitivity of ∼; similarly for Q: (Q′ |
A) ∼ ((νãc)Q2). Since P2 R Q2, the pair of P ′ | A and Q′ | A is in S.

Definition 40 (Bisimulation up to ∼ and σ). A relation R is a bisimula-
tion up to bisimilarity and injective substitution if it validates the clauses of the
usual bisimulation, except that the outcomes of the transitions, P1 and Q1, are
requested to satisfy P1 ∼ P2σ and Q1 ∼ Q2σ with P2 R Q2, where σ stands for
an injective name substitution.

Proof. We prove ∼ Rσ ∼ is a bisimulation where Rσ stands for {(Pσ, Qσ) |
P R Q and σ is injective}.

Lemma 41. P ∼ Q implies P | R ∼ Q | R for all R.

Proof. We show that

R
△
= {(P | R,Q | R) |P ∼ Q}

is a bisimulation up to restriction and bisimilarity. The condition about induced
ϕ can be dealt with using Lemma 16: since (∀ψ, P ⊲ ψ ⇔ Q⊲ ψ) by definition
of ∼, we have P | R⊲ ϕ implies Q | R⊲ ϕ and symmetrically.

Now suppose P | R
µ
−→ P1 with bn(µ) ∩ fn(P,Q,R) = ∅. We can suppose by

Lemma 29 that for some µ1 with µ⊑P |Rµ1, P | R
µ1
−→ P1, and that the last rule

applied is not a preorder rule. Since Φ(P | R) = Φ(Q | R), µ⊑Q|Rµ1, and it is

enough to get Q | R
µ1
−→ Q1 to prove Q | R

µ
−→ Q1. There are two cases in the

bisimulation game, depending on µ1:

Proof. We prove {(P |R,Q |R) | P ∼ Q} is a bisimulation up to restriction and
bisimilarity, and (thanks to Lemmas 16 and 29) we only focus on the clause
about [ϕ]τ transitions, where Lemma 29 gives ϕ1 s.t. [ϕ]τ⊑P |R[ϕ1]τ and Q | R..

We prove that R = {(P |R,Q |R) | P ∼ Q} is a bisimulation up to re-
striction and bisimilarity. Lemma 16 handles the first clause about conditions,
and Lemma 29 the second one about visible transitions. Lemma 29 also helps
handling a [ϕ]τ transition from P | R to P1 by saying it comes from a [ϕ1]τ

19

transition from P , or R, or both, and such that [ϕ]τ⊑P |R[ϕ1]τ . From that, get-
ting a transition [ϕ]τ from Q | R to Q1 is easy, but one must relate P1 | ϕ and
Q1 | ϕ in R using three different assumptions:

1. R
[ϕ1]τ
−−−→ R′. Then P | R′ | ϕ ∼R∼ Q | R′ | ϕ. (up to ∼)

2. P
[ϕ1]τ
−−−→ P ′. Then P ′ | ϕ1 ∼ Q′ | ϕ1, that implies P ′ | R | ϕ ∼R∼ Q′ | R | ϕ.

Indeed ϕ1 is absorbed by ϕ since P | Q | ϕ⊲ ϕ1. (up to ∼)
3. P and R synchronised into (νx)(P ′ | R′). Then P ′ ∼ Q′ and we can relate

(νx)(P ′ | R′) | ϕ to (νx)(Q′ | R′) | ϕ (up to ∼ and ν). ⊓⊔

Lemma 42. For any P , Q and ϕ, P
[ϕ]τ
−−→ Q iff P | ϕ

τ
−→ Q | ϕ.

Theorem 43 (Characterisation). P ≃ Q iff P ∼ Q.

Proof (Sketch). The proof follows a standard pattern, and exploits the lemmas
stated above. For completeness, we define tester processes, corresponding to the
three clauses in Def. 6. The first one is handled using [ϕ]τ.w. We use ϕ for the
second clause (by Lemma 42). To test, e.g., {a}(x)

−−−→, we use a(y).(z/y | w | w). ⊓⊔

3.3 Protected Names and Cocapabilities

Protected prefixes act as cocapabilities, by expressing the ability to react to an
interaction offer from the context (cf. P0 in Section 1). We can exploit this idea
to define an extension of i/o-types [14,8] for πP, by introducing cocapability types
oT and iT .

We refer to Appendix B for a description of this type system.

4 Axiomatisation

We now move to the axiomatisation of ∼, which is given by the laws of Figure 2.
The overall strategy to define the axiomatisation differs from the standard

approach. This is mainly due to the handling of restriction, and its interplay
with the state component defined by the toplevel preorder processes. Intuitively,
pushing restrictions under prefixes can be done only if the toplevel prefixes of
a process have somehow been saturated. As a consequence, restriction must be
handled together with prefixes and sums. We first show how equational laws
allow us to relate processes at toplevel only, and then derive an axiomatisation
for full processes.

4.1 Preliminaries

As is usually the case in axiomatisations, we first study the processes consisting
only of sums, leaving the treatment of parallel composition for later.

We make two remarks, before embarking in the presentation of the equational
laws for sums. The first remark is that in πP, we have to deal with preorder
processes, that act somehow like a persistent state, and are used in stating

20

the equational laws. The second remark is that the treatment of restriction
in the axiomatisation requires some particular care, essentially because of the
presence of preorder processes. Moreover, contrarily to what is usually the case,
the restriction has to be dealt with together with prefixes and sums, as we show
below.

We first focus on processes without restriction, for which the axiomatisation
can be presented using simpler laws. The ideas presented in this case are at
work, in a somewhat more complicated fashion, when handling restriction in
Section 4.4.

We introduce a dedicated notation to factor out the preorder part in pro-
cesses.

Notations and Terminology. We use A to range over processes that consist of ϕ
processes only, which we call preorder processes. We often view such processes
as multisets of conditions. We use notation A,P to denote a process that can be
written, using the monoid laws for |, as A | P , where P does not contain toplevel
arcs. Note that Amay contain restrictions, corresponding to the definition of join
processes (given towards the end of Section 2.1), but extrusion is not allowed to
decompose a process as A,P . Note that we could have adopted a more complex
definition, in order to decompose, for instance, (νu)(u/a | u/b | c/d | nm.P) into
a g b | c/d, nm.P (which involves an application of name extrusion), but this
simpler definition is sufficient for our purposes.

Accordingly, A,S stands for A | S, where S is a sum process, and 0 is written
∅, 0.

We use the following notion of measure to reason by induction on processes.

Definition 44 (Measure on processes). Given a πP process P , we define
|P | as the maximum number of prefixes in summands of P , i.e., |

∑
i πi.Pi| =

maxi (1 + |Pi|) (hence |0| = 0), |(νa)P | = |P |, |P | Q| = |P |+ |Q|, and |a/b| = 0.

We write ⊢ P = Q whenever P and Q can be related by equational reasoning
using the laws of Figure 2.

We omit the laws for equational reasoning (equivalence, substitutivity). We
will reason up to these laws, and up to the standard laws expressing that | and
+ obey the laws of commutative monoids, and that + is idempotent, in the
remainder.

As usual, expansion allows us to rewrite the parallel composition of two sum
processes into a sum, the third summand describing synchronisation in πP.

Note that α-conversion for input prefixes follows from Laws L26 and L24, by
deriving the following equalities (and similarly for the other visible prefixes):

a(y).P
L24
= a(x).(νy)(x/y | P)

L26
= a(x).(νy′)(x/y′ | P{y′/y})

L24
= a(y′).P{y′/y}.

The remaining laws are more specific to πP, and are analysed below, in Propo-
sitions 46, 49 and 52. The latter results are used to establish completeness of the
axiomatisation.

The laws are sound:

Lemma 45. The laws of Figure 2 relate bisimilar processes.

21

Proof (Sketch). For laws 30-36, we establish a “saturation property”, expressing
the fact that when erasing a preorder process ϕ or a prefix π that mentions a,
we generate all processes ϕ or π could induce. The other laws are easy. ⊓⊔

Standard structural laws

L1 (P1 | P2) | P3 = P1 | (P2 | P3)
L2 P1 | P2 = P2 | P1

L3 P1 | 0 = P1

L4 (S1 + S2) + S3 = S1 + (S2 + S3)
L5 S1 + S2 = S2 + S1

L6 π.P + π.P = π.P

Expansion law (we can suppose x 6= y, bn(πi) /∈ fn(T), bn(ρj) /∈ fn(S).)

L7
∑

i πi.Pi |
∑

j ρj .Rj =
∑

i πi.(Pi | T) +
∑

j ρj .(S | Rj)
when α g β is defined.

+
∑

i,j [αgβ]τ.(νxy)(x/y | Pi | Rj) and {πi, ρj}={α(x), β(y)}
Laws for preorder processes

L8 a 6 b | b 6 c = a 6 b | b 6 c | a 6 c L9 a 6 b | c 6 b = a 6 b | c 6 b | a g c

L10 a 6 b | b g c = a 6 b | b g c | a g c L11 a 6 a = 0

Laws for prefixes (counterparts of Laws L16-L19 for output are omitted)

L12 [ϕ]τ.P = [ϕ]τ.(ϕ | P) L13 ϕ, S + π.P = ϕ, S + π.(ϕ | P)

L14 [a 6 a]τ.P = [b g b]τ.P L15 [a g b]τ.P = [a g b]τ.P + [a 6 b]τ.P

L16 a(x).P = a(x).P + {a}(x).P L17 [a g b]τ.P = [a g b]τ.P + [b g a]τ.P

L18 b/a, S + a(x).P = b/a, S + a(x).P + b(x).P

L19 a/b, S + {a}(x).P = a/b, S + {a}(x).P + {b}(x).P

L20 b/a, S + [a 6 c]τ.P = b/a, S + [a 6 c]τ.P + [b 6 c]τ.P

L21 a/b, S + [c 6 a]τ.P = a/b, S + [c 6 a]τ.P + [c 6 b]τ.P

L22 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [b g c]τ.P

L23 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [c 6 b]τ.P

L24 α(y).P = α(x).(νy)(x/y | P) if x /∈ fn(P)

L25 α(y).P = α(x).(νy)(y/x | P) if x /∈ fn(P)

Laws for restriction (counterparts of Laws L31 and L32 for output are omitted; a 6 b ∈ A6=

stands for a 6 b ∈ A and a 6= b, and similarly for a g b.)

L26 (νb)P = (νa)(P{a/b}) if a /∈ fn(P) L27 (νc)(νd)P = (νd)(νc)P

L28 P | (νa)Q = (νa)(P | Q) if a /∈ fn(P) L29 (νa)0 = 0

L30 (νa)A = {b 6 c | b 6 a, a 6 c ∈ A6=} ⊎ {b g c | b 6 a, c 6 a ∈ A6=}

⊎ {b g c | a g c, b 6 a ∈ A6=} ⊎ {ϕ ∈ A | a /∈ n(ϕ)}

L31 (νa)(A, S+ a(x).P) = (νa)
(

A, S +
∑

a6b∈A6= b(x).(νa)(A | P)

+
∑

b6a∈A6=

∨agb∈A6=

{b}(x).(νa)(A | P)
)

L32 (νa)(A, S+ {a}(x).P) = (νa)
(

A, S +
∑

b6a∈A6= {b}(x).(νa)(A | P)
)

L33 (νa)(A, S+ [a 6 c]τ.P) = (νa)
(

A, S +
∑

a6b∈A6= [b 6 c]τ.(νa)(A | P)
)

a 6= c

L34 (νa)(A, S+ [c 6 a]τ.P) = (νa)
(

A, S +
∑

b6a∈A6= [c 6 b]τ.(νa)(A | P)
)

a 6= c

L35 (νa)(A, S+ [a g c]τ.P) = (νa)
(

A, S +
∑

a6b∈A6= [b g c]τ.(νa)(A | P) a 6= c

+
∑

b6a∈A6=

∨agb∈A6=

[c 6 b]τ.(νa)(A | P)
)

L36 (νa)(A, S+ π.P) = (νa)
(

A, S + π.(νa)(A | P)
)

a /∈ n(π)

Fig. 2. An axiomatisation of ∼

4.2 Laws for preorder processes.

Laws L8-L11 are used to saturate preorder processes, as expressed by the fol-
lowing result.

22

Proposition 46. If A1, S1 ∼ A2, S2, then there exists A⋆ such that ⊢ Ai, Si =
A⋆, Si (i = 1, 2), and A⋆ =

∏
{ϕ | ϕ not reflexive and A1 ⊲ ϕ}.

(Note that we could have picked A2 instead of A1 above.)

Proof. We define a rewriting relation on preorder processes, and write A
g
7→ A′

whenever A′ is obtained from A using one of the laws L8-L11, oriented from left
to right, as a rewrite rule modulo associativity and commutativity of parallel
composition. We furthermore impose that no reflexive condition is added in a
rewrite step, nor a condition that is already contained in the preorder process.

We then prove the following three properties about
g
7→:

1. If A
g
7→ A′, then A ∼ A′: this is a consequence of Lemma 45 (or, alternatively,

by Lemma 33).

2. For any (finite) A, there is no infinite
g
7→-chain emanating from A.

Indeed, the rules defining
g
7→ do not introduce any new name. Moreover, a

new arc or join can only be added if it is not already present. Since there

are finitely many conditions built on a finite set of names,
g
7→ terminates.

3. Suppose A is a
g
7→-normal form. Then, for any non-reflexive ϕ, if A⊲ϕ, then

ϕ appears in A (which we write ϕ ∈ A).
This follows by induction on the derivation of A ⊲ ϕ. The only interesting
case is for the ⊲-combine rule, i.e. we know that A ⊲ Γ and Γ ⊢ ϕ. We
conclude by associating to rules ⊢-trans, ⊢-join and ⊢-extjoin laws L8,
L9 and L10 respectively.

The observations above entail the expected property. ⊓⊔

We say that A is a saturated preorder process whenever A⋆ ≡ A. We use A⋆

to range over such processes. We can remark that even if A contains only arcs,
A⋆ may contain restrictions, because of induced conditions involving g.

4.3 Laws for Prefixes and Sums

We comment on the laws for prefixes in Figure 2. We first remark that rewriting
a sum process using these laws yields a sum process, and the same holds for the
laws for preorder processes.

Law L12 expresses the fact that the condition ϕ should be enforced after a
[ϕ]τ transition (see the third clause of the definition of ∼, Definition 6). Law L13
propagates ϕs in depth, expressing the persistence of condition processes (ϕ).

Law L14 is used to equate all plain τ prefixes.
Laws L24-L25 are analogous to law L12, because they are related to how the

process is observed after the prefix has been fired (see transition rules in, out,
pr-i and pr-o, as well as Fact 1).

Laws L18-L23 describe how arcs act on prefixes, by triggering new interaction
possibilities.

23

The next lemma relates transitions of sum processes and the laws for prefixes.
In the statement, we say that two prefixes π and π′ only differ in their bound
names whenever either π and π′ are visible actions of the same kind, in which
case they have the same subject name, or they are a conditional τ , in which case
π = π′.

Lemma 47. If A,S
µ
−→ A,P then ⊢ A,S = A,S + π.Q for some π and Q such

that µ and π only differ in their bound names and π.Q
µ
−→ P .

Proof. Suppose S is of the form S1+π
′.Q and that the transition S

µ
−→P is coming

from from π′.Q
µ
−→P and in fact (Lemma 29) from π′.Q

µ′

−→P such that µ⊑A,Sµ
′.

Since Φ(A,S) = Φ(A) we know also that µ⊑Aµ
′.

Then we have directly π⊑Aπ
′. We prove by induction on π⊑Aπ

′ that for all
S, ⊢ A,S + π′.Q = A,S + π′.Q+ π.Q.

– Reflexivity of ⊑ is handled by the fact that + is idempotent.
– Transitivity (e.g. π3⊑Aπ2⊑Aπ1) is handled by monoid laws for +. We write
Qi for πi.Q below. We know by induction that:
(1) ⊢ A,S +Q1 = A,S +Q1 +Q2 (for all S) and
(2) ⊢ A,S +Q2 = A,S +Q2 +Q3 (for all S). Then:

⊢ A,S +Q1 =(1)

⊢ A,S +Q1 +Q2 =(≡)

⊢ A, (S +Q1) +Q2 =(2)

⊢ A, (S +Q1) +Q2 +Q3 =(≡)

⊢ A, (S +Q3) +Q1 +Q2 =(1)

⊢ A, (S +Q3) +Q1 =(≡)

A,S +Q1 +Q3

so now we can only have to prove it for π⊑
ϕπ′ when A⊲ϕ. Note that using

the reasoning about we can work up to transitivity.
– We now decompose ⊑

ϕ when A ⊲ ϕ. Lemma 25 tells us3 there are some
ϕ1, . . . , ϕn ∈ A and a reflexive ψ such that ⊑

ϕ = ⊑
ψ
⊑
ϕ1 . . .⊑ϕn so in fact we

only need to prove the result when ϕ is actually in A or when it is reflexive:
• ϕ is reflexive and α(x)⊑a6aα(x): nothing to do (+ idempotent)
• ϕ is reflexive and {a}(x)⊑agaa(x): Law L16
• ϕ ∈ A and α(x)⊑β6αβ(x): this yields several cases:

∗ a(x)⊑b6ab(x): Law L18
∗ {a}(x)⊑a6b{b}(x): Law L19
∗ {a}(x)⊑agbb(x): decompose a g b back into u/a | u/b (Law L30) then

from b(x) get u(x) by L18, then {u}(x) (L16) and then {a}(x) (L19).
• ϕ is reflexive and [ϕ1]τ⊑

ϕ[ϕ2]τ : either + idempotent or L15 is sufficient.
• ϕ ∈ A and [ϕ1]τ⊑

ϕ[ϕ2]τ when ϕ1, ϕ ⊢ ϕ2: this yields several cases again,
we can break ⊢ into compositions of ⊢i, again reasoning up to transitivity:

3 in fact, the ψ is not absolutely necessary, but we make this analysis using a more
precise version of ⊑

· using ⊢i instead of ⊢ so the case analysis is less verbose

24

∗ [a 6 b]τ⊑b6c[a 6 c]τ : instance of L21
∗ [a 6 c]τ⊑b6c[a g b]τ : instance of L23 (using L17)
∗ [a g b]τ⊑c6a[c g b]τ : instance of L22
∗ [a g b]τ⊑c6b[a g c]τ : instance of L22 (using L17)
∗ [b 6 c]τ⊑a6b[a 6 c]τ : instance of L20
∗ [b 6 c]τ⊑a6c[a g b]τ : instance of L23
∗ [c 6 a]τ⊑agb[c g b]τ : same as below
∗ [c 6 b]τ⊑agb[a g c]τ : from a g b we can get some u/a and u/b. Then,
from [ag c]τ we can add the summand [ug c]τ (L22), then [c 6 u]τ
(L15), then [c 6 b]τ (L21). ⊓⊔

Laws L15-L23 can be used to “saturate” the topmost prefixes in sums. We ex-
press this using the equivalence below, and rely on Lemma 47 to prove Prop. 49:

Definition 48 (Head sum normal form, ≍h). Given two sum processes S
and T , we write S ≺h T whenever for any summand π.P of S, there exists a
summand π.Q of T with π.P ∼ π.Q. We let S ≍h T stand for S ≺h T ∧ T ≺h S.

Proposition 49. Whenever A⋆, S1 ∼ A⋆, S2, where S1, S2 are two sum pro-
cesses, there are S′

1, S
′
2 s.t. ⊢ A⋆, Si = A⋆, S′

i (for i = 1, 2) and S′
1 ≍h S

′
2.

Proof. We first use law L13 to replicate A⋆ under all prefixes in S1 and S2, which
is useful later in the proof. We therefore suppose that for any summand π.P of
S1 or S2, P = A⋆ | P0 for some P0.

We prove the following property:

A⋆, S1 ∼ A⋆, S2

π.P ∈ S1
⇒ ∃Q

⊢ A⋆, S2 = A⋆, S2 + π.Q
π.P ∼ π.Q

(1)

by running the bisimulation game with a label µ such that π and µ differ only on

their object (that should be fresh in µ): π.P
µ
−→ P ′, yielding A⋆, S1

µ
−→ A⋆ | P ′;

the game returns a transition A⋆, S2
µ
−→ A⋆ | Q′. Using Lemma 47 we get Q

such that A⋆, S2 = A⋆, S2 + π.Q and π.Q
µ
−→ Q′. We now have to prove that

π.P ∼ π.Q. There are two cases:

1. if µ is a visible action, then, by definition of ∼, we have A⋆ | P ′ ∼ A⋆ | Q′.
We can now observe that P ′ ∼ A⋆ | P ′ and Q′ ∼ A⋆ | Q′, because A⋆

has been replicated under prefixes. We thus deduce P ′ ∼ Q′, which, by
congruence, gives µ.P ′ ∼ µ.Q′. Using the appropriate law among L24-25, we
deduce π.P ∼ µ.P ′ and π.Q ∼ µ.Q′, which implies π.P ∼ π.Q.

2. if µ = [ϕ]τ then π = µ and P ′ = P , Q′ = Q. The bisimulation game
yields ϕ | A⋆ | P ′ ∼ ϕ | A⋆ | Q′ and by the same reasoning as before,
ϕ | P ′ ∼ ϕ | Q′. By congruence [ϕ]τ.(ϕ | P ′) ∼ [ϕ]τ.(ϕ | Q′), and by L12,
[ϕ]τ.P ′ ∼ [ϕ]τ.Q′ i.e. π.P ∼ π.Q.

We have now (1). Equation (1) implies that ⊢ A⋆, S2 = A⋆, S2 + T2 with S1 ≺h
S2 + T2 and T2 ≺h S1.

25

Using the symmetry on S2 + T2 (and not on S2), we get T1 such that ⊢
A⋆, S1 = A⋆, S1 + T1 with S2 + T2 ≺h S1 + T1 and T1 ≺h S2 + T2. Since
S1 ≺h S2 + T2 as well, we can conclude S1 + T1 ≺h S2 + T2 and thus S′

1 ≍h S
′
2

with ⊢ S′
i = Si + Ti. ⊓⊔

Remark 50 (On the definition of ≍h). In the definition of ≺h, we impose π.P ∼
π.Q, and not simply P ∼ Q. The equivalence induced by the choice of the latter
condition would indeed be too discriminating. To see why, consider P0 = a(x).c/x
and Q0 = a(x).0. Obviously, c/x 6∼ 0. On the other hand, we have P0 ∼ Q0: after
a a(y)
−−−→ transition on both sides, we must compare (νx)(c/x | y/x) and (νx)(y/x),

and both are bisimilar to 0. In order to derive ⊢ P0 = Q0, we rely on the
following property, which explains the shape of laws L24,L25: a(y).P ∼ a(y).Q
iff (νy)(x/y | P) ∼ (νy)(x/y | Q).

A similar reasoning can be done for the other kinds of visible prefixes.

4.4 Laws for Restriction

Laws L26-L29 are standard. The other laws are used to “push” restrictions inside
processes. Law L30 is used to eliminate a restriction on a name a in a preorder
process, by propagating the information expressed by all ϕs that mention a.
Intuitively, L30 is used after laws L31-L36 have been used to erase all prefixes
mentioning the restricted name a, pushing the restriction on a inwards. The
latter laws describe a kind of “synchronous application” of the prefix laws seen
above.

Below are some equalities that are derivable using the laws for restriction:

(νa)(b/a | a/c) = b/c (νa)(a/b | a(x).P) = {b}(x).P a(x).x = a(x).{x}

(νa)(S+a(x).P) = (νa)S (νa)(S+b(x).P) = (νa)(S+b(x).(νa)P) if a 6= b

It can be noted that axiomatisations often treat restriction separately, by first
focusing on a restriction-free calculus. In πP, because of preorders, we cannot
in general push restrictions on top of sum processes, so the situation is more
complex.

It can be noted that we cannot rely on a law like (νa)(S1 + S2) = (νa)S1 +
(νa)S2, for two reasons. On the one hand, we do not allow sum of restricted
processes. On the other hand, a restricted process has in general a preorder
component in πP, so the left hand side of the equation would rather look like
(νa)(A,S1 + S2), and we need to exploit the information contained in A when
pushing restrictions under prefixes.

We first present a technical lemma about ⊲.

Lemma 51. Suppose a 6= b.

1. If A⊲ a 6 b then for some x 6= a, a 6 x ∈ A and A⊲ x 6 b.
2. If A⊲ b 6 a then for some x 6= a, x 6 a ∈ A and A⊲ b 6 x.
3. If A⊲ a g b then for some x 6= a,

(a) a 6 x ∈ A and A⊲ x g b, or
(b) {a g x, x g a, x 6 a} ∩A 6= ∅ and A⊲ b 6 x.

26

Proof. By induction on the derivation of A⊲ ·.

Proposition 52 (Pushing restriction inwards).
For any A,S, where A is a preorder process and S is a sum process, and for

any set of names ã, there exist A′ and S′, where S′ is a sum process and A′ is
a preorder process such that ⊢ (νã)(A,S) = A′, S′ and |(νã)(A,S)| ≥ |A′, S′|.

Proof. Using name extrusion, we pull all toplevel restrictions of A,S in order to
derive ⊢ A,S = (νã)(A0, S0), for some A0, S0 without toplevel restriction.

We then reason by induction over the number of names in ã. We apply
laws L31-L36 from left to right, until name a does not appear free in any topmost
prefix of the sum. At that point, since the restriction on a has been pushed under
prefixes, a has no free occurrence in the sum. We can thus use name intrusion,
so that law L30 can be applied to get rid of the restriction on a on the preorder
part of the process.

This operation is iterated until restrictions are pushed under all prefixes, and
law L29 can be used to get rid of the restriction. ⊓⊔

It is often the case that axiomatisations for strong bisimilarity are first given
for a calculus without restriction and parallel composition, and then extended
to a calculus enriched with these operators. In our case, as discussed above,
restriction cannot be handled separately from prefixes. We can however prove a
result for the calculus without parallel composition.

4.5 Axiomatisation of Strong Bisimilarity

The results presented so far can be put together to establish an axiomatisation
on the subcalculus of πP in which parallel composition is only used to compose
preorder processes.

We first present some observations, that follow from the shape of the prefix
rules in Figure 1.

Fact 1

1. For any P and Q, a(y).P ∼ a(y).Q iff (νy)(x/y | P) ∼ (νy)(x/y | Q).
2. For any P and Q, a(y).P ∼ a(y).Q iff (νy)(y/x | P) ∼ (νy)(y/x | Q).
3. For any P and Q, {a}(y).P ∼ {a}(y).Q iff (νy)(y/x | P) ∼ (νy)(y/x | Q).
4. For any P and Q, {a}(y).P ∼ {a}(y).Q iff (νy)(x/y | P) ∼ (νy)(x/y | Q).

The grammar P ::= A,
∑
i πi.Pi

∣∣ (νa)P defines what we call |-free processes:
only arcs are composed, and the non-preorder part is a sum.

Proposition 53 (Characterisation on the calculus without parallel com-
position). For all |-free processes P and Q, P ∼ Q iff ⊢ P = Q.

Proof. The right to left implication follows from Lemma 45 and congruence of
∼.

27

Suppose now P ∼ Q. We reason by induction on |P |+ |Q|.
By Proposition 52, there are sum-only processes P0, Q0 with no toplevel

restriction such that ⊢ P = P0 and ⊢ Q = Q0.
We then reason up to associativity and commutativity of parallel composition

to write ⊢ P0 = A1, S1 and ⊢ Q0 = A2, S2. We have A1, S1 ∼ A2, S2, which gives,
by Proposition 46, ⊢ Ai, Si = A⋆, Si for i = 1, 2, for some A⋆.

We can then apply Proposition 49 to deduce ⊢ A⋆, Si = A⋆, S′
i, for i = 1, 2,

for some S′
1, S

′
2 s.t. S′

1 ≍h S
′
2.

To sum up, we have proved until now ⊢ P = A⋆, S′
1, ⊢ Q = A⋆, S′

2, and
S′
1 ≍h S

′
2.

We now prove, by induction over the number of summands in S′
1, that for

any such summand π.T1, there is a summand π.T2 in S′
2 s.t. ⊢ π.T1 = π.T2. Once

this will be proved, we shall establish the same way the symmetrical property,
which will allow us to deduce ⊢ S′

1 = S′
2.

Suppose then π.T1 is a summand of S′
1.

We reason by case analysis on the shape of π, and suppose π = a(x). We
know, since S′

1 ≍h S
′
2, that there is a summand a(x).T2 of S

′
2 such that a(x).T1 ∼

a(x).T2. We have ⊢ a(x).Ti = a(y).(νx)(y/x | Ti), for i = 1, 2, by Law L24,
induction hypothesis (on (νx)(y/x | T1) ∼ (νx)(y/x | T2)) and congruence using
the context a(y).[].

Moreover, since a(x).T1 ∼ a(x).T2, we know, by Fact 1, that a(y).(νx)(y/x |
T1) ∼ a(y).(νx)(y/x | T2). This allows us to rely on the induction hypothesis to
show ⊢ a(y).(νx)(y/x | T1) = a(y).(νx)(y/x | T2), which gives us, as announced
⊢ π.T1 = π.T2.

The other cases for the shape of π are treated similarly. ⊓⊔

We now move to the full calculus, by taking into account parallel composition.
As is usually the case, this relies on a law for expansion.

The following result states that any process is equivalent to a process that
can be written without using parallel composition. Intuitively, such a process
can be viewed as a “sum-only process with restriction”.

We can remark that expanding processes involves the introduction of restric-
tions (in the third sum law L7).

Lemma 54. For any P , there exists a |-free process Q s.t. ⊢ P = Q.

Proof. First write ⊢ P = A,P1 using the monoid laws for parallel composition.
Then, by induction on |P1|, we build S such that ⊢ P1 = S and |P1| = |S| using
law L7. ⊓⊔

We can then extend Proposition 53 to the whole πP calculus:

Theorem 55 (Axiomatisation of ∼ in πP).
For all πP processes P and Q, P ∼ Q iff ⊢ P = Q.

Proof. The theorem follows by Proposition 53 and Lemma 54.

28

Remark 56 (Discussion about normal forms). The proofs of the results in this
section suggest that we can define a strategy to apply the rules of Figure 2, in
order to rewrite a πP process P to its normal form, nf(P), so that P ∼ Q iff
nf(P) = nf(Q).

For preorder processes, the saturated form is a normal form for ∼: if A1 ∼ A2,
then, by Proposition 46, ⊢ A⋆1 = A⋆2. By contrast, the proof of Proposition 49
does not compute a canonical form for sum processes. For instance, from the
equivalence

b/a | c/a | a(x).0 ∼ b/a | c/a | a(x).0 + b(x).0 ,

Proposition 49 rewrites these processes into b/a | c/a | a(x).0 + b(x).0, but not
into b/a | c/a | a(x).0 + b(x).0 + c(x).0, which could be seen as a normal form for
∼, obtained by saturating the sum. Actually, the normal form could even be

b/a | c/a | a(x).0 + b(x).0 + c(x).0 + {a}(x).0 + {b}(x).0 + {c}(x).0 ,

by virtue of several applications of (the counterpart for output of) law L16 with
π1 an output prefix and π2 a protected output.

We leave the rigorous description of this normalisation procedure for future
work.

4.6 Adapting our Axiomatisation to Explicit Fusions

We can reuse the ideas presented above to describe an axiomatisation for barbed
congruence in Explicit Fusions (EF, [16]). EF feature fusion processes, of the form
a=b, which can equate names via ≡: we have a=b | P ≡ a=b | P{b/a}.

We refer to Appendix C for a description of the axiomatisation.

5 Conclusions and Future Work

Working with an preorder on names, using arc processes, has an influence on
the behavioural theory of πP, notably through the interplay between arcs and
restrictions. The preorder relation between names is represented explicitly in πP
processes, using arcs. We do not see any natural “implicit version” of πP, mim-
icking the relation between Explicit Fusions and Fusions, whereby the extension
of the preorder along a communication would not generate an arc.

The stateful nature of the preorder component of πP processes can be related
to frames in the applied π-calculus [1] and assertions in Psi-calculi [2]. Liu and
Lin’s proof system for applied π [11] is rather different from our axiomatisation
for πP, but has in common the “state component” of processes. One could expect
that the same would hold for an equational presentation of bisimilarity in Psi-
calculi, possibly relying on some hypotheses on the assertions in order for an
axiomatisation to be definable.

Among the natural extensions of this work is the study of the weak version
of behavioural equivalence. One fundamental use of types is to help reasoning
about processes. With the behavioural theory in the untyped setting in place,

29

we could study typed behavioural equivalence, building on the type system of [8].
Works like [14,5] should be relevant in this direction.

The behavioural theory of πP is based on an operational account. An in-
triguing question is the construction of a denotational model for πP, and the
comparison with known model for π and Fusions.

Acknowledgements. We thank Davide Sangiorgi and Fu Yuxi for useful discus-
sions about behavioural equivalence in πP. This work has been supported by
project ANR 12IS02001 PACE and NSF of China (61261130589).

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. of POPL, pages 104–115. ACM, 2001.

2. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile processes,
nominal data, and logic. In LICS, page 39–48. IEEE, 2009.

3. M. Boreale, M. G. Buscemi, and U. Montanari. D-fusion: A distinctive fusion
calculus. In Proc.APLAS, volume 3302 of LNCS, pages 296–310. Springer, 2004.

4. M. Boreale, M. G. Buscemi, and U. Montanari. A general name binding mechanism.
In Proc. TGC, volume 3705 of LNCS, pages 61–74. Springer, 2005.

5. Y. Deng and D. Sangiorgi. Towards an algebraic theory of typed mobile processes.
Theor. Comput. Sci., 350(2-3):188–212, 2006.

6. Y. Fu. The χ-calculus. In APDC, pages 74–81. IEEE Computer Society, 1997.
7. P. Gardner and L. Wischik. Explicit fusions. In MFCS, volume 1893 of LNCS,

pages 373–382. Springer, 2000.
8. D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi. Name-passing calculi: From fusions

to preorders and types. In LICS, pages 378–387. IEEE Computer Society, 2013.
9. D. Hirschkoff, J.-M. Madiot, and X. Xu. Long version of this paper. Available

from http://madiot.org.
10. C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer

Science, 13(5):657–683, 2003.
11. J. Liu and H. Lin. Proof system for applied pi calculus. In Proc. IFIP TCS, volume

323 of IFIP Advances in Inf. and Comm. Technol., pages 229–243. Springer, 2010.
12. J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Inf.

Comput., 120(2):174–197, 1995.
13. J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry in

mobile processes. In LICS, pages 176 –185. IEEE, 1998.
14. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-

ematical Structures in Computer Science, 6(5):409–453, 1996.
15. D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes. Cam-

bridge University Press, 2001.
16. L. Wischik and P. Gardner. Strong bisimulation for the explicit fusion calculus. In

Proc. of FoSSaCS, volume 2987 of LNCS, pages 484–498, 2004.

30

Appendix

A A LTS for a Variant of πP with Free Prefixes

We call πPF the variant of πP defined by the following grammar, that includes
primitive free prefixes (the grammar differs from the one of πP only in the defi-
nition of prefixes):

ϕ ::= a 6 b
∣∣ a g b α, β ::= a

∣∣ {a} π ::= αb
∣∣ αb

∣∣ [ϕ]τ

P,Q ::= P | Q
∣∣ (νa)P

∣∣ a/b
∣∣ ∑

i∈I

πi.Pi

We present below an LTS similar to the one of the π-calculus as far as
restriction is concerned: there are now scope rules. In the following, â, b̂ range
over sets of names that can be either a singleton or empty. When this set is {a},
we write (νâ) for (νa) and otherwise for nothing.

Labels: µ ::= αb | αb | (νb)αb | (νb)αb | [ϕ]τ .

π.P
π
−→F P

→F -pref

P
[ϕ2]τ
−−−→F P

′ P ⊲ Γ Γ, ϕ1 ⊢ ϕ2

P
[ϕ1]τ
−−−→F P

′
→F -tau-⊲

P
(νĉ)αc
−−−−→F P

′ P ⊲ α 6 β

P
(νĉ)βc
−−−−→F P

′
→F -in-⊲

P
(νĉ)αc
−−−−→F P

′ P ⊲ α 6 β

P
(νĉ)βc
−−−−→F P

′

→F -out-⊲

P
(νb̂)αb
−−−−→F P

′ Q
(νd̂)γd
−−−−→F Q

′ ∅ = b̂ ∩ d̂ = b̂ ∩ fn(Q) = d̂ ∩ fn(P)

P | Q
[αgγ]τ
−−−−−→F (νb̂)(νd̂)(b/d | P ′ | Q′)

→F -com-l

P
µ
−→F P

′ a /∈ n(µ)

(νa)P
µ
−→F (νa)P ′

→F -res

P
µ
−→F P

′ µ ∈ {γa, γa}

(νa)P
(νa)µ
−−−→F P

′
→F -open

P
µ
−→F P

′ bn(µ) ∩ fn(Q) = ∅

P | Q
µ
−→F P

′ | Q
→F -par-l

πi.Pi
µ
−→F P

′

∑
i
πi.Pi

µ
−→F P

′
→F -sum

The LTS above induces the following notion of bisimilarity:

Definition 57 (F-bisimilarity). A symmetric relation R is an F-bismimulation
iff P R Q implies

1. for all ϕ, P ⊲ ϕ implies Q⊲ ϕ;

31

2. if P
(νb̂)αb
−−−−→F P

′, there is Q′, c and ĉ s.t.

Q
(νĉ)αc
−−−−→F Q

′ and (νb̂)(P ′ | b/f) R (νĉ)(Q′ | c/f) with f fresh;

3. if P
(νb̂)αb
−−−−→F P

′, there is Q′, c and ĉ s.t.

Q
(νĉ)αc
−−−−→F Q

′ and (νb̂)(P ′ | f/b) R (νĉ)(Q′ | f/c) with f fresh;

4. if P
[ϕ]τ
−−→F P

′, there is Q′ s.t. Q
[ϕ]τ
−−→F Q

′ and P ′ | ϕ R Q′ | ϕ.

F-bisimilarity, written ∼F, is the greatest F-bisimulation.

Remark 58. First one could feel that if P
ab
−→F P

′ and P ∼ Q and Q answered

as Q
ac
−→F Q′, then we should have required that Q′ ⊲ c 6 b. This is a fair

requirement, and is already taken care of by the condition P ′ | b/f ∼ Q′ | c/f .
Indeed, (P ′ | b/f)⊲ f 6 b so we must have (Q′ | c/f)⊲ f 6 b, and the only way
it can entail f 6 b is through c (since f is fresh), so we must have Q′ ⊲ c 6 b.

Proposition 59. Define [α(x).P] = (νx)αx.[P] and [α(x).P] = (νx)αx.[P].
For any P,Q, P ∼ Q iff [P] ∼F [Q].

Proof. In all the following, we assume x is fresh. We also use P , Q, R instead of
the same letter for the different clauses to ease reference to them. We first prove
a tight operational correspondence from πP to πPF:

– if P ⊲ ϕ then [P]⊲ ϕ,

– if P
α(x)
−−−→ P ′ then for some y, P2: P

′ ≡ (νy)(y/x | P2) and [P]
(νy)αy
−−−−→F [P2],

– if Q
α(x)
−−−→ Q′ then for some z, Q2: Q

′ ≡ (νz)(x/z | Q2) and [Q]
(νz)αz
−−−−→F [Q2],

– if R
[ϕ]τ
−−→ R′ then [R]

[ϕ]τ
−−→F [R2] for some R2 such that R2 ∼ R′.

and another from πPF back to πP (note that the object y is always bound, and
that x can be universally quantified, especially it can be f):

– if [P]⊲ ϕ then P ⊲ ϕ,

– if [P]
(νy)αy
−−−−→F P1 then for some P2, P

α(x)
−−−→≡ (νy)(y/x | P2) and P1 = [P2],

– if [Q]
(νz)αz
−−−−→F Q1 then for some Q2, Q

α(x)
−−−→≡ (νz)(x/z | Q2) and Q1 = [Q2],

– if [R]
[ϕ]τ
−−→F R1 then R1 = [R2] for a R

′ such that R2 ∼ R′ and R
[ϕ]τ
−−→ R′.

These two correspondences describes the basic steps necessary to prove that
{([P], [Q]) | P ∼ Q} is a F-bisimulation and that {(P,Q) | [P] ∼F [Q]} is a
bisimulation up to bisimilarity, to finally prove P ∼ Q iff [P] ∼F [Q].

The correspondence from πP to πPF goes without problem. The R2 ∼ R′

condition comes from the fact (νx)(y/x | x/z) must be transformed into the
bisimilar process y/z when composing P ′ and Q′ into (νx)(P ′ | Q′):

R′ = (νx)(P ′ | Q′) ≡ (νx)((νz)(x/z | Q2) | (νy)(y/x | P2))

≡ (νyz)((νx)(y/x | x/z) | Q2 | P2)

∼ (νyz)(y/z | Q2 | P2) = R2

In fact, the same reasoning (and the same equation) apply when proving the
operational correspondence from πPF back to πP. ⊓⊔

32

Types

T ::= 1 | iT | oT | ♯T | oT | iT

Subtyping

♯T ≤ iT ♯T ≤ oT oT ≤ iT iT ≤ oT

T ≤ U

iT ≤ iU

T ≤ U

oU ≤ oT

T ≤ U

oT ≤ oU

T ≤ U

iU ≤ iT

Typing rules

Γ ⊢ a : oT Γ, x : T ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : iT Γ, x : T ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : oT Γ, x : T ⊢ P

Γ ⊢ {a}(x).P

Γ ⊢ a : iT Γ, x : T ⊢ P

Γ ⊢ {a}(x).P

Γ (a) ≤ Γ (b)

Γ ⊢ a/b

Γ ⊢ P

Γ ⊢ [ϕ]τ.P

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P +Q

Fig. 3. A type system for capabilities and cocapabilities

B A Type System with Cocapabilities

Figure 3 presents a type for πP with cocapabilities. Cocapability types are of the
form oT and iT , and are used to type protected prefixes.

We have the expected property of type preservation:

Proposition 60 (Subject reduction). If Γ ⊢ P and P 7→ P ′, then Γ ⊢ P ′.

As with capabilities, a typing hypothesis of the form a : iT provides only the
right to perform a protected input at a. It is possible, for instance, to derive

a : iT, b : oT ⊢ {a}(x).bx.0 .

Note that it is not possible to derive a similar judgement using the encoding of
protected prefixes:

a : iT, b : oT 6⊢ (νu)(u/a | u(x).bx.0) .

We leave for future work the investigation of a typed behavioural equivalence
based on this type system (intuitively, types can help reasoning about the be-
haviour processes by constraining the observation capabilities of contexts).

Another direction worth exploring is a finer study of the type system in a
version of πP with free prefixes, along the lines of [8]. In particular, we expect
that usages of protected names correspond to negative polarities (while all names
in subject positions are positive in [8]).

33

C An Axiomatisation for Explicit Fusions

We show how our ideas can be adapted to the calculus of Explicit Fusions [7].
Accordingly, we adopt a presentation of the calculus that follows the lines of πP
as we have introduced it.

The grammar of prefixes, conditions and processes is as follows:

ϕ ::= a=b π ::= a(x) | a(x) | [a=b]τ P ::= P |Q | νaP | Σiπi.Pi | a=b

As in πP, we adopt primitive bound prefixes. Free prefixes can be encoded:
[ab.P] = (νu)a(u).(u=b | P). Note in passing that fusions can be represented in
πP, encoding a=b with a/b | b/a.

The following definition is adapted from the efficient bisimulation of [16].
The LTS is defined according to the approach in Figure 1, except in their LTS
P τ
−→P ′ does not necessarily imply that P

[a=b]τ
−−−→P ′ for every a and b. So we have to

change the third clause of the definition of bisimulation to take this into account.
The way we handle objects does not matter, as the resulting bisimilarity is the
same.

Definition 61 (∼EF). An efficient bisimulation is a symmetric relation R such
that if PRQ then:

1. P ⊲ a=b iff Q⊲ a=b;

2. P
µ
−→ P ′ implies Q

µ
−→ Q′ for some Q′ s.t. P ′RQ′, for µ 6= [ϕ]τ ;

3. P
[a=b]τ
−−−−→ P ′ implies a=b | Q

τ
−→ Q′ and a=b | P ′RQ′.

We write ∼EF for the largest efficient bisimulation.

We write ⊢EF P = Q if the equality can be derived using equational reasoning
from the laws of Figure 4.

The axiomatisation is considerably simpler than in πP. The stateful com-
ponent of processes encodes an equivalence relation on names. This makes it
possible to reason locally, whereby a form of global reasoning is necessary in the
laws of Figure 2 for πP.

The fact that fusions are symmetric makes protected names unnecessary and
simplifies greatly the handling of restriction. Indeed, laws L31-L35 can be dealt
with using the simpler law (νa)

∑
i πi.Pi =

∑
i|a/∈n(πi)

πi.(νa)Pi.

Lemma 62. For any P, a, b, we can derive ⊢EF P | a=b = P{a/b} | a=b.

Proposition 63. For any P,Q, we have P ∼EF Q iff ⊢EF P = Q.

34

Standard structural laws.

P | (Q | R) = (P | Q) | R P | Q = Q | P P | 0 = P

(νa)(P | Q) = P | (νa)Q and (νb)P = (νa)P{a/b} when a /∈ fn(P)

(νa)
∑

i

πi.Pi =
∑

i|a/∈n(πi)

πi.(νa)Pi

Laws for fusions.

a=a = 0 a=b | a=c = a=b | a=c | b=c a=b = b=a (νa)a=b = 0

Laws for prefixes.

a=b | S + π.P = a=b | S + π.(a=b | P) [a=b]τ.P = [a=b]τ.(a=b | P)

π.P + π.P = π.P [a=b]τ.P = [b=a]τ.P a=b | [a=c]τ.P = a=b | [b=c]τ.P

a=b | S + a(x).P = a=b | S + b(x).P a=b | S + a(x).P = a=b | S + b(x).P

Expansion law.

∑
i πi.Pi |

∑
j ρj .Rj =

∑
i πi.(Pi | T) +

∑
j ρj .(S | Rj)

+
∑

i,j [a=b]τ.(νx)(Pi | Rj)

where {πi, ρj} = {a(x), b(x)}

Fig. 4. Axiomatisation for the Explicit Fusions calculus

35

	A behavioural theory for a -calculus with preorders(long version)

