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February 24, 2014

Abstract

Given a graph G = (V,E), a greedy coloring of G is a proper coloring such that, for each two

colors i < j, every vertex of V (G) colored j has a neighbor with color i. The greatest k such that

G has a greedy coloring with k colors is the Grundy number of G. A b-coloring of G is a proper

coloring such that every color class contains a vertex which is adjacent to at least one vertex in

every other color class. The greatest integer k for which there exists a b-coloring of G with k

colors is its b-chromatic number. Determining the Grundy number and the b-chromatic number

of a graph are NP-hard problems in general.

For a fixed q, the (q,q− 4)-graphs are the graphs for which no set of at most q vertices

induces more than q−4 distinct induced P4s. In this paper, we obtain polynomial-time algorithms

to determine the Grundy number and the b-chromatic number of (q,q− 4)-graphs, for a fixed

q. They generalize previous results obtained for cographs and P4-sparse graphs, classes strictly

contained in the (q,q−4)-graphs.

1 Introduction

Let G = (V,E) be a finite undirected graph, without loops or multiple edges. A k-coloring of G is a

surjective mapping c : V (G) → {1,2, . . . ,k} such that c(u) 6= c(v) for any edge uv ∈ E. The sets of

vertices S1, . . . ,Sk with colors 1,2, . . . ,k, respectively, that form a partition of V (G) in stable sets, are

called color classes. The chromatic number χ(G) of G is the smallest integer k such that G admits a

k-coloring. It is well known that determining χ(G) is a NP-hard problem.

Hence lots of heuristics have been developed to color a graph. One of the most basic and used is

the greedy algorithm. Given an order v1,v2, . . . ,vn of the vertices of G, the greedy algorithm colors

the vertices of G assigning to vi the minimum positive integer that was not already assigned to its

neighbors in the set {v1, . . . ,vi−1}. Such a coloring is called a greedy coloring. The maximum number

of colors of a greedy coloring of a graph G, over all possible orderings of the vertices of V (G), is the

Grundy number of G and it is denoted by Γ(G).
Zaker [1] showed that, for any fixed k, one can decide in polynomial time if a given graph has

Grundy number at least k (that is, deciding if Γ(G) ≥ k is fixed parameter tractable on k). However

determining the Grundy number of a graph is NP-hard [1]. Moreover, in 2010, Havet and Sampaio [2]

proved that it is NP-complete to decide if Γ(G) = ∆(G)+1. In addition, Asté et al. [3] showed that,

for any constant c ≥ 1, it is NP-complete to decide if Γ(G)≤ c ·χ(G).
Another alternative way of dealing with the coloring problem is to try to improve any coloring c

of the graph by applying some strategy, obtaining from c a coloring with a smaller number of colors.
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Observe that, if c has a color class Si such that for every vertex v ∈ Si, there is at least one other color

class S j such that v does not have neighbors in S j, we could eliminate Si by recoloring every vertex

v from Si with the color j that does not appear in its neighborhood. A vertex v from Si is said to be

dominant if v is adjacent to at least one vertex in S j for all j 6= i. It is easy to see that if every color

class Si ∈ c has a dominant vertex, then it is not possible to improve c by applying the above strategy.

A b-coloring of G is a coloring such that every color class contains a dominant vertex. The b-

chromatic number χb(G) of a graph G is the maximum number k such that there exists a b-coloring

of G with k colors. Observe that the b-chromatic number of G measures the worst performance of

the improvement strategy of a coloring described previously. This parameter has been introduced

by R. W. Irving and D. F. Manlove [4]. They proved that determining the b-chromatic number is

polynomial-time solvable for trees, but it is NP-hard for general graphs. In [5], Kratochvı́l, Tuza and

Voigt proved that computing the b-chromatic number is NP-hard even if G is a connected bipartite

graph.

Let G = (V,E) be a graph. We say that G is a P4 if V (G) = {w,x,y,z} and E(G) = {wx,xy,yz},

that is, an induced path on four vertices. We say that w and z are the endpoints and x and y the

midpoints of the P4.

A cograph is a P4-free graph and a P4-sparse graph is a graph G such that each subset of G with

five vertices induces at most one P4. The P4-sparse graphs, introduced in [6], generalize cographs and

can be recognized in linear time [7].

Many NP-hard problems were proved to be polynomial-time solvable on cographs and P4-sparse

graphs. In particular, polynomial-time algorithms were presented to solve the problem of determing

the Grundy number and the b-chromatic number for these graphs [8, 9, 10].

Babel and Olariu [11] defined a graph as (q,q− 4)-graph if no set of at most q vertices induces

more than q−4 distinct P4s. For example, cographs and P4-sparse graphs are precisely (4,0)-graphs

and (5,1)-graphs, respectively.

Our main result (Theorem 1) says that, for every fixed integer q > 0, there is a polynomial algo-

rithm to obtain the Grundy number and the b-chromatic number of a (q,q−4)-graph.

Theorem 1 (Main result). Let q > 0 be a fixed integer. The Grundy number and the b-chromatic

number of a (q,q−4)-graph G can be computed in polynomial time.

This paper is organized as follows. Section 2 contains structural results for (q,q− 4)-graphs.

Section 3 presents the results used to calculate the Grundy number of these graphs and in Section 4

we show how to determine their b-chromatic number.

2 Decomposing (q,q−4)-graphs

A graph H is p-connected if, for every partition of V (G) into nonempty disjoint sets V1 and V2, there

exists an (V1,V2)-crossing P4, that is, an induced P4 containing vertices from both V1 and V2. A p-

connected graph H is separable if there exists a partition of V (G) into nonempty disjoint subsets V1

and V2 such that each (V1,V2)-crossing P4 has its midpoints in V1 and its endpoints in V2. We say

that (V1,V2) is the separation of H and H1 and H2 are the graphs H[V1] and H[V2], respectively. A

maximal p-connected induced subgraph is called a p-component. Vertices which are not contained in

a nontrivial p-component are called weak.

A decomposition tree of a graph G is a tree TG, where the leaves are subsets of vertices of G and

each non-leaf node v in TG, with children v1, . . . ,vl , represents the subgraph of G, denoted by G(v),
induced by the leaves of the subtree of TG rooted by v. Moreover, v is labelled according to its relation

with the graphs G(v1), . . . ,G(vl). Clearly, the intersection of the leaves must be empty and their union

must be the set of vertices of G. The root node of TG represents the original graph G.
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In [12], Jamison and Olariu suggest a decomposition tree for general graphs, called primeval

decomposition tree, which can be computed in linear time [12]. The leaves of its decomposition

tree are p-connected graphs and its weak vertices, and its internal nodes are labelled union, join or

p-component.

If the label of a node v is union, G(v) is the disjoint union of G(v1), . . . , G(vl), that is, the set of

vertices of G(v) is the union of the set of vertices of G(v1), . . . ,G(vl) and the set of edges of G(v) is

the union of the set of edges of G(v1), . . . ,G(vl).
If the label of a node v is join, G(v) is the join of G(v1), . . . , G(vl), that is, the set of vertices of

G(v) is the union of the set of vertices of G(v1), . . . ,G(vl) and the set of edges of G(v) is the union

of the set of edges of G(v1), . . . ,G(vl), in addition to all the possible edges between the vertices of

G(v1), . . . ,G(vl).
If v is labelled p-component, it has two children on the tree: a separable p-component H, which

is a leaf on the primeval decomposition tree and an internal node that represents the graph G(v)−H.

Moreover, every vertex from G(v)−H is adjacent to every vertex in H1 and to no vertex in H2.

A graph is a spider if its vertex set can be partitioned into three sets S, K and R in such a way that

S is a stable set, K is a clique, all the vertices of R are adjacent to all the vertices of K and to none of

the vertices of S and there exists a bijection f : S → K such that, for all s ∈ S, either the neighborhood

of s N(s) = { f (s)} (and it is a thin spider) or N(s) = K −{ f (s)} (and it is a thick spider). We say

that the spider is without head if R = /0.

In [11], Babel and Olariu also proved that the primeval decomposition of a (q,q− 4)-graph has

a special property: every node v on the tree labelled as p-component is such that its separable p-

component H is a headless spider or it has less than q vertices. If H is the headless spider, it is easy

to see that H1 is the clique and H2 is the stable set. Since every vertex from V (G(v)−H) is adjacent

to every vertex in H1 and non-adjacent to every vertex in H2, we have that G(v) is itself a spider with

head, where G(v)−H is the head.

In this paper, we calculate the Grundy number and the b-chromatic number of (q,q− 4)-graphs

through bottom-up traversal on the their primeval decomposition tree. More specifically we solve the

case in which a node v on is labelled as p-component and the p-connected component H of G(v) is

a graph with less than q vertices. In the remaining non-trivial cases, we use some results in [9] and

[10] to calculate Γ(G(v)) and χb(G(v)), respectively.

3 Greedy Coloring of (q,q−4)-graphs

As first shown in [8], if G is the disjoint union of two graphs G1 and G2, then Γ(G) = max{Γ(G1),
Γ(G2)}. On the other hand, if G is the join of two graphs G1 and G2, then Γ(G) = Γ(G1)+Γ(G2). In

[9] is shown how to determine the Grundy number for spiders.

Lemma 2 ([9]). Let G be a spider with partition (S,K,R) and n vertices. If G is a spider and Γ(R) is

given, then Γ(G) can be determined in linear time.

Let G = (V,E) be a graph. A subset M of V with 1 ≤ |M| ≤ |V | is called a module if each vertex in

V −M is either adjacent to all vertices of M or to none of them. A module M is called a homogeneous

set if 1 < |M|< |V |. The graph obtained from G by shrinking every maximal homogeneous set to one

single vertex is called the characteristic graph of G.

A graph is called split graph if its vertex set has a partition (K,S) such that K induces a clique

and S induces an stable set.

Lemma 3 ([13]). A p-connected graph H is separable if and only if its characteristic graph is a split

graph.
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Note that, if M1 and M2 are two modules of a graph G such that M1 ∩M2 = /0, then either the

edges from {{v,w} : v ∈ M1,w ∈ M2} belong to G or G has none of such edges.

Recall Lemma 3. Clearly, if the characteristic graph of a separable p-component H with separation

(V1,V2) is the split graph (K,S), then every maximal homogeneous set M1
i ⊆V1 shrinks to a vertex v1

i

in the clique K, and every maximal homogeneous set M2
j ⊆V2 shrinks to a vertex v2

j in the stable set

S. We say that H[Mi
j] = H i

j.

Let H be a separable p-component with separation (V1,V2). Observe that H1 = H[V1] is the join of

H1
1 , . . . ,H

1
l , since, between the graphs induced by two modules in the same graph, or there exist all the

edges or none between them, and H1
1 , . . . ,H

1
l are the graphs induced by the strong maximal modules

of H1. So, Γ(H1) is the Grundy number of the join of the graphs H1
1 , . . . ,H

1
l , which is ∑l

i=1 Γ(H1
i ).

Similarly, the Grundy number of some H2
i in H2 = H[V2] with its neighborhood in H1 is the Grundy

number of the join of these graphs.

In [9], a relation between the Grundy number of a graph and the Grundy number of its modules

is shown.

Proposition 4. Let G, H1, . . . ,Hn be disjoint graphs such that n = |V (G)| and let V (G) = {v1, . . . ,vn}.

Let G′ be the graph obtained by replacing vi ∈V (G) by Hi, in such a way that there exist all the edges

between the vertices of Hi and H j, i 6= j, if and only if viv j ∈ E(G). Then for every greedy coloring of

G′ at most Γ(Hi) colors contain vertices of the induced subgraph G′[V (Hi)]⊆G′, for all i∈ {1, . . . ,n}.

According to Proposition 4, a greedy coloring of a graph G restricted to its modules is a greedy

coloring to them. The following result is a simple generalization of a result in [9]:

Lemma 5. Let G be a graph and let M be a module of G such that G[M] =H and in a greedy coloring

that generates Γ(G) there are k colors in H. Let G′ be the graph obtained from G by replacing H by

a complete graph Kk. Then, Γ(G) = Γ(G′).

Proof. Let c be the coloring that generates Γ(G). Let A = {α1, . . . ,αk} be the set of colors of c

appearing on H. Let the vertices of the complete graph that replaces H on G′ be w1, . . . ,wk and

c′ be the coloring of G′ defined by c′(wi) = αi for i ∈ {1, . . . ,k} and c′(v) = c(v) for each vertex

v ∈V (G)−M. It is a simple matter to check that c′ is a greedy coloring of G′. Hence Γ(G′)≥ Γ(G).
Now let {S1, . . . ,Sk} be a greedy k-coloring of H and c′ be a greedy Γ(G′)-coloring of G′. It is

important to see that there is a greedy k-coloring of H, by Proposition 4. Let B = {β1, . . . ,βk} be the

set of colors appearing on Kk with β1 < .. . < βk. Let c be the coloring of G which, for every 1 ≤ i ≤ k,

assigns the color βi to the vertices from Si. Clearly, c is a greedy coloring of G. So Γ(G)≥ Γ(G′).

We denote by θH an order that produces a coloring with Γ(H) colors for H. In particular, we

denote by θi
j an order that produces a coloring with Γ(H i

j) colors for H i
j. Theorem 6 is the main result

of this section.

Theorem 6. Let G be a (q,q− 4)-graph containing a separable p-component H with separation

(V1,V2) and at most q vertices, such that every vertex in R = G−H is adjacent to all vertices in

H1 = H[V1] and to no vertex in H2 = H[V2]. Let H1
1 , . . ., H1

l be the graphs induced by the maximal

homogeneous sets of H1 and H2
1 , . . ., H2

m the graphs induced by the maximal homogeneous sets of H2.

Given χ(R) and Γ(R), let G′ be the graph obtained from G by replacing R by a complete graph KΓ(R).

Then:

(a) If Γ(R) ≥ max1≤i≤m Γ(H2
i ), then Γ(G) = Γ(R)+∑l

i=1 Γ(H1
i );

(b) If Γ(R) < max1≤i≤m Γ(H2
i ), then Γ(G) = Γ(G′).
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Proof. (a) If we give an order to the greedy algorithm starting by θR, θ1
1, . . ., θ1

l , we have a greedy

coloring of G with at least Γ(R)+∑l
i=1 Γ(H1

i ) colors, since R∪H1 is the join of R, H1
1 , . . ., H1

l . So,

we have to prove that Γ(G) ≤ Γ(R)+∑l
i=1 Γ(H1

i ). Suppose by contradiction that there is a greedy

coloring c of G with more than Γ(R) +∑l
i=1 Γ(H1

i ) colors and let cmax be the highest color in c.

Consider the following cases:

(i) There is a vertex v ∈ R colored cmax:

Let c′ = c(R∪H1). All colors in c should appear in c′, since v, to be colored cmax, has to be

adjacent to vertices colored with all colors different from cmax, and a vertex in R has neighbors

only in R∪H1. So, c′ has more than Γ(R)+∑l
i=1 Γ(H1

i ) colors. Note that c′ is not a greedy

coloring to R∪H1, because a greedy coloring to R∪H1 has at most Γ(R)+∑l
i=1 Γ(H1

i ) colors,

since R∪H1 is the join of R, H1
1 , . . ., H1

l . Thus, there is a vertex u ∈ R∪H1 colored t that has no

neighbor colored f in R∪H1, for some f < t. Such vertex should be in H1, since all neighbors

of vertices in R are in R∪H1. Then, u ∈ H1
i has a neighbor w ∈ H2

j colored f . Note that there

exist all edges between H1
i and H2

j . Some vertex z ∈ R∪H1 is also colored f . It is easy to

see that z /∈ R, otherwise u would have a neighbor in R∪H1 colored f , since every vertex from

R is adjacent all vertex in H1. Lemma 3 shows that there is all possible edges between two

modules of H1. So, z /∈ H1
s , for s 6= i, because in this case also u would have a neighbor in

R∪H1 already colored f . Therefore z ∈ H1
i and consequently z is adjacent to w, since there

must exist all possible edges between H1
i and H2

j . But both are colored f , and this coloring

would be improper.

(ii) There is a vertex v ∈ H2 colored cmax:

For some s ∈ {1, . . . ,m}, let v ∈ H2
s and c′ = c(H2

s ∪N(H2
s )), N(H2

s ) beeing the graphs induced

by the maximal homogeneous sets of H1 such that the vertices are adjacents to the vertices of

H2
s . All colors in c should appear in c′, since v has to be adjacent to vertices colored with all

colors different from cmax and a vertex in H2
s has neighbors only in (H2

s )∪N(H2
s ). So, c′ has

more than Γ(R)+∑l
i=1 Γ(H1

i ) colors. Note that Γ(R)≥ max1≤i≤m Γ(H2
i ) implies Γ(R)≥Γ(H2

s ).
Therefore, Γ(H2

s )+∑i∈N(H2
s )

Γ(H1
i ) ≤ Γ(R)+∑l

i=1 Γ(H1
i ). Then c′ is not a greedy coloring to

(H2
s )∪N(H2

s ), because a greedy coloring to it has at most Γ(H2
s )+∑i∈N(H2

s )
Γ(H1

i ) colors, since

H2
s ∪N(H2

s ) is the join of H2
s , H i

1, ∀i ∈ N(H2
s ). Thus, there is a vertex u ∈ H2

s ∪N(H2
s ), colored

t, that has no neighbor colored f in H2
s ∪N(H2

s ), for some f < t. Such vertex should be in H1,

because all neighbors of vertices in H2
s are in H2

s ∪N(H2
s ). So, u ∈ H1

i , where H1
i ∈ N(H2

s ), has

a neighbor w ∈ R∪H1 −N(H2
s ) colored f . Observe that some vertex z ∈ H2

s ∪N(H2
s ) is also

colored f . It is easy to see that z /∈ H2
s . Otherwise, u would have a neighbor in H2

s ∪N(H2
s )

colored f since every vertex in H2
s is adjacent to every vertex in N(H2

s ). For the same reason,

z /∈ H1
j , for j 6= i and j ∈ N(H2

s ). Therefore z ∈ H1
i , but there is all possible edges between H1

i

and R∪H1 −N(H2
s ), what makes w and z neighbors. But both w and z are colored f , and this

coloring would be improper.

(iii) There is a vertex v ∈ H1 colored cmax:

To receive a color bigger than Γ(R) +∑l
i=1 Γ(H1

i ), v must have at least Γ(R) +∑l
i=1 Γ(H1

i )
neighbors of different colors. From its neighborhood in R, v has at most Γ(R) neighbors with

different colors, by Proposition 4. From the neighborhood of v in H1
i , for i ∈ {1, . . . , l}, v has at

most ∑l
i=1 Γ(H1

i )−1(its own color), also by Proposition 4. So, it must appear another color cn

in a vertex w ∈ H2
j , where V (H2

j ) ∈ N(v). Since the vertices in R have no neighborhood with

H2, cn must be bigger than all colors in R and w must be neighbor of vertices colored with all

colors in R. All these colors must appear in H2
j , because the neighbors from w outside H2

j are
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vertices in H1, all neighbors from all vertices in R and, therefore, with different colors of R.

We know that in H2
j appears at most Γ(H2

j ) colors, what makes w to have at most Γ(H2
j )− 1

neighbors colored differently in H2
j . But we know Γ(H2

j ) ≤ Γ(R) implies Γ(H2
j )− 1 < Γ(R).

So, all colors of R cannot appear on the neighborhood of w, and such vertex cannot receive a

different color.

(b) Since Γ(R)< max1≤i≤m Γ(H2
i ), in a greedy Γ(G)-coloring of G, by Proposition 4, there are p < q

colors on R. We do not know the exact value of p, but we know that p goes from χ(R) to Γ(R).
By Lemma 5, we can replace R by a complete graph on p vertices and we can obtain all possible

ordinations of V (G), which are (q+ p)! in total. So, we can calculate all greedy colorings for G in

∑
Γ(R)
p=χ(R) (p+q)! ≤ q(2q)! = O(1) steps, for a fixed q.

4 b-coloring of (q,q−4)-graphs

In [10], Bonomo et al. presented a dynamic programming polynomial-time algorithm to compute the

b-chromatic number of a P4-sparse graph. For this, they introduced the dominance vector of a graph.

Definition 7. Let G be a graph. Given a coloring of G, a vertex v is said to be dominant if v is

adjacent to at least one vertex colored within each of the colors not assigned to v. The dominance

vector domG of G is such that domG[t] is the maximum number of distinct color classes admitting

dominant vertices in any coloring of G with t colors, where χ(G)≤ t ≤ |V (G)|.

Note that a graph G admits a b-coloring with t colors if and only if domG[t] = t. So, the b-

chromatic number χb(G) is the maximum number t such that domG[t] = t. Thus, once calculated

the dominance vector of a graph, we have its b-chromatic number. Bonomo et al. [10] proved that

calculating the dominance vector is polynomial-time solvable for cographs and P4-sparse graphs.

Lemmas 8 and 9 below from [10] show how to obtain the dominance vector for disjoint unions,

joins and spiders. The calculation of χ(G) is from [14] and [15].

Lemma 8 (Dominance vector for union and join operations [10]). Let G1 =(V1,E1) and G2 =(V2,E2)
be graphs such that V1 ∩V2 = /0 and let t ≥ χ(G). If G = G1 ∪G2, then χ(G) = max{χ(G1),χ(G2)}
and

domG[t] = min{t,domG1
[t]+domG2

[t]}.

If G = G1 ∨G2, let a = max{χ(G1), t − |V (G2)|} and b = min{|V (G1)|, t −χ(G2)}. Then, χ(G) =
χ(G1)+χ(G2) and

domG[t] = max
a≤ j≤b

{domG1
[t]+domG2

[t − j]}.

Lemma 9 (Dominance vector for spiders [10]). Let G be a spider with partition (S,K,R), where

k = |S|= |K| ≥ 2. If R is empty, consider χ(G[R]) = 0 and domG[R][0] = 0. Thus, χ(G) = k+χ(G[R])
and

(a) If G is a thin spider, then

domG[i] =











k+domG[R][i− k], if k+χ(G[R])≤ i ≤ k+ |R|,

k, if i = k+ |R|+1,

0, if i > k+ |R|+1
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(b) If G is a thick spider, then

domG[i] =











k+domG[R][i− k], if k+χ(G[R])≤ i ≤ k+ |R|,

min{k,4k−2i+2|R|}, if k+ |R|+1 ≤ i ≤ 2k+ |R|,

0, if i > 2k+ |R|

Using these lemmas, Bonomo et al. proved the theorem below.

Theorem 10 (Bonomo et al. [10]). The dominance vector and the b-chromatic number of a cograph

or P4-sparse graph can be computed in O(n3) time.

Let G = (V,E) be a graph and M be a module of G. Let GM = G[M] and let N(M) be the

neighborhood of a vertex in M. Let H, H1 and H2 be the subgraphs of G induced by V \M, N(M) and

V (H)\N(M), respectively. If H has less than q vertices, G is obtained by applying p-component(q)
operation over (GM,H = (H1,H2)).

To calculate domG[t], auxiliary lemma below shows us that there exists a good coloring such that:

(a) all colors appears in M or H1 or (b) vertices of M have distinct colors. Given a coloring c of G and

a subgraph G′ of G, let n(C) be the number of colors used in C and let (C,G′) be the restriction of the

coloring C to G′.

Lemma 11. If χ(G) ≤ t ≤ |V (G)|, then there is a proper coloring C of G with t colors that maxi-

mizes the number of color classes with dominant vertices such that n(C) = n(C,H1)+ n(C,GM) or

n(C,GM) = |V (GM)|.

Proof. Let C be a coloring of G with t colors that maximizes the number of color classes with dom-

inant vertices and then maximizes n(C,GM). Since M is a module, each vertex in GM is adjacent to

all vertices in H1. Thus, n(C) ≥ n(C,H1)+ n(C,GM). Suppose that C does not satisfy the lemma.

Since n(C)> n(C,H1)+n(C,GM), then there is a color c that appears only in vertices of H2 and thus

no vertex of GM is dominant in C. Since n(C,GM) < |V (GM)|, then there are two vertices v and v′

of GM that have the same color in C. Consider the coloring C′ obtained from C by coloring v with

color c. Note that any dominant vertex in C is also a dominant vertex in C′ and thus C′ also has a

maximum number of color classes with dominant vertices among colorings with t colors. Note that

n(C′,GM) > n(C,GM). Suppose again that C′ does not satisfy the lemma. So, we can repeat this

argument until we obtain a coloring C∗ such that all vertices of GM are colored with distinct colors.

Thus, n(C∗,GM) = |V (GM)| as desired.

Applying this lemma, we have four possible cases:

• (a) all colors appears in M or H1

– (a.1) There is no dominant vertex in H2

– (a.2) There is a dominant vertex in H2

• (b) Vertices of M have distinct colors

– (b.1) There are colors in M that are not in H

– (b.2) Every color in M appears in H

Case (b.2) is easy to handle because it implies that |M| ≤ |V (H)|. Since we will force that

|V (H)| ≤ q, we can obtain all colorings of G with t colors in constant time. To deal with cases

(a.1), (a.2) and (b.1), we have to define some parameters.
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Let C (t) be the set of all colorings of H with t colors and let C (t, t ′) be subset of C (t) with

colorings of H such that H1 uses t ′ colors. Let C ∈ C (t, t ′). For H ′ ⊆ H, let c(C,H ′) denote the set

of colors used in H ′. We say that a vertex v in H1 is partially dominant if v is adjacent to at least

one vertex receiving each color in c(C,H1). Let d1(C) be the number of colors classes of C with

partially dominant vertices in H1. Let d2(C) be the number of color classes of c(C,H2) \ c(C,H1)
with a dominant vertex. Let d3(C) be the number of color classes in c(C,H1) with either a dominant

vertex in H2 or a partially dominant vertex in H1. Let J ⊆ c(C,H2)\c(C,H1). We say that a vertex v in

H1 is J̄-dominant if v is adjacent to at least one vertex receiving each color in c(C,H)\J. Let d4(C,J)
be the number of color classes of C with either a dominant vertex in H2 or a J̄-dominant vertex in H1

and d5(C, j) = sup{d4(C,J) | J ⊆ c(C,H2)\ c(C,H1), |J|= j}.

Let χ(G) ≤ t ≤ |V |, let t1 = max{t − |V (GM)|,0}, let t2 = min{|V (H1)|, t − χ(GM)}, let t3 =
min{|V (H)|, t}, let t4 = min{t −|V (GM)|, |V (H1)|} and let

τ1(t) = sup
t1≤t ′≤t2
t ′≤t̂≤t3

{domGM
[t − t ′]+d1(C) |C ∈ C (t̂, t ′)}

τ2(t) = sup
t1≤t ′≤t2

{min{t − t ′,d2(C)+domGM
[t − t ′]}+d3(C) |C ∈ C (t, t ′)}

τ3(t) = sup
t1≤t̂≤t3
0≤t ′≤t4

{d5(C, t̂ + |V (GM)|− t) |C ∈ C (t̂, t ′)}

Excluding case (b.2) by forcing that |V (G)|> 2|V (H)|, we have the important lemma below.

Lemma 12. If χ(G)≤ t ≤ |V (G)| and |V (G)|> 2|V (H)|, then

domG[t] = max{τ1(t),τ2(t),τ3(t)}.

Proof. Let C be a coloring of G with t colors that maximizes the number of color classes with dom-

inant vertices. According to Lemma 11, suppose that either n(C,H1)+ n(C,GM) = t or n(C,H1)+
n(C,GM)< t and n(C,GM) = |V (GM)|. Let t̂ = n(C,H).

The first case considered is (a) when n(C,H1)+n(C,GM) = t. Note that if v is a dominant vertex

in C, then v is dominant in (C,GM) if v∈V (GM) and v is partially dominant in (C,H) if v∈V (H1). Let

t ′ = n(C,H1). Since χ(GM)≤ n(C,GM) = t−n(C,H1)≤ |V (GM)|, then t−|V (GM)| ≤ t ′ ≤ t−χ(GM).
We also get that t ′ ≤ |V (H1)| and, thus, t1 ≤ t ′ ≤ t2.

Now, consider (a.1) that there is no dominant vertex in H2. In this case, t ′ ≤ t̂ ≤ min{|V (H)|, t}.

We also have that the number of color classes of C with dominant vertices of colors that appear in H1 is

precisely d1(C,H) and the with dominant vertices of colors that appear in GM is at most domGM
[t−t ′].

Thus, if n(C,H1)+n(C,GM) = t and there is no dominant vertex of C in H2, then domG[t]≤ τ1(t).
Now, consider (a.2) that there is at least one dominant vertex u in H2. Since u is adjacent to every

other color of C and every neighbour of u is in H, then t̂ = t. Note that the number of color classes of C

with dominant vertices of colors that appear in H1 is precisely d3(C,H). The number of color classes

of C with dominant vertices of colors that appear in GM is at most min{t − t ′,d2(C)+domG[t − t ′]}.

Thus, if n(C,H1)+n(C,GM) = t and there is at least one dominant vertex of C in H2, then domG[t]≤
τ2(t).

The second case considered is (b) when n(C,H1)+ n(C,GM) < t and n(C,GM) = |V (GM)|. If

(b.2) c(C,GM)⊆ c(C,H), then n(C,GM) = |V (GM)| implies that |M| ≤ |V (H)| and |V (G)| ≤ |V (H)|,
a contradiction. Thus, (b.1) there is a color unique to vertices in GM. Note also that n(C,H1) +
n(C,GM) < t implies that there is a color unique to vertices in H2. Thus, all dominant vertices of C

are in H1. Note that t̂ ≤ |V (H)| and t̂ ≤ t and, thus, t̂ ≤ t3. We also have that t ≤ t̂ + |V (GM)| which

implies that t̂ ≥ t1. Let J = c(C,GM)∩ c(C,H). Note that t = t̂ + |V (GM)| − |J| which implies that
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|J| = t̂ + |V (GM)| − t. Since J is a subset of c(C,H) \ c(C,H1), then |J| = t̂ + |V (GM)| − t ≤ t̂ − t ′

which implies that t ′ ≤ t −|V (GM)|. Since H1 has at most V (H1) colors, then t ′ ≤ t4. Now, note that

every dominant vertex of C is a J̄-dominant vertex of H1 in (C,H). Thus, the number of color classes

with dominant vertices in C is d4((C,H),J), which is at most d5((C,H), t̂ + |V (GM)| − t). Thus, if

n(C,H1)+n(C,GM)< t and |V |> 2|V (H)|, then domG[t]≤ τ3(t).
We can conclude from the previous paragraphs that if |V |> 2|V (H)|, then domG[t]≤max{τ1(t),τ2(t),τ3(t)}.

To conclude this proof, it remains to prove that domG[t]≥ τi(t), for i ∈ {1,2,3}. Let CH be a coloring

of H with t̂ colors and t ′ = n(CH ,H1). We break into cases depending on CH being related to each of

the parameters τi(t). To do so, let CM be a coloring of GM with t − t ′ colors and domGM
[t − t ′] color

classes with dominant vertices and C′
M be a coloring of GM with |V (GM)| colors.

Suppose that t1 ≤ t ′ ≤ t2. If t̂ ≤ t, then rename the colors in c(CH ,H2)\ c(CH ,H1) to colors in the

set c(CM) and let C be the coloring of G obtained by piecing together this coloring with CM. Note

that C has precisely t colors and there are domGM
[t − t ′] color classes with dominant vertices in colors

of c(C,GM) and d1(CH) color classes with dominant vertices in colors of c(C,H1). Since c(C,GM)∩
c(C,H1) = /0, then C has at least domGM

[t − t ′] + d1(C) color classes with dominant vertices. This

implies that domG[t]≥ τ1(t).
Now, suppose that t̂ = t. Let c(CM) = {c1, . . . ,ct−t ′} and suppose that the color classes with

indices in {1, . . . ,domGM
[t − t ′]} have dominant vertices in CM. Now let C′

H be obtained from CH by

renaming the colors in c(CH ,H2) \ c(CH ,H1) to colors in c(CM) in such a way that the color classes

with the highest indices have dominant vertices. Note that this is possible as c(CH ,H2) \ c(CH ,H1)
has size precisely t − t ′. Let C be obtained by piecing together the colorings CM and C′

H . Note that C

has precisely t colors, d3(CH) color classes in c(C,H1) with dominant vertices and min{t−t ′,d2(C)+
domG[t − t ′]} color classes in c(C,GM) with dominant vertices. This implies that domG[t]≥ τ2(t).

Now, suppose that 0 ≤ t ′ ≤ t4 and t1 ≤ t̂ ≤ t3. Note that 0 ≤ t̂ + |V (GM)|− t ≤ t̂ − t ′, as t̂ ≥ t1 =
t − |V (GM)| and t ′ ≤ t4 ≤ t − |V (GM)|. Thus, let J be a subset of c(CH ,H2) \ c(CH ,H1) such that

d4(CH ,J) = d5(CH , t̂ + |V (GM)|− t). Let C′
H be obtained by renaming the colors of CH in the set J to

colors in C′
M so that |c(C′

H)∩ c(C′
M)| = |J| = t̂ + |V (GM)|− t. Let C be obtained by piecing together

the colorings C′
H and C′

M. Note that n(C) = n(C,H)+ n(C,GM)−|J| = t̂ + |V (GM)|− |J| = t. This

implies that domG[t]≥ τ3(t).

Lemma 13. Let q > 0 be a fixed integer, let H be a graph with less then q vertices and let H1 and

H2 be induced subgraphs of H such that V (H1) and V (H2) are a vertex partition of H. Given a

graph GM with n vertices, let G be the graph obtained by applying p-component operation over

(GM,H = (H1,H2)) (just join all edges between GM and H1). Then, given the chromatic number

χ(GM) and the dominance vector domM of GM, we can calculate the chromatic number χ(G) in time

Θ(n) and the dominance vector domG of G in time Θ(n2).

Proof. Since |V (H)| ≤ q, where q is an integer fixed, we have that parameters τ1(t), τ2(t) and τ3(t)
can be obtained in linear time (once fixed t ′ and t̂, the value in sup can be obtained in constant time

that depends only on q). If |V (G)| ≤ 2|V (H)| ≤ 2q, then we can calculate domG[t] in constant time.

If |V (G)| > 2|V (H)|, then, applying Lemma 12, we have domG[t] in linear time. So we can obtain

the dominance vector domG of G in time Θ(n2) for all possible values of t.
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