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Diagnosing and measuring incompatibilities

between pairs of services⋆

Ali Aı̈t-Bachir1, Marie-Christine Fauvet1

LIG, University of Grenoble, France
{Ali.Ait-Bachir, Marie-Christine.Fauvet}@imag.fr

Abstract. This text presents a tool, from its design to its implementa-
tion, which detects all behavioural incompatibilities between two service
interfaces. Unlike prior work, the proposed solution does not simply check
whether two services are incompatible or not, it rather provides detailed
diagnosis, including the incompatibilities and for each one the location in
the service interfaces where these incompatibilities occur. A measure of
similarity between interfaces which considers outputs from the detection
algorithm is proposed too. A visual report of the comparison analysis
is also provided which pinpoints a set of incompatibilities that cause a
behavioural interface not to simulate another one.

1 Introduction

A service interface is defined as the set of messages the service can receive
and send, and the inter-dependencies between these messages. Service interfaces
can be seen from at least three perspectives: structural, behavioural and non-
functional. The structural interface of a service describes the types of messages
that the service produces or consumes and the operations underpinning these
message exchanges. In the case of web services, the structural interface of a
service can be described for example in WSDL [20]. The behavioural interface
refers to the order in which the service produces or consumes messages. This can
be described for example using BPEL ([20]) business protocols, or more simply
using state machines as discussed in this paper. Finally, the non-functional in-
terface refers to reliability, security and other aspects that are not considered
to be part of the functional requirements of a service. The work presented here
focuses on behavioural interfaces and is complementary to other work which has
studied the problem of structural interface incompatibility [17].

The study described in this text aims at providing a tool which is capable of
reporting incompatibilities between two service interfaces. Its main contributions
are:

– An algorithm which detects all differences that cause two service interfaces
not to be compatible from a behavioural viewpoint.

⋆ This work is partially funded by the Web Intelligence Project, Rhône-Alpes French
Region



– A measure of similarity between behavioural interfaces of services which is
based on the outputs of the detection algorithm. This measure evaluates the
degree of similarity between two interfaces.

– A tool which implements the algorithm and the similarity measure and pro-
vides business process designers a visual diagnosis, resulting from the incom-
patibility detection process applied on two interfaces.

The paper is structured as follows. Section 2 frames the problem addressed
and introduces a motivating example. In Section 3 we show how we model service
interfaces according to their behavioural dimension. Section 4 presents the prin-
ciple of the proposed approach while Section 5 details the detection algorithm
and discusses implementation details and experiments. Section 6 compares the
proposal with related ones, and Section 7 concludes and sketches further work.

2 Motivation

As a motivating example, we consider services that handle purchase orders pro-
cessed either online or offline. In Figure 1 the behavioural interfaces are described
using UML activity diagram notation that captures control-flow dependencies
between message exchanges (i.e. activities for sending or receiving messages).
The figure distinguishes between the provided interface that a service exposes,
and its required interface as it is expected by its clients or peers. Specifically,
Figure 1-a shows the provided interface P of a service S. S interacts with a client
application C that requires an interface R. We consider the scenario where C
wishes to interact with another service S′ whose interface is P ′ while meeting
the same needs then S (see Figure 1-b).

In this setting, and considering client applications or peers of the service S,
the questions that we address are: (i) do the differences between P and P ′ cause
incompatibilities between S′ and client(s) of S? and if so, (ii) which differences
lead to these incompatibilities? Specifically, we consider three situations: (1) an
operation1 is defined in P while it is not in P ′, (2) conversely, an operation is
defined in P ′ while it is not in P , (3) an operation is defined in P and changed
with another one in P ′. We argue that other changes can be described in terms
of these ones.

In Figure 1, we observe that the flow which loops from Receive OfflineOrder
back to itself in P does not appear in P ′. In other words, customers of S′ are not
allowed to alter offline orders. This is a source of incompatibility since clients
that rely on interface P may attempt to send messages to alter their offline
order while the service S′ does not expect a new order after the first one. On the
other hand, message ShipmentTrackingNumber (STN in short) has been replaced
in P ′ by message AdvanceShipmentNotice (ASN in short). This difference will
certainly cause an incompatibility vis-a-vis of S’s clients and peers. Another
difference is that paying by bank transfer is offered in service S′ while it is

1 We use the terms operation and message interchangeably, while noting that strictly
speaking, messages are events that initiate or result from operations.
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Fig. 1. Differences between two service interfaces.

not in service S. However, this difference does not lead to any incompatibilities
since S’s clients have not been designed to use this option. In technical terms, a
difference between P ′ and P only leads to an incompatibility if it causes P ′ not
to simulate P .

3 Modelling behavioural dimension of service interfaces

In our approach, the detection of incompatibilities relies on an abstract repre-
sentation of service interfaces with an emphasis on behavioural aspects. Thus,
we consider order dependencies between messages but we do not look into the
schema of these messages. Accordingly, we model the behaviour of a web ser-
vice interface using Finite State Machines (FSM [5,16]). Our choice of FSMs is
motivated by the following reasons:

– It is arguably the simplest and most widely understood model of system
behaviour and it has been used in several previous work in the area of be-
havioural service interface analysis [6,4,15].

– It is sufficiently powerful to capture most forms of behaviour encountered in
service interfaces, including race conditions and interleaved parallelism.

– There exist transformations from other notations for service behaviour mod-
elling to FSMs. In particular several transformations from BPEL to FSMs
are implemented in existing tools such as WS-Engineer [9].

Following [5,14], we adopt a simple yet effective approach to model service
interface behaviour using Finite State Machines (FSMs). In the FSMs we con-
sider, transitions are labelled with messages (to be sent or received). When a
message is sent or received, the corresponding transition is fired. Figure 2 de-
picts FSMs of provided interfaces P and P ′ of the running example presented
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in Section 2. The message m has prefix > (respectively <) when it is sent (re-
spectively received). Each conversation initiated by a client starts an execution
of the corresponding FSM. The figure shows also all differences between P and
P ′. This latter will be discussed in the next section.

S1

S6

S3

S5

S2

S4

S7

deletion

modification

addition

FSM of the interface P FSM of the interface P’

S1’

S3’S2’

S4’ S5’

S6’

S7’

>ASN

<CreditCardDetails

>STN

<OnlineOrder

<OfflineOrder

<OnlineOrder

<OfflineOrder <OnlineOrder <OfflineOrder

>OfflineInvoice

>OnlineInvoice>OfflineInvoice

<OnlineOrder

>OnlineInvoice

<CreditCardDetails

<Transfer

<Transfer<Transfer

Fig. 2. FSMs modelling P and P ′.

Definitions and notations :

An FSM is a tuple (S, L, T, s0, F ) where: S is a finite set of states, L a set
of events (actions), T the transition function (T : S × L −→ S). s0 is the initial
state such as s0 ∈ S, and F the set of final states such as F ⊂ S. The transition
T associates a source state s1 ∈ S and an event l1 ∈ L to a target state s2 ∈ S.

To check whether or not differences between an interface P (of service S,
seen as a reference) and another one P ′ (of service S′) lead to incompatibilities,
it is necessary to identify situations when P ′ does not simulate P . Actually, if
P ′ simulates P then each interface R required by the clients of S, which are
compatible with P remain compatible with P ′ (see [2] for a proof).

Assumptions :

(1) Even thought web service communication is not always synchronous, we
assume synchronous communication as it provides, to a certain extent, a suitable
basis for analysing service behaviour. First of all, synchronous communication is
more restrictive than asynchronous communication. Therefore, incompatibilities
that arise within the asynchronous case arise in the synchronous case as well.
Second, for a relatively large class of interfaces, it has been shown that adopting
the synchronous communication model leads to the same analysis results than
adopting the asynchronous model [10].

(2) We focus on interfaces that expose only externally visible behaviour. In
particular, internal actions or timeouts do not appear in the service interface
unless they are externalised as messages.

(3) We assume messages with the same structure to be equivalent.
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4 Detection of differences

To detect differences between P and P ′, their respective FSMs are traversed
synchronously starting from their respective initial states s0 and s′0. The traversal
seeks for two states s and s′ (belonging respectively to P and P ′) which are such
as the sub-automaton starting from s in P and the one starting from s′ in P ′

are incompatible (details are given in Section 5.1). We first discuss and illustrate
the conditions that need to be evaluated when P has an operation which does
not exist in P ′ (for the sake of simplicity we call this situation, a deletion, see
Section 4.1) and when an operation in P is replaced with another one in P ′ (this
is called a modification, see Section 4.2). We do not detail here the situation
when P ′ has an operation which does not exist in P as it is transposed from the
addition mentioned above.

4.1 Deletion of an operation

Figure 3 depicts two situations where an operation appears in P and not in P ′.
First in Figure 3-a, we observe that all operations enabled in state S1′ are also
enabled in state S1. Moreover, there is an operation (namely >R(m)) enabled
in state S that has no match in state S1′. Hence we conclude that, considering
the pair of states S1 and S1′, >R(m) is missing in P ′. Once this difference
has been detected, the pairs of states to be examined next in the process of
comparing P and P ′ are 〈S2, S2′〉 and 〈S3, S3′〉: S2 in P and S2′ in P ′ are
targets of transitions both labelled by the same operation: >X(m). The same
remark applies to S3 and S3′ with the operation <Z(m).

>R(m)

<Z(m)

<Z(m)

>X(m)
deletion

Interface P Interface P’

>X(m)

S2 S3 S2’ S3’

S1’S1

(a) >R(m) deleted in P ′

Interface P

S2

S1

S3

Interface P’

S3’

S2’

S1’

deletion
<Z(m)

>R(m)<Z(m)

>X(m)

(b) >X(m) deleted in P ′

Fig. 3. Diagnosis of deletions

In Figure 3-b we note that first, the operation <Z(m) is enabled in S1′ and
not in S1, and second the operation >X(m) is enabled in S1 but not in S1′. There
are two reasons for this mismatch: either operation >X(m) has been modified
and has become <Z(m), or >X(m) has been deleted. In this example, we can
discard the former possibility because <Z(m) appears downstream in the FSM
of P ′ (it labels an outgoing transition of state S2). Hence, <Z(m) can not be
considered as a replacement for >X(m). Thus, we conclude that >X(m) has been
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deleted in P ′. Once this difference has been detected, the pair of states to be
examined next in the process of comparing P and P ′ is langleS2, S1′〉.

Formally, when comparing two interface FSMs P and P ′, the fact an oper-
ation is defined in P and missing in P ′ is diagnosed in a pair of states 〈s, s′〉
(respectively belonging to P and P ) if the following condition holds (each part
of this condition is explained further down).

‖Label(s•) − Label(s′•)‖ > 1 ∧ ‖Label(s′•) − Label(s•)‖ = 0 (1)

∨ ∃t ∈ s•,∃t′ ∈ s′• : Label(t) 6∈ Label(s′•) ∧ ExtIn(t′, (t◦)•) (2)

In the previous equations, the notations given below apply (examples refer
to Figure 3):

− s• is the set of outgoing transitions of s
(e.g. S1• = {〈S1, >X(m), S1〉, 〈S1, <Z(m), S3〉, 〈S1, >R(m), S2〉}

− t◦ is the target state of the transition t. (e.g. 〈S1, <Z(m), S2〉◦ = S2).
− Label(t) is the label of t. (e.g. Label(〈 S1, <Z(m), S2〉) = <Z(m))
− ‖ X ‖: cardinality of X.
− The ◦ operator (respectively •) is generalised to a set of transitions (respec-

tively states). For example, if T =
⋃n

i=1{ti} then T◦ =
⋃n

i=1{ti◦}; where
n =‖ T ‖. Similarly, operator Label is generalised to a set of transitions.

A deletion is detected in state pair (s, s′) in two cases. The first one (line 1)
is when every outgoing transition of s′ can be matched to an outgoing tran-
sition of s, but on the other hand, there is an outgoing transition of s that
can not be matched to a transition of s′. A second case is when there exists
a pair of outgoing transitions t and t′ (of states s and s′ respectively) such
that: (i) transition t can not be matched to any outgoing transition of s′; and
(ii) the label of t′ occurs somewhere in the FSM rooted at the target state
of t (line 2).2 This second condition is tested in order to determine whether
the non-occurrence of t’s label among the outgoing transitions of s′ should in-
deed be interpreted as a deletion, as opposed to a modification or an addi-
tion. To check if a transition label occurs somewhere in the FSM rooted at the
target of a given transition, we use the following recursive Boolean function:

ExtIn(t, T ) ≡ T 6= ∅ ∧ (Label(t) ∈ Label(T ) ∨
⋃‖T‖

i=1 ExtIn(t, (Ti◦)•)). In other
words, ExtIn(t, T ) (where t is a transition and T is a set of transitions) evaluates
to true if either transition t’s label appears among the labels of transitions in T
(Label(t) ∈ Label(T )) or, there exists a transition taken in T which has a target
state whose set of outgoing transitions (namely T1) is such that ExtIn(t, T1)
evaluates to true. The way it is defined, this recursive function does not converge
if the FSM has cycles, but it can be trivially extended to converge by adding an
input parameter to store the set of visited states and to ensure that each state
is only visited once.

2 By FSM P rooted at s we mean FSM P in which the initial state is set to be s. This
means that we ignore any state or transition that is not reachable from s.
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4.2 Modification of an operation

Figure 4 shows a situation where we can diagnose that operation >X(m) has
been replaced by operation >Y(m) (i.e. a modification). The reason is that the
operation >X(m) is enabled in S1 but not in S1′, and conversely >Y(m) is
enabled in S1′ but not in S1. Moreover, the transition labelled >X(m) does
not match to any transitions t′ in state S1′ such that operation >X(m) occurs
downstream along the branch starting with t′, and symmetrically, >Y(m) does
not match any transitions t of state S1 such that >Y(m) occurs downstream
along the branch starting with t. Thus we can not diagnose that >X(m) has
been deleted, nor can we diagnose that >Y(m) has been added.

In this case, the pairing of transition >X(m) with transition >Y(m) is arbi-
trary. If state S1′ had a second outgoing transition labelled >Z(m), we would
just as well diagnose that >X(m) has been replaced by >Z(m). Thus, when we
diagnose that >X(m) has been replaced by >Y(m), all we capture is that >X(m)
has been replaced by another operation, possibly >Y(m). The output produced
by the proposed technique should be interpreted in light of this.

>X(m)
modification

S2

S1

Interface P

<Z(m)

S2’

S1’

Interface P’

<Z(m)

>Y(m)

S3 S3’

Fig. 4. Diagnosis of a modification/replacement

The state pair to be visited next in the synchronous traversal of P and P ′ is
such that both transitions involved in the modification are traversed simultane-
ously. In this example, 〈S2, S2′〉 should be visited next.

Formally, a modification is diagnosed in state pair (s,s′) if the following
condition holds:
∃t1 ∈ s•,∃t1′ ∈ s′• : Label(t1) 6∈ Label(s′•) ∧ Label(t1′) 6∈ Label(s•)

∧¬∃t2 ∈ s• : ExtIn(t1′, (t2◦)•)) ∧¬∃t2′ ∈ s′• : ExtIn(t1, (t2′◦)•))

5 Implementation details and experiments

The detection algorithm presented below (see Section 5.1) is implemented in a
tool whose main feature is to detect differences between two behavioural inter-
faces that cause that the second interface does not simulate the behaviour of the
first one3[1].

3 See http://mrim.imag.fr/ali.ait-bachir/webServices/webServices.html
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5.1 Detection algorithm

The algorithm implementing the detection illustrated in the previous section is
detailed in Figure 5. Given two interface FSMs P and P ′, the algorithm traverses
P and P ′ synchronously starting from their respective initial states s0 and s′0. At
each step, the algorithm visits a state pair consisting of one state from each of the
two FSMs. Given a state pair, the algorithm determines if an incompatibility
exists and if so, it classifies it as an addition, deletion or modification. If an
addition is detected (e.g. an operation is enabled from s′0 in P ′ and not from s0 in
P ), the algorithm progresses along the transition of the operation in the interface
it has been added. Conversely, if the change is a deletion (e.g. an operation is
enabled from s0 in P and not from s′0 in P ′), the algorithm progresses along the
transition of the deleted operation in. However, if a modification is detected, the
algorithm progresses along both FSMs simultaneously. While traversing the two
input FSMs, the algorithm accumulates a set of differences represented as tuples
of the type Difference defined as below:
type Difference: < State, Transition, State, Transition >
{ Let 〈s, t, s′, t′〉 be of type Difference: s and s′ are states respectively belonging to
FSMs P and P ′ to be compared. t = null ⇐⇒ t′ 6= null ∧ t′ is enabled in P ′ while it
is not in P (t′ added in P ′), t′ = null ⇐⇒ t 6= null ∧ t is enabled in P while it is not
in P ′ (t is deleted), t 6= null ∧ t′ 6= null ⇐⇒ t in P is modified by t′ in P ′. }

For instance, the detection algorithm applied on the motivating example (see
Figure 2) returns the set of tuples {〈S2, <OfflineOrder, S2’, null〉, 〈S4, null, S4’,
<Transfer〉 〈S6, >STN, S6’, >ASN〉} which summarises the differences found
when comparing P ′ to P . It is worth noting that comparing P to P ′ returns
{〈S2’,<null, S2, OfflineOrder〉, 〈S4’,<Transfer, S4, null〉 〈S6’,>ASN, S6, >STN〉}.

The algorithm proceeds as a depth-first algorithm over state pairs of the
compared FSMs. Two stacks are maintained: one with the visited state pairs
and another with state pairs to be visited (see Figure 5, line 5). These state
pairs are such that the first state belongs to the FSM of Pi while the second
state belongs to the FSM of Pj. The first state pair to be visited is the one
containing the initial states of Pi and Pj (line 6). Once a pair of states is visited
it will not be visited again. To ensure this, the algorithm uses the variable visited
to memorise the already visited pairs of states (line 10).

Labels in common among those of outgoing transitions of si and labels of
outgoing transitions of sj are considered as unchanged (no change to detect).
Thus, a set of state pairs is built where states are target states of common labels
(line 11). Also, the algorithm reports all differences between the outgoing transi-
tions of si and the outgoing transitions of sj (line 12). The two set differences of
transitions are put in two variables difPiPj (transitions whose labels belongs to
Label(si•) but do not belongs to Label(sj•)) an difPjPi (transitions whose labels
belong to Label(sj•) but do not belong to Label(si•)). Line 13 calculates all
combinations of transitions whose labels are not in common among Label(si•)
and Label(sj•).
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Detection (Pi: FSM, Pj: FSM): {Difference}
2 { Detection (Pi,Pj) is the set of differences between Pi and Pj. }
3 setRes: { Difference } { the result }
4 si, sj: State { auxiliary variables }
5 visited, toBeVisited: Stack of type <State, State>

{ pairs of states that have been visited / must be visited }
7 toBeVisited.push(< initState(Pi), initState(Pj) >)
8 while notEmpty(toBeVisited)
9 < si, sj > ← toBeVisited.pop()
10 visited.push( < si, sj > ) { < si, sj > is now considered as visited }
11 combEqual ← {(ti, tj) ∈ si• × sj• | Label(ti) = Label(tj)}

{ pairs of matching transitions }
12 difPiPj ← {ti ∈ si• | Label(ti) 6∈ Label(sj•)}

difPjPi ← {tj ∈ sj• | Label(tj) 6∈ Label(si•)}
13 combPiPj ← difPiPj × difPjPi

{ all pairs of si and sj uncorresponding outgoing transitions. }
14 If ‖difPiPj‖ > 1 and ‖difPjPi‖ = 0 then { deletion }
15 For each t in difPiPj do setRes.add(< si, t, sj, null>)
16 If((t◦, sj) /∈ visited) then toBeVisited.push((t◦, sj))
17 If ‖difPjPi‖ > 1 and ‖difPiPj‖ = 0 then { addition }
18 For each t in difPjPi do
19 If (polarity(t) = ‘send’) then setRes.add(< si, null, sj, t>)

{ otherwise this addition does not lead to incompatibility }
20 If ((si, t◦) /∈ visited) then toBeVisited.push((si, t◦))
21 For each (ti, tj) in combPiPj do
22 If ExtIn(ti, (tj◦)•) then { addition }
23 setRes.add(< si, null, sj, tj>)
24 If ((si, tj◦) /∈ visited) then toBeVisited.push((si, tj◦))
25 If ExtIn(tj, (ti◦)• ) then { deletion }
26 setRes.add(< si, ti, sj, null,’deletion’>)
27 If ((ti◦, sj) /∈ visited) then toBeVisited.push((ti◦, sj))
28 If ( (¬∃tj′ ∈ sj• : ExtIn(ti, (tj′◦)•))

∧(¬∃ti′ ∈ si• : ExtIn(tj, (ti′◦)•))) then { modif. }
29 setRes.add(< si, ti, sj, tj>)
30 if((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
31 For each (ti, tj) in combEqual do

If ((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
32 Return setRes

Fig. 5. Detection algorithm

Lines 14 to 16 are dedicated to detect a deletion when an outgoing transition
of si does not match any transition in sj•. The result is returned as set of tuples
< si, t, sj,null > where t is one of the outgoing transitions of si whose label
does not appear in any of sj’s outgoing transitions. As mentioned in Section4.1,
when an operation is deleted in Pj FSM the algorithm progresses in Pi FSM,
along the branch of the transition which does not exist in Pj, but remains in
the same state in Pj FSM.
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The detection of an addition is quite similar to the detection of a deletion
(lines 17 to 20).

The variable combPiPj contains transition pairs such that the label of the first
transition ti belongs to si• but does not belong to Label(sj•) while the label of
the second transition tj belongs to sj• but not to Label(si•). For each transition
pair satisfying this condition, the algorithm checks the conditions for diagnosing
an addition (lines 22 to 24), a deletion (lines 25 to 27) or a modification (lines
28 to 30).

Finally, the algorithm also progresses along pairs of matching transitions, i.e.
pairs of transitions with identical labels (line 31). In fact, if no incompatibilities
are detected in the current state pair, the algorithm will only progress along
pairs of transitions that match one another.

5.2 Complexity of the detection algorithm

Let P and P ′ be two interface FSMs given as input to the detection algorithm,
P (respectively P ′) has n (resp. n′) states and m (resp. m′) transitions. Also,
let w and w′ be the number of distinct transition labels appearing in P and P ′

respectively. We observe that the algorithm performs a depth-first search over
the space of state pairs 〈s, s′〉 such that s is a state of P and s′ is a state of P ′.
The algorithm visits each state pair at most once, therefore one component of
the complexity is O(n ∗n′). We then observe that for each visited state pair, the
algorithm examines transitions pairs 〈t, t′〉 such that t is an outgoing transition
of s and t′ is an outgoing transition of s′. Also, when a transition t in one FSM
can not be matched to a transition in the other FSM, we examine t individually.
Overall each transition pair 〈t, t′〉 such that t is a transition of P and t′ is a
transition of P ′ is examined at most once. Additionally, each transition t in P
and t′ in P ′ is examined at most once individually. Thus another component of
the complexity is O(m ∗m′ + m + m′). Since the first term dominates the other
two, this can be written as O(m ∗ m′). Thus, the complexity of the traversal is
O(n ∗ n′ + m ∗ m′).

For each visited pair 〈t, t′〉 of transitions a condition is evaluated. This con-
dition is based on the transition labels and, in some cases, it also involves a
“look-ahead” operation. The purpose of this look-ahead is to find, for a given la-
bel, whether or not this label appears in the FSM rooted at either the target of t
or the target of t′. This look-ahead can be avoided as follows. In a pre-processing
stage, we traverse each of the two FSMs individually using a breadth-first search
algorithm. During this traversal, we construct a look-up table that maps each
state s to a list of pairs 〈l, b〉 where l is a transition label and b is a Boolean
value indicating whether or not l is the label of a transition reachable from s. For
each state s, we calculate the value of b for each label, based on the correspond-
ing values of b for each direct successor of s. This step is linear on the number
of labels appearing in the FSM. Thus, the complexity of this pre-processing is
O((n+m) ∗w) for P and O((n′ +m′) ∗w′) for P ′ . Since the number of distinct
labels in an FSM is bounded by the number of transitions, the complexity of the
pre-processing stage is bounded by O(n ∗ m + (m)2 + n′ ∗ m′ + (m′)2).
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Adding up the complexity of the pre-processing and the detection algorithm,
the overall complexity is O(n ∗m+(m)2 +n′ ∗m′ +(m′)2 +n ∗n′ +m ∗m′). As-
suming the number of transitions in an FSM is greater than the number of states
(which, modulo one transition, holds because the FSMs are connected graphs),
the complexity is bounded by O((m + m′)2). Thus the worst-case complexity is
quadratic on the total number of transitions in both FSMs.

5.3 Measure of similarity

This section presents a measure meant to give a quantitative evaluation of how
much an interface is different from another one. This measure relies on a function
QS : VStates → [0..1] where VStates is the set of state pairs visited by the
detection algorithm (VStates ⊆ S×S′, S being the set of states in P and S′ the
set of those in P ′). Given a pair of states 〈s, s′〉 ∈ VState, QS(〈s, s′〉) measures
incompatibilities detected at 〈s, s′〉 relatively to the number of transitions in
common between s and s′. The formulæ is (see explanations below):

QS (〈s, s′〉) =







1 if s• = ∅
‖ LC ‖ +

∑

d∈Diff (〈s,s′〉) Weight(d)

‖ LC ‖ + ‖ Diff (〈s, s′〉) ‖
otherwise

LC = Label(s•) ∩ Label(s′•) is the set of labels in common in transitions
whose sources are s and s′. Diff (〈s, s′〉) is the set of differences pinpointed
from the state pair 〈s, s′〉. The function Weight : Difference → [0..1[ is such as
Weight(d) is the penalty associated with d. Penalties are arbitrary chosen and
depend on whether the difference is an addition, a deletion or a modification.

When s does not have any outgoing transitions, QS(〈s, s′〉) = 1. Otherwise,
QS tends toward zero as the weight of incompatibilities, evaluated relatively to
the global number of transitions in common, rooted at s and s′. For a fixed
number of these transitions, more differences are found at 〈s, s′〉 higher is the
dividend and closer to 0 is QS(〈s, s′〉). The divisor, which is meant to keep QS
in [0, 1], is never equal to 0: either s has no outgoing transition (QS(〈s, s′〉) =
1), or s has at least one outgoing transition and it corresponds to a difference
(‖ Diff (〈s, s′〉) ‖> 0) or not (‖ LC ‖≥ 1).

For example, in Figure 2, assuming the penalty for the deletion is set to 0.5,
thus: QS (〈 S3, S3’〉) = (1+0.5)/(1+1)=0.75 while QS (〈 S1, S1’〉) = (1+0)/(1+0)=1

Eventually, to quantitatively compare P and P ′, we propose to calculate the
mean of values returned when applying QS on each pair of states visited by the
algorithm. This is done by the function MQS. MQS (P, P ′) = 1 means that P ′

simulates P .

MQS (P, P ′) =
∑

p∈VStates

QS (p)/ ‖ VStates ‖

In the running example, if the penalty values are set to 0.5 then the mean
quantitative simulation is: MQS (P, P ′) = 0.875.
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5.4 Experimental results

For validation purposes, we built a test collection of 15 behavioural interfaces
derived from the textual description of choreographies expressed in the standard
xCBL4. The experiment consisted in comparing interfaces to each other.

Table 1 gives a fragment of the results obtained when comparing service
interfaces. Each line reports the comparison between the interface seen as a
reference and a particular interface given by its id number (see column Interface).
In the column MQS is displayed the value returned when applying the function
MQS (see above) to the list of differences built by the detection algorithm. The
number of items in this list is given in column Nb diff while the column States
(resp. Transitions) shows how many states (resp. transitions) where found in the
interface to be compared. Each interface has between 3 and 16 transitions. The
interface given as a reference has 11 states and 13 transitions.

Interface MQS States Transitions Nb diff

♯12 1 11 13 0

♯14 0.977 11 13 1

♯13 0.875 10 13 3

♯1 0.43 4 3 11

♯3 0.37 6 6 16

♯5 0.30 8 11 21

♯11 0.233 10 14 19

Table 1. Fragment of experimental results

The interface whose id is ♯11 has 10 states and 14 transitions. It has 19
differences with the interface given as the reference. The value returned by MQS
is 0.233 which is lower then the one returned when comparing the interface whose
id is ♯5. The interface ♯5 has a better score (0.30) then the one which id is ♯11,
even thought ♯5 has less differences then ♯11. The interface ♯12 scores 1 and has
no difference with the reference, thus it simulates the reference interface.

6 Related work

The issues tackled in this paper have been partially addressed before, with vari-
ous points of view. Web service interactions may fail because of interface incom-
patibilities according to their structural dimension. In this context, reconciling
incompatible interactions leads towards transforming message types (using for
instance Xpath, XQuery, XSLT). Issues that arise in this context are similar to
those widely studied in the data integration area. A mediation-based approach is
proposed in [3]. While this approach relies on a mediator (called virtual supplier)

4 XML Common Business Library (http://www.xcbl.org/).
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it focuses on structural dimension of interfaces only. Detecting incompatibilities
is proceeded manually.

In [14], authors introduced a technique to diagnosis message structure mis-
matches between service interfaces and to fix them with adaptors. An extension
of this technique is applied to resolve mismatches between service protocols. The
proposed iterative algorithm builds a mismatch tree to help developers to choose
the suitable ad apter each time and incompatibility is detected. However, this
technique can only be applied to protocols which describe a sequence of opera-
tions. More complex flow controls such as iterative or conditional compositions
are not taken into consideration. The solution proposed in this text does not
have this limitation. Another drawback of this approach is that adaptors have
no control logic and can not resolve complicated protocol mismatches, such as
extra condition, missing condition, or iteration structure, etc.

Compatibility test of interfaces has been widely studied in the context of Web
service composition. Most of approaches which focus on the behavioural dimen-
sion of interfaces rely on equivalence and similarity calculus to check, at design
time, whether or not interfaces described for instance by automata are compat-
ible (see for example [6,11]). The behavioural interface describes the structured
activities of a business process. Checking interface compatibility is thus based
on bi-similarity algorithms [13]. These approaches do not deal with pinpointing
exact locations of incompatibilities as our proposition does.

Recent research has addressed interface similarity measure issues. In [18],
authors present a similarity measure for labelled directed graphs inspired by
the simulation and bi-simulation relations on labelled transition systems. The
presented algorithm returns a value of a simulation measure but does not give
the location of the incompatibilities which have been detected. Its complexity is
exponential or factorial to the number of states of the graphs to be compared.
According to this theoretical result, our algorithm is more efficient. A similar
algorithm with the same limitations and complexity has been used in service
discovery as introduced in [8]. More specifically, some algorithms for detecting
incompatibilities have been proposed, but they focus only on structural aspect
of interfaces and do not address their behavioural dimension [7].

Change patterns have been introduced in [19] which characterise different
types of business process evolution. Each pattern models a set of rules which are
used by the designer to decide whether or not to propagate changes on executing
instances of the modified process or to abort them. As web services are used as
black boxes, this approach does not apply to web services.

Recent research has addressed interface similarity measures issues. In [12],
the author presents a similarity measure for labelled directed graphs inspired by
the simulation and bi-simulation relations on labelled transition systems. The
author applies this technique to detect and correct deadlocks. Other algorithms
based on graph-edit distances have been applied to service discovery in [8], but
do not pinpoint behavioural differences between services.

In [15], authors propose an operator match which is a similarity function com-
paring two interfaces for finding correspondences between models. This function
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is the same as the one introduced in [18] which consider the behavioural seman-
tics. The similarity measure is a heuristic which returns a value which calculated
according to changes involved by the addition and by the deletion of an opera-
tion. However, the result do not pinpoints the exact location of these changes.

In [21], the authors propose an approach to business process matchmak-
ing based on automata extended with logical expressions associated to states.
Their algorithm determines if the languages of two automata (which model two
business processes) have a non-empty intersection. This technique for detect-
ing process differences returns a Boolean output. It does not provide detailed
diagnosis.

7 Conclusion and further study

In this text we have presented both design and implementation of a tool intended
to detect differences (addition, deletion or modification of an operation) that give
rise to behavioural incompatibilities between two service interfaces. The main
originality of the proposed solution is that the detection algorithm does not stop
at the first incompatibility encountered but keeps searching further to identify
all incompatibilities leading up to the final state of one of the interfaces to be
compared. We have introduced a measure of similarity between interfaces. This
measure is meant to be used to select, among a set of services, which one has
the closest interface to a given service interface.

Ongoing work aims at extending the proposed solution toward two directions:
(i) detecting complex types of incompatibilities (e.g. the order of two operations
is swapped or an entire branch is deleted); and (ii) assisting business process de-
signers in determining how to address an incompatibility. Also, communications
are currently assumed to be synchronous. Future work will aim at extending
the technique to address the asynchronous case. This extension can be achieved
by maintaining a buffer of unconsumed messages during the traversal, as it is
proposed in [14].
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