Maximization Coloring Problems on graphs with few P4s

Victor Campos, Claudia Linhares Sales, Ana Karolinna Maia de Oliviera, Rudini Sampaio

To cite this version:

Victor Campos, Claudia Linhares Sales, Ana Karolinna Maia de Oliviera, Rudini Sampaio. Maximization Coloring Problems on graphs with few P4s. Discrete Applied Mathematics, Elsevier, 2014, 164 (2), pp.539-546. 10.1016/j.dam.2013.10.031 . hal-00951135

HAL Id: hal-00951135
https://hal.inria.fr/hal-00951135
Submitted on 24 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Maximization Coloring Problems on graphs with few $P_{4} \mathrm{~S}$

V. Campos* C. Linhares Sales * A. K. Maia ${ }^{\dagger} \quad$ R. Sampaio *

February 24, 2014

Abstract

Given a graph $G=(V, E)$, a greedy coloring of G is a proper coloring such that, for each two colors $i<j$, every vertex of $V(G)$ colored j has a neighbor with color i. The greatest k such that G has a greedy coloring with k colors is the Grundy number of G. A b-coloring of G is a proper coloring such that every color class contains a vertex which is adjacent to at least one vertex in every other color class. The greatest integer k for which there exists a b-coloring of G with k colors is its b-chromatic number. Determining the Grundy number and the b-chromatic number of a graph are NP-hard problems in general.

For a fixed q, the ($q, q-4$)-graphs are the graphs for which no set of at most q vertices induces more than $q-4$ distinct induced P_{4} s. In this paper, we obtain polynomial-time algorithms to determine the Grundy number and the b-chromatic number of ($q, q-4$)-graphs, for a fixed q. They generalize previous results obtained for cographs and P_{4}-sparse graphs, classes strictly contained in the ($q, q-4$)-graphs.

1 Introduction

Let $G=(V, E)$ be a finite undirected graph, without loops or multiple edges. A k-coloring of G is a surjective mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that $c(u) \neq c(v)$ for any edge $u v \in E$. The sets of vertices S_{1}, \ldots, S_{k} with colors $1,2, \ldots, k$, respectively, that form a partition of $V(G)$ in stable sets, are called color classes. The chromatic number $\chi(G)$ of G is the smallest integer k such that G admits a k-coloring. It is well known that determining $\chi(G)$ is a NP-hard problem.

Hence lots of heuristics have been developed to color a graph. One of the most basic and used is the greedy algorithm. Given an order $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of G, the greedy algorithm colors the vertices of G assigning to v_{i} the minimum positive integer that was not already assigned to its neighbors in the set $\left\{v_{1}, \ldots, v_{i-1}\right\}$. Such a coloring is called a greedy coloring. The maximum number of colors of a greedy coloring of a graph G, over all possible orderings of the vertices of $V(G)$, is the Grundy number of G and it is denoted by $\Gamma(G)$.

Zaker [1] showed that, for any fixed k, one can decide in polynomial time if a given graph has Grundy number at least k (that is, deciding if $\Gamma(G) \geq k$ is fixed parameter tractable on k). However determining the Grundy number of a graph is NP-hard [1]. Moreover, in 2010, Havet and Sampaio [2] proved that it is NP-complete to decide if $\Gamma(G)=\Delta(G)+1$. In addition, Asté et al. [3] showed that, for any constant $c \geq 1$, it is NP-complete to decide if $\Gamma(G) \leq c \cdot \chi(G)$.

Another alternative way of dealing with the coloring problem is to try to improve any coloring c of the graph by applying some strategy, obtaining from c a coloring with a smaller number of colors.

[^0]Observe that, if c has a color class S_{i} such that for every vertex $v \in S_{i}$, there is at least one other color class S_{j} such that v does not have neighbors in S_{j}, we could eliminate S_{i} by recoloring every vertex v from S_{i} with the color j that does not appear in its neighborhood. A vertex v from S_{i} is said to be dominant if v is adjacent to at least one vertex in S_{j} for all $j \neq i$. It is easy to see that if every color class $S_{i} \in c$ has a dominant vertex, then it is not possible to improve c by applying the above strategy.

A b-coloring of G is a coloring such that every color class contains a dominant vertex. The b chromatic number $\chi_{b}(G)$ of a graph G is the maximum number k such that there exists a b-coloring of G with k colors. Observe that the b-chromatic number of G measures the worst performance of the improvement strategy of a coloring described previously. This parameter has been introduced by R. W. Irving and D. F. Manlove [4]. They proved that determining the b-chromatic number is polynomial-time solvable for trees, but it is NP-hard for general graphs. In [5], Kratochvíl, Tuza and Voigt proved that computing the b-chromatic number is NP-hard even if G is a connected bipartite graph.

Let $G=(V, E)$ be a graph. We say that G is a P_{4} if $V(G)=\{w, x, y, z\}$ and $E(G)=\{w x, x y, y z\}$, that is, an induced path on four vertices. We say that w and z are the endpoints and x and y the midpoints of the P_{4}.

A cograph is a P_{4}-free graph and a P_{4}-sparse graph is a graph G such that each subset of G with five vertices induces at most one P_{4}. The P_{4}-sparse graphs, introduced in [6], generalize cographs and can be recognized in linear time [7].

Many NP-hard problems were proved to be polynomial-time solvable on cographs and P_{4}-sparse graphs. In particular, polynomial-time algorithms were presented to solve the problem of determing the Grundy number and the b-chromatic number for these graphs $[8,9,10]$.

Babel and Olariu [11] defined a graph as ($q, q-4$)-graph if no set of at most q vertices induces more than $q-4$ distinct P_{4} s. For example, cographs and P_{4}-sparse graphs are precisely $(4,0)$-graphs and (5,1)-graphs, respectively.

Our main result (Theorem 1) says that, for every fixed integer $q>0$, there is a polynomial algorithm to obtain the Grundy number and the b-chromatic number of a $(q, q-4)$-graph.

Theorem 1 (Main result). Let $q>0$ be a fixed integer. The Grundy number and the b-chromatic number of a ($q, q-4)$-graph G can be computed in polynomial time.

This paper is organized as follows. Section 2 contains structural results for ($q, q-4$)-graphs. Section 3 presents the results used to calculate the Grundy number of these graphs and in Section 4 we show how to determine their b-chromatic number.

2 Decomposing ($q, q-4$)-graphs

A graph H is p-connected if, for every partition of $V(G)$ into nonempty disjoint sets V_{1} and V_{2}, there exists an $\left(V_{1}, V_{2}\right)$-crossing P_{4}, that is, an induced P_{4} containing vertices from both V_{1} and V_{2}. A p connected graph H is separable if there exists a partition of $V(G)$ into nonempty disjoint subsets V_{1} and V_{2} such that each $\left(V_{1}, V_{2}\right)$-crossing P_{4} has its midpoints in V_{1} and its endpoints in V_{2}. We say that $\left(V_{1}, V_{2}\right)$ is the separation of H and H_{1} and H_{2} are the graphs $H\left[V_{1}\right]$ and $H\left[V_{2}\right]$, respectively. A maximal p-connected induced subgraph is called a p-component. Vertices which are not contained in a nontrivial p-component are called weak.

A decomposition tree of a graph G is a tree T_{G}, where the leaves are subsets of vertices of G and each non-leaf node v in T_{G}, with children v_{1}, \ldots, v_{l}, represents the subgraph of G, denoted by $G(v)$, induced by the leaves of the subtree of T_{G} rooted by v. Moreover, v is labelled according to its relation with the graphs $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$. Clearly, the intersection of the leaves must be empty and their union must be the set of vertices of G. The root node of T_{G} represents the original graph G.

In [12], Jamison and Olariu suggest a decomposition tree for general graphs, called primeval decomposition tree, which can be computed in linear time [12]. The leaves of its decomposition tree are p-connected graphs and its weak vertices, and its internal nodes are labelled union, join or p-component.

If the label of a node v is union, $G(v)$ is the disjoint union of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$, that is, the set of vertices of $G(v)$ is the union of the set of vertices of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$ and the set of edges of $G(v)$ is the union of the set of edges of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$.

If the label of a node v is join, $G(v)$ is the join of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$, that is, the set of vertices of $G(v)$ is the union of the set of vertices of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$ and the set of edges of $G(v)$ is the union of the set of edges of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$, in addition to all the possible edges between the vertices of $G\left(v_{1}\right), \ldots, G\left(v_{l}\right)$.

If v is labelled p-component, it has two children on the tree: a separable p-component H, which is a leaf on the primeval decomposition tree and an internal node that represents the graph $G(v)-H$. Moreover, every vertex from $G(v)-H$ is adjacent to every vertex in H_{1} and to no vertex in H_{2}.

A graph is a spider if its vertex set can be partitioned into three sets S, K and R in such a way that S is a stable set, K is a clique, all the vertices of R are adjacent to all the vertices of K and to none of the vertices of S and there exists a bijection $f: S \rightarrow K$ such that, for all $s \in S$, either the neighborhood of $s N(s)=\{f(s)\}$ (and it is a thin spider) or $N(s)=K-\{f(s)\}$ (and it is a thick spider). We say that the spider is without head if $R=\emptyset$.

In [11], Babel and Olariu also proved that the primeval decomposition of a ($q, q-4$)-graph has a special property: every node v on the tree labelled as p-component is such that its separable p component H is a headless spider or it has less than q vertices. If H is the headless spider, it is easy to see that H_{1} is the clique and H_{2} is the stable set. Since every vertex from $V(G(v)-H)$ is adjacent to every vertex in H_{1} and non-adjacent to every vertex in H_{2}, we have that $G(v)$ is itself a spider with head, where $G(v)-H$ is the head.

In this paper, we calculate the Grundy number and the b-chromatic number of $(q, q-4)$-graphs through bottom-up traversal on the their primeval decomposition tree. More specifically we solve the case in which a node v on is labelled as p-component and the p-connected component H of $G(v)$ is a graph with less than q vertices. In the remaining non-trivial cases, we use some results in [9] and [10] to calculate $\Gamma(G(v))$ and $\chi_{b}(G(v))$, respectively.

3 Greedy Coloring of ($q, q-4$)-graphs

As first shown in [8], if G is the disjoint union of two graphs G_{1} and G_{2}, then $\Gamma(G)=\max \left\{\Gamma\left(G_{1}\right)\right.$, $\left.\Gamma\left(G_{2}\right)\right\}$. On the other hand, if G is the join of two graphs G_{1} and G_{2}, then $\Gamma(G)=\Gamma\left(G_{1}\right)+\Gamma\left(G_{2}\right)$. In [9] is shown how to determine the Grundy number for spiders.

Lemma 2 ([9]). Let G be a spider with partition (S, K, R) and n vertices. If G is a spider and $\Gamma(R)$ is given, then $\Gamma(G)$ can be determined in linear time.

Let $G=(V, E)$ be a graph. A subset M of V with $1 \leq|M| \leq|V|$ is called a module if each vertex in $V-M$ is either adjacent to all vertices of M or to none of them. A module M is called a homogeneous set if $1<|M|<|V|$. The graph obtained from G by shrinking every maximal homogeneous set to one single vertex is called the characteristic graph of G.

A graph is called split graph if its vertex set has a partition (K, S) such that K induces a clique and S induces an stable set.

Lemma 3 ([13]). A p-connected graph H is separable if and only if its characteristic graph is a split graph.

Note that, if M_{1} and M_{2} are two modules of a graph G such that $M_{1} \cap M_{2}=\emptyset$, then either the edges from $\left\{\{v, w\}: v \in M_{1}, w \in M_{2}\right\}$ belong to G or G has none of such edges.

Recall Lemma 3. Clearly, if the characteristic graph of a separable p-component H with separation $\left(V_{1}, V_{2}\right)$ is the split graph (K, S), then every maximal homogeneous set $M_{i}^{1} \subseteq V_{1}$ shrinks to a vertex v_{i}^{1} in the clique K, and every maximal homogeneous set $M_{j}^{2} \subseteq V_{2}$ shrinks to a vertex v_{j}^{2} in the stable set S. We say that $H\left[M_{j}^{i}\right]=H_{j}^{i}$.

Let H be a separable p-component with separation $\left(V_{1}, V_{2}\right)$. Observe that $H_{1}=H\left[V_{1}\right]$ is the join of $H_{1}^{1}, \ldots, H_{l}^{1}$, since, between the graphs induced by two modules in the same graph, or there exist all the edges or none between them, and $H_{1}^{1}, \ldots, H_{l}^{1}$ are the graphs induced by the strong maximal modules of H_{1}. So, $\Gamma\left(H_{1}\right)$ is the Grundy number of the join of the graphs $H_{1}^{1}, \ldots, H_{l}^{1}$, which is $\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$. Similarly, the Grundy number of some H_{i}^{2} in $H_{2}=H\left[V_{2}\right]$ with its neighborhood in H_{1} is the Grundy number of the join of these graphs.

In [9], a relation between the Grundy number of a graph and the Grundy number of its modules is shown.

Proposition 4. Let G, H_{1}, \ldots, H_{n} be disjoint graphs such that $n=|V(G)|$ and let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Let G^{\prime} be the graph obtained by replacing $v_{i} \in V(G)$ by H_{i}, in such a way that there exist all the edges between the vertices of H_{i} and $H_{j}, i \neq j$, if and only if $v_{i} v_{j} \in E(G)$. Then for every greedy coloring of G^{\prime} at most $\Gamma\left(H_{i}\right)$ colors contain vertices of the induced subgraph $G^{\prime}\left[V\left(H_{i}\right)\right] \subseteq G^{\prime}$, for all $i \in\{1, \ldots, n\}$.

According to Proposition 4, a greedy coloring of a graph G restricted to its modules is a greedy coloring to them. The following result is a simple generalization of a result in [9]:

Lemma 5. Let G be a graph and let M be a module of G such that $G[M]=H$ and in a greedy coloring that generates $\Gamma(G)$ there are k colors in H. Let G^{\prime} be the graph obtained from G by replacing H by a complete graph K_{k}. Then, $\Gamma(G)=\Gamma\left(G^{\prime}\right)$.

Proof. Let c be the coloring that generates $\Gamma(G)$. Let $A=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ be the set of colors of c appearing on H. Let the vertices of the complete graph that replaces H on G^{\prime} be w_{1}, \ldots, w_{k} and c^{\prime} be the coloring of G^{\prime} defined by $c^{\prime}\left(w_{i}\right)=\alpha_{i}$ for $i \in\{1, \ldots, k\}$ and $c^{\prime}(v)=c(v)$ for each vertex $v \in V(G)-M$. It is a simple matter to check that c^{\prime} is a greedy coloring of G^{\prime}. Hence $\Gamma\left(G^{\prime}\right) \geq \Gamma(G)$. Now let $\left\{S_{1}, \ldots, S_{k}\right\}$ be a greedy k-coloring of H and c^{\prime} be a greedy $\Gamma\left(G^{\prime}\right)$-coloring of G^{\prime}. It is important to see that there is a greedy k-coloring of H, by Proposition 4. Let $B=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ be the set of colors appearing on K_{k} with $\beta_{1}<\ldots<\beta_{k}$. Let c be the coloring of G which, for every $1 \leq i \leq k$, assigns the color β_{i} to the vertices from S_{i}. Clearly, c is a greedy coloring of G. So $\Gamma(G) \geq \Gamma\left(G^{\prime}\right)$.

We denote by θ_{H} an order that produces a coloring with $\Gamma(H)$ colors for H. In particular, we denote by θ_{j}^{i} an order that produces a coloring with $\Gamma\left(H_{j}^{i}\right)$ colors for H_{j}^{i}. Theorem 6 is the main result of this section.

Theorem 6. Let G be a $(q, q-4)$-graph containing a separable p-component H with separation $\left(V_{1}, V_{2}\right)$ and at most q vertices, such that every vertex in $R=G-H$ is adjacent to all vertices in $H_{1}=H\left[V_{1}\right]$ and to no vertex in $H_{2}=H\left[V_{2}\right]$. Let $H_{1}^{1}, \ldots, H_{l}^{1}$ be the graphs induced by the maximal homogeneous sets of H_{1} and $H_{1}^{2}, \ldots, H_{m}^{2}$ the graphs induced by the maximal homogeneous sets of H_{2}. Given $\chi(R)$ and $\Gamma(R)$, let G^{\prime} be the graph obtained from G by replacing R by a complete graph $K_{\Gamma(R)}$. Then:
(a) If $\Gamma(R) \geq \max _{1 \leq i \leq m} \Gamma\left(H_{i}^{2}\right)$, then $\Gamma(G)=\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$;
(b) If $\Gamma(R)<\max _{1 \leq i \leq m} \Gamma\left(H_{i}^{2}\right)$, then $\Gamma(G)=\Gamma\left(G^{\prime}\right)$.

Proof. (a) If we give an order to the greedy algorithm starting by $\theta_{R}, \theta_{1}^{1}, \ldots, \theta_{l}^{1}$, we have a greedy coloring of G with at least $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ colors, since $R \cup H_{1}$ is the join of $R, H_{1}^{1}, \ldots, H_{l}^{1}$. So, we have to prove that $\Gamma(G) \leq \Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$. Suppose by contradiction that there is a greedy coloring c of G with more than $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ colors and let $c_{\max }$ be the highest color in c. Consider the following cases:
(i) There is a vertex $v \in R$ colored $c_{\max }$:

Let $c^{\prime}=c\left(R \cup H_{1}\right)$. All colors in c should appear in c^{\prime}, since v, to be colored $c_{\text {max }}$, has to be adjacent to vertices colored with all colors different from $c_{\text {max }}$, and a vertex in R has neighbors only in $R \cup H_{1}$. So, c^{\prime} has more than $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ colors. Note that c^{\prime} is not a greedy coloring to $R \cup H_{1}$, because a greedy coloring to $R \cup H_{1}$ has at most $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ colors, since $R \cup H_{1}$ is the join of $R, H_{1}^{1}, \ldots, H_{l}^{1}$. Thus, there is a vertex $u \in R \cup H_{1}$ colored t that has no neighbor colored f in $R \cup H_{1}$, for some $f<t$. Such vertex should be in H_{1}, since all neighbors of vertices in R are in $R \cup H_{1}$. Then, $u \in H_{i}^{1}$ has a neighbor $w \in H_{j}^{2}$ colored f. Note that there exist all edges between H_{i}^{1} and H_{j}^{2}. Some vertex $z \in R \cup H_{1}$ is also colored f. It is easy to see that $z \notin R$, otherwise u would have a neighbor in $R \cup H_{1}$ colored f, since every vertex from R is adjacent all vertex in H_{1}. Lemma 3 shows that there is all possible edges between two modules of H_{1}. So, $z \notin H_{s}^{1}$, for $s \neq i$, because in this case also u would have a neighbor in $R \cup H_{1}$ already colored f. Therefore $z \in H_{i}^{1}$ and consequently z is adjacent to w, since there must exist all possible edges between H_{i}^{1} and H_{j}^{2}. But both are colored f, and this coloring would be improper.
(ii) There is a vertex $v \in H_{2}$ colored $c_{\max }$:

For some $s \in\{1, \ldots, m\}$, let $v \in H_{s}^{2}$ and $c^{\prime}=c\left(H_{s}^{2} \cup N\left(H_{s}^{2}\right)\right), N\left(H_{s}^{2}\right)$ beeing the graphs induced by the maximal homogeneous sets of H_{1} such that the vertices are adjacents to the vertices of H_{s}^{2}. All colors in c should appear in c^{\prime}, since v has to be adjacent to vertices colored with all colors different from $c_{\max }$ and a vertex in H_{s}^{2} has neighbors only in $\left(H_{s}^{2}\right) \cup N\left(H_{s}^{2}\right)$. So, c^{\prime} has more than $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ colors. Note that $\Gamma(R) \geq \max _{1 \leq i \leq m} \Gamma\left(H_{i}^{2}\right)$ implies $\Gamma(R) \geq \Gamma\left(H_{s}^{2}\right)$. Therefore, $\Gamma\left(H_{s}^{2}\right)+\sum_{i \in N\left(H_{s}^{2}\right)} \Gamma\left(H_{i}^{1}\right) \leq \Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$. Then c^{\prime} is not a greedy coloring to $\left(H_{s}^{2}\right) \cup N\left(H_{s}^{2}\right)$, because a greedy coloring to it has at most $\Gamma\left(H_{s}^{2}\right)+\sum_{i \in N\left(H_{s}^{2}\right)} \Gamma\left(H_{i}^{1}\right)$ colors, since $H_{s}^{2} \cup N\left(H_{s}^{2}\right)$ is the join of $H_{s}^{2}, H_{1}^{i}, \forall i \in N\left(H_{s}^{2}\right)$. Thus, there is a vertex $u \in H_{s}^{2} \cup N\left(H_{s}^{2}\right)$, colored t, that has no neighbor colored f in $H_{s}^{2} \cup N\left(H_{s}^{2}\right)$, for some $f<t$. Such vertex should be in H_{1}, because all neighbors of vertices in H_{s}^{2} are in $H_{s}^{2} \cup N\left(H_{s}^{2}\right)$. So, $u \in H_{i}^{1}$, where $H_{i}^{1} \in N\left(H_{s}^{2}\right)$, has a neighbor $w \in R \cup H_{1}-N\left(H_{s}^{2}\right)$ colored f. Observe that some vertex $z \in H_{s}^{2} \cup N\left(H_{s}^{2}\right)$ is also colored f. It is easy to see that $z \notin H_{s}^{2}$. Otherwise, u would have a neighbor in $H_{s}^{2} \cup N\left(H_{s}^{2}\right)$ colored f since every vertex in H_{s}^{2} is adjacent to every vertex in $N\left(H_{s}^{2}\right)$. For the same reason, $z \notin H_{j}^{1}$, for $j \neq i$ and $j \in N\left(H_{s}^{2}\right)$. Therefore $z \in H_{i}^{1}$, but there is all possible edges between H_{i}^{1} and $R \cup H_{1}-N\left(H_{s}^{2}\right)$, what makes w and z neighbors. But both w and z are colored f, and this coloring would be improper.
(iii) There is a vertex $v \in H_{1}$ colored $c_{\max }$:

To receive a color bigger than $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right), v$ must have at least $\Gamma(R)+\sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)$ neighbors of different colors. From its neighborhood in R, v has at most $\Gamma(R)$ neighbors with different colors, by Proposition 4. From the neighborhood of v in H_{i}^{1}, for $i \in\{1, \ldots, l\}, v$ has at $\operatorname{most} \sum_{i=1}^{l} \Gamma\left(H_{i}^{1}\right)-1$ (its own color), also by Proposition 4. So, it must appear another color c_{n} in a vertex $w \in H_{j}^{2}$, where $V\left(H_{j}^{2}\right) \in N(v)$. Since the vertices in R have no neighborhood with H_{2}, c_{n} must be bigger than all colors in R and w must be neighbor of vertices colored with all colors in R. All these colors must appear in H_{j}^{2}, because the neighbors from w outside H_{j}^{2} are
vertices in H_{1}, all neighbors from all vertices in R and, therefore, with different colors of R. We know that in H_{j}^{2} appears at most $\Gamma\left(H_{j}^{2}\right)$ colors, what makes w to have at most $\Gamma\left(H_{j}^{2}\right)-1$ neighbors colored differently in H_{j}^{2}. But we know $\Gamma\left(H_{j}^{2}\right) \leq \Gamma(R)$ implies $\Gamma\left(H_{j}^{2}\right)-1<\Gamma(R)$. So, all colors of R cannot appear on the neighborhood of w, and such vertex cannot receive a different color.
(b) Since $\Gamma(R)<\max _{1 \leq i \leq m} \Gamma\left(H_{i}^{2}\right)$, in a greedy $\Gamma(G)$-coloring of G, by Proposition 4 , there are $p<q$ colors on R. We do not know the exact value of p, but we know that p goes from $\chi(R)$ to $\Gamma(R)$. By Lemma 5, we can replace R by a complete graph on p vertices and we can obtain all possible ordinations of $V(G)$, which are $(q+p)$! in total. So, we can calculate all greedy colorings for G in $\sum_{p=\chi(R)}^{\Gamma(R)}(p+q)!\leq q(2 q)!=O(1)$ steps, for a fixed q.

$4 b$-coloring of $(q, q-4)$-graphs

In [10], Bonomo et al. presented a dynamic programming polynomial-time algorithm to compute the b-chromatic number of a P_{4}-sparse graph. For this, they introduced the dominance vector of a graph.

Definition 7. Let G be a graph. Given a coloring of G, a vertex v is said to be dominant if v is adjacent to at least one vertex colored within each of the colors not assigned to v. The dominance vector dom_{G} of G is such that $\operatorname{dom}_{G}[t]$ is the maximum number of distinct color classes admitting dominant vertices in any coloring of G with t colors, where $\chi(G) \leq t \leq|V(G)|$.

Note that a graph G admits a b-coloring with t colors if and only if $d o m_{G}[t]=t$. So, the b chromatic number $\chi_{b}(G)$ is the maximum number t such that $d o m_{G}[t]=t$. Thus, once calculated the dominance vector of a graph, we have its b-chromatic number. Bonomo et al. [10] proved that calculating the dominance vector is polynomial-time solvable for cographs and P_{4}-sparse graphs.

Lemmas 8 and 9 below from [10] show how to obtain the dominance vector for disjoint unions, joins and spiders. The calculation of $\chi(G)$ is from [14] and [15].

Lemma 8 (Dominance vector for union and join operations [10]). Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs such that $V_{1} \cap V_{2}=\emptyset$ and let $t \geq \chi(G)$. If $G=G_{1} \cup G_{2}$, then $\chi(G)=\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$ and

$$
\operatorname{dom}_{G}[t]=\min \left\{t, \operatorname{dom}_{G_{1}}[t]+\operatorname{dom}_{G_{2}}[t]\right\}
$$

If $G=G_{1} \vee G_{2}$, let $a=\max \left\{\chi\left(G_{1}\right), t-\left|V\left(G_{2}\right)\right|\right\}$ and $b=\min \left\{\left|V\left(G_{1}\right)\right|, t-\chi\left(G_{2}\right)\right\}$. Then, $\chi(G)=$ $\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$ and

$$
\operatorname{dom}_{G}[t]=\max _{a \leq j \leq b}\left\{\operatorname{dom}_{G_{1}}[t]+\operatorname{dom}_{G_{2}}[t-j]\right\}
$$

Lemma 9 (Dominance vector for spiders [10]). Let G be a spider with partition (S, K, R), where $k=|S|=|K| \geq 2$. If R is empty, consider $\chi(G[R])=0$ and $\operatorname{dom}_{G[R]}[0]=0$. Thus, $\chi(G)=k+\chi(G[R])$ and
(a) If G is a thin spider, then

$$
\operatorname{dom}_{G}[i]= \begin{cases}k+\operatorname{dom}_{G[R]}[i-k], & \text { if } k+\chi(G[R]) \leq i \leq k+|R|, \\ k, & \text { if } i=k+|R|+1, \\ 0, & \text { if } i>k+|R|+1\end{cases}
$$

(b) If G is a thick spider, then

$$
\operatorname{dom}_{G}[i]= \begin{cases}k+\operatorname{dom}_{G[R]}[i-k], & \text { if } k+\chi(G[R]) \leq i \leq k+|R|, \\ \min \{k, 4 k-2 i+2|R|\}, & \text { if } k+|R|+1 \leq i \leq 2 k+|R|, \\ 0, & \text { if } i>2 k+|R|\end{cases}
$$

Using these lemmas, Bonomo et al. proved the theorem below.
Theorem 10 (Bonomo et al. [10]). The dominance vector and the b-chromatic number of a cograph or P_{4}-sparse graph can be computed in $O\left(n^{3}\right)$ time.

Let $G=(V, E)$ be a graph and M be a module of G. Let $G_{M}=G[M]$ and let $N(M)$ be the neighborhood of a vertex in M. Let H, H_{1} and H_{2} be the subgraphs of G induced by $V \backslash M, N(M)$ and $V(H) \backslash N(M)$, respectively. If H has less than q vertices, G is obtained by applying p-component (q) operation over $\left(G_{M}, H=\left(H_{1}, H_{2}\right)\right)$.

To calculate $\operatorname{dom}_{G}[t]$, auxiliary lemma below shows us that there exists a good coloring such that: (a) all colors appears in M or H_{1} or (b) vertices of M have distinct colors. Given a coloring c of G and a subgraph G^{\prime} of G, let $n(C)$ be the number of colors used in C and let $\left(C, G^{\prime}\right)$ be the restriction of the coloring C to G^{\prime}.

Lemma 11. If $\chi(G) \leq t \leq|V(G)|$, then there is a proper coloring C of G with t colors that maximizes the number of color classes with dominant vertices such that $n(C)=n\left(C, H_{1}\right)+n\left(C, G_{M}\right)$ or $n\left(C, G_{M}\right)=\left|V\left(G_{M}\right)\right|$.

Proof. Let C be a coloring of G with t colors that maximizes the number of color classes with dominant vertices and then maximizes $n\left(C, G_{M}\right)$. Since M is a module, each vertex in G_{M} is adjacent to all vertices in H_{1}. Thus, $n(C) \geq n\left(C, H_{1}\right)+n\left(C, G_{M}\right)$. Suppose that C does not satisfy the lemma. Since $n(C)>n\left(C, H_{1}\right)+n\left(C, G_{M}\right)$, then there is a color c that appears only in vertices of H_{2} and thus no vertex of G_{M} is dominant in C. Since $n\left(C, G_{M}\right)<\left|V\left(G_{M}\right)\right|$, then there are two vertices v and v^{\prime} of G_{M} that have the same color in C. Consider the coloring C^{\prime} obtained from C by coloring v with color c. Note that any dominant vertex in C is also a dominant vertex in C^{\prime} and thus C^{\prime} also has a maximum number of color classes with dominant vertices among colorings with t colors. Note that $n\left(C^{\prime}, G_{M}\right)>n\left(C, G_{M}\right)$. Suppose again that C^{\prime} does not satisfy the lemma. So, we can repeat this argument until we obtain a coloring C^{*} such that all vertices of G_{M} are colored with distinct colors. Thus, $n\left(C^{*}, G_{M}\right)=\left|V\left(G_{M}\right)\right|$ as desired.

Applying this lemma, we have four possible cases:

- (a) all colors appears in M or H_{1}
- (a.1) There is no dominant vertex in H_{2}
- (a.2) There is a dominant vertex in H_{2}
- (b) Vertices of M have distinct colors
- (b.1) There are colors in M that are not in H
- (b.2) Every color in M appears in H

Case (b.2) is easy to handle because it implies that $|M| \leq|V(H)|$. Since we will force that $|V(H)| \leq q$, we can obtain all colorings of G with t colors in constant time. To deal with cases (a.1), (a.2) and (b.1), we have to define some parameters.

Let $\mathcal{C}(t)$ be the set of all colorings of H with t colors and let $\mathcal{C}\left(t, t^{\prime}\right)$ be subset of $\mathcal{C}(t)$ with colorings of H such that H_{1} uses t^{\prime} colors. Let $C \in \mathcal{C}\left(t, t^{\prime}\right)$. For $H^{\prime} \subseteq H$, let $c\left(C, H^{\prime}\right)$ denote the set of colors used in H^{\prime}. We say that a vertex v in H_{1} is partially dominant if v is adjacent to at least one vertex receiving each color in $c\left(C, H_{1}\right)$. Let $d_{1}(C)$ be the number of colors classes of C with partially dominant vertices in H_{1}. Let $d_{2}(C)$ be the number of color classes of $c\left(C, H_{2}\right) \backslash c\left(C, H_{1}\right)$ with a dominant vertex. Let $d_{3}(C)$ be the number of color classes in $c\left(C, H_{1}\right)$ with either a dominant vertex in H_{2} or a partially dominant vertex in H_{1}. Let $J \subseteq c\left(C, H_{2}\right) \backslash c\left(C, H_{1}\right)$. We say that a vertex v in H_{1} is \bar{J}-dominant if v is adjacent to at least one vertex receiving each color in $c(C, H) \backslash J$. Let $d_{4}(C, J)$ be the number of color classes of C with either a dominant vertex in H_{2} or a \bar{J}-dominant vertex in H_{1} and $d_{5}(C, j)=\sup \left\{d_{4}(C, J)\left|J \subseteq c\left(C, H_{2}\right) \backslash c\left(C, H_{1}\right),|J|=j\right\}\right.$.

Let $\chi(G) \leq t \leq|V|$, let $t_{1}=\max \left\{t-\left|V\left(G_{M}\right)\right|, 0\right\}$, let $t_{2}=\min \left\{\left|V\left(H_{1}\right)\right|, t-\chi\left(G_{M}\right)\right\}$, let $t_{3}=$ $\min \{|V(H)|, t\}$, let $t_{4}=\min \left\{t-\left|V\left(G_{M}\right)\right|,\left|V\left(H_{1}\right)\right|\right\}$ and let

$$
\begin{aligned}
\tau_{1}(t) & =\sup _{\substack{t_{1} \leq t^{\prime} \leq t_{2} \\
t^{\prime} \leq t \leq t_{3}}}\left\{\operatorname{dom}_{G_{M}}\left[t-t^{\prime}\right]+d_{1}(C) \mid C \in \mathcal{C}\left(\hat{t}, t^{\prime}\right)\right\} \\
\tau_{2}(t) & =\sup _{\substack{t_{1} \leq t^{\prime} \leq t_{2}}}\left\{\min \left\{t-t^{\prime}, d_{2}(C)+\operatorname{dom}_{G_{M}}\left[t-t^{\prime}\right]\right\}+d_{3}(C) \mid C \in \mathcal{C}\left(t, t^{\prime}\right)\right\} \\
\tau_{3}(t) & =\sup _{\substack{t_{1} \leq t \leq t_{3} \\
0 \leq t^{\prime} \leq t_{4}}}\left\{d_{5}\left(C, \hat{t}+\left|V\left(G_{M}\right)\right|-t\right) \mid C \in \mathcal{C}\left(\hat{t}, t^{\prime}\right)\right\}
\end{aligned}
$$

Excluding case (b.2) by forcing that $|V(G)|>2|V(H)|$, we have the important lemma below.
Lemma 12. If $\chi(G) \leq t \leq|V(G)|$ and $|V(G)|>2|V(H)|$, then

$$
\operatorname{dom}_{G}[t]=\max \left\{\tau_{1}(t), \tau_{2}(t), \tau_{3}(t)\right\} .
$$

Proof. Let C be a coloring of G with t colors that maximizes the number of color classes with dominant vertices. According to Lemma 11, suppose that either $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)=t$ or $n\left(C, H_{1}\right)+$ $n\left(C, G_{M}\right)<t$ and $n\left(C, G_{M}\right)=\left|V\left(G_{M}\right)\right|$. Let $\hat{t}=n(C, H)$.

The first case considered is (a) when $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)=t$. Note that if v is a dominant vertex in C, then v is dominant in $\left(C, G_{M}\right)$ if $v \in V\left(G_{M}\right)$ and v is partially dominant in (C, H) if $v \in V\left(H_{1}\right)$. Let $t^{\prime}=n\left(C, H_{1}\right)$. Since $\chi\left(G_{M}\right) \leq n\left(C, G_{M}\right)=t-n\left(C, H_{1}\right) \leq\left|V\left(G_{M}\right)\right|$, then $t-\left|V\left(G_{M}\right)\right| \leq t^{\prime} \leq t-\chi\left(G_{M}\right)$. We also get that $t^{\prime} \leq\left|V\left(H_{1}\right)\right|$ and, thus, $t_{1} \leq t^{\prime} \leq t_{2}$.

Now, consider (a.1) that there is no dominant vertex in H_{2}. In this case, $t^{\prime} \leq \hat{t} \leq \min \{|V(H)|, t\}$. We also have that the number of color classes of C with dominant vertices of colors that appear in H_{1} is precisely $d_{1}(C, H)$ and the with dominant vertices of colors that appear in G_{M} is at most $\operatorname{dom}_{G_{M}}\left[t-t^{\prime}\right]$. Thus, if $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)=t$ and there is no dominant vertex of C in H_{2}, then $\operatorname{dom}_{G}[t] \leq \tau_{1}(t)$.

Now, consider (a.2) that there is at least one dominant vertex u in H_{2}. Since u is adjacent to every other color of C and every neighbour of u is in H, then $\hat{t}=t$. Note that the number of color classes of C with dominant vertices of colors that appear in H_{1} is precisely $d_{3}(C, H)$. The number of color classes of C with dominant vertices of colors that appear in G_{M} is at most $\min \left\{t-t^{\prime}, d_{2}(C)+\operatorname{dom}_{G}\left[t-t^{\prime}\right]\right\}$. Thus, if $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)=t$ and there is at least one dominant vertex of C in H_{2}, then $d o m_{G}[t] \leq$ $\tau_{2}(t)$.

The second case considered is (b) when $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)<t$ and $n\left(C, G_{M}\right)=\left|V\left(G_{M}\right)\right|$. If (b.2) $c\left(C, G_{M}\right) \subseteq c(C, H)$, then $n\left(C, G_{M}\right)=\left|V\left(G_{M}\right)\right|$ implies that $|M| \leq|V(H)|$ and $|V(G)| \leq|V(H)|$, a contradiction. Thus, (b.1) there is a color unique to vertices in G_{M}. Note also that $n\left(C, H_{1}\right)+$ $n\left(C, G_{M}\right)<t$ implies that there is a color unique to vertices in H_{2}. Thus, all dominant vertices of C are in H_{1}. Note that $\hat{t} \leq|V(H)|$ and $\hat{t} \leq t$ and, thus, $\hat{t} \leq t_{3}$. We also have that $t \leq \hat{t}+\left|V\left(G_{M}\right)\right|$ which implies that $\hat{t} \geq t_{1}$. Let $J=c\left(C, G_{M}\right) \cap c(C, H)$. Note that $t=\hat{t}+\left|V\left(G_{M}\right)\right|-|J|$ which implies that
$|J|=\hat{t}+\left|V\left(G_{M}\right)\right|-t$. Since J is a subset of $c(C, H) \backslash c\left(C, H_{1}\right)$, then $|J|=\hat{t}+\left|V\left(G_{M}\right)\right|-t \leq \hat{t}-t^{\prime}$ which implies that $t^{\prime} \leq t-\left|V\left(G_{M}\right)\right|$. Since H_{1} has at most $V\left(H_{1}\right)$ colors, then $t^{\prime} \leq t_{4}$. Now, note that every dominant vertex of C is a \bar{J}-dominant vertex of H_{1} in (C, H). Thus, the number of color classes with dominant vertices in C is $d_{4}((C, H), J)$, which is at most $d_{5}\left((C, H), \hat{t}+\left|V\left(G_{M}\right)\right|-t\right)$. Thus, if $n\left(C, H_{1}\right)+n\left(C, G_{M}\right)<t$ and $|V|>2|V(H)|$, then $\operatorname{dom}_{G}[t] \leq \tau_{3}(t)$.

We can conclude from the previous paragraphs that if $|V|>2|V(H)|$, then $\operatorname{dom}_{G}[t] \leq \max \left\{\tau_{1}(t), \tau_{2}(t), \tau_{3}(t)\right\}$. To conclude this proof, it remains to prove that $\operatorname{dom}_{G}[t] \geq \tau_{i}(t)$, for $i \in\{1,2,3\}$. Let C_{H} be a coloring of H with \hat{t} colors and $t^{\prime}=n\left(C_{H}, H_{1}\right)$. We break into cases depending on C_{H} being related to each of the parameters $\tau_{i}(t)$. To do so, let C_{M} be a coloring of G_{M} with $t-t^{\prime}$ colors and $d o m_{G_{M}}\left[t-t^{\prime}\right]$ color classes with dominant vertices and C_{M}^{\prime} be a coloring of G_{M} with $\left|V\left(G_{M}\right)\right|$ colors.

Suppose that $t_{1} \leq t^{\prime} \leq t_{2}$. If $\hat{t} \leq t$, then rename the colors in $c\left(C_{H}, H_{2}\right) \backslash c\left(C_{H}, H_{1}\right)$ to colors in the set $c\left(C_{M}\right)$ and let C be the coloring of G obtained by piecing together this coloring with C_{M}. Note that C has precisely t colors and there are $d o m_{G_{M}}\left[t-t^{\prime}\right]$ color classes with dominant vertices in colors of $c\left(C, G_{M}\right)$ and $d_{1}\left(C_{H}\right)$ color classes with dominant vertices in colors of $c\left(C, H_{1}\right)$. Since $c\left(C, G_{M}\right) \cap$ $c\left(C, H_{1}\right)=\emptyset$, then C has at least $d o m_{G_{M}}\left[t-t^{\prime}\right]+d_{1}(C)$ color classes with dominant vertices. This implies that $\operatorname{dom}_{G}[t] \geq \tau_{1}(t)$.

Now, suppose that $\hat{t}=t$. Let $c\left(C_{M}\right)=\left\{c_{1}, \ldots, c_{t-t^{\prime}}\right\}$ and suppose that the color classes with indices in $\left\{1, \ldots\right.$, dom $\left._{G_{M}}\left[t-t^{\prime}\right]\right\}$ have dominant vertices in C_{M}. Now let C_{H}^{\prime} be obtained from C_{H} by renaming the colors in $c\left(C_{H}, H_{2}\right) \backslash c\left(C_{H}, H_{1}\right)$ to colors in $c\left(C_{M}\right)$ in such a way that the color classes with the highest indices have dominant vertices. Note that this is possible as $c\left(C_{H}, H_{2}\right) \backslash c\left(C_{H}, H_{1}\right)$ has size precisely $t-t^{\prime}$. Let C be obtained by piecing together the colorings C_{M} and C_{H}^{\prime}. Note that C has precisely t colors, $d_{3}\left(C_{H}\right)$ color classes in $c\left(C, H_{1}\right)$ with dominant vertices and $\min \left\{t-t^{\prime}, d_{2}(C)+\right.$ $\left.\operatorname{dom}_{G}\left[t-t^{\prime}\right]\right\}$ color classes in $c\left(C, G_{M}\right)$ with dominant vertices. This implies that $\operatorname{dom}_{G}[t] \geq \tau_{2}(t)$.

Now, suppose that $0 \leq t^{\prime} \leq t_{4}$ and $t_{1} \leq \hat{t} \leq t_{3}$. Note that $0 \leq \hat{t}+\left|V\left(G_{M}\right)\right|-t \leq \hat{t}-t^{\prime}$, as $\hat{t} \geq t_{1}=$ $t-\left|V\left(G_{M}\right)\right|$ and $t^{\prime} \leq t_{4} \leq t-\left|V\left(G_{M}\right)\right|$. Thus, let J be a subset of $c\left(C_{H}, H_{2}\right) \backslash c\left(C_{H}, H_{1}\right)$ such that $d_{4}\left(C_{H}, J\right)=d_{5}\left(C_{H}, \hat{t}+\left|V\left(G_{M}\right)\right|-t\right)$. Let C_{H}^{\prime} be obtained by renaming the colors of C_{H} in the set J to colors in C_{M}^{\prime} so that $\left|c\left(C_{H}^{\prime}\right) \cap c\left(C_{M}^{\prime}\right)\right|=|J|=\hat{t}+\left|V\left(G_{M}\right)\right|-t$. Let C be obtained by piecing together the colorings C_{H}^{\prime} and C_{M}^{\prime}. Note that $n(C)=n(C, H)+n\left(C, G_{M}\right)-|J|=\hat{t}+\left|V\left(G_{M}\right)\right|-|J|=t$. This implies that $\operatorname{dom}_{G}[t] \geq \tau_{3}(t)$.

Lemma 13. Let $q>0$ be a fixed integer, let H be a graph with less then q vertices and let H_{1} and H_{2} be induced subgraphs of H such that $V\left(H_{1}\right)$ and $V\left(H_{2}\right)$ are a vertex partition of H. Given a graph G_{M} with n vertices, let G be the graph obtained by applying p-component operation over $\left(G_{M}, H=\left(H_{1}, H_{2}\right)\right)$ (just join all edges between G_{M} and $\left.H_{1}\right)$. Then, given the chromatic number $\chi\left(G_{M}\right)$ and the dominance vector dom $_{M}$ of G_{M}, we can calculate the chromatic number $\chi(G)$ in time $\Theta(n)$ and the dominance vector dom $_{G}$ of G in time $\Theta\left(n^{2}\right)$.

Proof. Since $|V(H)| \leq q$, where q is an integer fixed, we have that parameters $\tau_{1}(t), \tau_{2}(t)$ and $\tau_{3}(t)$ can be obtained in linear time (once fixed t^{\prime} and \hat{t}, the value in sup can be obtained in constant time that depends only on q). If $|V(G)| \leq 2|V(H)| \leq 2 q$, then we can calculate $d o m_{G}[t]$ in constant time. If $|V(G)|>2|V(H)|$, then, applying Lemma 12, we have $\operatorname{dom}_{G}[t]$ in linear time. So we can obtain the dominance vector $d o m_{G}$ of G in time $\Theta\left(n^{2}\right)$ for all possible values of t.

References

[1] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math. 306 (23) (2006) 3166-3173.
[2] F. Havet, L. Sampaio, On the grundy number of a graph, in: Proceedings of the International Symposium on Parameterized and Exact Computation(IPEC), Lecture Notes on Computer science 6478, December 2010.
[3] M. Asté, F. Havet, C. Linhares-Sales, Grundy number and products of graphs, Discrete Math. 310 (9) (2010) 1482-1490.
[4] R. W. Irving, D. F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1-3) (1999) 127-141.
[5] J. Kratochvíl, Z. Tuza, M. Voigt, On the b-chromatic number of a graph, Lecture Notes in Computer Science.
[6] C. T. Hoang, Perfect graphs, ProQuest LLC, Ann Arbor, MI, 1985, thesis (Ph.D.)-McGill University (Canada).
[7] B. Jamison, S. Olariu, Recognizing P_{4}-sparse graphs in linear time, SIAM J. Comput. 21 (2) (1992) 381-406.
[8] A. Gyárfás, J. Lehel, On-line and first fit colorings of graphs, J. Graph Theory 12 (2) (1988) 217-227. doi:10.1002/jgt. 3190120212.
URL http://dx.doi.org/10.1002/jgt. 3190120212
[9] J. C. S. Araújo, C. Linhares-Sales, Grundy number of P_{4}-classes, in: LAGOS'09-V LatinAmerican Algorithms, Graphs and Optimization Symposium, Vol. 35 of Electron. Notes Discrete Math., Elsevier Sci. B. V., Amsterdam, 2009, pp. 21-27.
[10] F. Bonomo, G. Durán, F. Maffray, J. Marenco, M. Valencia-Pabon, On the b-coloring of cographs and P_{4}-sparse graphs, Graphs Combin. 25 (2) (2009) 153-167.
[11] L. Babel, S. Olariu, On the structure of graphs with few P_{4} s, Discrete Appl. Math. 84 (1-3) (1998) 1-13.
[12] B. Jamison, S. Olariu, p-components and the homogeneous decomposition of graphs, SIAM J. Discrete Math. 8 (3) (1995) 448-463.
[13] L. Babel, T. Kloks, J. Kratochvil, D. Kratsch, H. Müller, S. Olariu, Efficient algorithms for graphs with few P_{4} 's, Discrete Math. 235 (1-3) (2001) 29-51, combinatorics (Prague, 1998).
[14] D. G. Corneil, Y. Perl, L. Stewart, Cographs: recognition, applications and algorithms, in: Proceedings of the fifteenth Southeastern conference on combinatorics, graph theory and computing (Baton Rouge, La., 1984), Vol. 43, 1984, pp. 249-258.
[15] B. Jamison, S. Olariu, Linear time optimization algorithms for P_{4}-sparse graphs, Discrete Appl. Math. 61 (2) (1995) 155-175.

[^0]: *ParGO Research Group, Federal University of Ceará, Campus do Pici, Bloco 910, 60455-760 - Fortaleza - Brazil. Partially supported by CNPq/Brazil and FUNCAP/Brazil. (email: [campos, linhares, rudini]@lia.ufc.br)
 ${ }^{\dagger}$ COATI Project, I3S (CNRS/UNSA) \& INRIA, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis Cedex, France. Partially supported by ANR Blanc STINT and CAPES/Brazil. (email: karol.maia@inria.fr)

