
HAL Id: hal-00953333
https://hal.inria.fr/hal-00953333

Submitted on 28 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Layout Method for Graphical User Interfaces
Adriano Scoditti, Wolfgang Stuerzlinger

To cite this version:
Adriano Scoditti, Wolfgang Stuerzlinger. A New Layout Method for Graphical User Interfaces. IEEE
Symposium on Human Factors and Ergonomics 2009, 2010, Toronto, ON, Canada. pp.642-647,
�10.1109/TIC-STH.2009.5444422�. �hal-00953333�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49672389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00953333
https://hal.archives-ouvertes.fr


A New Layout Method for Graphical User

Interfaces

Adriano Scoditti

Laboratoire d’Informatique de Grenoble

Université Grenoble I / CNRS, France

http://iihm.imag.fr

Wolfgang Stuerzlinger

Dept. of Computer Science and Engineering

York University, Toronto, Canada

http://www.cse.yorku.ca/ wolfgang

Abstract—The layout mechanisms for many GUI toolkits are
hard to understand, the associated tools and API’s often difficult
to use. This work investigates new, easy-to-understand layout
mechanisms and evaluates its implementation. We will analyze
the requirements for the definition of layouts of a graphical
user interface. Part of the issue is that several aspects need to
be considered simultaneously while laying-out a component: the
alignment with other components as well as its own behaviour
while resizing its container. Moreover, the used tools should
isolate the designer/drawer from the implementation details of
the framework.

We present the details of our new GUI layout system, dis-
cuss the choices we made for our new layout algorithm and
detail implementation issues. Moreover, we present also the
user interface for our new GUI builder system that contains
several innovations, such as a preview window to show the
effects of layout configuration choices in real-time. We present
an evaluation of our new system by attacking the complex GUI
layout problem mentioned above.

I. INTRODUCTION

Building GUIs involves several technical issues such as the

definition of each components’ layout, the minimum (and max-

imum) sizes of each component, the containment hierarchy, the

interaction behavior of each component, the integration with

the core software, and the portability of the interface itself both

among different projects and different systems. As this work

focuses only on the layout problem, the interaction between

the GUI and the software is beyond the scope of this document.

One central problem in GUIs is to define how components are

placed within a window and how the components size changes

when the window is resized. This is commonly refereed to

as defining the layout of a GUI. Various solutions for the

definition of layouts have been proposed, [1][2][3][4]. Most

commercial toolkits make one or more of these solutions

available to programmers. Using the Java/Swing terminology,

some simple examples are the fixed-position layout, grid

layout, flow layout, row and column layout, but all of these

can only deal with restricted problems. A very flexible and

powerful mechanism is the Struts and Springs layout [5] that

uses constraints to define the positions of components. This

is implemented in the SpringLayout included in the latest

Java Virtual Machine. The downside of the Struts and Springs

method is that computing the layout requires quite a bit of

computational resources. All of the above layout methods

aim to make the process transparent for the graphic designer.

However, as we will see later, none of them have reached a sat-

isfying abstraction level that permits the graphical designer to

ignore implementation problems. Furthermore, the problem of

defining user interfaces independently of the implementation

in a portable way is addressed by a combination of the MVC

(Model-View-Controller) programming pattern and storing the

layout in external files, typically using some form of structured

file format.

We will analyze the above-mentioned problems in depth

both from the point of view of a graphical designer and a

programmer. The first one wants to concentrate on the design

of the GUI without having to worry about the limitations of

the underlying GUI toolkit or the used GUI builder. In other

words, wants to define a user interface focusing on the quality

of the interface itself without having to address implementation

issues. The programmer, on the other hand, strives to achieve

a modular software architecture, wants to reuse his code, and

aims to provide powerful tools to the interface designer.

II. RESIZING BEHAVIOR

While building a GUI, the most important step is to define

the space occupied by each component of the interface itself

in the right container . This means that, first of all, we must

be able to define the position and the size of each component.

However, this raises issue when the container is resized and

still it is not sufficient to define all desired visual effects -

most importantly various forms of alignment. Alignment of

components helps with visual grouping and is consequently

considered necessary in graphical design. For example, when

positioning a text label next to a text field, normally the

baseline of the text label is aligned with the baseline of the

text inside it (or it’s first line). Or the center of the label is

aligned with the center of a larger text box.

A. Evaluation of Previous Struts and Springs Implementations

Two different implementations of the Struts and Springs

algorithm exist. The first one, the Swing SpringLayout, uses

the classical approach of using constraints to define the

layout of each component and then solving the whole set of

constraints simultaneously. The second alternative, the Cocoa

layout system, is based on an interpretation of the Struts and

Springs concept, which utilizes the springs only to determine a

viable partition of available space when resizing a component.



Both of the presented implementations have their pros and

cons. The Cocoa implementation, for example, is extremely

fast although it is not able to define and to lay out complex

examples, as demonstrated in the previous chapter. On the

other hand the Java SpringLayout is powerful, but solving the

constraint-equation system is not very fast. Another important

difference between the two implementations concerns the

technical definition of which entities struts and springs can

constrain to. There are two alternatives here, and the struts

and springs can:

1) Connect each component of the GUI only to the edges

of the window that contains the component itself.

2) Connect each component to other components present

in the window.

Although the first option is simple and fast to implement, it

is limited as one cannot define inter-component relationships.

The second alternative, as implemented in the Swing Sprint-

Layout, is to permit each component to attach to arbitrary

points in the window or to the sides of other components. This

guarantees that no overlay can happen, as struts can be defined

between two components or even among several components.

The downside of this is that many constraints may be needed

for complex windows.

The goal of our work is to introduce a fast and simple to

use layout algorithm. Our intent is to maintain the advantages

of all the algorithms presented here, while avoiding their dis-

advantages as far as possible. For this, we improved Cocoa’s

algoritm and added a new interface component.

III. INTUI STRUTS AND SPRINGS

It is an extension of the method used in the Cocoa frame-

work. First, we introduce the concept of references, discuss

the fundamental algorithm, and then introduce a new interface

component, a Spacer, to increase the power of the approach.

A. References

To avoid overlap, each component in a GUI needs to keep

track of other components around it. At a minimum, each

component needs to consider at least one component on each

side of it. For this, we introduce the so called references. Each

component has four references, one for each side, that link it

to it’s neighbors. If there is no neighbor, it can also link a

component to the window itself. Component frequently have

multiple neighbors on the same side. To resolve this problem,

let’s analyze the scenario represented in Figure 1.

In Figure 1 on the left, each box represents a graphical user

interface component. The bigger frame represents the window.

In this figure, we analyze how references for component A

are defined. As mentioned above, the method searchers for

the closest component relative to the center of each side. The

bottom reference of A points to D, as it is the only component

below. The top and left references are pointing to the window

frame. On the right side of A, C will be chosen as the reference,

as it is closer to the center of A. In this example, there is

no reference to B, but depending on the references for the

remainder of the layout it may not be necessary to have one.

Fig. 1. Each object automatically chooses references by detecting the the
nearest component in the four directions from the center of each side. On the
right image, the overall configuration of the widget A in the main container
is highlighted.

IV. INTUI STRUTS AND SPRINGS ALGORITHM

In the Intui Struts and Springs layout method, each com-

ponent is aware of the components around it due to the

references. If a spring is associated with a reference, the

algorithm can then better compute proportions relative to

other components, which leads to an overall more powerful

algorithm. Let’s analyze the behavior of the widget A in Figure

1, by associating struts and springs to the scenario, as shown in

the right part of the Figure. Furthermore, each component has

also internal struts and springs, to allow widgets to vary in size

depending on their content. While resizing the external frame,

a widget A can count the number of springs around itself by

invoking a recursive method that stops when the container

frame is reached. Once the number of struts and springs in a

direction is known, the widget can compute accurately how it

should resize. One fairly obvious optimization of the algorithm

shown above is to count the number of springs in advance

for each component, whenever the layout has been finalized,

as this removes the recursive search for references. Then the

amount of work to be done for each resize is effectively

constant, which makes the algorithm a lot faster. However,

we use the above version of the algorithm in the real-time

preview window of our interface builder (discussed later).

V. MINIMUM SIZE

One of the most important attributes for defining a GUI is

the definition of the minimum size of the window. To explain

minimum size management in our algorithm, we first state

our underlying assumption: In a resizable GUI, at least one

component will be resizable or have to change its origin when

resizing a window. If the GUI is not resizable, this clearly does

not apply. Within our framework, we define a default minimum

size for each component depending on the component itself

and it’s normal use. For example, the minimum size of a

text label is smaller than the minimum size of a text area.

The management of horizontal and vertical resizing is handled

independently, so that a component that has reached its vertical

minimum size can still change in the horizontal direction.

When resizing the window, each component first computes its

future size and then compares it with this predefined minimum

size to detect a resize that would make it too small. Similarly,

each component also checks if the resize would move (even

part of it) outside of the window frame and signals that it



cannot resize accordingly in this case. Checking for overlap

between components is not done, as this would require too

much work on specifying all constraints by the designer. In

the next section we will introduce a solution for this problem

via spacers.

VI. THE SPACER - A MECHANISM FOR COUPLING,

ALIGNMENT, AND MINIMUM SIZE CONTROL

Figure 2 depicts the common scenario of multiple compo-

nents inside a window. The figure illustrates multiple issues,

namely that the simple idea of having references always use

the center of a component can easily fail and the importance

of symmetry. In this case there is a vertical symmetry of

components B and C relative to the vertical midpoint of

component A. The Intui algorithm as described above cannot

correctly deal with this example.

Fig. 2. On the left: Illustration of a failure case for the simple Intui
algorithm. Due to it’s use of midpoints for references, it cannot identify the
two components to it’s right and hence incorrectly links component A to the
window frame. On the right: Spacers can be used to align components. Here
the right sides of components B and E are aligned via spacer T. The horizontal
extent of the spacer is exaggerated for better illustration.

Our solution to this problem is to introduce a new GUI

component, that exists solely for the purposes of layout: a

spacer. This is basically an invisible component, which has

all the normal properties such as a position and a size. This

size can either be constant or variable in each dimension. This

spacer can assume different roles in the definition of a layout:

it couples the layout of components, can be used to align

components, or controls the minimum size of a window.

To couple components, a spacer is placed between them.

Then the references for the components on either side ref-

erence the spacer, which effectively groups their influence

and couples their relative layout. Figure 2 illustrates this, by

placing a spacer S between components A, B, and C. The

midpoint reference for A now references the spacer S, and

both B and C reference it as well. This effectively couples their

layout so that the three components never overlap. In the figure

the horizontal extent of the spacer has been exaggerated for

better illustration, typically this spacer would have a horizontal

extent of a single pixel (and a variable vertical extent).

We illustrate in figure 2 how spacers can be used to align

components. Here the two spacers S and T. Spacer S aligns

the left sides of the three components relative to A, wherease

T aligns the right sides of the two (resizable) components B

and E. This example is an extension of the coupling property

explained above.

As presented in section V, our algorithm automatically man-

ages the minimum size of a window, based on the properties

of the components. However, sometimes a GUI designer may

need to define a minimum size for a window, where this size

is larger than the sum of the components at their smallest

possible size.

Figure 3 illustrates how spacers can be used to achieve

this, namely by adding a spacer S between the other two

components. The vertical size of S is then set to have either a

constant size or to never go below a certain minimum vertical

extent. If it is constant, the window is effectively non-resizable,

if the other two components have fixed size, too. If it has a

minimum, this minimum will always guarantee a proportional

spatial separation between components A and B.

Fig. 3. A spacer can also be used to control the minimum size of a layout,
see text.

A. Relation With Previous Work

When configured as a simple non-resizable rectangle, the

spacer as introduced here is similar to the concept of a (one-

dimensional) Gap in the Swing BorderLayout. However, a

spacer can also occupy space in both dimensions simultane-

ously. The concept of Docking in the Windows Presentation

Framework is also similar. We can simply compare the WPF

anchor property to the strut concept. Furthermore, the docking

property can be simply seen as a null size strut able to keep

constant the distance of an edge of a component from another

edge of its container.

The spacer also fulfills the role of an aligner, similar to the

concept of alignment in the Windows Presentation Framework,

but while WPF resolves all the alignment problem by using

the Grid Layout in the appropriate way, the Intui aligner can

be seen as a real object added to the interface to align other

component. In this way, there is no difference between what

the user wants to do and how the algorithm implements it.

In summary, the novel idea of a spacer subsumes a variety

of layout concepts that have been introduced in other systems.

However, spacers also extend these concepts in several ways.

VII. HIERARCHICAL INTUI LAYOUT

As presented above, our new variant of the struts and springs

algorithm can cover many common cases. However, in some

cases it may be unable to defined complex interdependen-

cies correctly. As an example, consider the vertical resize

behavior of the layout shown in figure 4. In this scenario,

the intent of the designer is to preserve the "cross" shape in



both dimensions. However, the Intui algorithm simply counts

the number of springs along each dimension and distributes

space proportionally. Hence, all components will be uniformly

resized by a third of the dimension change and the "cross"

shape will not be preserved at different window sizes.

Fig. 4. With layers the algorithm can preserve the distribution of the blocks.

Although modifications of the Intui algorithm may guar-

antee a more intelligent distribution of the available space

among the components, it also means introducing additional

parameters, which would make the framework more complex

and less intuitive. To address this situation in a simpler manner,

we introduce another component, the container, which is

identical to the hierarchical containers available in many other

GUI toolkits. Then one can simply wrap each pair of smaller

frames together into a higher level component. Then the

bigger frames and the containers will share the same space,

which will preserve the alignment of the overall layout. See

figure 4 for an illustration. Although containers are often seen

as special purpose components, they also serve to define a

decomposition of space in a layout. While one can use Spacers

for similar purposes in some situations, containers are more

powerful. Containers can "encapsulate" several components

into a new entity, which effectively allows to synthesize

complex resize behaviors in a bottom-up fashion. In other

words, the designer can specify different resizing behaviors

at different levels of the layout hierarchy to achieve his/her

design goal. For simplicity, we implemented hierarchical lay-

out by designating a spacer as a container, i.e. allowing the

placement of components inside a spacer. In other words, the

spacer introduced above is also our mechanism for creating

hierarchical layouts. In terms of efficiency containers can be

considered a trade-off. Hierarchical containers offer a way to

modularize a layout, but take a bit more time as the traversal

of the hierarchy will be slower than the constant-time resize

algorithm of the non-hiearchical Intui layout algorithm.

VIII. REAL TIME PREVIEW

Almost all current GUI builders permit the user test the

constructed GUI at the press of a button. Although this feature

lets the user identify any problems with the layout in this

mode, they can fix these problems only after they have exited

this test mode. In other words, the test view is not visible

when the construction mode is active.

While this idea has the advantage that it allows the user to

focus on the final look exclusively, it hinders the debugging

and correction process for any problem found as the user

can’t simultaneously see the definition of the interface and

the "live" version that can be resized interactively. Hence,

the user is often obliged to switch repeatedly between the

building environment and the testing environment. Expert

users may need less iterations here, but could still benefit from

an improved solution.

Our answer to this problem is a real time preview that is

visible during the construction process and can be resized at

any time. To illustrate the impact of a simultaneous preview

in an interface builder, we refer the reader to figure 5, which

depicts a screenshot of our interface builder.

Fig. 5. The Intui Interface builder features a real-time preview of the
constructed interface, shown in a different size compared to the construction
window.

In the top right is a small panel with all the components

available for selection and/or drag and drop. The bottom

left shows the construction window and the right side shows

the preview. The GUI construction window contains abstract

widgets that permit modification of the resize behavior, e.g. see

the selected widget in the top-center. The preview window is

a fully functional GUI, and the user can enter text, click on

buttons, etc.

The two views of the GUI let the user directly compare the

positions and the sizes of each component at different window

sizes. This enhances the user experience with direct feedback

for any change in the construction window 1. Another way

to express this is to say that we provide a “What You See Is

What You Get” (WYSIWYG) interface.

IX. DEFINING THE RESIZE BEHAVIOR

The graphical metaphor for the resizing bit-mask is repre-

sented by solid and dashed lines in the construction window.

To ensure adequate visibility, the lines illustrating the resizing

behavior are only shown for the currently focused component,

struts are visualized by black solid lines and springs are

visualized by red dashed lines, both of them are drawn on

a grey background. When a new component is dropped or

otherwise instantiated in the construction window, the initial

resize mask is calculated by a heuristic algorithm that uses the

following information:

1) Its relative position within it’s container.

2) Its size,independently width and height.

1In an early prototype, we let the user also modify the layout in the
preview window. However, we removed this feature because it introduced an
ambiguity, as the references for a component might be different at different
sizes due to different position of the midpoint. Hence we dropped this feature.



3) The resize masks of all components it references (i.e.

the masks of all components around it).

The relative position within the container is used as follows: if

the center of the component is within the first 25% or the last

25% of each dimension, struts are placed towards the outside.

Otherwise, the component is in the center part of the window

and springs are used. The mask to define the intrinsic size of

the component is determined to be fixed depending on the type

of the component (buttons are fixed, text-areas resize). The

behavior of adjacent components influences the initial value

for the resize mask as the following example: if a component

is placed in the center of the window but it is surrounded by

component with only external struts, it will be configured with

external struts as well. The same algorithm also automatically

determines the references between the components by shooting

a ray starting from the midpoint of each side and identifying

the closest component along the ray (unless the window frame

is hit). To avoid potentially unstable situations, the algorithm

checks that two components that reference each other has the

same value from both side of the ray. If there is a disagreement,

the configuration of the component where the algorithm is

running (i.e. the focused component) will change the configu-

ration to create the needed coherence (in this way, the choices

of the user are always respected because as we will see later,

it is possible that on the other component the user manually

modified the configuration). The above algorithm is also used

to determine the new resize mask every time the user moves

a component (unless the resize mask is manually overridden,

see below). The net result is that the construction process is

greatly accelerated, as the above algorithm frequently sets the

desired resize mask for a component correctly - at least to

our experience. To aid the user in understanding the behavior

of the algorithm, the background of each container shows a

grid of the decision boundaries used for the position mask

calculation in medium grey. Although this heuristic algorithm

can forecast the intention of the user in most cases for simple

user interfaces, it clearly cannot deal with arbitrary layouts.

Hence, the user interface of the GUI builder must allow the

user to change the default configuration for the resize behavior.

The visualization of the struts and springs in the construction

window is fully interactive. In other words, the user can

modify the resize mask by clicking on solid and dashed lines

depicting the struts and springs. Clicking on a strut changes

it to a spring and vice versa. Every time the resize mask

is modified in the construction window, the preview window

updates the layout of all components to immediately visualize

the consequences of user actions.

To avoid potentially unstable situations due to conflicting

relative resize masks, the GUI builder checks that two com-

ponents that reference each other set the resize mask to the

same value from both sides. An unstable situation can never

happen because, as we saw before, the needed coherence is

always created by the automatic algorithm while adding the

component. This means that while manually modifying an

external strut for a component, for example, this modification

is automatically propagated towards the other component that

this strut references.

X. EVALUATION

As an evaluation of the Intui GUI builder, we defined a

complex user interface. There are several ways to achieve this,

but we choose the alternative that emulates the behavior of an

irregular grid. Figure 6 depicts the Intui builder with the final

result and a bigger preview that illustrates the correct resize

behaviour.

Fig. 6. Screenshot of IntuiBuilder while constructing the evaulation user
interface.

The construction process for the test user interface is fairly

simple. Once all five text boxes are dropped into the correct

positions in the construction window, the following steps need

to be carried out:

1) The heuristic resize mask algorithm has already set the

behavior for all four corner boxes. Hence, no action is

needed on them.

2) The resizing behavior for the central box needs to be

changed by adjusting the internal behavior.

3) To avoid potential overlap, four spacers need to be

added and their internal resize behavior adjusted by

making them resizable along their shorter dimension

only, because the longer one is well forecasted.

XI. HIERARCHICAL GUI CONSTRUCTION

In the last chapter we discussed the concept of a container

hierarchy for GUI widgets. Here we mention how we allow

the user to place components inside spacers to use them as

containers.

Fig. 7. Screenshot of IntuiBuilder for the hierarchical layout.

An explanatory example is shown in figure 7, where we

show how the layout discussed in section X can be constructed

with a hierarchy. As visible in the figure, each pair of smaller



text boxes is placed within a container. Then the designer

can define the layout of the four top level components to

preserve the overall layout with the cross in the the middle.

The smaller text boxes resize within each container and are

internally resizable, but have fixed distances externally. When

resizing, the space will first be distributed among the four high-

level components, and then each pair of smaller text boxes split

the space within their container evenly.

XII. CONCLUSION AND FUTURE WORK

We introduced a new way to define the layout of graphical

user interfaces. The new Intui layout algorithm implements a

conceptually simple variant of the struts and springs model,

that is powerful enough to address many common layout prob-

lems. For this, we introduced the novel concept of a Spacer,

which serves multiple purposes: It couples components, aligns

them, can be used to intuitively define the minimum size

of a window, and can be used as a container. Furthermore,

the computational cost for resizing Intui layouts is far less

costly than with a full implementation of a constraint-based

solver. We also introduced a novel construction interface for

graphical user interface builders, which makes the construction

of common user interfaces easier to perform. This is achieved

in part by a heuristic algorithm that automates common

component placement decisions. Furthermore, we introduced

the concept of a real-time preview window, which is sized

to immediately visualize how the current layout looks at a

different size.

Some of our design choices are arguably non-optimal and

may be improved. One such issue is an improved discovery

method for references. The current approach automatically

finds references based on the midpoint of each side of a wid-

get. This permitted us to ensure coherency and generality in the

builder. Our intent was to enable the user to immediately see

the dependencies when looking at a widget in the construction

window. Furthermore, this design decision kept the file format

simple. On the other hand, a user may not immediately under-

stand the way this definition of references works. Furthermore,

the references for a widget change whenever it is moved in

the construction window, sometimes with results that are not

immediately predictable.

Another issue is that the GUI builder does not snap to

common positions when a component is moved or resized.

Examples are the center of the window or positions aligned to

another widget. This functionality may be added in the future.

Furthermore, common guidelines, such as a default margin,

should also be introduced as snapping points.

REFERENCES

[1] S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort, and C. Mertz,
“Revisiting visual interface programming: creating gui tools for design-
ers and programmers,” in UIST ’04: Proceedings of the 17th annual

ACM symposium on User interface software and technology. New
York, NY, USA: ACM, 2004, pp. 267–276.

[2] S. E. Hudson and S. P. Mohamed, “Interactive specification of flexible
user interface displays,” ACM Trans. Inf. Syst., vol. 8, no. 3, pp. 269–
288, 1990.

[3] K. Miyashita, S. Matsuoka, S. Takahashi, A. Yonezawa, and T. Kamada,
“Declarative programming of graphical interfaces by visual examples,”
in UIST ’92: Proceedings of the 5th annual ACM symposium on User

interface software and technology. New York, NY, USA: ACM, 1992,
pp. 107–116.

[4] P. Dragicevic, S. Chatty, D. Thevenin, and J.-L. Vinot, “Artistic resizing:
a technique for rich scale-sensitive vector graphics,” in SIGGRAPH ’06:

ACM SIGGRAPH 2006 Sketches. New York, NY, USA: ACM, 2006,
p. 6.

[5] L. Cardelli, “Building user interfaces by direct manipulation,” in UIST

’88: Proceedings of the 1st annual ACM SIGGRAPH symposium on User

Interface Software. New York, NY, USA: ACM, 1988, pp. 152–166.
[6] S. E. Hudson and K. Tanaka, “Providing visually rich resizable images

for user interface components,” in UIST ’00: Proceedings of the 13th

annual ACM symposium on User interface software and technology.
New York, NY, USA: ACM, 2000, pp. 227–235.

[7] D. Kurlander and S. Feiner, “Inferring constraints from multiple snap-
shots,” ACM Trans. Graph., vol. 12, no. 4, pp. 277–304, 1993.

[8] M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing user
interfaces with interviews,” Stanford, CA, USA, Tech. Rep., 1988.

[9] D. E. Knuth, The TeXbook. Addison-Wesley Professional, 1986.
[10] J. Dan R. Olsen, Developping User Interfaces. Morgan Kaufmann

Publishers, 1998.
[11] Microsoft, “Microsoft developer network.” World Wide Web electronic

publication, 2007. [Online]. Available: http://msdn2.microsoft.com
[12] A. Inc., “Apple developer connection,” World Wide Web electronic

publication, 2007. [Online]. Available: http://developer.apple.com
[13] S. Microsistem, “Java api specification,” World Wide

Web electronic publication, 2007. [Online]. Available:
http://java.sun.vom/j2se/1.5.0/docs/api/


