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Abstract: We consider the solution of sparse linear systems using direct methods via LU fac-
torization. Unless the matrix is positive definite, numerical pivoting is usually needed to ensure
stability, which is costly to implement especially in the sparse case. The Random Butterfly Trans-
formations (RBT) technique provides an alternative to pivoting and is easily parallelizable. The
RBT transforms the original matrix into another one that can be factorized without pivoting with
probability one. This approach has been successful for dense matrices; in this work, we investigate
the sparse case. In particular, we address the issue of fill-in in the transformed system.
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Utiliser les Random Butterfly Transformations pour éviter

de pivoter dans les méthodes directes creuses

Résumé : On considère la solution de systèmes linéaires creux en utilisant des méthodes
directes de factorisation LU. Sauf si la matrice est définie positive, le pivotage numérique est en
général nécessaire pour assurer la stabilité, ce qui est coûteux à implémenter en particulier pour le
cas creux. La technique de Random Butterfly Transformations (RBT) fournit une alternative au
pivotage et est facilement parallélisable. Le RBT transforme la matrice originale en une matrice
qui peut être factorisée sans pivoter avec une probabilité de 1. Cette approche s’est avérée
efficace pour les matrices denses. Dans ce travail nous étudions le cas creux. En particulier nous
abordons le problème lié au fill-in dans le système transformé.

Mots-clés : Méthodes directes creuses, factorisation LU, algorithmes randomisées.
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1 Introduction

When solving the linear systems using the LU or the LDLT factorizations, numerical pivoting is
often needed to ensure stability. Pivoting prevents division by zero or by small quantities by per-
muting on the fly the rows and/or columns of the matrix so that the pivotal element is relatively
large in magnitude. Pivoting involves irregular data movement and can significantly impact the
speed of the factorization, especially on large parallel machines. This issue arises in both unsym-
metric and symmetric cases, and for both dense and sparse factorizations. The ScaLAPACK [7],
MAGMA [16] and PLASMA [14] dense linear algebra libraries contain a Cholesky factorization
for positive definite matrices, for which no pivoting is required, but they do not contain an LDLT

factorization. They contain an LU factorization with partial pivoting (i.e. PA = LU , where P is
a permutation matrix), but partial pivoting can significantly slow down the speed. For example,
on a hybrid CPU/GPU system, the LU algorithm in the MAGMA library spends over 20% of
the factorization time in pivoting even for a large random matrix of size 10, 000× 10, 000.

Pivoting poses additional problems in sparse factorizations because of the fill-in, which cor-
responds to the new nonzeros generated in the factored matrices L and U . For sparse Cholesky,
where pivots can be chosen on the diagonal, we often use a sparsity-preserving ordering algo-
rithm, such as minimum degree or nested dissection, to reorder the matrix first so that the
Cholesky factor of the permuted matrix PAPT has less fill-in than that of A. For sparse LU, we
often factorize PAQT with both row and column permutation matrices P and Q. The purpose
is to preserve sparsity as well as to maintain numerical stability. There are complex interplays
between ordering (for sparsity) and pivoting (for stability). Often, the two objectives cannot
be well achieved simultaneously. Several relaxed pivoting schemes, other than partial pivoting,
have been developed to trade off stability and sparsity, which allow larger pivot growth while
maintaining better sparsity. These include threshold pivoting [8], restricted pivoting [15], and
static pivoting [13].

One difficulty with dynamic pivoting, either partial pivoting or threshold pivoting, is that the
fill-ins are produced on the fly depending on the permutation at each step. It is thus not possible
to have the separate ordering and symbolic preprocessing algorithms that precisely minimize the
number of fill-ins and forecast the fill-in positions. A good ordering strategy to accommodate
dynamic row pivoting is to apply any ordering algorithm to the graph of the symmetrized matrix
ATA which gives a fill-reducing permutation Q. Then, Q is applied to the columns of A before

performing the LU factorization with row pivoting: P (AQT ) = LU . The rationale behind this is
that the nonzero structure of the Cholesky factor R of ATA = RTR upper bounds the nonzero
structures of LT and U of PA = LU , for any row permutation P [12]. That is, the Cholesky
factor Rq of (AQT )T (AQ) = RT

q Rq upper bounds the LT
q and Uq of P (AQT ) = LqUq, and

Rq contains smaller amount of fill than that of R. In essence, the column ordering Q tends
to minimize an upper bound on the actual fill-ins in the LU factors, taking into account all
the possible row pivotings. This strategy can be pessimistic when most pivots happen to be
on the diagonal (e.g. diagonally dominant matrices). The sequential SuperLU library uses this
ordering strategy together with partial pivoting [11]. This is our comparison baseline to be used
in Section 3 about the numerical results.

The cost of dynamic pivoting in parallel is even more dramatic than in the dense case.
For example, for matrix nlpkkt80 of a KKT system from nonlinear optimization, the parallel
factorization with threshold pivoting using MUMPS [1] took 639 seconds with 128 processes.
After the matrix is modified to be diagonally dominant with the same sparsity structure, the
parallel factorization without pivoting took only 87 seconds, even though the size of the LU
factors and the flop count are roughly the same in both cases.

In the parallel direct solver SuperLU_DIST [13], a static pivoting strategy is used to enhance
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4 Baboulin et al.

scalability. Here, P is chosen before factorization based solely on the values of the original
A. A maximum weighted matching algorithm and the code MC64 [9] is currently employed.
The algorithm chooses P to maximize the magnitude of the diagonal entries of PA. During
factorization, the pivots are chosen on the diagonal and the tiny ones are replaced by a fixed
value. Since this does not involve dynamic row permutation, a sparsity-reducing algorithm can
be applied to the graph of another symmetrized matrix PA+(PA)T , producing the permutation
matrix Q. This tends to minimize the amount of fill in the L and U of Q(PA)QT = LU . The
static pivoting improves speed and scalability but it might fail for very challenging problems. In
addition, MC64 is a sequential code and there is no good parallel algorithm yet. Therefore, the
pre-pivoting phase will be a severe obstacle for solving larger problems on extreme-scale parallel
machines.

In 1995, Parker introduced a randomization algorithm to eliminate the need for pivoting [10].
In this approach, the Random Butterfly Transformation (RBT) is used to transform the original
system into an “easier” one such that, with probability one, the LU factorization of the trans-
formed matrix can be performed without pivoting. This technique was successfully applied and
implemented into the dense libraries for LU and LDLT factorizations [2, 6]. In this work, we
investigate the potential of the RBT method for sparse cases.

2 Random Butterfly Transformations

In this section we recall the main concepts and definitions related to RBT where the random-
ization of the matrix is based on a technique initially described in [10] and revisited in [2] for
general dense systems. The procedure to solve Ax = b, where A is a general matrix, using a
random transformation and the LU factorization is:

1. Compute Ar = UTAV , with U, V random matrices,

2. Factorize Ar = LU (without pivoting),

3. Solve Ary = UT b and compute x = V y.

The random matrices U and V are chosen among a particular class of matrices called recursive

butterfly matrices. A butterfly matrix is an n× n matrix of the form

B<n> =
1√
2

[

R0 R1

R0 −R1

]

where R0 and R1 are random diagonal n
2
× n

2
matrices. A recursive butterfly matrix of size n

and depth d is defined recursively as

W<n,d> =









B
<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1









·W<n,d−1>, with W<n,1> = B<n>

where the B
<n/2d−1>
i are butterflies of size n/2d−1, and B<n> is a butterfly of size n.

In the original work by Parker, d = log
2
n; he shows that, given two recursive butterfly

matrices U and V , the matrix UTAV , where A is the original matrix of the system to be solved,
can be factored into LU without pivoting with very high probability. For symmetric problems,
V = U and the same result holds with LDLT . Baboulin et al. studied extensively the use of
RBT for dense matrices and showed that in practice, d = 1 or 2 is enough; in most cases a few
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steps of iterative refinement can recover the digits that have been lost. They also showed that
random butterfly matrices are cheap to store and to apply (O(nd) and O(dn2) respectively) and
they proposed implementations on hybrid multicore/GPU systems for the unsymmetric [2] case.
For the symmetric case, they proposed a tiled algorithm for multicore architectures [3] and more
recently a distributed solver [4] combined with a runtime system [5]. As was demonstrated, the
preprocessing by RBT can be easily parallelized with good scalability.

3 Using RBT in sparse direct solvers

We first describe and compare different strategies and parameters when applying RBT to the
sparse LU factorization. We carry out the experiments on a large set of sparse matrices in order
to identify the best practical strategy.

3.1 Influence of the degree d

In the dense case, the use of RBT incurs small amount of extra operation and memory. The
cost is limited to storing and applying RBT prior to the factorization. However, in the sparse
case, applying RBT modifies the nonzero structure of the transformed matrix. The number of
nonzeros in the transformed matrix UTAV can be up to 4d times the number of nonzeros in A
in the worst case. This increase in nonzeros may lead to an even larger increase in the size of the
LU factors and thus to prohibitive costs. We therefore limit our investigation to small degrees:
d = 1 or 2, which corresponds to the practical setting used by Baboulin et al. in the dense case.

3.2 Combining RBT and fill-reducing permutations

Fill-reducing ordering is critical to preserve sparsity. This operation is usually performed after
all the preprocessings that modify the sparsity pattern of the input matrix (e.g., MC64). At first
glance, it seems that the most natural way of combining RBT with a fill-reducing permutation
is:

1. transform the original matrix A into UTAV ,

2. permute with a fill-reducing algorithm (then factorize).

However, one can show that the matrix resulting from steps 1. and 2. is not guaranteed to be
factorizable without pivoting. We provide an example here. Let A be a 4× 4 matrix; A can be
written in a 2× 2 form as

A =

[

A11 A12

A21 A22

]

Let U and V two recursive butterflies of size 4 and degree 2. By Parker’s theorem, if A is non-
singular then UTAV is factorizable without pivoting. Let p be the permutation vector [1 3 2 4]
and P the associated permutation matrix. We consider B = PUTAV PT . One can show that if
∑

A11 =
∑

A22 =
∑

A21 =
∑

A12 then the leading submatrix B1:2,1:2 is singular, regardless of
the random values in U and V . Therefore B is not factorizable without pivoting (B22 becomes 0
after eliminating the first pivot, in the absence of roundoff errors). One can easily build a non-

singular matrix satisfying this property, e.g., A11 =

[

2 0
0 2

]

, A12 = A21 =

[

1 1
1 1

]

, A22 =

[

3 0
0 1

]

(leading to det(A) = −4, i.e., A non-singular).
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6 Baboulin et al.

As a consequence, the strategy consisting in permuting for sparsity after the transformation
may not work in theory, but we still wish to investigate its practical performance. We compare
the following two strategies:

Strategy 1: the matrix is permuted using a fill-reducing (or bandwidth minimization) heuristic
then transformed with RBT. This guarantees that the factorization would succeed for
d = log

2
n but it might yield large number of fill-ins in the factors. The first step is an

attempt to minimize the nonzeros in the transformed matrix and the fill-ins.

Strategy 2: the matrix is transformed with RBT then permuted using a fill-reducing heuristic.
This might fail even for d = log

2
n but it provides a much better control of fill-in.

3.3 Evaluation of the different strategies and parameters

The experiments were carried out on 90 non-singular matrices with size n ≤ 10, 000. Table 1
shows the success rate of the factorization, the increase in nonzeros and the increase in the size of
the LU factors with respect to partial pivoting. We use the partial pivoting code SuperLU [11];
for RBT, pivoting is disabled and the factorization is stopped whenever a zero diagonal pivot is
found (although a possibility could be to replace it by a small perturbation such as ε‖A‖).

Strategy and degree Success Increase in nonzeros Increase in factors
rate min geo avg max min geo avg max

Strategy 1
d = 1 81.1% 1.00 2.97 3.14 3.99 1.12 9.92 21.07 362.32
d = 2 92.2% 2.01 9.53 10.52 15.79 1.14 19.35 45.41 635.84

Strategy 2
d = 1 82.2% 1.00 2.02 2.25 4.00 0.03 1.55 2.62 20.42
d = 2 80.0% 1.50 4.95 5.98 15.01 0.06 2.96 6.78 144.49

Table 1: Influence of the different strategies and parameters for 90 matrices with size n ≤
10, 000. “Success rate” is the percentage of matrices for which the factorization completes.
“Increase in nonzeros” is the ratio nnz(UTAV )/nnz(A) and “Increase in factors” is the ratio
nnz(LU(UTAV ))/nnz(LU(A)); we report the minimum, geometric mean, arithmetic mean, and
maximum.

We make the following observations: 1) Strategy 1 and Strategy 2 have similar success rates.
Although both strategies lead to an increase in the size of the LU factors (with respect to partial
pivoting), this increase is much more limited with Strategy 2. Therefore, Strategy 2 will be our
method of choice. 2) Similar to what was observed in the dense case, most matrices succeed with
d = 1. With Strategy 1, d = 2 yields a near-perfect success rate at the price of a large increase
in the size of factors; the effect is less clear with Strategy 2.

Using Strategy 2 with d = 1 seems to be the most practical setting. Fig. 1 shows how this
approach compares with partial pivoting. Fig. 1(a) shows how the size of the factors varies
when RBT is used. 37 out of 90 matrices have a smaller size of LU factors; as explained in the
introduction, this is due to the fact that partial pivoting relies on a fill-reducing permutation
that can only aim at minimizing an upper bound of the fill-in, since the order in which variables
are eliminated is not known in advance. On the other hand, not doing pivoting allows the
fill-reducing permutation to focus on the right problem (minimizing the actual fill-in). For 30
matrices, the increase (due to the larger structure of the transformed matrix) is moderate (larger
than one but less than two). Although this means that the number of operations with RBT
might be larger than with partial pivoting, RBT may catch up since doing no pivoting yields
better flop rate and scalability. For 23 matrices, the increase is large (between 2 and 20), which

Inria
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means it is more unlikely that RBT will yield better runtime. Fig. 1(b) shows the ratio between
the forward error ||x − xtrue||/||xtrue|| with RBT and that with partial pivoting. For 69 out of
90 problems, the ratio is less than 102 i.e. at most 2 digits are lost when using RBT instead of
partial pivoting. Overall, we found that 48 out of 90, i.e. 53.3% have both a moderate increase
in the factors size (less than twice) and a moderate loss in accuracy (less than 2 digits).

10
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100

101
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2

100 101 102 103 104

n

Factors size (RBT)/Factors size (partial pivoting)

(a) Difference in factors.

10
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10
5

1010

1015

10
0

10
1

10
2

10
3

10
4

n

Forward error(RBT)/Forward error(partial pivoting)

(b) Difference in forward error.

Figure 1: Evaluation of RBT (Strategy 2, degree 1) vs partial pivoting for 90 matrices sorted by
size.

3.4 One-sided transformation

The original approach proposed by Parker relies on a two-sided transformation UTAV . We
showed that a one-sided transformation is sufficient to maintain the main numerical property,
i.e., UTA can be factorized without pivoting when U is a recursive butterfly matrix with degree
d = log

2
n. The benefit of the one-sided transformation is that the number of nonzeros in

UTA (and the LU factor size) can be less than the number of nonzeros in UTAV . Through
private communication, Parker mentions that it is analogous to using partial pivoting rather
than complete pivoting, i.e., although no zero pivot appears, the growth factor may be larger.

We carried out experiments with this one-sided approach, and the findings are that, with
d = 1, the success rate of the one-sided and two-sided approaches are similar. For d = 2, the
success rate is marginally higher with the two-sided approach. Fig. 2 illustrates how the two
approaches influence the size of the transformed matrix and the size of the factors. We observed
that the one-sided approach marginally decreases the size of the factors on average, but the
results are problem-dependent.

4 Conclusion and perspectives

For sparse direct solvers using LU factorization, a serious scalability bottleneck is numerical
pivoting. A number of relaxed pivoting algorithms have been developed, but none of them have
shown promise of scalable implementation. In this exploratory work, through large number (90)
of real-world test matrices, we demonstrated that the Random Butterfly Transformation is a
good alternative to pivoting, especially with properly chosen ordering strategies and transforma-
tion parameters. RBT is particularly appealing for extreme-scale systems because it is highly
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8 Baboulin et al.

100
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100 101 102 103 104

Two-sided

Nonzeros (transformed A)/Nonzeros(original A)

(a) Nonzeros.
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n

Factors size (RBT)/Factors size (partial pivoting)

One-sided
Two-sided

(b) Factors.

Figure 2: One-sided vs two-sided transformation (Strategy 2, degree 1) for 90 matrices sorted by
size.

parallelizable. This opens the possibilities of several avenues of new research, such as applica-
tion of RBT to the LDLT factorization, classification of the problems according to various RBT
strategies, and investigation of RBT’s impact on the scalability of existing parallel direct solvers.
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