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INTERSECTION OF PARABOLOIDS AND APPLICATION TO

MINKOWSKI-TYPE PROBLEMS

PEDRO MACHADO MANHÃES DE CASTRO, QUENTIN MÉRIGOT, AND BORIS THIBERT

Abstract. In this article, we study the intersection (or union) of the convex hull of N
confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-
type problem arising in geometric optics. We show that in each of the four cases, the
combinatorics is given by the intersection of a power diagram with the unit sphere. We prove
the complexity is O(N) for the intersection of paraboloids and Ω(N2) for the intersection
and the union of ellipsoids. We provide an algorithm to compute these intersections using

the exact geometric computation paradigm. This algorithm is optimal in the case of the
intersection of ellipsoids and is used to solve numerically the far-field reflector problem.

Introduction

The computation of intersection of half-spaces is a well-studied problem in computational
geometry, which by duality is equivalent to the computation of a convex hull. Similarly, the
computation of intersections or unions of spheres is also well studied and can be done by
using power diagrams [2]. In this article, we study the computation and the complexity of
the intersection of the convex hull of confocal paraboloids of revolution, showing that it is
equivalent to intersecting a certain power diagram with the unit sphere. Union of convex
hull of confocal paraboloids of revolution, and intersection or union of convex hull of confocal
ellipsoids of revolution can be studied using the same tools. These studies are motivated by
inverse problems similar to Minkowski problem that arise in geometric optics. We show how
the algorithm we developed to compute the intersection of paraboloids are used to solve large
instances of one of these problems.

Minkowski-type problems. A theorem of Minkowski asserts that given a family of directions
(yi)16i6N and a family of non-negative numbers (αi)16i6N , one can construct a convex polytope
with exactlyN facets, such that the ith facet has exterior normal yi and area αi. Aurenhammer,
Hoffman and Aronov [3] studied a variant of this problem involving power diagrams and showed
its equivalence with the so-called constrained least-square matching problem. This article is
motivated by yet another problem of Minkowski-type that arises in geometric optics, which
is called the far-field reflector problem in the literature [9, 8]. Recall that a paraboloid of
revolution is defined by three parameters: its focal point, its focal distance λ and its direction
y. We assume that all paraboloids are focused at the origin, and we denote P (y, λ) the convex
hull of a paraboloid of revolution with direction y and focal distance λ. We will say in the
following that P (y, λ) is a solid paraboloid. Paraboloids of revolution have the well-known
optical property that any ray of light emanating from the origin is reflected by the surface
∂P (y, λ) in the direction y. Assume first that one wants to send the light emited from the origin
in N prescribed directions y1, . . . , yN . From the property of a paraboloid of revolution, this can
be done by considering a surface made of pieces of paraboloids of revolution whose directions are
among the (yi). In the far-field reflector problem, one would also like to prescribe the amount
of light αi that is reflected in the direction yi. A theorem of Oliker-Caffarelli [9] ensures the
existence of a solution to this problem: there exist unique (up to a common multiplicative
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constant) focal distances λ1, . . . , λN such that the surface ∂(∩16i6NP (yi, λi)) reflects exactly
the amount αi in each direction yi. Other types of inverse problems in geometric optics can be
formulated as Minkowski-type problems involving the union of confocal solid paraboloids, and
the union or intersection of confocal ellipsoids [17, 14].

Contributions. Motivated by these Minkowski-type problems, our goal is to compute the
union and intersection of solid confocal paraboloids and ellipsoids of revolution. Using a radial
parameterization, each of these computations is equivalent to the computation of a decompo-
sition of the unit sphere into cells, that are not necessarily connected. Our contributions are
the following:

• We show that each of the four types of cells can be computed by intersecting a certain
power diagram with the unit sphere (Propositions 1, 5 and 7). The approach is similar
to the computation of union and intersection of balls using power diagrams in [2], or
to the computation of multiplicatively weighted power diagrams in R

d−1 using power
diagrams in R

d [5].
• We show that the complexity bounds of these four diagram types are different. In the
case of intersection of solid confocal paraboloids in R

3, the complexity of the intersection
diagram is O(N) (Theorem 2). This is in contrast with the Ω(N2) complexity of the
intersection of a power diagram with a paraboloid in R

3 [5]. In the case of the union and
intersection of solid confocal ellipsoids, we recover this Ω(N2) complexity (Theorem 8).
Finally, the case of the union of paraboloids is very different from the case of the
intersection of paraboloids. Indeed, in the latter case, the corresponding cells on the
sphere are connected, while in the former case the number of connected component of
a single cell can be Ω(N) (Proposition 6). The complexity of the diagram in this case
is unknown.

• In Section 3, we describe an algorithm for computing the intersection of a power diagram
with the unit sphere. This algorithm uses the exact geometric computation paradigm
and can be applied to the four types of unions and intersections. It is optimal for the
union and intersection of ellipsoids, but its optimality for the case of intersection of
paraboloids is open.

• This algorithm is then used for the numerical resolution of the far-field reflector problem.
Using a known optimal transport formulation [21, 11] and similar techniques to [3], we
cast this problem into a concave maximization problem in Theorem 12. This allows us
to solve instances with up to 15k paraboloids, improving by several order of magnitudes
upon existing numerical implementations [8].

1. Intersection of confocal paraboloids of revolution

Because of their optical properties, finite intersections of solid paraboloids of revolutions
with the same focal point play a crucial role in an inverse problem called the far-field reflector
problem. This inverse problem is explained in more detail in Section 4. Here we study the
computation and complexity of such an intersection when the focal point lies at the origin. We
call this type of intersection a paraboloid intersection diagram.

1.1. Paraboloid intersection diagram. A paraboloid of revolution in R
d with focal point

at the origin is uniquely defined by two parameters: its focal distance λ and its direction,
described by a unit vector y. We denote the convex hull of such a paraboloid by P (y, λ). The
boundary surface ∂P (y, λ) can be parameterized in spherical coordinates by the radial map
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u ∈ Sd−1 7→ ρy,λ(u) u, where the function ρy,λ is defined by:

(1.1) ρy,λ : u ∈ Sd−1 7→ λ

1− 〈y|u〉 .

Given a family Y = (yi)16i6N of unit vectors and a family λ = (λi)16i6N of positive focal
distances, the boundary of the intersection of the solid paraboloids (P (yi, λi))16i6N is param-
eterized in spherical coordinates by the function:

(1.2) ρY,λ(u) := min
16i6N

ρyi,λi
(u) = min

y∈Y

λi
1− 〈yi|u〉

.

Definition 1.1. The paraboloid intersection diagram associated to a family of solid paraboloids
(P (yi, λi))16i6N is a decomposition of the unit sphere into N cells defined by:

PIλY (yi) := {u ∈ Sd−1; ∀j ∈ {1, . . . , N}, ρyi,λi
(u) 6 ρyj ,λj

(u)}.
The paraboloid intersection diagram corresponds to the decomposition of the unit sphere given
by the lower envelope of the functions (ρyi,λi

)16i6N .

1.2. Power diagram formulation. We show in this section that each cell of the paraboloid
intersection diagram is the intersection of a cell of a certain power diagram with the unit sphere.
We first recall the definition of a power diagram. Let P = (pi)16i6N be a family of points in
R
d and (ωi)16i6N a family of weights. The power diagram is a decomposition of Rd into N

convex cells, called power cells, defined by

PowωP (pi) :=
{

x ∈ R
d, ∀j ∈ {1, . . . , N} ‖x− pi‖2 + ωi 6 ‖x− pj‖2 + ωj

}

.

Proposition 1. Let (P (yi, λi))16i6N be a family of confocal paraboloids. One has

∀i ∈ {1, . . . , N} PIλY (yi) = Sd−1 ∩ PowωP (pi),

where P = (pi)16i6N and (ωi)16i6N are defined by pi = −(λ−1
i /2)yi and ωi = −λ−1

i − λ−2
i /4.

Proof. For any point u ∈ Sd−1, we have the following equivalence :

u belongs to PIλY (yk) ⇐⇒ k = arg min
16i6N

λi
1− 〈yi|u〉

⇐⇒ k = arg max
16i6N

λ−1
i − 〈u|λ−1

i yi〉.

An easy computation gives :

max16i6N λ
−1
i − 〈u|λ−1

i yi〉 = max16i6N λ
−1
i −

∥

∥u+ 1
2λ

−1
i yi

∥

∥

2
+ ‖u‖2 + 1

4

∥

∥λ−1
i yi

∥

∥

2

= ‖u‖2 −min16i6N

(

∥

∥u+ 1
2λ

−1
i yi

∥

∥

2 − λ−1
i − 1

4λ
−2
i

)

.

This implies that a unit vector u belongs to the paraboloid intersection cell PIλY (yi) if and only
if it lies in the power cell PowωP (pi). �

One can remark that the paraboloid intersection diagram does not change if all the focal
distances λi are multiplied by the same positive constant. This implies that the intersection
with the sphere of the power cells defined in the above proposition does not change under a
uniform scaling by λ (even though the whole power cells change).

1.3. Complexity of the paraboloid intersection diagram in R
3. In this section, we show

that in dimension three, the complexity of the paraboloids intersection diagram is linear in the
number of paraboloids.

Theorem 2. Let (P (yi, λi))16i6N be a family of solid paraboloids of R3. Then the number of
edges, vertices and faces of its paraboloid intersection diagram is in O(N).
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The proof of this theorem strongly relies on the following proposition, which shows that each
cell PIλY (yi) can be transformed into a finite intersection of discs, and is thus connected. Note
that while it is stated only in dimension 3, this proposition holds in any ambient dimension.

Proposition 3. For any two solid paraboloids P (y, λ) and P (z, µ), the projection of the set
L := (∂P (y, λ)) ∩ P (z, µ) onto the plane {y}⊥ orthogonal to y is a disc with center and radius

c[(y, λ), (z, µ)] = 2λπy(z)/‖y − z‖2 r[(y, λ), (z, µ)] = 2
√

λµ/‖y − z‖,

where πy denotes the orthogonal projection on {y}⊥. Moreover, given a solid paraboloid P (y, λ),
the following map is one-to-one:

F(y,λ) : (Sd−1 \ {y})× R
+ → {y}⊥ × R

+

(z, µ) 7→ (c[(y, λ), (z, µ)], r[(y, λ), (z, µ)]) .

Proof. The proof of the first half of this proposition can be found in [7], but we include it here
for the sake of completeness. We first show that the orthogonal projection onto the plane {y}⊥
of the intersection L′ := ∂P (y, λ) ∩ ∂P (z, ν) is a circle. Without loss of generality, we assume
that y is the last basis vector (0, . . . , 0, 1). Recall that a paraboloid of revolution ∂P (y, λ) is
defined implicitly by the relation ‖x‖ = 〈x|y〉 + λ. Hence, any point x in L′ belongs to the
hyperplane defined by 〈x|z − y〉 = λ − µ. If we denote by z′ = πy(z), zd = 〈z|y〉, x′ = πy(x)
and xd = 〈x|y〉, one has

xd =
〈z′|x′〉
1− zd

+
µ− λ

1− zd
.

The surface ∂P (y, λ) can be parameterized over the plane {y}⊥ by the equation xd = ‖x′‖2 /2λ−
λ/2. Combining this with the relations ‖z′‖2 + z2d = 1 and ‖y − z‖2 = 2(1− zd), we get

∥

∥

∥

∥

∥

x′ − 2λ

‖y − z‖2
z′

∥

∥

∥

∥

∥

2

=
4λµ

‖y − z‖2
.

We deduce that the projection of L′ onto the plane {y}′ is a circle of center c = 2λz′/‖y− z‖2
and of radius r = 2

√
λµ/‖y − z‖. Therefore, the projection πy(L) is either the disc enclosed

by this circle or its complementary. In order to exclude the latter case, we remark that the
intersection P (y, λ) ∩ P (z, µ) is a compact set, because it is convex and does not include a ray
(assuming y 6= z). Hence, the projection πy(L) ⊆ πy(P (y, λ) ∩ P (z, µ)) is also compact, and
therefore it is the disc of center c and radius r.

Let us now show that the map F(y,λ) is one-to-one. For a fixed positive µ, let c(z) =

c([y, λ], [z, µ]). For every point z in S2 \ {±y}, denote π1
y(z) = πy(z)/ ‖πy(z)‖. This point

belongs to the unit circle in {y}⊥, which coincides with the equator Ey of the sphere S2 which
is equidistant to the points {±y}. Then, given any constant-speed geodesic z(.) such that
z(±1) = ±y and such that z(0) = z0 ∈ Ey, i.e., z(t) = sin(tπ/2)y + cos(tπ/2)z0, the following
formula holds

c(z(t)) = 2λ
‖πy(z(t))‖
‖y − z(t)‖2

z0 = λ
cos(tπ/2)

1 − sin(tπ/2)
z0.

One easily checks that the function t ∈ [−1, 1) 7→ cos(tπ/2)
1−sin(tπ/2) is increasing and maps [−1, 1) to

[0,+∞). The mapping z ∈ S2 \ {y} 7→ c(z) ∈ {y}⊥ thus transforms bijectively every geodesic
arc joining the points −y and y into a ray joining the origin to the infinity on the plane {y}⊥,
and is therefore bijective. From the bijectivity of c and the formula defining the radius, one
deduces that the map F(y,λ) is one-to-one. �
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Proof of Theorem 2. Proposition 3 implies that the projection of the set

Li = {ρY,λ(u)u, u ∈ PIλY (yi)} = (∂P (yi, λi)) ∩
(

⋂

j 6=i

P (yj , λj)
)

onto the plane orthogonal to yi is a finite intersection of discs, and therefore convex. Since the
surface ∂P (yi, λi) is a graph over the plane {yi}⊥, we deduce that Li is connected. This implies

that its radial projection on the sphere, namely the paraboloid intersection cell PIλY (yi), is also
connected. We denote by V (resp. E, F ) the number of vertices (resp. edges, faces). Since,

each cell PIλY (yi) is connected, the number of faces F is bounded by N . Moreover, since there
are at least three incident edges for each vertex, we have that 3V 6 2E. Then, by Euler’s
formula, we have that V 6 2F − 4 and E 6 3F − 6. �

Even though the complexity of the paraboloid intersection diagram is O(N), it can not
be computed faster than Ω(N logN), as stated in the proposition below. We first define the
genericity condition used in the statement of this proposition.

Definition 1.2. A family of solid paraboloids (P (yi, λi))16i6N in R
3 is called in generic posi-

tion if for any subset (ik)16k64 of {1, . . . , N}, the intersection
⋂

16k64 ∂P (yik , λik ) is empty.

Remark that the intersection of four paraboloids (∂P (yi1 , λik))16k64 contains a point x if
and only if the projection u = x/ ‖x‖ of this point on the unit sphere satisfies the equations

‖u− pi1‖2+ωi1 = . . . = ‖u− pi4‖2+ωi4 , where the points (pi) and the weights (ωi) are defined
by Proposition 1. The genericity condition is then equivalent to the condition that for any
quadruple of weighted points (pik , ωik)16k64, the weighted circumcenter does not lie on S2.

Proposition 4. The complexity of the computation of the paraboloid intersection diagram is
Ω(N log(N)) under the algebraic tree model, and even under an assumption of genericity.

Proof. We take a family of N real numbers (ti)16i6N . For every i ∈ {1, . . . , N}, we put

λi = 1 and yi = ϕ(ti) , where the map ϕ : R → R
3 defined by ϕ(t) = ( t

2−1
1+t2 ,

2t
1+t2 , 0) is a

parameterization of the equator S2 ∩ {z = 0} from which we removed the point (1, 0, 0). The

family of paraboloids (P (yi, λ))16i6N is such that every cell PIλY (yi) is delimited by two half
great circles between the two poles, each of these half circles being shared by two cells. We
add the points yN+1 = (1, 0, 0), yN+2 = (0, 1, 0), yN+3 = (−1, 0, 0), yN+4 = (0, 0 − 1, 0),
yN+5 = (0, 0, 1) and yN+6 = (0, 0,−1), so that (P (yi, λ))16i6N+6 is in general position. More
precisely, the four points yN+1, . . . , yN+4 are added to ensure that every points of the equator is
at a distance strictly less than

√
2/2 from {y1, . . . , yN+4}. The cells of the two poles yN+5 and

yN+6 then do not intersect the equator and we keep the property that there exists a cycle with
the N+4 vertices of {y1, . . . , yN+4} in the dual of the paraboloid intersection diagram. Finding
this cycle then amounts to sorting the values (ti)16i6N+4. The conclusion holds from the fact
that a sorting algorithm has a complexity Ω(N log(N)) under the algebraic tree model. �

2. Other types of union and intersections

Other quadrics, such as the ellipsoid of revolution, or one sheet of a two-sheeted hyperboloid
of revolution can also be parametrized over a unit sphere by the inverse of an affine map [19]. In
this section, we study the combinatorics of the intersection of solid ellipsoids, one of whose focal
points lie at the origin. Note that this intersection naturally appears in the near-field reflector
problem, where one wants to illuminate points in the space instead of directions (as in the far-
field reflector problem) [14]. Furthermore, for both the ellipsoid and the paraboloid cases, we
also study the union of the convex hulls. We show that in these three cases, the combinatorics is
still given by the intersection of a power diagram with the unit sphere. However, the complexity
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Figure 1. A flower

might be higher. We show that there exists configuration of N ellipsoids whose intersection
and union have complexity Ω(N2). An algorithm that matches this lower bound is provided in
Section 3.

2.1. Union of confocal paraboloids of revolution. The union of a family of solid paraboloids
(P (yi, λi))16i6N is star-shaped with respect to the origin. Moreover, its boundary can be pa-
rameterized by the radial function u ∈ Sd−1 7→ (max16i6N ρyi,λi

(u)) · u. The paraboloid union
diagram is a decomposition of the sphere into cells associated to the upper envelope of the
functions (ρyi,λi

)16i6N :

PUλY (yi) := {u ∈ Sd−1; ∀j ∈ {1, . . . , N}, ρyi,λi
(u) > ρyj,λj

(u)}.
As before, these cells can be seen as the intersection of certain power cells with the unit sphere.

Proposition 5. Given a family (P (yi, λi))16i6N of solid paraboloids, one has for all i,

PUλY (yi) = Sd−1 ∩ PowωP (pi),

where the points and weights are given by pi =
1
2λ

−1
i yi and ωi = λ−1

i − 1
4λ

−2
i .

Proposition 3 implies that for every i, the projection of Li = (∂P (yi, λi))∩∂
(

⋃

16j6N P (yj, λj)
)

onto the plane orthogonal to yi is a finite intersection of complements of discs. In particular,
this set does not need to be connected in general, and neither does the corresponding cell.
This situation can happen in practice (see Proposition 6). Consequently, one cannot use the
connectedness argument as in the proof of Theorem 2 to show that the paraboloid union dia-
gram has complexity O(N) in dimension three. Actually, the following proposition shows that
a unique cell may have Ω(N) distinct connected component.

Proposition 6. One can construct a family of paraboloids (P (yi, λi))06i6N such that the

paraboloid union cell PUλY (y0) has Ω(N) connected components.

Proof. Let y0 be an arbitrary point on the sphere, and let λ0 = 1. Now, consider a family of
disks Di in the plane H = {y0}⊥ with centers and radii (ci, ri)16i6N , and such that the set

U =

N
⋃

i=1

(H \Di) = H \
N
⋃

i=1

Di

has Ω(N) connected components. This is possible by setting up a flower shape (see Figure
1), i.e., D1 is the unit ball and D2, . . . , DN are set up in a flower shape around D1. By
the second part of Proposition 3, one can construct paraboloids (P (yi, λi))16i6N such that
F(y0,λ0)(yi, λi) = (ci, ri). Then, the first part of Proposition 3 shows that the paraboloid union

cell PUλY (y0) is homeomorphic to U , and has therefore Ω(N) connected components. �
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One can also underline that the complexity of each cell is O(N). This is a direct consequence
of Proposition 3 and the fact that the complexity of the union of N planar discs is O(N) [2,
Lemma 1].

2.2. Intersection and union of confocal ellipsoids of revolution. An ellipsoid of revolu-
tion whose one focal point lies at the origin is characterized by two other parameters: its second
focal point y and its eccentricity e in (0, 1). We denote the convex hull of such an ellipsoid of
revolution E(y, e). The surface ∂E(y, e) of this set is parameterized in spherical coordinates by
the function

σy,e(m) :=
d

1− e〈m| y
‖y‖〉

where d =
‖y‖(1− e2)

2e
.

Note that the value d is fully determined by e and y and is introduced only to simplify the
computations.

Let Y = (yi)16i6N be a family of distinct points in R
d and e = (ei)16i6N be a family

of real numbers in the interval (0, 1). The boundary of the intersection of solid ellipsoids
⋂

16i6N E(yi, ei) is parameterized in spherical coordinates by the lower envelope of the functions

(σyi,ei)16i6N . The ellipsoid intersection diagram of this family of ellipsoids is the decomposition
of the unit sphere into cells associated to the lower envelope of the functions (σyi,ei)16i6N :

(2.3) EIeY (yi) := {u ∈ Sd−1; ∀j ∈ {1, . . . , N}, σyi,ei(u) 6 σyj ,ej (u)}.

Similarly, the cells of the ellipsoid union diagram are associated to the upper envelope of the
functions (σyi,ei)16i6N as follows:

(2.4) EUeY (yi) := {u ∈ Sd−1; ∀j ∈ {1, . . . , N}, σyi,ei(u) > σyj ,ej (u)}.

As in the case of paraboloids, the computation of each diagram amounts to compute the inter-
section of a power diagram with the unit sphere.

Proposition 7. Let (E(yi, ei))16i6N be a family of solid confocal ellipsoids. Then,

(i) The cells of the ellipsoid intersection diagram are given by EIeY (yi) = Sd−1∩PowωP (pi),

where pi = − ei
2di

yi
‖yi‖

and ωi = − 1
di

− e2i
4d2

i

.

(ii) The cells of the ellipsoid union diagram are given by : EUeY (yi) = Sd−1 ∩ PowωP (pi),

where pi =
ei
2di

yi
‖yi‖

and ωi =
1
di

− e2i
4d2

i

.

The theorem below shows that in dimension three the complexity of these diagrams can be
quadratic in the number of ellipsoids. This is in sharp contrast with the case of the paraboloid
intersection diagram, where the complexity is linear in the number of paraboloids.

Theorem 8. In R
3, there exists a configuration of confocal ellipsoids of revolution such that

the number of vertices and edges in the ellipsoid intersection diagram (resp. the ellipsoids union
diagram) is Ω(N2).

The proof of this theorem strongly relies on the following lemma, that transfers the problem
to a complexity problem of power diagrams intersected by the unit sphere.

Lemma 9. Let (pi, ωi)16i6N be a family of weighted points such that no point pi lie at the
origin. Then, there exists:

(i) a family of ellipsoids (E(yi, ei))16i6N , such that for all i, EIeY (yi) = Sd−1 ∩PowωP (pi).
(ii) a family of ellipsoids (E(yi, ei))16i6N , such that for all i, EUeY (yi) = Sd−1∩PowωP (pi).
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Proof. We prove only the first assertion, the second one being similar. Let i ∈ {1, . . . , N}. By
inverting the equations pi = − ei

2di

yi
‖yi‖

and ωi =
1
di

+
e2i
4d2

i

, we get

yi =
−4

(ωi + ‖pi‖2)2 − 4 ‖pi‖2
pi and ei =

−2 ‖pi‖
ωi + ‖pi‖2

.

The condition ei ∈ (0, 1) is equivalent to ωi < −‖pi‖2 and ωi < −‖pi‖2 − ‖pi‖. These
inequalities can always be satisfied by substracting a large constant to all the weights ωi, an
operation that does not change the power cells. �

We recall that the Voronoi diagram of a point cloud (pi)16i6N of R3 is the decomposition
of the space in N convex cells defined by

VorP (pi) := {x ∈ R
3, ‖x− pi‖ 6 ‖x− pj‖}.

The next proof is illustrated by Figure 2.

Proof of Theorem 8. Thanks to Lemma 9, it is sufficient to build an example of Voronoi diagram
whose intersection with S2 has a quadratic number of edges and vertices. We can consider
without restriction that N = 2k is even. Let ε > 0 be a small number. We let p1, . . . , pk be
k points uniformly distributed on the circle centered at the origin in the plane {z = 0}, and
with radius 2 − ε. We also consider k evenly distributed points q1, . . . , qk on (A,B) \ {O},
where A = (0, 0,−ε/4), B = (0, 0, ε/4) and O = (0, 0, 0). Our goal is now to show that for
any i and j in between 1 and k, the intersection VorP (pi)∩VorP (qj)∩S2 is non-empty, where
P = {pi} ∪ {qj}. We denote by mi,j the unique point which is equidistant from pi and qj , and
which lies in the horizontal plane containing qj and in the (vertical) plane passing through pi, qj
and the origin. A simple computation shows that the distance δi,j between mi,j and qj satisfies
δi,j 6 1− ε/2+ ε2/(64− 32ε). Taking ε small enough, this implies that the point mi,j belongs
to the unit ball. The line passing through mi,j and orthogonal to the plane passing through pi,
qj and the origin cuts the unit sphere at two points r±i,j . These two points belong to the same

horizontal plane as qj , and they both belong to VorP (qj). Moreover, the distance between mi,j

and each of these two points is less than (1 − δ2i,j)
1/2. We can take ε small enough so that

this distance is less than sin(π/k). This implies that the points r±i,j also belong to the Voronoi

cell Vor(pi) and therefore to the intersection VorP (pi) ∩ VorP (qj) ∩ S2. Thus, the intersection
between the Voronoi diagram and the sphere has at least k2 = 1

4N
2 spherical edges. �

3. Computing the intersection of a power diagram with a sphere

In this section, we describe a robust and efficient algorithm to compute the intersection
between the power diagram of weighted points (P, ω) and the unit sphere. We call this inter-
section diagram. Given the set of weighted points (pi, ωi), we define the ith intersection cell as
IDωP (pi) = S2 ∩ PowωP (pi). This algorithm is implemented using the Computational Geometry
Algorithms Library (CGAL) [1], and bears some similarity to [5, 10]. We concentrate our
efforts in obtaining the exact combinatorial structure of the diagram on the sphere for weighted
points whose coordinates and weight are rational. Exact constructions can be obtained, but
are not our focus, since in our applications, the results of this section are used as input of a
numerical optimization procedure; see Section 4.

Note that the intersection diagram has complex combinatorics. If one assumes that the
weighted points are given by a paraboloid intersection diagram, Proposition 3 shows that the
intersection cells are connected. But even in this case, the intersection between two intersection
cells IDωP (pi) and IDωP (pj) can have multiple connected components. Consequently, one cannot
hope to be able to reconstruct these cells from the adjacency graph (i.e., the graph that contains
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Figure 2. An Ω(N2) construction. From a total of N sites, half of them in a

segment inside the sphere, and half of them on a circle outside the sphere, we obtain

a total of Ω(N2) edges embedded on the sphere.

the points in P as vertices, and where two vertices are connected by an arc if the two cells
intersect in a non-trivial circular arc), even in this simple case. In general, the cells of the
intersection diagram can be disconnected and they can have holes, as shown in Figure 3. In
the next paragraph, we propose an algorithm to compute a boundary representation of these
cells. Recall the following definitions concerning power diagrams:

Definition 3.1. When two power cells PowωP (pi) ∩ PowωP (pj) intersect in a 2-dimensional set,
that is a (possibly unbounded) polygon in R

3, they determine a facet of the power diagram.
Similarly, a ridge is a 1-dimensional intersection PowωP (pi) ∩ PowωP (pj) ∩ PowωP (pk) between
three power cells. A ridge can be either a ray or a segment. The boundary of each facet can
be written as a finite union of ridges.

In the remainder of this section, we explain how to compute a single intersection cell IDωP (pi),
for a given pi, without any assumption on the points and weights. This intersection cell can
be quite intricate (multiple connected components, holes), and will therefore be represented by
its oriented boundary. More precisely, the boundary IDωP (pi) is a finite union of closed curves
called cycles. These cycles are oriented so that for someone walking on the sphere following
a cycle, the intersection cell IDωP (pi) lies to the right. The cell is uniquely determined by its
oriented boundary. The following theorem is the main result of this section.

Theorem 10. There is an O(N logN +C) algorithm for obtaining the intersection diagram of
a set P of N weighted points in R

3, where C is the complexity of the power diagram of P .

From Theorem 8, the size of the output in the worst case for the intersection (or union) of
confocal ellipsoids is Ω(N2). This implies that the algorithm described below is optimal for
computing an ellipsoid intersection (or union) diagram. The optimality of the algorithm for
the paraboloid intersection diagram is an open problem, which can be phrased as follows:
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(a) general (b) cube

Figure 3. Examples of diagram on the sphere. Left: an intersection

diagram containing faces with no vertices, faces with holes and faces with two vertices

or more. Right: a diagram corresponding to the intersection of a cube and a sphere;

there are seven faces, six faces with no vertices, and a face with no vertices and six

holes.

Open Question 11. Is the complexity of the power diagram given by Proposition 1 bounded
by O(N) ?

Remark. Even if the question above has a negative answer, at least for the particular case of
the intersection diagram of confocal paraboloids, there exists an easy randomized incremental
algorithm attaining the lower bound in Proposition 4. If the input is N confocal paraboloids,
from Theorem 2, we know that the complexity of the paraboloid intersection diagram is O(N).
Moreover the resulting cells are connected. Adopting the randomized incremental construction
paradigm (see [20, 16] for a comprehensive study), this means that the expected complexity of
the cell of the ith inserted paraboloid is O(N)/i. Besides, thanks to the connectedness of the
cells, we can detect the conflicts with a breadth-first search in linear time as well, without any
additional structure. Therefore, the total expected cost is

∑n
i=1O(N)/i, which is inO(N logN).

Notice that this analysis relies on the fact that the cells are connected, which is not necessarily
true in the case of union of paraboloids and in the ellipsoids cases. In our application, we always
use the generic and robust algorithm based on the intersections of power cells, using CGAL.

3.1. Predicates. Geometric algorithms often rely on predicates, i.e., estimation of finite-valued
geometric quantities such as the orientation of a quadruple of points in 3D, or the number of
intersections between a straight line and a surface. These predicates need to be evaluated
exactly: if this is not the case, some geometric algorithm may even not terminate [12]. We
adopt the dynamic filtering technique for the computation of our predicates in CGAL. This
means that for every arithmetic operation, we also compute an error bound for the result. This
can be automatized using interval arithmetic [6]. If the error bound is too large to determine
the result of the predicate, the arithmetic operation is performed again with exact rational
arithmetic, allowing us to return an exact answer for the predicate. Our algorithm requires the
following three predicates:

(i) has on(Point p) returns +1, 0, or −1, if the point is outside, on, or inside the unit
sphere respectively.
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f

(a) inside

s t

s

ts

t f

(b) intersecting

f

(c) enclosing

Figure 4. Obtaining the arcs of IDωP (pi). Three distinct cases: (a) inside the

circle, (b) intersecting the circle, and (c) enclosing the circle. There is still a case

not depict above, f can be outside the circle as well. The arcs with zero length, such

as the one in (b) can be removed from the diagram depending on its use.

(ii) number of intersections(Ridge r) returns the number of intersections between r
and the unit sphere (0, 1 or 2), where r can be a segment or a ray. By convention,
segment or ray touching the sphere tangentially has two intersection points, with same
coordinates. Remark that the result of the first predicate can be obtained directly
from the intermediate computations of this predicate. As we use them intertwined,
this shortcut is adopted in our implementation.

(iii) plane crossing sphere(Facet f) returns the number of intersections between the
supporting plane of f and the sphere (0, 1 or +∞). One may notice that this predicate
is just the dual of the first one.

Even though the algorithm below is presented as working directly on the cells of the power
diagram, our actual implementation uses CGAL, and we work with the regular triangulation
of the set of points (that is, the dual of the power diagram). This triangulation is a simplicial
complex with 0-, 1-, 2- and 3-simplices. In CGAL, only the 0- and 3-simplices are actually
stored in memory, but it remains possible to traverse the whole structure in linear time in
the number of simplices. In order to handle the boundary simplices, CGAL takes the usual
approach of adding a point at infinity to the initial set of points. In practice, this means the
following. A ridge of the power digram can be either a segment or a ray, and is dual of a
2-simplex in the triangulation. In CGAL, such a ridge corresponds to two adjacent tetrahedra,
one of whom may contain the point at infinity. The predicates above need to be adapted in
order to handle k-simplices that are incident to the point at infinity. The general predicates
have been implemented, but the details are omitted here.

3.2. Computation of the oriented boundary. The output of our algorithm is the oriented
boundary of the intersection cell IDωP (pi). Note that this is a purely combinatorial object, and
no geometric construction are performed during its computation. It is described as a sequence
of vertices on the sphere, oriented arcs, and oriented cycles.

• A vertex on the sphere is the result of an intersection between a ridge of the power
diagram and the unit sphere. A vertex on the sphere is not constructed explicitly, but stored as
an ordered pair of extremities of the corresponding ridge. Since a ridge [x1, x2] can intersect the
sphere twice, the order determines which intersection point to consider, i.e., the pair (x1, x2)
describes the intersection point that is closest to x1. This convention allows us to handle
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infinite ridges, and to uniquely identify vertices on the sphere. In degenerate cases, vertices
may correspond to different ordered pairs, but having the same coordinates.

• An oriented arc corresponds to the (oriented) intersection between PowωP (pi), another
cell PowωP (pj) and the unit sphere. Two situations arise. Either the arc is a complete circle, in
which case it is also a cycle. Or the two extreme points are vertices as defined above, that is,
they are the intersection between ridges and the unit sphere. An arc is oriented so that, when
walking on the sphere from the first point to the second, the cell lies on the right.

• An oriented cycle is a connected component of the oriented boundary of IDωP (pi). A
cycle can have two or more vertices on the sphere, in this case, they are represented by a cyclic
sequence of arcs. However, a cycle can also have no vertices, and in such a case, it is represented
by a single full arc. The orientation of a cycle is given by the orientation of its arcs.

Notice that the boundary of a power cell is composed of several convex facets, that can
possibly be unbounded. The intersection of such facets with the unit sphere gives the arcs of the
intersection diagram. Our algorithm constructs the oriented boundary of the intersection cell
IDωP (pi) by iterating over each facet of the power cell PowωP (pi) and obtaining implicitly both the
set of vertices on the sphere V and the set of oriented arcs E. The oriented graph G = (V,E)
is called the boundary graph. Once G is constructed, the oriented cycles in the boundary
∂ IDωp (pi) coincide with the (oriented) connected components of G, and can be obtained by a
simple traversal. In the next paragraph, we explain the construction of G = (V,E).

3.3. Computation of the boundary graph. We start by discarding the facets that do not
contribute to the intersection diagram. We iterate over all facets f of PowωP (pi), and keep
f only if the predicate plane crossing sphere(f) returns ∞. (The case where it returns 1
corresponds to a trivial intersection between the facet and the sphere and can be safely ignored.)
Assuming that f is not discarded, the intersection of its supporting plane with the unit sphere
is a circle in 3D. If all vertices of f are on or inside the sphere (i.e., has on6 0), then f is inside
or only touching the circle, and is discarded. See Figure 4(a).

Given a facet f = PowωP (pi) ∩ PowωP (pj) that was not discarded previously, we build a
sequence of vertices on the sphere by traversing f in a clockwise sequence of ridges, oriented
with respect to the vector pj−pi 1. We distinguish two different kinds of vertices on the sphere,
the source vertices and the target vertices, as shown on Figure 4(b). Given an oriented ridge
r = [x1, x2], we compute the value of number of intersections(r). If the ridge has zero
intersections with the sphere, we skip it. If there is only one intersection between r and the
unit sphere, the corresponding vertex is a source if x1 is inside the sphere (i.e., has on(x 1)
6 0) and it is a target vertex in the other case. Finally, if the ridge intersects the sphere twice,
the oriented pair (x1, x2) describes the target vertex, and the pair (x2, x1) is the source vertex.
The arcs of the boundary graph G corresponding to this facet are obtained by matching each
source vertex with a target vertex using the same cyclic sequence. They are represented by an
ordered pair of vertex indices.

Finally, we need to consider the case where none of the ridges of f intersect the sphere.
There are two possibilities: either the facet f encloses the circle π ∩ S2, where π is the affine
plane spanned by f , or the circle is completely outside from f . In the former case, we obtain
an arc without vertex in the boundary of IDωP (pi), as shown in Figure 4(c). Its orientation is
clockwise with respect to the vector pj−pi. To detect whether this happens, we simply need to
determine whether the center of the circle lies inside or outside the convex polygon f . This is
a classical routine that can be performed using signed volumes. For this test, we only need to

1We do not need orientation predicates at this point, since, in CGAL, 3-simplices of a triangulation are
positively oriented.
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use rational numbers because the center of the circle is the projection of the origin on a plane
described with rational coordinates.

Proof of Theorem 10. First we build the regular triangulation of the set of N weighted points
in O(N logN +C) time. Running the algorithm described in this section for every pi makes us
visiting each 1-simplex, 2-simplex, and 3-simplex of the primal no more than two, three, and
four times respectively; and for each visit, it takes O(1) time, since we compute constant-degree
predicates. Then we visit each generated cycle at most twice. Therefore, the complexity of our
algorithm is in O(N logN + C +D), where D is the complexity of the diagram on the sphere.
The fact that D = O(C) completes the proof. �

4. Application to Minkowski-type problems involving paraboloids

This section deals with the far-field reflector problem [9], which is a Minkowski-type problem
involving intersection of confocal paraboloids of revolution. Consider a point source light located
at the origin O of Rd that emits lights in all directions. The intensity of the light emitted in
the direction x ∈ Sd−1 is denoted by ρ(x). Now, consider a hypersurface R of Rd. By Snell’s
law, every ray x emitted by the source light that intersects R at a point whose normal vector
is n is reflected in the direction y = x − 2〈x|n〉n. This means that after reflection on R, the
distribution of light at the origin given by ρ is transformed into a distribution νR on the set of
directions at infinity, a set that can also be described by the unit sphere. The far-field reflector
problem consists in the following inverse problem: given a density ρ on the source sphere S2

and a distribution µ on the sphere at infinity, the problem is to find an hypersurface R such
that µR coincides with µ. For computational purposes, we assume that the target measure ν
is supported on a finite set of directions Y := (yi)16i6N , and it is thus natural to consider a
reflector made of pieces of paraboloids with directions Y . This problem is numerically solved
using an optimal transport formulation due to [21, 11].

4.1. Far-field reflector problem. We consider a finite family Y = (y1, . . . , yN ) of unit vectors
that describe directions at infinity, non-negative numbers (αi)16i6N such that

∑

16i6N αi = 1
and a probability density ρ on the unit sphere. The far-field reflector problem consists in finding
a vector of non-negative focal distances (λi)16i6N , such that

(FF) ∀i ∈ {1, . . . , N}, ρ(PIλY (yi)) = αi,

where for a subset X of the sphere, ρ(X) :=
∫

X
ρ(u)du is the weighted area of X . The far-field

reflector problem can be transformed into the maximization of a concave functional, combining
ideas from [21, 11, 3].

Theorem 12. A vector of focal distances (λi)16i6N solves the far-field reflector problem (FF)
if and only if the vector (γi)16i6N defined by γi = log(λi) is a global maximizer of the following
C1 concave function:

(4.5) Φ(γ) :=

[

N
∑

i=1

∫

PIexp γ

Y
(yi)

(c(u, yi) + γi)ρ(u)du

]

−
N
∑

i=1

γiαi

where c(u, v) := − log(1−〈u|v〉) and with the convention log(0) = −∞. Moreover, the gradient
of the function Φ is given by

(4.6) ∇Φ(γ) := (ρ(PI
exp(γ)
Y (yi))− αi)16i6N .

There is a similar formulation for a reflector defined by the union of solid confocal paraboloids [11].
However, there is no known variational formulation for the reflector problem involving inter-
section of ellipsoids. A numerical approach has been proposed in [18].
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(a) Initial (λi)16i6N (b) Final (λi)16i6N (c) Rendering

(d) Final (λi)16i6N (e) Reflector (f) Rendering

Figure 5. Numerical computation. Calculations were done with N = 1000

paraboloids for the first row and N = 15000 paraboloids for the second row. (a) Parab-

oloid intersection diagram for an initial (λi)16i6N . (b,d) Final intersection diagram

after optimization. (e) Reflector surface defined by the intersection of paraboloids.

(c,f) Simulation of the illumination at infinity from a punctual light source lighting

uniformly S
2

−
, using LuxRender, a physically accurate raytracer engine.

We now turn to the proof of Theorem 12. This proof combines the results of Section 5 of [3]
with the optimal transport formulation of the far-field reflector problem [21, 11]. Let us first
recall some properties of supdifferential of concave functions. Given a function Φ and λ in R

N ,
the supdifferential of Φ at λ, denoted ∂+Φ(λ) is the set of vectors v such that

∀κ ∈ R
N , Φ(κ) 6 Φ(λ) + 〈κ− λ|v〉.

A function Φ is concave if and only if for every λ, the supdifferential ∂+Φ(λ) is nonempty.
If this is the case, Φ is differentiable almost everywhere, and at points of differentiability the
supdifferential ∂+Φ(λ) coincides with the singleton {∇Φ(λ)}. Finally, λ is a global maximum
of Φ if and only if ∂+Φ(λ) contains the zero vector.

Proof of Theorem 12. We consider a vector γ in R
N . First remark that c(u, yi)+γi = log(exp(γi)/(1−

〈u|yi〉). Therefore,

u ∈ PI
exp(γ)
Y (yi) ⇐⇒ ∀j ∈ {1, . . . , N}, exp(γi)

1− 〈u|yi〉
6

exp(γj)

1− 〈u|yj〉
⇐⇒ ∀j ∈ {1, . . . , N}, c(u, yi) + γi 6 c(u, yj) + γj
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Therefore, the function Φ can be reformulated as follows:

Φ(γ) =

∫

Sd−1

(

min
16i6N

c(u, yi) + γi

)

ρ(u)du−
N
∑

i=1

γiαi.

We now define Tγ as the function that maps a point u on the unit sphere to the point yi such

that u belongs to PI
exp(γ)
Y (yi). Then,

(4.7) Φ(γ) =

∫

Sd−1

(c(u, Tγ(u)) + γTγ(u))ρ(u)du −
N
∑

i=1

γiαi.

Moreover, for any κ in R
d, one has min16i6N c(u, yi) + κi 6 c(u, Tγ(u)) + κTγ(u). Integrating

this inequality, and substracting (4.7), we get

Φ(κ)− Φ(γ) 6

∫

Sd−1

(κTγ(u) − γTγ(u))ρ(u)du−
∑

16i6N

(κi − γi)αi

6
∑

16i6N

(

∫

PIexp γ
Y

(yi)

ρ(u)du− αi

)

(κi − γi) = 〈DΦ(γ)|κ− γ〉

where DΦ(γ) := (ρ(PI
exp(γ)
Y (yi))− αi)16i6N .(4.8)

The above inequality shows that DΦ(γ) lies in ∂+Φ(γ), i.e., this set is never empty and the
function Φ is concave. Since the vector DΦ(γ) depends continuously on γ, we deduce that the
function Φ is C1 smooth, and that ∇Φ(γ) = DΦ(γ) everywhere. By Equation (4.8), a vector
λ := exp(γ) solves the far-field reflector problem (FF) if and only if DΦ(γ) = 0, i.e., if and only
if γ is a global maximizer of Φ. �

4.2. Implementation details. The implementation of the maximization of the functional
Φ follows closely [15]. We rely on a quasi-Newton method, which only requires being able to
evaluate the value of Φ and the value of its gradient at any point γ, as given by Equations (4.5)–
(4.6). The computations of these values are performed in two steps. First, we compute the

boundary of the paraboloid intersection cells PI
exp(γ)
Y (yi), using the algorithm described in

Section 3. These cells are then tessellated, and the integrals in Equations (4.5)–(4.6) are
evaluated numerically using a simple Gaussian quadrature. In the experiments illustrated in
Figure 5, we constructed the measure

∑

i αiδyi so as to approximate a picture of Gaspard
Monge (projected on a part of the half-sphere S2

+ := S2 ∩ {z > 0}). The density ρ is constant
in the half-sphere S2

− and vanishes in the other half. To the best of our knowledge, the only
other numerical implementation of this formulation of the far-field reflector problem has been
proposed in [8]. The authors develop an algorithm, called Supporting paraboloids which bears
resemblance to Bertsekas’ auction algorithm for the assignment problem [4]. They use it to
solve the far-field reflector problem with 19 paraboloids. Using the quasi-Newton approach
presented above, and the algorithm developed in Section 3, we are able to solve this problem
for 15,000 paraboloids in less than 10 minutes on a desktop computer. Note that the algorithm
of Section 3 would probably also allow a faster and robust implementation of the Supporting
paraboloids algorithm [8].

5. Conclusion

In addition to the open problems mentioned earlier, let us mention a perspective. In a
recent article [13], the algorithm of supporting paraboloids was extended to optimal transport
problems involving a cost function c that satisfies the so-called Ma-Trudinger-Wang regularity
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condition. For this algorithm to be practical, one needs to compute the generalized Voronoi
cells efficiently, defined for any function ψ : Y → R by

Vorψc (y) = {x ∈ X ; ∀z ∈ Y, c(x, y) + ψ(y) 6 c(x, z) + ψ(z)}.
For general costs, and even in 2D, one cannot hope to do this in time below Ω(N2). However,
the MTW regularity condition ensures an analog of Proposition 3 and in particular, it implies
that these generalized Voronoi cells are connected. One might wonder whether a randomized
iterative construction could be used in this setting to yield a construction in expected time
O(N logN) in 2D. This would open the way to practical algorithms for the resolution of optimal
transport problems that are intractable to PDE-based methods.
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