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I. INTRODUCTION

Queuing systems are of fundamental interest for modeling

communication networks, production lines, operating sys-

tems,.... Servers represent the access of customers to resources

and queue capacity allows modeling of resource contention

and storage before service. Two kinds of dimensioning are

needed for systems optimization. Time dimensioning have

to fix servers speed and space dimensioning define memory

capabilities of nodes. In all cases, the estimation of service

quality are useful before the system deployment.

Under Markovian assumptions (Poisson arrivals, exponen-

tial service time, probabilistic routing etc.), it has been shown

that the network of queues is modelled by a multidimensional

Markov jump process. Then the system performances are

computed from the steady-state distribution of the process.

Fortunately, when queues have an infinite capacity the steady-

state distribution is product-form and could easily be computed

in a reasonable time [6]. In some cases the hypothesis of

infinite capacity could be released, preserving the product form

[20], [3]. Unfortunately, in most cases, the steady state distri-

bution is not in a product form and adequate approximation

techniques should be applied. Many works cover the domain of

queuing networks with finite capacity, bibliographies of [19],

[2] provide pointers to related works.

Simulation approaches are alternative methods to estimate

quality of service of such networks. Based on discrete event

simulation [4] or on Markov properties (MCMC methods)

[9], simulations estimate the steady-state distribution on long

run trajectories. Drawbacks of simulations are the control of

the warm up period or burn-in time [22] and the influence

of the initial state on stochastic behavior. Moreover, because

statistics are made on long run trajectories, assumptions on

independence of samples are difficult to justify.

Perfect simulation provides a new technique to sample

steady-state and avoids the burn-in time period. When the

simulation algorithm stops, the returned state value is in

steady-state. Initiated by Propp and Wilson [21] in the context

of statistical physics, this technique is based on a coupling

from the past scheme that, provided some conditions on

the system, ensures convergence in a finite time to steady-

state. This approach have been successfully applied in various

domains, stochastic geometry, interacting particle systems,

statistical physics, networking [1], [18], etc.

The first part of this tutorial is devoted to the “perfect

simulation” principle for Markov chains on finite state space.

The contracting backward scheme is explained and main con-

vergence results are established. Moreover some algorithmic

considerations illustrate how this scheme could be used in

practical situations. The second part of the talk deals with

the combination of monotonicity structure and the backward

scheme in order to accelerate the simulations. In the third

part we apply these ideas in the context of queueing networks

with finite capacities and complex routing strategies (overflow,

blocking, join the shortest queue,...). We detail the time

complexity of such simulations and show that the simulation

time is linear in the number of queues. Finally in the last

part we propose some variance reduction schemes based on

coupled antithetic trajectories.

II. PERFECT SIMULATION OF FINITE MARKOV CHAINS

Consider a finite state space Markov chain with a transition

matrix P = ((pi,j)). Denote the states by integers {1, · · · ,K}.
We suppose that the chain is homogeneous, aperiodic and

irreducible so that there exists a unique stationary regime.

To estimate the steady state, when all other methods fail, we

simulate trajectories of the Markov chain and analyse samples.

The first step to simulate the Markov chain is to build a

transition function Φ such that the stochastic process given

by the stochastic recursive sequence Xn+1 = Φ(Xn, Un+1)
is a Markov chain with transition matrix P . The sequence

of innovations {Un} is a sequence of i.i.d random variables

uniformly distributed on [0, 1[ (calls to the random function).

For such an U , we have

pi,j = P(Φ(i, U) = j).

The basic simulation algorithm consists in

Algorithm 1 Forward simulation of a Markov chain

x ← x0; {choice of the initial value of the process}
repeat

u ← Random()
x ← Φ(x, u); {computation of the next state}

until Stopping criteria

return x

The ergodicity of the chain implies that the distribution of

the returned value is an approximation of the steady state.



Estimation of the approximation error is known to be hard

because it depends on the generally unknown spectral gap of

the P matrix. Moreover the stopping condition depends also

on the value of the initial state. To avoid the burn-in time

period, the difficulty is to find a stopping criteria that ensures

the convergence to steady-state.

Based on a backward scheme, Propp and Wilson [21] pro-

posed a new computation algorithm also called Coupling From

The Past (CFTP). The basic idea comes from the stochastic

recursive sequences domain [7], [11] and some results related

with perfect simulation may be found in [23], [24].

Algorithm 2 Backward-coupling simulation (general version)

for all x ∈ X do

y(x) ← x {choice of the initial value of the vector y}
end for

repeat

u ← Random; {generation of u
−n}

for all x ∈ X do

y(x) ← y(Φ(x, u)); {computation of the state at time

0 of the trajectory issued from x at time −n}
end for

until All y(x) are equal

return y(x)

Denote by τ the number of iterations needed by the algo-

rithm to stop, τ is called the coupling time of the backward

scheme. A first result establishes that under general conditions

on the transition Φ the coupling time is almost surely finite.

Moreover, if there exist some “synchronizing” patterns with

positive probability, the coupling time is exponential tail.

Provided that the coupling time is almost surely finite, it

is shown [21], [28], [27] that the value y(x) returned by the

algorithm 2 is in steady-state.

So this kind of algorithm could be of interest because of its

time complexity. One difficulty remains because the iteration

is done on the entire state space, and this could be prohibitive

for practical models.

This complexity could be reduced if the aim of the sim-

ulation is only to estimate a reward on the steady state. In

that case, we replace the condition All y(x) are equal by All

Reward(y(x)) are equal. The stopping condition is weaker

and consequently the coupling time is reduced. In [28], we

illustrate by example that this reduction could be significant.

To implement this algorithm, the key point is the construc-

tion of the transition function Φ from the transition matrix.

Among several approaches such as inverse pdf, rejection, the

aliasing technique seems to be efficient [32]. It provides a tran-

sition function in O(1) that does not depends on the size of the

state space. It has been encoded for sparse matrices and a free

software is available at http://www-id.imag.fr/Logiciels/psi/.

III. MONOTONICITY AND PERFECT SIMULATION

IMPROVEMENTS

To improve the time complexity, we have to reduce the set

of states on which we iterate the transition function. This could

be possible if the state space is partially ordered ≺ and have

a small set of extremal elements. In that situation we say that

the transition function is monotone iff

for all u ∈ [0, 1[ and x ≺ y we have Φ(x, u) ≺ Φ(y, u).

If the transition function is monotone the following algorithm

3 provide a sample steady-state distributed.

Algorithm 3 Backward-coupling simulation (monotone ver-

sion)

n=1;

U[1]=Random()

{M (resp m) is the set of maximal (resp minimal) states

for the order ≺}
repeat

n=2n;

for all x ∈M ∪m do

y(x) ← x { initial value of the vector y}
end for

for i=n downto n/2+1 do

U[i]=Random()

{The trajectory is generated from −n to −n/2}
for all x ∈M ∪m do

y(x) ← Φ(y(x), U [i])
{apply the transition given by U [i] }

end for

end for

for i=n/2 downto 1 do

{U [i] has already been generated in a previous step}
for all x ∈M ∪m do

y(x) ← Φ(y(x), U [i])
end for

end for

until All y(x) are equal

return y(x)

In this algorithm, trajectories are driven from maximal and

minimal states in the past. So we have to store the values

of the sequence U [n] and it needs a more important memory.

This could be reduced by only storing some values of the seed

of the random function calls.

Because, the jumps to the past are done in an exponential

way (doubling scheme), it is clear that the mean total number

of calls to the transition function Φ is linear in τ . The time

complexity is then reduced by a factor in the order of the size

of the state space. On the other hand we have to pay with

memory and store the sequence of U [n].

IV. QUEUEING NETWORKS PERFECT SIMULATION

To apply the perfect simulation to markovian queueing

networks, we describe the dynamic of the network as the action

of a set of events on a multidimensional state space. Consider

a queueing network with K queues. The state space of each

queue Qi is the set of integers Xi = {0, · · · , Ci}, where Ci



is the capacity of queue Qi. The state space X of the system

is the Cartesian product of all Xi;

X = X1 × · · · × XK .

The natural order on integer is extended to a partial order on

X using component-wise ordering.

An event e is the parameter of the transition defined on X ,

that associates to each state x ∈ X a new state denoted by

Φ(x, e).
One should note that the transition function is defined on

X ×E . It is convenient to include inside the transition function

the fact that some events could not be applied to a state. For

example, the event end of service could be executed only if

the number of customers in the queue is greater than one.

In a queueing network, a customer arrival, the end of a

service and the following routing, a customer departure, are

typical events in networks. The transition corresponding to

an arrival in queue Qi is an increment of xi provided that

xi < Ci. In that case one should precise the routing policy

(rejection, overflow on another queue,...).

An event e ∈ E is said to be monotone if it preserves the

partial ordering on X . That is

∀(x, y) ∈ X x ≺ y ⇒ Φ(x, e) ≺ Φ(y, e).

If all events are monotone, the global system is monotone.

It has been established [16], [26], [29] that, even for

complex routing strategies, most events in queueing networks

are monotone. This could be obtained by considering index

based routing strategies. In that case, a triggered event e take

a customer in a queue and send it to a destination queue.

The destination queue j is chosen among all queues by j =
argmink Ie

k(xk) where Ie
k are increasing functions depending

only on the state of queue k. This formalism captures routing

with overflow cascading, multi-servers queues, queues with

blocking, state dependent routing (join the shortest queue)...

Now, to achieve the model construction of the Markov

process, a Poisson process with intensity λj is associated to

each event ej . These Poisson processes are supposed to be

independent.

The uniformized process driven by the Poisson process with

rate Λ =
∑

λi and generating at each time of the process

an event e ∈ E according to the probability distribution

(λ1

Λ
, · · · , λp

Λ
) is equivalent to the queueing network Markov

process.

All conditions are fulfilled to build a perfect sampler (al-

gorithm )of markovian queueing networks. There is only one

maximal (resp minimal) element : all queues are full (resp

empty).

To control the simulation and estimate the coupling time, we

established [12] that the mean coupling time for feed forward

networks is upper-bounded by

Eτ 6

K∑

i=1

Λ

Λi

Ci + C2
i

2
,

where Λi is the global rate of events concerning queue i.
The time complexity is a linear function in the number of

Algorithm 4 Queueing network perfect sampler

n=1;

E[1]=Generate-event()

M = [C1, · · · , CK ]
m = [0, · · · , 0]
repeat

n=2n;

for all x ∈M ∪m do

y(x) ← x
end for

for i=n downto n/2+1 do

E[i]=Generate-event() {generate event −i according to

distribution (λ1

Λ
, · · · , λp

Λ
)}

for all x ∈M ∪m do

y(x) ← Φ(y(x), E[i]) {apply the transition given

by event E[i] }
end for

end for

for i=n/2 downto 1 do

{event −i has already been generated in a previous

step}
for all x ∈M ∪m do

y(x) ← Φ(y(x), E[i])
end for

end for

until All y(x) are equal

return y(x)

queues and at most quadratic in capacities. This fact has been

confirmed by experiments on more general models.

A simulation kernel Ψ2 have been developed to validate this

approach [31]. It has been applied successfully to the study of

cluster allocation in Grid computing [5] and is currently used

for call-centers dimensioning.

The Ψ2 kernel is freely available at

http://psi.gforge.inria.fr

V. VARIANCE REDUCTION TECHNIQUES

With brute force, the software was able to estimate low

probability events samples without correlations and avoiding

the initial state problem [25]. Another approach is to consider

variance reduction techniques to improve the quality of the

generated sample.

Antithetic variates [14] are a useful tool to build simultane-

ous samples of Markov chains. If the variables are negatively

correlated, we replace the classical estimator by the arithmetic

mean of the antithetic results. This method has been explored

by Graiu et al. [10] and applied in the queueing network

context in [30].

Considering that events are generated via a call to random

numbers, en = e(un) where the {un} are the successive calls

to the rendom function and e the function that generates the

event en according to the random number un. Then we build



A parallel trajectories by

Xk
n+1 = Φ(Xk

n, e(uk
n+1)).

There are several ways to choose a transform on [0, 1[. In [30],

we use the classical shift by 1

A
. That is uk = (u+ k

A
)modulo1.

We apply this parallel approach to backward simulation and

compute antithetic rewards Ra
A = (R1, · · · , RA). This gives

a K correlated samples of the reward function, the estimator

of the expectation of the reward function is just

R̂A =
1

K

A∑

k=1

Rk.

The rewards have the same distribution and, in all of our

experiments we observe that

σ2(1)
def
= V arR1

> V ar
1

A

A∑

k=1

Rk def
= σ2(A).

Moreover, as K becomes large the variance decreases slowly.

It is quite natural that the variance of the new sample is

reduced, but could it be sufficient to reduce the simulation

time ? Consider now a parallel antithetic scheme. The amount

of computation needed to compute the vector Ra
A equals the

sum of the coupling time for each trajectory

Eτa
A = A.Eτ.

Consequently, the computational reduction factor is

σ2(A).
√

A. It gives the size of the sample for a given

error with a fixed confidence error and a fixed amount of

computation. In our first examples, an accurate choice of the

number of variates produces a reduction factor around 1

3
.

For a given amount of computation, the confidence interval

length is divided by 3.

VI. FUTURE WORKS

Perfect simulation appears to be a powerful tool to simulate

large markovian models with partial ordering structures. Issued

from statistical physics in the domain of interacting systems

of particules, it extends to models in stochastic geometry,

random graphs... Using monotonicity properties of events it

applies to discrete event systems with specific structures.

First applications have been done for Petri nets [8], hybrid

systems [15]... Such an approach could also be generalized

to other modeling frameworks as more general Petri nets,

process algebras, stochastic automata networks [13]... The

main difficulty is to build a partial order on the tate space such

that events are monotone with a sufficiently small number of

extremal elements.

The monotonicity properties have also been studied more

deeply [17]. We combine monotone bounds of Markov chains

and coupling from the past to obtain an exact sampling of a

strong stochastic bound of the steady-state distribution for a

Markov chain. Stochastic bounds are sufficient to bound any

positive increasing rewards on the steadystate such as the loss

rates and the average size or delay. Moreover, some monotonic

envelopes could be explicitly build to reduce the number of

parallel trajectories.

From a probability point of view, a deeper understanding

of the coupling time is needed. Because the choice of the

transition function is not unique (a same Markov chain could

have several event based representation), the relation between

the structure of events and the coupling time should be

investigated. Moreover, several conjectures have been given

for bounding queueing networks with feedback and verified

only on some examples.
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