
HAL Id: hal-00954694
https://hal.inria.fr/hal-00954694

Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical analysis of spike trains under variation of
synaptic weights in neuronal networks

Gaia Lombardi

To cite this version:
Gaia Lombardi. Statistical analysis of spike trains under variation of synaptic weights in neuronal
networks. Dynamical Systems [math.DS]. 2014. �hal-00954694�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49671163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00954694
https://hal.archives-ouvertes.fr

POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Matematica

STATISTICAL ANALYSIS OF SPIKE TRAINS

UNDER VARIATION OF SYNAPTIC WEIGHTS

IN NEURONAL NETWORKS

Relatore: Prof. Maurizio Verri

Correlatore: Prof. Bruno Cessac

Correlatore: Prof. Riccardo Sacco

Tesi di Laurea Magistrale di:

Gaia Lombardi

Matr. 769876

Anno Accademico 2012 - 2013

Contents

1 Introduction 1

2 Neuronal Anatomy 4

2.1 Neurons . 4
2.2 Synapses . 6
2.3 Synaptic Plasticity . 7
2.4 From Hebbian rule to STDP 8

3 Spike Trains Statistics 9

3.1 Definitions . 10
3.1.1 Raster Plots . 10
3.1.2 Transition Probabilities define Markov Chains 10
3.1.3 Observables . 12
3.1.4 Empirical averages . 12
3.1.5 Potential . 13
3.1.6 Entropy . 13

3.2 Maximum Entropy Principle 14
3.2.1 Equilibrium distribution and the Gibbs Property . . . 14
3.2.2 Kullback-Leibler Divergence 15
3.2.3 Transition matrix . 16
3.2.4 Results from Perron-Frobenius Theorem 18
3.2.5 Remarks . 20

4 Neuron Models 21

4.1 Integrate-and-Fire model . 21
4.2 The BMS model . 23
4.3 Markov chain for the BMS model 24

4.3.1 The last firing time . 24

2

4.3.2 The conditional probability for the membrane
potential . 25

4.3.3 Some remarks . 27
4.3.4 The transition probability 28
4.3.5 Stationarity . 29

4.4 Maximum entropy principle applied
to the BMS model . 30
4.4.1 Equilibrium state . 30
4.4.2 Entropy for the BMS model 31
4.4.3 Finite Range approximation 31
4.4.4 Convergence of the finite approximation 32
4.4.5 Kullback-Leibler divergence for BMS model 33

4.5 Minimizing Kullback-Leibler divergence 34
4.5.1 Minimizing with respect to synaptic weights 34
4.5.2 With respect to input current 37
4.5.3 Remarks . 38

5 Numerical implementation 39

5.1 BMS model . 39
5.1.1 Members of BMS membrane potential class 39
5.1.2 Methods of BMS membrane potential class 40

5.2 Kullback-Leibler divergence minimization 53
5.2.1 Remarks . 63

6 Numerical simulations 64

6.1 BMS dynamics . 64
6.1.1 Space phase (without noise!) 64
6.1.2 Singularity set . 66
6.1.3 Asymptotic dynamics 66

6.2 Convergence of the minimization of KL
divergence with respect to synaptic weights 72

6.3 Convergence of the minimization of KL
divergence with respect to input current 80

6.4 Experimental data from a real retina 83

7 Conclusions and perspectives 86

Bibliography . 88

3

List of Figures

2.1 A neuron representation from www.kootation.com. 5
2.2 Types of synapses: Electrical and Chemical (from Rajesh P.

N. Rao and Adrienne Fairhall’s slides in Computational Neu-
roscience online course in by University of Washington) 6

2.3 Learning Windows for synaptic plasticity (from Rajesh P. N.
Rao and Adrienne Fairhall’s slides in Computational Neuro-
science online course in by University of Washington) 8

4.1 RC circuit . 22

5.1 Plot of the error function and its derivative 54
5.2 Plots that show numerical error when we calculate the ratio

between error function and its derivative 56
5.3 Plot of functions in C++ and their respective asymptotic ap-

proximations. 58

6.1 Two examples of the partion space for non-perturbed balls in
a system of two neurons. The phase is partitioned from the
firing state of the neurons and is labeled as ω =

(

ω1

ω2

)

. [31] . . 65
6.2 An example of the partitioned space for perturbed ǫ-balls in a

system of two neurons. 67
6.3 Fig (left) Periodic orbit and (right) Chaotic regime, both gen-

erated by BMS potential simulations. 68
6.4 Current profile for N=8. 69
6.5 Plot of the Kullback-Leibler divergence of a function of T for

N = 8 . 70
6.6 Plot of empirical conditional probability for T = 107, R = 4

and N = 8. 71

4

6.7 The mean difference (distance) between approximated weights
and real weights for R = 4, γ = 0.2, σB = 0.2. We use here
random initial weights and ǫ = 0.5. 74

6.8 Plots of KL divergence in (a), (b) and (c) and in (d) the dis-
tance between weights, for N = 5, R = 4, γ = 0.2, σB = 0.2

and T = 105 changing different ǫ’s 75
6.9 Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8 77
6.10 Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8, both

the quantity averaged on 50 different matrices of initial weights. 79
6.11 Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ =

0.1 and N = 8, averaged on 50 different matrices of initial
weights. 80

6.12 Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ =

0.1 and N = 5 with input current updated with minimization
method. 81

6.13 Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 5 82
6.14 Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ =

0.1 and N = 5. The green curve is with the current updating
and the red one is without. 83

6.15 Plots of the KL divergence only with minimization with re-
spect to the weights for experimental data in retina, with
R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8. The time
length of the real raster is T = 10818 84

6.16 Plots of the KL divergence only with minimization with re-
spect to the weights (red) and minimization with respect to the
weights and current (green) for experimental data in retina,
with R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8. The time
length of the real raster is T = 10818 85

5

Sommario

Il progetto di tesi qui presentato è il risultato del lavoro svolto presso il Di-
partimento di Neuroscienza Computazionale del centro di ricerca INRIA a
Sophia Antipolis (Francia), nell’ambito di uno stage della durata di sei mesi,
sotto la supervisione dei Professori Bruno Cessac e Pierre Kornprobst del
gruppo di ricerca Neuromathcomp. Tale lavoro di ricerca è volto allo studio
e al miglioramento di un’analisi statistica della distribuzione di probabilità
di una sequenza di treni d’impulsi (potenziali d’azione) emessi dai neuroni
in caso di stimoli provenienti dall’esterno. È stato ampiamente osservato
sperimentalmente che i treni di impulsi registrati sono difficilmente riprodu-
cibili in un secondo esperimento anche sotto medesime condizioni, ma sono
comunque parse evidenti delle regolarità statistiche. L’idea alla base di que-
sto lavoro è di approssimare la distribuzione di probabilità “nascosta” dietro
questi impulsi nervosi e di estrapolarla direttamente dai dati sperimentali.

Precedenti analisi di ricerca condotte da Cessac, in collaborazione con al-
tri ricercatori, hanno permesso di sviluppare un modello statistico per i treni
di impulsi basato sulla distribuzione di Gibbs per catene di Markov. Que-
sta statistica è successivamente applicata ad un modello BMS (G. Belson,
O. Mazet e H. Soula) che permette di modellizzare gli aspetti fisico-biologici
della risposta neuronale pur mantenendo una limitata complessità di mo-
dellizzazione. Inoltre servendosi di questo modello neuronale per ricavare la
statistica dei treni di impulsi è garantito il controllo della maggior parte dei
parametri che influenzano l’attività del neurone stesso ed è stato così possibi-
le introdurre nella formulazione la dipendenza temporale di alcuni di questi
parametri.

Gran parte dei fisici e dei matematici nel settore della neuroscienza si
trovano di fronte all’impegnativo obiettivo di giustificare matematicamen-
te e riprodurre attraverso metodi numerici il ruolo delle sinapsi in diversi
meccanismi cerebrali, come il processo di apprendimento o di memoria, e ri-
conoscono il fondamentale ruolo che gioca il fattore temporale su questo tipo
di processi e nell’elaborazione dell’informazione da parte dei neuroni. In tale
contesto, questo lavoro di tesi rappresenta un sostanziale, seppur piccolo, pas-
so in avanti verso il miglioramento e il potenziamento di un metodo di analisi

statistica dei treni d’impulsi nel modello BMS prendendo in considerazione
la dipendenza temporale della risposta neuronale.

Basandosi sulla minimizzazione della divergenza di Kullback-Leibler che
misura la “distanza” tra due misure di probabilità, sono stati impostati alcuni
parametri del modello quali i pesi sinaptici e la corrente esterna. Per quel che
riguarda l’implementazione e le simulazioni, questo metodo è stato sviluppato
in C++ ed è stato testato sia su dati generati numericamente attraverso una
rete di neuroni con il modello BMS, sia utilizzando veri dati sperimentali
registrati da una retina in vitro.

Chiaramente, i risultati che si ottengono attraverso l’applicazione del me-
todo proposto su dati reali sono per il momento da considerarsi poco signi-
ficativi per un’esaustiva interpretazione. Ciononostante, sembrano fornirci
incoraggianti segnali che stimolano a proseguire in questa direzione e a uti-
lizzare per esempio dati sperimentali di diversa natura o testare la stessa sta-
tistica su modelli neuronali alternativi a quello presentato in questo lavoro
di tesi.

2

Abstract

The present work arises from a six month internship experience in the Com-
putational Neuroscience Department with the Neuromathcomp team of re-
search of INRIA institute in Sophia Antipolis (France), in particular with
the major collaboration of professors Bruno Cessac and Pierre Kornprobst.
It concerns an already existing statistical analysis of the hidden probability
distribution of spike trains (or action potential) that neurons emit when they
are subject to stimuli from the external world. In previous research activities
conducted by Cessac and coworkers the spike trains statistics was applied to
a neuron model, which seems to be a good compromise between biological
characterization and modelistic tractability, where it is possible to control all
the parameters involved and where we were able to easily add a new method
to let the model be more flexible to parameter changes in time. Most of
physicists and mathematicians who study neuroscience are dealing with the
challenging purpose to explain mathematically and to reproduce numerically
the role of synapses in brain mechanisms such as learning and memory, and
it is widely recognized that the temporal component in neuronal processing
information is an essential feature. In this context, the present work is a
little step forward to improve the statistics of spike trains in a neuron model
taking into account the temporal dependence of the neuron response. Based
on the minimization of the Kullback-Leibler divergence, parameters of the
neuron model such as synaptic weights and external input are adjusted. We
first applied the method to data artificially generated with the neuron model
and at the end of the internship to experimental data recorded from a real
retina in vitro. Clearly, results from the application of the proposed method
to the interpretation of real experimental data from a retina in vitro are still
preliminary. Nevertheless, they seem to provide an encouraging indication to
pursue testing the method with other experimental data of different nature
or applying the method to other more complicated neuron models.

Chapter 1

Introduction

Neuroscience is a complex and amazing discipline aimed to explore the ner-
vous system and to understand the biological basis of its behavior. The recent
fast growing of this field inspired physicists and mathematicians to develop
models permitting the analysis of the nervous system, where neurons com-
municate among them through electrical signals which carry information.
However, basic questions are still open: how do they process, encode and
transmit this information? The Neuromathcomp research team in INRIA
(Institut National de Recherche en Informatique et en Automatique) located
in Sophia Antipolis (France), has long-standing experience in the study neu-
ron behavior and try to give answer to these and other questions from a
mathematical and computational perspectives. They analyze the brain func-
tions in terms of information processing properties of the neuron system and
develop mathematical models for neuron network dynamics. In particular,
they focused their studies on neurons placed in the retina, especially be-
cause of its interesting features. As a matter of fact, even though retina is
an accessible part of the brain [23] and a prominent system to study the
neurobiology and the computational capacity of coding signals, some of its
neuronal functions are stil unknown.

The present thesis is part of an existing work in the statistical analysis
of neuron activity in retina developed by B. Cessac and his colleagues [3],
[37], [8], [5], [38], [4], [31]. This work focuses on methods from statistical
physics and probability theory allowing the analysis of spike trains in neural
networks. A spike train, as it will be explained in chapter 3, is a sequence
of electrical signals that the neuron emits when it is subject to a stimulus
from the external world and the role of the brain is to analyze this neural

1

code and to infer crucial information about the stimulus. In neuroscience
how the brain can code these spike trains and how the stimulus is encoded
by the nervous system are still unsolved questions. Moreover, spike trains
are usually not reproducible when repeating the same experiment even with
a very good control on stimuli or ensuring that the experimental conditions
have not changed. Therefore, researchers are seeking statistical regularities
in spike trains. The idea behind Cessac’s work is to assume that the spike
train statistics can be summarized by a hidden probability characterizing the
probability of spiking patterns. Thus, one goal is to approximate this hidden
probability distribution directly from experimental data, as shown in details
in [6]. In chapter 3, we will describe some theoretical tools allowing to handle
this purpose based on Cessac and Palacios’ work [6]. It is worth recalling
that since researchers are constantly seeking statistical regularities in spike
trains, they define statistical indicators such as firing rate, probability of spike
coincidence, spike response function, spike correlations and so on [1] [15] [17].
Approximating the probability distribution and providing an accurate model
for spike train statistics is therefore an early step for “reading the code”.

Nevertheless, obtaining statistical models from experimental data or se-
lecting a model among many others are difficult tasks. For example, it has
been long believed that firing rates (the probability that a neuron emits
a spike in a certain time interval) were carrying most of the information
that neurons transmit. As a consequence the canonical probability distribu-
tion which reproduces the firing rates without additional assumptions, is a
Bernoulli distribution, and the probability that a given number of spikes is
emitted within a fixed time interval is a Poisson [20] [18]. However, more re-
cent experiments evidenced the role of spike timing or spike synchronization,
in processes such as vision or interactions between perception and motion [21]
[29] [25]. Thus, one has to consider more elaborated statistical models for
spike trains than Poisson distributions. Furthermore, extrapolating statisti-
cal models from experimental data, others problems occur such as obtaining
“clean” data with a good control on parameters, dealing with finite sampling,
non stationarity, synaptic plasticity or adaptation effects. Clearly, there is
not only a viable solution to obtain statistical models and several approaches
have been proposed in literature [32] [28].

As a consequence, it seems simpler to characterize statistics for spike
trains in neuronal network models where it is possible to control exactly the
parameters involved (number of neurons and samples and duration) [4] [3].

2

We will consider the BMS model (G. Belson, O. Mazet e H. Soula), a possi-
ble model for neurons which can be considered a good compromise between
analytical tractability and biological realism. For sake of completeness in
chapter 4 we will thoroughly discuss the BMS model (see [4] [3] for more
details).

Another important aspect considered in this manuscript, which concerns
the principal contribution of this thesis to the team of research, is the role of
parameters time dependence in a neuron model. Nowadays in literature [2]
[24] [12] [17] [16] [18] [19] [21] [22] [26], it is widely recognized that synapses,
which are responsable for learning and memory, have a very relevant time
dependent behavior (section 2.4). The temporal dependence is mostly due to
synaptic plasticity (namely the ability of synapses to strengthen or weaken
over time, in response to increases or decreases in their activity) which ap-
pears to play a central role in extrapolating the spike train statistics. The
challenging purpose of this thesis is to add a temporal component in the
existing theory carried on by B. Cessac. Minimizing the Kullback-Leibler di-

vergence (sections 3.2.2, 4.4.5 and 4.5), which is in information theory [6] [34]
[33] an indicator of the distance between two probability distributions (in our
case the “real” one extrapolated from the neuron model and the hidden dis-
tribution we would like to find), we change over time two parameters of the
model: synaptic weights and external input. We expect to find an approx-
imating statistical distribution that permitts to improve these parameters
of the neuron model such that the Kullback-Leibler divergence between this
and the distribution we want to approximate goes to zero during simulation
steps. Furthermore, we will apply our method, which is fully described in
section 4.5 and 5.2, to experimental data recorded from a retina in vitro.

This work is organized as follows. In chapter 2 the anatomy of neurons
and other basic features we will use along this manuscript are provided, in
order to let the reader feel more comfortable with a not so spread field of
research such as Neuroscience. We will continue in chapter 3 and 4 with
statistical formalism and neuron models respectively, than with numerical
implementation and simulations in chapters 5 and 6.

3

Chapter 2

Neuronal Anatomy

2.1 Neurons

A neuron is an electrically excitable cell that propagates signals rapidly, gen-
erating chemical and electrical pulses, called action potentials or spikes, which
can travel down nerve fibers. Neurons represent and transmit information
by firing sequences of spikes in various temporal patterns.

In practice, these electrical signals are the difference in electrical potential
between the interior of a neuron and the surrounding extracellular medium.
Under resting conditions, the potential inside the cell membrane has a value
approximately of −70mV with respect to the potential outside and the cell is
said to be polarized. Ion pumps located in the cell membrane maintain con-
centration gradients that support this membrane potential difference. Ions,
thus, flow into (and out of) a cell through open channels and create a current
that makes the membrane potential more positive (or negative), a process
called depolarization (or hyperpolarization). Then, if a neuron is depolarized
sufficiently to raise the membrane potential above a threshold level the neu-
ron immediately generates an action potential (or a spike). Action potentials
play a centrale role in cell-to-cell communication, thanks to their speed and
their ability to be propagated over large distances without attenuation.

A typical neuron (there is a wide variety in shape, size and properties)
can be decomposed in three anatomical and functional parts, called dendrites,
soma and axon as shown in figure 2.1. The soma is the central part, where
the nucleus of the neuron is placed, and performs an important nonlinear
processing activity. The dendrites are cellular extensions that allow the neu-
ron to receive inputs from the other neurons through synaptic connections

4

Figure 2.1: A neuron representation from www.kootation.com.

and that are considered as linear combiners of these inputs. The axon is a
long projection of the nerve cell which carries nerve signals away from the
soma (and sometimes carries information back to it). The axon is divided in
three important parts: the axon hillock, the most easily-exited part of the
neuron and the spike initiation zone for the axon; the central part of the
axon which propagates the information and the axon terminal, which con-
tains the synapses, specialized structures where neurotransmitter chemicals
are released in order to communicate with target neurons.

5

2.2 Synapses

A synapse is a “connection” or junction between two neurons, the presynaptic
and the postsynaptic neurons, that permits them respectively to send and
to receive signals. There are two different kinds of synapses as shown in
figure 2.2: the electrical and the chemical synapses. The first type uses gap
junctions to connect the two neurons, namely this connection allows through
ionic channels to transmit very quickly a change in membrane potential from
one neuron to another. The chemical synapse, instead, uses neurotransmitter
molecules, that are stored in “bags” called vesicles at the end of the axon.
When a spike arrives, it causes the bags to fuse with the membrane of the cell
and to release the neurotransmitters into the synaptic left (the gap between
the two neuron connected with the synapse) in order to reach the “gates”,i.e.
ionic channels, of the second neuron and change the voltage inside. Thus,
this second type of synapse involves complex mechanisms that start from a
spike, an electrical pulse, that causes a chemical event that, in turn, causes
an electrical change in the second neuron. Contrarily to electrical, a chemical
synapse allows to control the way in which the second neuron is affected by
the spike, by simply changing the number of ionic channels or the concentra-
tion of admitted ions.

Figure 2.2: Types of synapses: Electrical and Chemical (from Rajesh P.
N. Rao and Adrienne Fairhall’s slides in Computational Neuroscience online
course in by University of Washington)

The synapse can be either excitatory or inhibitory. An excitatory synapse
tends to increase the postsynaptic membrane potential of the neuron that re-

6

ceives the signal (EPSP, excitatory postsynaptic potential). On the opposite,
an inhibitory synapse tends to decrease the membrane potential (IPSP). The
excitation usually happens thanks to sodium Na+ and the inhibition thanks
to potassium K+. The first enters in the postsynaptic neuron, when the ionic
channels are opened by the neurotransmitters, and causes depolarization in
the cell, instead the potassium comes out from the neuron and causes hyper-

polarization.
Synapses are responsable of learning and memory and regulate these activity
through the Synaptic Plasticity.

2.3 Synaptic Plasticity

The synaptic plasticity is the ability of a synapse to change in strength the
connection between neurons depending on how they participate in the firing
activity. A clear example of Synaptic Plasticity is the Hebbian Plasticity,
named after Donal O. Hebb (1904-1985) who was a Canadian psychologist,
and it is explained as follows:

if a neuron A repeatedly takes part in firing neuron B, then the synapse

from A to B is strengthened.

In brain experiments researchers have observed at least two main factors
of evidence for Hebbian Plasticity: the LTP (long term potentiation) and
the LTD (long term depression). It was experimentally observed in most of
the areas of the brain, especially in the hippocampus, that when a neuron A
is stimulated and this stimulation causes the neuron B to fire, it is possible
to measure an increase in the EPSP from neuron A to neuron B that lasts
for hours or days (LTP). The opposite (LTD) was observed if the neuron B
does not fire when neuron A is stimulated.

7

2.4 From Hebbian rule to STDP

Moreover, it turns out that the synaptic plasticity depends on Spike Tim-

ing, that is the relative time of input and output spike. Namely when the
postsynaptic neuron fires after the presynaptic neuron it was observed LTP,
instead when the postsynaptic fires before there is an LTD effect. If we sum-
marize this particular result for several intervals between input and output
spikes, we get the learning windows, as shown in figure 2.3, that character-
izes the synaptic plasticity. This effect is called STDP (spike time dependent
plasticity) and it is a particular example of Hebbian learning.

Figure 2.3: Learning Windows for synaptic plasticity (from Rajesh P. N. Rao
and Adrienne Fairhall’s slides in Computational Neuroscience online course
in by University of Washington)

8

Chapter 3

Spike Trains Statistics

As discussed in the previous chapter, neurons when submitted to external
stimuli or other neurons activity generate action potentials or “spikes”, which
are pulses of electrical signals. They respond to excitations by emitting se-
quences of spikes or “spike trains” and it is commonly believed that these spike
trains carry information in their structure, e.g. spatial (neuron-dependent)
and temporal (spike time) structure, and form a neural code. However, neu-
ral responses are not exactly reproducible: an experiment reproduced several
times with the same conditions does not give rise to the same spike trains,
although some regularity is observed. As a consequence, characterizing the
relationship between stimuli and spike responses is equivalent to determin-
ing the most adequate probability distribution which relates a stimulus to
its neural response. In mathematical terms, the problem of analyzing the
neural code amounts to a problem of approximating from data some hidden
probability measure µ of spiking patterns. There exist several attempts to in-
fer this probability from data and/or general principles, based on Poisson or
more general point processes, Bayesian approaches, Linear non-linear model
[39], generalized linear model (GLM) [5] and many others. At the INRIA
Department of NeuroMathComp for Neuroscience the presently most widely
explored approach is the Maximum Entropy Principle [7] [6] [37] that allows
to propose a spike train statistics model making restrictions to empirical ob-
servations. Before explaining this principle some definitions and notations [6]
are useful to better understand the mathematical background of this write.

9

3.1 Definitions

3.1.1 Raster Plots

We consider a network of N neurons. We assume that there is a minimal time
scale δ, set to δ = 1 ms without loss of generality, namely there are no spikes
between milliseconds, and than the dynamics can be discretized assuming
the recording time as an integer. Each neuron i at each integer time t can be
associated with a variable ωi(t); ωi(t)=1 if neuron i fires at time t, ωi(t)=0
otherwise. A spiking pattern is a vector of the form ω(t)

def

= [ωi(t)]
N

i=1, and
Ω = {0, 1}N is the set of spiking patterns. The ωnm = ω(t){m≤t≤n} is a spike
block of ordered list of spiking patterns in the set Ω = {0, 1}N(n−m+1).
We call a raster plot a bi-infinite sequence ω = {ω(t)}+∞

t=−∞ of spiking pat-
terns.

3.1.2 Transition Probabilities define Markov Chains

We are interested in the probability that neurons emit spikes at some times.
Taking into account neuron dynamics where strong memory effects arise, it
is likely that this probability depends on the entire history of the neuronal
network and on many other biophysical parameters. A first possible ap-
proximation is to consider that the probability of a neuron firing at time t
depends only on the spikes emitted in the past and not on the entire set of
variables defining the neural activity (membrane potentials and so on) in the
network. Then, we are seeking a family of transition probabilities of the form
P
[

ω(t) | ωt−1
t−D

]

, where D is the memory depth of the evolution.
Transition probabilities with finite memory depth define a “Markov Chain”,
i.e. a random process where the probability to be in some state at time t
depends only upon a finite past. Therefore, assume that we know the prob-
ability of occurence of the block ωt−1

t−D

P
[

ωt−1
t−D

]

= P [ω(t−D), ω(t−D + 1), ... , ω(t− 1)] (3.1)

then, the probability of the block ωtt−D is

P
[

ωtt−D
]

= P [ω(t−D), ω(t−D + 1), ... , ω(t)] =

P [ω(t) | ω(t−D), ω(t−D + 1), ... , ω(t− 1)]P [ω(t−D), ω(t−D + 1), ... , ω(t− 1)]
(3.2)

10

thus:
P
[

ωtt−D
]

= P
[

ω(t) | ωt−1
t−D

]

P
[

ωt−1
t−D

]

(3.3)

The main problem of this equation is that P
[

ωtt−D
]

depends on P
[

ωt−1
t−D

]

,
which is not a priori determined and there are infinitely many choices for this
value. Thus, a second assumptions is to consider time-invariant transistion
probabilities. This means that for each possible spiking pattern α ∈ Ω, for all
possible “memory” blocks α−1

−D ∈ ΩD and ∀t, P
[

ω(t) = α | ωt−1
t−D = α−1

−D
]

=

P
[

ω(0) = α | ω−1
−D = α−1

−D
]

. This is called a stationary process. In Markov
Process theory this means to consider the irreducibility of the Markov Chain,
i.e. ∃t ∀i, j such that every transition from i to j is admissible, namely the
strictly positivity of all probabilities. Moreover, if we assume the positivity
together with the stationarity, the propriety of ergodicity of the system is
ensured, or better it is ensured the existence of a unique probability µ, called
the asymptotic probability of the chain, such that, it is possible to associate
P
[

ω(t) | ωt−1
t−D

]

with µ
[

ωt−1
t−D

]

in this way:

µ
[

ωtt−D
]

=
∑

ω(t)

P
[

ω(t) | ωt−1
t−D

]

µ
[

ωt−1
t−D

]

. (3.4)

Furthemore, the procedure can be iterated

µ
[

ωtt−D
]

=
∑

ω(t)

P
[

ω(t) | ωt−1
t−D

]

P
[

ω(t− 1) | ωt−2
t−D

]

µ
[

ωt−2
t−D

]

(3.5)

and so on. Thus, if the time interval t−D is sufficiently long (tends to infin-
ity) the probability of a block ωtt−D converges to µ

[

ωtt−D
]

whatever µ
[

ωt−1
t−D

]

is. Namely, if the stationarity and the positivity of all probabilities hold,
after a sufficiently long time it is possible to determine µ independently from
the initial condition.

A fourth approximation we used in this report is the conditional indepen-
dence between the N neurons and it reads:

P
[

ω(t) | ωt−1
t−D

]

=
N
∏

i=1

P
[

ωi(t) | ωt−1
t−D

]

(3.6)

11

3.1.3 Observables

We call observable a function which associates a real number to a raster plot

f : Ω −→ R. (3.7)

An observable has a finite range k if:

f(ω+∞
0) = f(ωk−1

0), (3.8)

i.e. it depends only on the k first terms in the raster.
The average of f with respect to µ is :

µ[f] =

∫

fdµ. (3.9)

3.1.4 Empirical averages

In experiments, raster plots have a finite duration T and one has only access
to a finite number N of rasters denoted ω(1), ... , ω(N). From this data one
computes empirical averages of observables. The first important assumption
to compute empirical averages is the stationarity discussed in section 3.1.2
(time-invariant assumption). With stationarity it is possible to reduce the
empirical average to a time average, π(T)

ω [f] for an observable function f

computed on the raster ω over time T .

π(T)
ω [f] =

1

T

T
∑

n=1

f(ωk(n)) (3.10)

In addition, we know that for distinct rasters ω(1), ω(2), the empirical averages
fluctuate from one to the other, i.e. π

(T)

ω(1) [f] 6= π
(T)

ω(2) [f], and those fluctations
depend on T . Anyway, maintaining the assumptions for the Markov Process
of stationarity and ergodicity, the time averages converge almost surely to
the hidden probability µ and we have

π(T)
ω [f] −→

T→+∞
µ[f]. (3.11)

12

3.1.5 Potential

A Potential is a function of the form

φβ : Ω −→ R,

ω 7−→
N
∑

k=1

βkOk

(3.12)

where the coefficients βk are finite real numbers and O is an observable
function of the form ω 7−→ ∏r

u=1 ωku(nu), where nu is a time index and
u = 1, . . . , r for some integer r > 0.
Moreover, the Normalized Potential for the distribution µ is the function:

φt(ω
t
t−D)

def

= logP
[

ω(t)|ωt−1
t−D

]

. (3.13)

3.1.6 Entropy

The entropy [9] is the maximal rate of information gain per time that can be
achieved by coarse grained observations on a measure-preserving dynamical
system and for a stationary probability distribution µ reads:

h[µ] = − lim
n→+∞

1

n

∑

ωn
1

µ[ωn1] log µ[ω
n
1], (3.14)

where the sum holds over all possible blocks ωn1 . This definition holds for
systems with infinite and finite memory. In the case of a Markov Chain with
memory depth D > 0, we have

h[µ] = −
∑

ωD+1
1

µ
[

ωD1
]

P
[

ω(D + 1)|ωD1
]

logP
[

ω(D + 1)|ωD1
]

. (3.15)

and if D = 0

h[µ] = −
∑

ω(0)

µ [ω(0)] log µ [ω(0)] . (3.16)

The entropy is zero if the probability is concentrated in one state and it
reaches its maximum value if µ is equidistributed in Ω. For this reason,
we can state that the entropy quantifies the information known about the
probability µ.

13

3.2 Maximum Entropy Principle

Assume that the spike train statistics is distributed according to a hidden
probability µ and we want to approximate this probability. Maximum en-
tropy provides a method that allows us to approach µ from data. It se-
lects among all probability distributions, consistent with empirical data con-
straints, the one with the highest entropy, i.e. the most random, to have
a probability that includes the least amount of information we have about
the system and no more. From the ergodic theory [10] we know that the
probabilty maximizing the entropy is the Gibbs distribution.

3.2.1 Equilibrium distribution and the Gibbs Property

Suppose now to have finite number N of rasters that can be observed thanks
to the potential φβ, we are looking for a probability µ that maximizes the
entropy among all distributions ν with a prescribed expected value ν[φβ] :=
∑

ω(r)∈Ω ν[ω]φβ(ω) for the observable φβ. This means we have to solve a
variational problem under the constraint:

h[µ] = max{h[ν] : ν[φβ] = E}. (3.17)

As the function ν 7−→ h[ν] is strictly concave, there is a unique maximis-
ing probability µ given the value E and it is obtained with the method of
Lagrange multipliers [9]. The value E is extrapolated from experimental
observations. Thus, the formula for the topological pressure

P (φβ) = sup
ν∈Minv

(h[ν] + ν[φβ]) = h[µ] + µ[φβ], (3.18)

where Minv is the set of all possible stationary probabilities ν on the set
of rasters with N neurons, maximizes the entropy given the information E

we have about the system. Looking at the second equality, the variational
principle selects among all possible probabilities ν one probability, which
is the supremum, the Gibbs distribution µ. Moreover µ is the equilibrium

distribution and for D = 0 (no memory) satisfies

µ[ω(0)] =
e−φβ(β,ω(0))

∑

ω(0) e
−φβ(β,ω(0)) . (3.19)

14

For a generic potential φβ and more in generale for D > 0 it obeys: ∃A,B > 0

such that, for any block of the form ωn0 , as in [5], holds

A ≤ µ[ωn0]

e−(n−D+1)P (φβ)eφβ
≤ B. (3.20)

Once we have chosen a set of constraints and found the parameters β
to maximize the entropy, how can we check the goodness of a model and
moreover, if we would like to change the constraints how can we compare
between two models?
A valid criterion for modeling comparison is the Kullback-Leibler divergence

[33] [6].

3.2.2 Kullback-Leibler Divergence

Let µ, ν be two T -invariant measures. The Kullback-Leibler divergence
between µ and ν is given by:

d(µ, ν) = lim sup
n→+∞

∑

ωn
0

µ[ωn0] log

(

µ[ωn0]

ν[ωn0]

)

. (3.21)

Minimizing the divergence corresponds to minimizing “what is not explained
in the measure µ by the measure ν”.
In our case where µ is the hidden probability measure, and is ergodic because
of the assumptions in section 3.1.2, and µβ is a Gibbs distribution with a
potential φβ, both defined in the same set of sequences, the following equality
holds [6]:

d(µ, µφβ) = P (φβ)− µ(φβ)− h(µ). (3.22)

This allows us to estimate the “distance” of our model from the hidden prob-
ability µ, providing the exact spike train statistics. The smaller d(µ, µφβ) the
better is the model. Unfortunately, since µ is unknown this criterion looks
useless. However, from section 3.1.4 we know that µ is well approximated
by π

(T)
ω (φβ) which can be computed from the raster. Additionally, the en-

tropy h(µ) is unknown. Anyway, if we consider two statistical models µβ1 ,
µβ2 with potential φβ1 , φβ2 to analyze the same data, it turns out that h(µ)
is constant (because it only depends on data). Thus, comparing these two
models is equal to compare P (φβ1) − µ(φβ1) and P (φβ1) − µ(φβ1). Finally,

15

the model φβ1 is better than the model φβ2 if

P (φβ2)− µ(φβ2) ≪ P (φβ1)− µ(φβ1) (3.23)

The choice of the potential (3.12), i.e. the choice of observables, gives the
constraints for the statistical model. A normalization procedure allows to
find the normalized potential from which the transition probabilities are con-
structed.

3.2.3 Transition matrix

Consider two spike blocks ω′, ω of memory D ≤ 1. The transition ω
′ −→ ω

is legal if ω′ has the form ω(t −D)ωt−1
t−D+1 and ω has the form ωt−1

t−D+1ω(t),
i.e. ω

′, ω must correspond to overlapping blocks, for example:

ω
′ =

[

0 0 1

0 1 1

]

; ω =

[

0 0 1

1 1 0
.

]

(3.24)

Any block of the form ωtt−D of range R = D + 1 can be viewed as a legal
transition from the block ω

′ = ωt−1
t−D to the block ω = ωtt−D+1 and in this

case we write ωtt−D ∼ ω
′
ω.

The transition matrix is defined as:

Lω′,ω =

{

eφβ(ω
t
t−D) if ω′

ω is legal with ωtt−D ∼ ω
′
ω

0, otherwise.
(3.25)

This matrix has some properties useful to find the transition probabilities and
than the normalized potential for solving the maximum entropy principle.
Before examining these properties, we recall the Perron-Frobenius theorem

for sake of completeness.

16

Theorem 1 (Perron-Frobenius Theorem). Let L be an irreducible matrix

M ×M .

1. L has a positive (real) eigenvalue λmax such that all other eigenvalues

of L satisfy

|λ| ≤ λmax (3.26)

2. Furthermore λmax has algebric and geometric multiplicity one and has

an eigenvector x such that x > 0.

3. Any non-negative eigenvector is a multiple of x.

4. More generally, if y ≥ 0, y 6= 0 is a vector and µ is a number such that

Ly ≤ µy (3.27)

then

y > 0, and µ ≥ λmax (3.28)

with µ = λmax if and only if is a multiple of x.

5. If 0 ≤ S ≤ L, S 6= L then every eigenvalue σ of S satisfy

|σ| < λmax. (3.29)

6. In particular, all the diagonal minors Li obtained from L deleting the

i-th row and column have eigenvalues all of which have absolute value

λmax.

7. If L is a primitive, then all other eigenvalues of L satisfy

|λ| < λmax. (3.30)

17

3.2.4 Results from Perron-Frobenius Theorem

Let us first rewrite the transition matrix as follows:

Lω′,ω =

{

P
[

ω(t) | ωt−1
t−D

]

if ω
′ ∼ ωt−1

t−D, ω ∼ ωtt−D

0, otherwise.
(3.31)

So as Theorem 1 states, L has a unique eigenvalue λmax real, positive and
strictly larger than the modulus of all other eigenvalues.
It is possible to associate with this eigenvalue a left and a right eigenvectors
l and r respectively, with strictly positive entries:

lL = λmaxl, Lr = λmaxr. (3.32)

Moreover λmax obeys the bound

min
ω′

∑

ω

Lω′,ω ≤ λmax ≤ max
ω′

∑

ω

Lω′,ω, (3.33)

and using the constraint for the normalization of the conditional probabilities

∑

ω(t)

P
[

ω(t)|ωt−1
t−D

]

= 1, ∀ωt−1
t−D ⇒

∑

ω

Lω′,ω = 1, ∀ω′,
(3.34)

it results λmax = 1.
In addition, we have

Lr = r ⇔ ∀ω′,
∑

ω

Lω′,ωrω = λmaxrω′ = rω′ , (3.35)

and rω′ = 1 is a solution ∀ω.
Concerning the left eigenvector, l obeys

lL = λmaxl = l. (3.36)

Let
〈

l, r
〉

=
∑

ω′ lω′rω′ be the scalar product, then we have
〈

l, r
〉

=
∑

ω′ lω′ .
Finally, setting

µω =
lω

〈

l, r
〉 (3.37)

18

we obtain that µ obeys:

• µL = µ;

•
∑

ω µω = 1.

These two relations express the fact that µ is the unique invariant measure

for the Markov Process associated with the family of transition probabilities
P [·|·].

An additional consequence of Perron-Frobenius Theorem is the following con-
vergence for all vector ν with positive entries:

νLn −→
n→+∞

µ (3.38)

where ν corresponds to a probability measure suitably normalized. This il-
lustrates the convergence of the Markov Process and comes from the fact that
the maximum eigenvalue is equal to one and the second dominates the others
λmax = λ1 = 1 ≥ |λ2|≥ |λ3|... ≥ |λn|≥ 0. Moreover, the convergence speed
is exponential with a rate affected by the first and the second eigenvalues.
In term of spike statistics this means that, starting from any initial probabil-
ity ν, νLn which gives the probability of the block ωt−1

t−D after n times steps
converges to µ when n→ +∞.

19

3.2.5 Remarks

The maximum entropy method, as well as other proposed in the literature,
were mainly developed for data analysis: one speculates a form for transi-
tions probabilities, performs parameter fitting and then uses the model to
decode or to extrapolate the statistics of complex events. Clearly, obtaining
statistical models from experimental data or selecting a model among many
others are difficult tasks. One significant obstacle is the difficulty of obtain-
ing “clean” data with a good control on parameter experiments, moreover one
has to solve delicate questions such as the control of finite sampling effects
(finite duration, finite number of experiments), extrapolation of the probabil-
ity distribution characterizing small neural assemblies to a large population
of neurons, non-stationarity, synaptic plasticity effects, and so on. It appears
simpler to characterize spike train statistics in neural networks models where
one controls exactly the neural network parameters, the number of involved
neurons, the number of samples, and the duration of the experiment. So the
questions now are: can we have a reasonable idea of what could be the spike
train statistics studying a neural network model? Does Gibbs distribution
arise in these models? What is the shape of the potential?
In the next chapter we will try to answer these questions providing first a
more general idea of what a neural network model is.

20

Chapter 4

Neuron Models

4.1 Integrate-and-Fire model

We explained in chapter 2 that a neuron communicates with other neurons
through pulses of electrical signals, called action potentials or spikes. During
an action potential, the membrane potential follows a rapid and high tra-
jectory (a pulse) and returns to a value that is hyperpolarized with respect
to the threshold because of a chemical mechanism modeled quite accurately
in literature. Nevertheless, neuron models can be simplified and simulations
can be accelerated significantly if the chemical mechanisms are not explic-
itly included in the model. This is the main idea on which Integrate-and-
Fire (IF) [14] [13] models are based, only considering neurons as points that
emit a spike every time their membrane potential exceeds the threshold. By
avoiding a biophysical description of the action potential, Integrate-and-Fire
models are left with the simpler task of modeling only subthreshold mem-
brane potential dynamics. This can be done with different level of rigor or
details, depending on what the model is going to study. In this thesis we will
analyze the statistics of a long sequence of spikes in a network of neurons, so
it is useful to have a model for only one neuron simple to handle. A simpler
version of IF model is the Leaky Integrate-and-fire (LIF) model.
The main idea is to consider the membrane cell and the system around it
like an electric circuit with different components.

21

Figure 4.1: RC circuit

The Leak Integrate-and-Fire simplifies it with an RC circuit, which is
studied applying the Kirchhoff’s law and then Ohm’s law in this way:

Ii(t) = IR + IC ,

Ii(t) = giVi(t) + Ci
dVi(t)

dt
,

(4.1)

where gi = 1
Ri

is the membrane conductance. In the more general form
(the generalized Integrate-and-Fire model) gi depends on Vi plus additional
variables such as the probability of having ionic channels open and depends on
time as well. Whereas for the Leak Integrate-and-Fire model, gi is constant
and τL = RiCi is the characteristic time for membrane potential decay when
no current is present(“the leak term”).

dVi

dt
= −Vi

τL
+
Ii(t)

Ci
. (4.2)

22

4.2 The BMS model

The BMS model was for the first time introduced by G. Belson, O. Mazet
and H.Soula and it considers a neuron that emits a spike starting from the
discrete time IF model. Indeed, if we consider that the Integrate-and-Fire
will be used in numerical simulations, thus we can apply the Euler method
in order to solve the differential equation. Fixing the sampling time dt = 1,
the capacitance Ci = 1 and γ = 1 − 1

τL
, where τL ≥ 1, thus γ ∈ [0, 1[, the

equation reads:
Vi(t+ dt)− Vi(t)

dt
= −Vi(t)

τL
+
Ii(t)

Ci
,

Vi(t+ 1) = Vi(t)−
Vi(t)

τL
+
Ii(t)

Ci
,

Vi(t+ 1) = (1− 1

τL
)Vi(t) +

Ii(t)

Ci
,

Vi(t+ 1) = γVi(t) +
Ii(t)

Ci
,

Vi(t+ 1) = γVi(t) + Ii(t).

(4.3)

The synaptic weights are taken into account in the N ×N matrix W , that
has entries Wij, the weight of connection from neuron j to neuron i. The
synaptic effect is incorporated in the input current, that reads

Ii(t) =
N
∑

j=1

WijZ[Vj] + Ii, (4.4)

where Ii is an external input applied to neuron i that does not depend on
time. Moreover, a spike is modeled by the function Z(x) = χ(x) ≥ θ where
χ(x) is equal to 1 when x > θ and 0 otherwise. In this context the BMS
model reads

V (t+ 1) = F (V (t)),

Fi(V) = γVi(1− Z[Vi]) +
N
∑

j=1

WijZ[Vj] + Ii; i = 1, ... , N.
(4.5)

where V = [Vi]
N
i=1 is the vector of the membrane potentials. In order to make

dynamics more general and realistic we add a stochastic part in the equation

23

above:

V (t+ 1) = F (V (t)) + σBB(t),

Fi(V) = γVi(1− Z[Vi]) +
N
∑

j=1

WijZ[Vj] + Ii; i = 1, ... , N.
(4.6)

where B(t) = [Bi]
N
i=1 is an additive noise with Gaussian identically dis-

tributed and independent entries Bi(t) with zero mean and variance 1 and
σB is the noise amplitude. From a biophysical point of view, the noise term
can be interpreted as the random variation in the ionic flux of charges cross-
ing the membrane per unit time and it gives to it more general features.
Here a spike is modeled by the function Z and after that the membrane po-
tential is reset instantaneously to a value Vreset, corresponding to the value
of the membrane potential when the neuron is at rest (in this case it is zero).
Considering a network of neurons for this model, each neuron i receives input
from other neurons (coming from the synaptic part in the equation (4.6)) and
from the environment (the constant external current and the noise in equa-
tion (4.6)). If a neuron does not fire and does not receive influences from
other neurons or input, then the membrane potential decays exponentially
fast with a decay rate 0 < γ < 1.

4.3 Markov chain for the BMS model

4.3.1 The last firing time

For (s, t) ∈ Z
2, s < t, and each i = 1, . . . , N , we define now the last firing

time of neuron i in the sequence ωts as:

τi(ω
t
s)

def

=

{

s, if ωi(k) = 0, k = s, . . . , t;

max {s ≤ k ≤ t, ωi(k) = 1} , if ∃k ∈ {s, . . . , t} such that ωi(k) = 1

(4.7)
Therefore, τi(ωts) = s either if neuron i fires at time s or if it does not fire
during the whole time interval [s, t].

24

4.3.2 The conditional probability for the membrane

potential

We are interested in the conditional probability P [ω(t+1)|ωts] that, subject to
appropriate assumptions as shown in section 1.3, is a variable length Markov
Chain. As explained above, a neuron fires when its membrane potential
exceeds the threshold θ, so

P [ωi(t+1)|ωts] = ωi(t+1)P [Vi(t+1) ≥ θ|ωts]+(1−ωi(t+1))P [Vi(t+1) ≤ θ|ωts].
(4.8)

Analyzing the equation (4.6) we can show [3] that for each (s, t) ∈ Z
2, s < t,

conditionally to Z(V t
s) = ωts and given V (s) the initial condition,

Vi(t+1) =

γt+1−sVi(s) + Ci(ω
t
s) + σBξi(ω

t
s) if neuron i didn’t fire

in the interval [s,t]

Ci(ω
t
s) + σBξi(ω

t
s) otherwise.

(4.9)

where:

Ci(ω
t
s) =

N
∑

j=1

Wijxij(ω
t
s) + Ii

1− γt+1−τi(ωt
s)

1− γ

xij(ω
t
s) =

t
∑

l=τi(ωt
s)

γt−lωj(l)

ξi(ω
t
s) =

t
∑

l=τi(ωt
s)

γt−lBi(l).

(4.10)

Clearly, the membrane potential Vi(t+1) is the sum of a “deterministic” part
γt+1−sVi(s) + Ci(ω

t
s), and a stochastic part, σBξi(ωts). This term is fixed by

the spike sequence ωts and the ξi(ωts)’s are Gaussian, independent with mean

zero and variance 1−γ2(t+1−τi(ω
t
s))

1−γ2 because it is a finite sum of Normal Gaussian
Bi.

25

Thus, the membrane potential Vi(t+ 1) is Gaussian with mean

E[Vi(t+ 1)|ωts, V (s)] =

γt+1−sVi(s) + Ci(ω
t
s) if neuron i didn’t fire

in the interval [s,t]

Ci(ω
t
s) otherwise.

(4.11)
and covariance:

Cov[Vi(t+ 1), Vj(t+ 1)|ωts, V (s)] = σ2
i (ω

t
s)δij. (4.12)

with:

σ2
i (ω

t
s) = σ2

B

1− γ2(t+1−τi(ωt
s))

1− γ2
. (4.13)

It is easy to show [3] that the Vi(t+ 1)’s are conditionally independent.

Further, the probability that a neuron does not fire within the interval
(s, t) ∈ Z

2 is given by:

P

[

t
⋂

n=s

{Vi(n) < θ}
]

=
∑

ωt
s∈Ωt−s

P

[

t
⋂

n=s

{Vi(n) < θ}|ωts

]

P
[

ωts
]

=

=
∑

ωt
s∈Ωt−s

t
∏

n=s+1

P

[

{Vi(n) < θ}|
n−1
⋂

l=s

{Vi(l) < θ} ∩ ωn−1
s

]

P [{Vi(s) < θ|ωss}]P
[

ωts
]

.

(4.14)

Since, in this case, ξi(ωts) is Gaussian, centered, with variance 1−γ2(n−s)

1−γ2 we
have:

P

[

{Vi(n) < θ}|
n−1
⋂

l=s

{Vi(l) < θ} ∩ ωn−1
s

]

=

= P
[

γn−sVi(s) + Ci(ω
n−1
s) + σBξi(ω

n−1
s) < θ

]

= 1− Π

θ − γn−sVi(s)− Ci(ω
n−1
s)

σB

√

1−γ2(n−s)

1−γ2

(4.15)

where Π(x) = 1√
2π

∫ +∞
x

e−
u2

2 du.

26

4.3.3 Some remarks

A first remark is to underline that equation (4.11) expresses the loss of mem-
ory of a neuron whenever it fires. This is due to the reset of the membrane
potential after firing and simplifies the following analysis.

Another significant feature to consider is the composition of the mem-
brane potential. Indeed, it is the sum of a “deterministic” part, γt+1−sVi(s)+

Ci(ω
t
s), fixed by the initial condition at time s and by the spike sequence

ωts, and a stochastic part, σBξi(ωts), where the probability distribution of the
noise ξi(ωts) is also fixed by the spike sequence ωts. More precisely, if Bi’s
are independent Gaussian with mean zero and variance 1, the ξi(ωts)’s are

Gaussian independent with mean zero and variance 1−γ2(t+1−τi(ω
t
s))

1−γ2 .

The dependence on the initial condition V (s) could be an obstacle to
solve the dynamic of membrane potential because it is not known a priori.
It is important to underline that when considering the evolution of a set of
neurons, one starts from some “initial” time s. This time corresponds to the
beginning of the experiment, but not with the beginning of the system under
study which has undergone a previous evolution that actually determines
the distribution of membrane potentials at time s. Therefore, to compute
the distribution of membrane potentials at time s one has to consider the
previous evolution of the system, which only postpones the problem, unless
one assumes that this initial condition was drawn in an infinite past. An
infinite past means a quite longer time than all characteristic time scales in
the system, that can be justify mathematically with the asymptotic dynamic
(infinite!!). In this case the initial condition is fixed in the infinite past, i.e

s→ −∞.
In this case γt+1−sVi(s) → 0 and, considering the sequence ωt−∞ the last firing
time becomes:

τi(ω
t
−∞)

def

=

{

−∞, if ωi(k) = 0, k = s, . . . , t;

max {−∞ ≤ k ≤ t, ωi(k) = 1} , if ∃k ∈ {−∞, . . . , t}
such that ωi(k) = 1.

(4.16)

Therefore the mean of Vi(t+ 1) for each t ∈ Z, conditionally to ωt−∞ is only
equal to Ci(ωts).

27

4.3.4 The transition probability

We finally define the transition probability for the BMS model as follows:

P
[

ω(t+ 1)|ωt−∞
]

=
N
∏

i=1

P
[

ωi(t+ 1)|ωt−∞
]

=

=
N
∏

i=1

[

ωi(t+ 1)P
[

{Vi(s) ≤ θ|ωt−∞}
]

+ (1− ωi(t+ 1))P
[

{Vi(s) < θ|ωt−∞}
]]

=

=
N
∏

i=1

[

ωi(t+ 1)Π

(

θ − Ci(ω
t
−∞)

σi(ωt−∞)

)

+ (1− ωi(t+ 1))

(

1− Π

(

θ − Ci(ω
t
−∞)

σi(ωt−∞)

))]

.

(4.17)
In these formulas P

[

ω(t+ 1)|ωt−∞
]

acts as a transition probability, as in
Markov chains, but we have to pay attention because there is an infinite past
dependence. Fortunately, the length of the Markov chain depends on the last
firing time of each neuron, so we can state that:

P
[

ω(t+ 1)|ωt−∞
]

= P
[

ω(t+ 1)|ωtτ(ωt
−∞

)

]

(4.18)

The only obstacle here is that we cannot bound τ(ωt−∞) even if this time
is almost-surely finite. So we have to consider a process where transition
probability may have an unbounded memory. This type of process is called
“variable length Markov chain”.

28

4.3.5 Stationarity

For the BMS model under the assumptions considered so far, it is possible
to prove directly the stationarity of the Markov chain that reads:

Fix a sequence a0−∞, a(−n) ∈ Ω, n ≤ 0, ∀t ∈ Z

P [ω(t) = a(0)|ωt−1
−∞ = a−1

−∞] = P [ω(0) = a(0)|ω−1
−∞ = a−1

−∞]
(4.19)

Assuming that ω(t − n) = a(−n), n ≥ 0 we have τ(ωt−1
−∞) = t + τ(a−1

−∞) so,
according to equation (4.10),

xij(ω
t−1
−∞) =

t−1
∑

l=τi(ω
t−1
−∞

)

γt−1−lωj(l) =
t−1
∑

l=t+τi(a
−1
−∞

)

γt−1−laj(l − t) =

=
−1
∑

l′=τi(a
−1
−∞

)

γ−1−l′aj(l
′) = xij(a

−1
−∞)

(4.20)

and

Ci(ω
t−1
−∞) =

N
∑

j=1

Wijxij(ω
t−1
−∞) + Ii

1− γt−τi(ω
t−1
−∞

)

1− γ
=

N
∑

j=1

Wijxij(a
−1
−∞) + Ii

1− γ−τi(ω
−1
−∞

)

1− γ
= Ci(a

−1
−∞)

(4.21)

Note that this last propriety holds because Ii does not depend on time. We
have also

σ2
i (ω

t−1
−∞) = σ2

i (a
−1
−∞). (4.22)

Finally, we obtain (4.19) from:

P [ω(t) = a(0)|ωt−1
−∞ = a−1

−∞] =

=
N
∏

i=1

[

ωi(t)Π

(

θ − Ci(ω
t−1
−∞)

σi(ω
t−1
−∞)

)

+ (1− ωi(t))

(

1− Π

(

θ − Ci(ω
t−1
−∞)

σi(ω
t−1
−∞)

))]

=

=
N
∏

i=1

[

ai(0)Π

(

θ − Ci(a
−1
−∞)

σi(a
−1
−∞)

)

+ (1− ai(0))

(

1− Π

(

θ − Ci(a
−1
−∞)

σi(a
−1
−∞)

))]

=

= P [ω(0) = a(0)|ω−1
−∞ = a−1

−∞].

(4.23)

29

From stationarity we can restrict the analysis to transition probabilities of
the form P [ω(0)|ω−1

−∞]. From now on we define, for the sake of simplicity,
ω = ω0

−∞, ω = ω−1
−∞ (ω is called an “history”). Moreover, call T the right

shift over X, i.e (Tω)(t) = ω(t − 1), t ≥ 0, we note that ωa is the right
concatenation of ω and a ∈ Ω, namely this is the sequence ω′ such that
ω′(t− 1) = ω(t), t ≥ 0 and ω′(0) = a. Finally note that T (ωa) = ω.
In [3] it is proved that the system (4.6) admits a unique invariant probability
measure that satisfies a variational principle (equilibrium state) and has the
form of a Gibbs distribution.

4.4 Maximum entropy principle applied

to the BMS model

4.4.1 Equilibrium state

Let ψ : X −→ R be a continuous function such that

∞
∑

k=0

vark(ψ) <∞, (4.24)

where vark(ψ) is the variation of the function ψ:

vark(ψ) = sup{|ψ(ω)−ψ(ω′)| : ω, ω′ ∈ X, ω(t) = ω′(t), ∀t ∈ {−k, . . . , 0}}.
(4.25)

For µ invariant measure, we define the entropy as we did in section 3.1.6 with
a potential ψ which obeys (3.12).

An equilibrium state µψ is an invariant measure [10], such that the topo-
logical pressure P (ψ) holds and it is zero whenever the potential is normalized
as follows:

ψ(ω) = logP [ω(0)|ω] (4.26)

30

and we can write

ψ(ω) ≡ ψ(ω0
−∞) = logP [ω(0)|ω] =

=
N
∑

i=1

[

ωi(0) log

[

Π

(

θ − Ci(ω)

σi(ω)

)]

+ (1− ωi(0)) log

[

1− Π

(

θ − Ci(ω)

σi(ω)

)]]

.

(4.27)

4.4.2 Entropy for the BMS model

We know that for the normalized potential (4.26) the topological pressure is
zero 0 = h[µψ] + µψ[ψ]. Therefore, the entropy reads:

h[µψ] =

= −
N
∑

i=1

µψ

([

ωi(0) log

[

Π

(

θ − Ci(ω)

σi(ω)

)]

+ (1− ωi(0)) log

[

1− Π

(

θ − Ci(ω)

σi(ω)

)]])

.

(4.28)

It is important to underline that the potential is always negative. Thus, the
entropy is positive whatever the value of parameters Wij, N, θ, γ.

4.4.3 Finite Range approximation

The main difficulty in handling the transition probabilities and equilibrium
state is the dependence on an history, dating back to τ(ω0

−∞) that is not
bounded. Nevertheless, what we know is that the influence of history network
on the membrane potential Vi at time t appears in the term xij(ω

0
−∞) =

∑0
l=τi(ω0

−∞
) γ

−lωj(l) that for l → −∞ decays esponenatially fast because of
the leak term γ [3]. Thus, one may argue that after a characteristic time
depending on 1

log(γ)
the past network activity has a very small influence on

Vi(0). We can truncate the history with a finite time horizon R such that
the membrane potential Vi(0) depends on the past only up to finite time
−R. In this setting the transition probability P [ω(0)|ω−1

−∞] is approximated
with P [ω(0)|ω−1

−R], where the memory is limited to at most R time steps in
the past. These approximated transition probabilities constitute therefore a
Markov chain with a memory depth R. Now the question is: how good is
this approximation?

31

4.4.4 Convergence of the finite approximation

We define the range-R + 1 potential as

ψ(R)(ω0
−R) = ψ(R)(ω) =

N
∑

i=1

[

ωi(0) log

[

Π

(

θ − Ci(ω
−1
−R)

σi(ω
−1
−R)

)]

+ (1− ωi(0)) log

[

1− Π

(

θ − Ci(ω
−1
−R)

σi(ω
−1
−R)

)]]

,

(4.29)

and we compare how “distant” this potential is from the infinite range po-
tential (4.26), evaluating the sup norm as follows:

∥

∥ψ − ψ(R)
∥

∥

∞ ≤ sup{|ψ(ω)− ψ(ω′)| : ω, ω′ ∈ X, ω(t) = ω′(t), ∀t ∈ {−R, . . . , 0}}

def

= varR(ψ)

(4.30)

which, it is possible to prove (see details in [3]), is bounded and we have

∥

∥ψ − ψ(R)
∥

∥

∞ ≤ KγR (4.31)

where K is an suitable constant, found in details in [3].

To compare the distance between the Gibbs distributions µψ and µψ(R) ,
we need the Kullback-Leibler divergence introduced in section 3.2.2, which
is a criterion to provide some notion of asymmetric “distance” between two
probabilities.

In the case where µ is an ergodic measure and µψ a Gibbs state with a
potential ψ, both defined in the same set of sequences, from (4.36) we obtain:

d(µ, µψ) = P (ψ)− µ(ψ)− h(µ). (4.32)

Additionally, the potential is normalized so P (ψ) = 0 and:

d(µψ(R) , µψ) = P (ψ)− µψ(R)(ψ)− h(µψ(R)) = µψ(R)(ψ(R) − ψ), (4.33)

where h(µψ(R)) = −µψ(R)(ψ(R)).

32

Therefore,
d(µψ(R) , µψ) ≤ K ′γR. (4.34)

Thus, the Kullback-Leibler divergence decays exponentially fast with decay
rate γ.
In practice, we can conclude that if we take a range of potential as

R ∼ logK ′

log γ
(4.35)

the approximation for a finite time memory of R− 1 should be a valide one.

4.4.5 Kullback-Leibler divergence for BMS model

With the finite range potential approximation we are now able to find a
probability measure for the BMS model, that we call µBMS for simplicity.
Considering that the goal of our work is to extrapolate the statistics model
behind empirical experimental rasters, µBMS should be able to approximate as
best possible the hidden probability. As in section 3.1.4, we use the empirical
average of the raster in place of µ and the Kullback-Leibler divergence as
a criterion for estimate the “distance” between µBMS and π

(T)
ω (ωD0) where

D = R− 1 is the memory depth. We have

dKL(µBMS, π
(T)
ω) = P (ψ)− π(T)

ω (ψ)− h(π(T)
ω). (4.36)

Recalling the purpose to approximate as the best the statistics of raster
plots using the BMS model and to set at the same time the synaptic weights
and the input current, we need to have the “distance” between the empirical
measure of the raster and the BMS measure as near as possible. In the next
section, we will explore the minimization of the KL divergence with respect
to the synaptic weights and with respect to the input current, in order to
approximate the hidden probability of rasters setting the two most important
parameters of the model.

33

4.5 Minimizing Kullback-Leibler divergence

Most of the work in Neuromathcomp Department in INRIA, with the fun-
damental support of Bruno Cessac, was focused on the formalization and
development of a method for fitting parameters model (synaptic weights and
input current) based on the minimization of the Kullback-Leibler divergence
between approximated and real distributions. Taking into account that most
of examples for determining the synaptic weights in literature [37] has the
following form

δWij(t+ 1) = ǫ g (Wij(t), ω(t)) (4.37)

where g is a suitable deterministic function, we develop the following dynam-
ics where g takes the form of the gradient of Kullback-Leibler divergence.

4.5.1 Minimizing with respect to synaptic weights

As explained in section 2.3, a plasticity rule is a dynamics which corresponds
to the evolution of the synaptic weights. In our notations Wij provides the
maximal amplitude of the post-synaptic potential induced, at the synapse
connecting j to i, when neuron j spikes. Here we consider the following
coupled dynamics. Neurons are evolving according to (4.6) and we focus on
slow synapse dynamics of the form:

δW (τ) = ǫ g
(

W
(τ), ω(t)

)

δW (τ) = W
(τ+1) −W

(τ)
(4.38)

where W
(τ) is the synaptic weight matrix at plasticity step τ , ǫ is a general

small parameter which maintains the dynamics slow respect to membrane
potential dynamics and g is a function of the rasters produced by the network
that in our case it will be defined thanks the minimization of KL divergence.
Examples of plasticity rules are STDP and Hebbian Rule, section 2.4, and
in litterature there are different approach to define this function, see [2] [18]
[35].

We want to minimize (4.36) with respect to synaptic weights and we
construct dynamics of the form

g
(

W
(τ), ω(t)

)

= −∇W=W (τ)dKL(µBMS, π
(T)
ω). (4.39)

34

Thus, the temporal change of synaptic weights reads:

dW (τ)

dt
= −ǫ ∇W=W (τ)

(

P (ψ)− π(T)
ω (ψ)− h(π(T)

ω)
)

. (4.40)

The entropy does not influence the gradient because it does not depend on
weights. Concerning the normalized potential P (ψ) we have:

P (ψ) = 0,

but ∇W=W (τ)P (ψ) 6= 0,
(4.41)

we can only say that
∇W=W (τ)P (ψ)dW = 0 (4.42)

Then, (4.40) becomes

dW (τ)

dt
= ǫ

(

∇W=W (τ)π(T)
ω (ψ)−∇W=W (τ)P (ψ)

)

. (4.43)

Approximating ψ with the finite range potential, as in section 4.4.3, with
memory depth D, we can write

π(T)
ω (ψ) =

∑

ωD
0

π(T)
ω (ωD0)ψ(ω

D
0) (4.44)

and then,

∇π(T)
ω (ψ) =

∑

ωD
0

π(T)
ω (ωD0)∇ψ(ωD0)

= π(T)
ω (∇ψ),

(4.45)

where we use ∇ = ∇W=W (τ) in order to simplify the notation and where
π
(T)
ω (∇ψ) is the empirical average of the gradient potential. From [27] we

know that: if ψ and φ are real Lipschitz functions and µ is the equilibrium
state of ψ, for all small perturbations δ, we have

d

dδ
P (ψ + δφ)

∣

∣

∣

∣

δ=0

= µ(ψ). (4.46)

35

Thus, in our particular case we obtain

P (ψ(W + dW)) = P
(

ψ(W) +∇ψdW + o(dW 2)
)

= P (ψ(W)) + µ(∇ψ)dW + o(dW 2)
(4.47)

Finally we can rewrite (4.43) as

dW (τ)

dt
= ǫ

(

∇π(T)
ω (ψ)− µ (∇P (ψ))

)

. (4.48)

For the BMS model the potential with D = R− 1 memory depth is

ψ(ωD0) =

=
N
∑

k=1

[

ωk(D) log

[

Π

(

θ − Ck(ω
D−1
0)

σk(ω
D−1
0)

)]

+ (1− ωk(D)) log

[

1− Π

(

θ − Ck(ω
D−1
0)

σk(ω
D−1
0)

)]]

,

(4.49)
where Ck(ω

D−1
0) depends on the synaptic weights as follows:

Ck(ω
D−1
0) =

N
∑

h=1

Wkhxkh(ω
D−1
0) + Ik

1− γD−τk(ωD−1
0)

1− γ

xkh(ω
D−1
0) =

D−1
∑

l=τk(ω
D−1
0)

γD−1−lωh(l).

(4.50)

Then,

∇ψ(ωD0) =

=
N
∑

k=1

ωk(D)
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

) − (1− ωk(D))
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

[

1− Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)]

∇Ck(ωD−1
0).

(4.51)

Since

[

∇Ck(ωD−1
0)

]

ij
=

∂

∂Wij

N
∑

h=1

Wkhxkh(ω
D−1
0) =

= xkh(ω
D−1
0) δik δjh,

(4.52)

36

where δik = 1 if i = k, δik = 0 otherwise.
We obtain:

∂

∂Wij

ψ(ωD0) =

=
N
∑

k=1

(ωk(D)
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

) − (1− ωk(D))
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

[

1− Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)]

 ·

·
[

−xkh(ω
D−1
0)

σk(ω
D−1
0)

δik δjh

]

(4.53)

Furthermore, we can approximate µ (∇P (ψ)) as in section 3.1.4 with the
empirical average observed in the model: for T −→ +∞ we have πBMS(∇ψ) ∼
µ(∇ψ). The difference between πBMS(∇ψ) and π(T)

ω (∇ψ) will become clearer
in next section, when we will deal with numerical simulations.
Finally, the dynamical equation reads:

dW
(τ)
ij

dt
= ǫ

(

π(T)
ω

(

∂

∂Wij

ψ

)

− πBMS

(

∂

∂Wij

ψ

))

. (4.54)

4.5.2 With respect to input current

Using the same idea as in the previous section, we minimize the KL diver-
gence with respect to the input current in order to set this parameter. Taking
into account that now the temporal change in input current is:

dI

dt
= −ǫ ∇I

(

P (ψ)− π(T)
ω (ψ)− h(π(T)

ω)
)

, (4.55)

37

and the derivative with respect to the current of the potential is

∂

∂Ii
ψ(ωD0) =

=
N
∑

k=1

(ωk(D)
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

) − (1− ωk(D))
Π′

(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)

[

1− Π
(

θ−Ck(ω
D−1
0)

σk(ω
D−1
0)

)]

 ·

·
[

− 1− γD−τk(ωD−1
0)

(1− γ)σk(ω
D−1
0)

δik

]

(4.56)

the change in input current reads:

dIi

dt
= ǫ

(

π(T)
ω

(

∂

∂Ii
ψ

)

− πBMS

(

∂

∂Ii
ψ

))

. (4.57)

4.5.3 Remarks

We provide a method to set synaptic weights and input current that requires
the KL divergence between real and approximated probabilities to converge
to zero. This convergence will be verified in section 6.2 after having dis-
cussed the numerical implementation in C++ of equations (4.54) and (4.57)
and other implementation details which are important to understand the nu-
merical context (BMS model and its parameters) behind this method. We
will extrapolate the synaptic weights during the time steps of simulations as
follows:

W
(τ+1)
ij = W

(τ)
ij +

dW
(τ)
ij

dt
= W

(τ)
ij + ǫ

(

π(T)
ω

(

∂

∂Wij

ψ

)

− πBMS

(

∂

∂Wij

ψ

))

,

I
(τ+1)
ij = I

(τ)
ij +

dI
(τ)
ij

dt
= I

(τ)
ij + ǫ

(

π(T)
ω

(

∂

∂Ii
ψ

)

− πBMS

(

∂

∂Ii
ψ

))

.

(4.58)

38

Chapter 5

Numerical implementation

5.1 BMS model

The BMS model was implemented in C++ by the Neuromathcomp team in
INRIA. First of all they created a class of BMS membrane potential com-
posed according to (4.6) that can simulate a neuron membrane potential and
spike trains.

5.1.1 Members of BMS membrane potential class

In this class the public parameters are:

- number_of_units is the number of neurons N;

- unit_leak is the decay rate or “ leak rate” γ;

- unit_currents is the external input current applied to neuron i, I =

(Ii)
N
i=1;

- unit_noise is the additive noise B(t) = (Bi(t))
N
i=1, distributed like a

Gaussian with zero mean and variance σB;

- W is the matrix of the synaptic weights Wij.

39

5.1.2 Methods of BMS membrane potential class

This class is composed of functions that are reported here for sake of com-
pleteness.

Reset function

BMSPotential& BMSPotential::reset(unsigned int N, double

leak , double sigmaB , const double *Ie)

{

sys::check(0 <= leak && leak < 1, "in

BMSPotential ::reset the leak term is not in the

interval [0,1[-> %f", leak);

sys::check(0 < sigmaB , "in BMSPotential ::reset the

noise standard deviation sigmaB is negative -> %f",

sigmaB);

number_of_units = N;

int R=10000; // Infinite range

resetEmpty(N,R);

unit_leak = leak;

delete[] unit_currents;

unit_currents = new double[number_of_units];

for(unsigned int i = 0; i < number_of_units; i++)

unit_currents[i] = Ie == NULL ? 0 : Ie[i];

unit_noise = sigmaB;

delete[] W;

W = new double[N * N];

for (int oi=0;oi<N*N;oi++)

W[oi]=0.0;

return *this;

}

This function resets the parameters of the membrane potential V = (Vi)
N
i=1

according to (4.6), given in input the number of neurons N, the leak γ, the
noise amplitude σB and the current I. Moreover this function sets all the
synaptic weights to zero.

40

Set up of synaptic weights

There are different kinds of functions for taking in input random weights
depending on what the user needs.

void BMSPotential::setWeight(unsigned int i, unsigned int

j, double value)

{

sys::check(i < number_of_units , "in

RNLunits ::setWeight , bad post -synaptic neuron index

%d not in {0, %d{", i, number_of_units);

sys::check(j < number_of_units , "in

RNLunits ::setWeight , bad pre -synaptic neuron index

%d not in {0, %d{", j, number_of_units);

W[i * number_of_units + j] = value;

}

This function sets the synaptic weight from neuron j to neuron i to a given
value decided by the user.

BMSPotential& BMSPotential::setWeights(double sigma , double

bias)

{

double mean = sys::getGaussianBias(bias , sigma);

N=number_of_units;

for(unsigned int oi=0; oi<N*N; oi++)

W[oi] = sys::gaussian(mean , sigma);

return *this;

}

This function sets Gaussian random value to the synaptic weights according
to the bias and the variance given in input. The bias is a value in (0, 1) that
points out how many weights have to be negative or positive, e.g. 0.5 of bias
means that 50% of weights will be positive and 50% will be negative. All the
values of synaptic weights will fluctuate in the interval [−sigma, sigma].

41

BMSPotential& BMSPotential::setSparseWeights(int K, double

sigma , double bias)

{

double mean = sys::getGaussianBias(bias , sigma);

int vois[K];

for(unsigned int oi=0; oi<number_of_units; oi++){

int nbvois=0;

while (nbvois<K){

uint idx=sys::random(0,number_of_units);

int j=0;

while ((j<nbvois)&&(idx!=vois[j]))

j++;

if (j==nbvois){

vois[nbvois]=idx;

nbvois++;

}

}

for (int j=0;j<K;j++){

W[oi*number_of_units+vois[j]] =

=sys::gaussian(mean , sigma);

}

}

return *this;

}

This function does the same as the previous one with the difference that only
K neurons for all i = 1, . . . , N are selected randomly and set with a Gaussian
weight.

42

Finally, the following function returns the weight corresponding to the
connection from j to i:

double BMSPotential::getWeight(unsigned int i, unsigned

int j) const

{

sys::check(i < number_of_units , "in RNLunits ::getWeight ,

bad post -synaptic neuron index %d not in

{0, %d{", i, number_of_units);

sys::check(j < number_of_units , "in RNLunits ::getWeight ,

bad pre -synaptic neuron index %d not in

{0, %d{", j, number_of_units);

return W[i * number_of_units + j];

}

Generate a Raster based on BMS model

RasterBlock *BMSPotential::getRasterBlock(unsigned int

transients , unsigned int length) const

{

RasterBlock *raster = new RasterBlock ();

raster->reset(number_of_units , length);

// Initial potential

double *Vvp = new double[number_of_units];

double *Vv = new double[number_of_units];

for(unsigned int i=0; i<number_of_units; i++)

Vv[i] = 2*sys::random ();

// Iterates on time and units: transients

for(unsigned int t=0; t<transients; t++) {

for(unsigned int i=0; i<number_of_units; i++) {

Vvp[i]=unit_currents[i]+unit_noise *

*sys::gaussian ();

for(unsigned int j=0; j<number_of_units; j++)

if (Vv[j] >= unit_threshold)

Vvp[i] += getWeight(i,j);

if(Vv[i] < unit_threshold)

Vvp[i] += unit_leak * Vv[i];

}

// Pingpong the buffers

double *V = Vv;

Vv = Vvp;

Vvp = V;

43

}

// Iterates on time and units: stores the raster

for(unsigned int t = 0; t < length; t++) {

for(unsigned int i = 0; i < number_of_units; i++) {

Vvp[i]=unit_currents[i]+unit_noise*

*sys::gaussian ();

for(unsigned int j=0; j<number_of_units; j++)

if (Vv[j]>= unit_threshold)

Vvp[i]+=getWeight(i,j);

if(Vv[i] >= unit_threshold)

aster->setEvent(i, t, true);

else

Vvp[i] += unit_leak * Vv[i];

}

// Pingpong the buffers

double *V = Vv;

Vv = Vvp;

Vvp = V;

}

delete[] Vv;

delete[] Vvp;

return raster;

}

First of all it is necessary to underline that there exists a class of raster
developed by INRIA’s team called RasterBlock. This class generates raster
plots according to section 3.1.1.

Thus, the function above returns a raster plot of spikes according to
BMS model dynamics. The mechanism is as follows. An event (a spike) is
set every time the membrane potential of neuron i exceeds the threshold.
This threshold is overtaken thanks to contributions of currents, noise and
other neurons. Namely the membrane potential of neuron i is the sum of
contributions coming from the current (set at the beginning), the noise and
the respective weights of all neurons j, j = 1, . . . , N, whenever these neurons
exceed in turn the threshold. On the contrary, if neuron j does not fire, the
dynamics are only influenced by the decay rate γ, as we could easily infer
observing equation (4.6).

This procedure is repeated twice. Once for a time length transient and
once for length time, with the fundamental difference that the second step
does not begin with random values for membrane potentials, but with the
result obtained during the transient time.

44

Conditional probability

double

BMSPotential::getEventConditionalProbability(unsigned

int k, bool omegak ,const RasterBlock& word) const

{

sys::check(word.getNumberOfUnits () == number_of_units ,

"in BMSPotential :: getEventConditionalProbability

uncoherent block size %d != %d the units number",

word.getNumberOfUnits (), number_of_units);

sys::check(word.getNumberOfTimeSteps () > 0, "in

BMSPotential :: getEventConditionalProbability

word range = %d must be >= ",

word.getNumberOfTimeSteps ());

if (omegak==1)

return pi(getX(k,word));

else

return (1-pi(getX(k,word)));

}

This function returns the probability that a neuron k fires or does not fire at
time D, depending on the value of omega given in input (1 or 0 respectively),
subject to the previous events plot in the raster word. It is implemented ac-

cording to (4.17), where getX is θ−Ci(ω
D−1
0)

σi
and pi is 1√

2Π

∫ +∞
x

e
−u2

2 du that
are implemented as follows:

double BMSPotential::getX(unsigned int i, const

RasterBlock& word) const {

double X=0;

double sigma=getSigma(i,word);

sys::check(sigma>0, "in BMSPotential ::getX : the

cumulative noise variance = %lg must be >0", sigma);

for (unsigned int j=0;j<number_of_units;j++)

X+= getWeight(i,j)*getEta(i,j,word);

double Y=(unit_threshold-X-getIe(i,word))/sigma;

return Y;

}

45

and

double BMSPotential::pi(double x) const

{

return 0.5 * (1 - Erf(x / sqrt(2.0)));

}

where getSigma extrapolates σi(ω
D−1
0) =

√

σ2
B

1−γ2(D−τi(ω
D−1
0))

1−γ2 in (4.17)

double BMSPotential::getSigma(unsigned int i, const

RasterBlock& word) const {

int D=word.getNumberOfTimeSteps ();

double sigma=unit_noise*sqrt((1-pow(unit_leak ,2*

*(D-getTau(i,word))))/(1-pow(unit_leak ,2)));

return sigma;

}

getTau finds the last firing rate τi(ω
D−1
0) in (4.7)

unsigned int BMSPotential::getTau(unsigned int i, const

RasterBlock& word) const {

int D=word.getNumberOfTimeSteps ();

sys::check(D >= 1, "in BMSPotential :: getTau :

range of the condition = %d must be >= 1", D);

for (int t=D-1;t>=0;t--)

if (word.getEvent(i,t)) return t;

return 0;

}

getIe implements the current Ii
1−γD−τi(ω

D−1
0)

1−γ

double BMSPotential::getIe(unsigned int i, const

RasterBlock& word) const {

int D=word.getNumberOfTimeSteps ();

double Ie=unit_currents[i]*

*(1-pow(unit_leak ,D-getTau(i,word)))/(1-unit_leak);

return Ie;

}

46

and finally, getEta calculates ξi(ω
D−1
0) =

∑D−1

l=τi(ω
D−1
0)

γD−1−lBi(l)

double BMSPotential::getEta(unsigned int i,unsigned int j,

const RasterBlock& word) const {

double eta=0;

int D=word.getNumberOfTimeSteps ();

sys::check("D>=1","in BMSPotential :: getEta.

The word range %d must be larger than 1",D);

unsigned int Dmoins1=D-1;

for (unsigned int l=getTau(i,word);l<=Dmoins1;l++)

if (word.getEvent(j,l))

eta+=pow(unit_leak ,Dmoins1-l);

return eta;

}

Then, for an entire spiking pattern the condition probability is implemented
as follows:

double BMSPotential::getConditionalProbability(const

RasterBlock& event , const RasterBlock& condition) const

{

sys::check(condition.getNumberOfUnits () ==

number_of_units ,

"in BMSPotential :: getConditionalProbability uncoherent

block size %d != %d the units number",

condition.getNumberOfUnits (), number_of_units);

sys::check(condition.getNumberOfTimeSteps () > 1,

"in BMSPotential :: getConditionalProbability word

range =

%d must be >= 2", condition.getNumberOfTimeSteps ());

double P=1;

for (unsigned int k=0;k<number_of_units;k++)

if (event.getEvent(k,0)==1)

P*=pi(getX(k,condition));

else

P*=(1-pi(getX(k,condition)));

return P;

}

This function takes into account the approximation of conditional indepen-
dence between the Vi(D − 1)’s as proved in section 4.3.2. Moreover, it re-
quires in input two different rasters: the event and the conditon. The event

47

is a raster of one time step (at time D) of which we would like to measure
the conditional probability, namely it tells us if ωi(D) is one or zero for all
i = 1, . . . , N . The condition, as the name suggests, is the raster that gives
parameters in order to reach the final probability, i.e. where σi, Ci and pi

are extrapolated.
In BMS potential class there is another function that calculates the condi-

tional probability of a spiking pattern without asking in input the condition
and the event raster and it reads as follows:

double BMSPotential::getConditionalProbability(const

RasterBlock& w)

{

uint R=w.getNumberOfTimeSteps (),D=R-1;

sys::check(w.getNumberOfUnits () == number_of_units ,

"in BMSPotential :: getEventConditionalProbability

uncoherent block size %d != %d the units number",

w.getNumberOfUnits (), number_of_units);

sys::check(R > 0, "in

BMSPotential :: getEventConditionalProbability

word range = %d must be >= 0", R);

double P=1;

RasterBlock event;

event.resetSubSequence(w,D,1);

RasterBlock condition;

condition.resetSubSequence(w,0,D);

for (unsigned int k=0;k<number_of_units;k++)

if (event.getEvent(k,0)==1)

P*=pi(getX(k,condition));

else

P*=(1-pi(getX(k,condition)));

return P;

}

The raster where it is checked the condition and the raster of events are
directly generated by the function, which creates two new rasters from the
initial one with length time respectively of D and 1.

48

Potential implementation

double BMSPotential::Phi(const RasterBlock& w) const

{

uint R=w.getNumberOfTimeSteps (),D=R-1;

sys::check(w.getNumberOfUnits () == number_of_units ,

"in BMSPotential ::Phi uncoherent block size %d != %d

the units number", w.getNumberOfUnits (),

number_of_units);

sys::check(R > 0, "in BMSPotential ::Phi word range = %d

must be >= 0", R);

RasterBlock event;

event.resetSubSequence(w,D,1);

RasterBlock condition;

condition.resetSubSequence(w,0,D);

double fi=0;

for (unsigned int k=0;k<number_of_units;k++) {

if (event.getEvent(k,0)==1)

fi+=lpi(getX(k,condition));

else

fi+=ilpi(getX(k,condition));

}

return fi;

}

This function implements the potential according to equation (4.29), using
the same method of the previous function for the evaluation of the conditional
probability. We have that lpi and ilpi read:

double BMSPotential::lpi(double x) const

{

if (x<-tol_pi) // Taylor expansion near -\infty

return exp(-pow(x,2)/2)*(3989422802/x-

-.3989422802/pow(x,3)+1.196826841/pow(x,5)-

-.984134204/pow(x,7)+41.88893942/pow(x,9)-

-377.0004548/pow(x,11)+4147.005003/pow(x,13));

if (x>tol_pi) // Taylor expansion near +\infty

return -0.5*pow(x,2)-0.9189385335-log(x)-1/pow(x,2)+

+2.5/pow(x,4)-12.33333333/pow(x,6)+88.25/pow(x,8)-

-816.2000000/pow(x,10)+9200.833335/pow(x,12);

return log(pi(x));

}

49

This is the function for lpi is equal to log
(

Π
[

θ−Ci(ω
D−1
0)

σi(ω
D−1
0)

])

in (4.29) and

double BMSPotential::ilpi(double x) const

{

if (x<-tol_pi)

return -

0.5*pow(x,2)-0.9189385335-log(-x)-1/pow(x,2)+

+2.5/pow(x,4)-12.33333333/pow(x,6)+88.25/pow(x,8)-

-816.2000000/pow(x,10)+9200.833335/pow(x,12);

if (x>tol_pi)

return exp(-pow(x,2)/2)*(-.3989422802/x+

+.3989422802/pow(x,3)-1.196826841/pow(x,5)+

+5.984134204/pow(x,7)-41.88893942/pow(x,9)+

+377.0004548/pow(x,11)-4147.005003/pow(x,13));

return log(1-pi(x));

}

ilpi is equal to log
(

1− Π
[

θ−Ci(ω
D−1
0)

σi(ω
D−1
0)

])

in (4.29).

Once we have implemented the potential (4.29), we need to implement
the Kullback-Leibler divergence from (4.36) taking into account that the
topological pressure (3.18) for a normalized potential is equal to zero.

50

Kullback-Leibler divergence implementation

Below we have the function that implements the Kullback-Leibler divergence
between the probability distribution of rasters in BMS model and the empir-
ical probability distribution.

double BMSPotential::getDivergence(RasterBlock *Raster ,uint

R)

{

double dist=0;

RasterBlockGrammar grammar;

grammar.reset(*Raster , R);

for(RasterBlockIterator& i = grammar.reset();

i.hasNext ();){

const RasterBlock& word = i.getItem ();

dist-=Phi(word)*grammar.getJoinProbability(word);

}

return dist-grammar.getStrongEtAlEntropy ();

}

To better understand this function it is necessary to explain what is a gram-

mar and the idea behind it.

Grammar

The dynamical system (4.6) (with noise) can in principle produce any pattern
sequence (although with different probability). For N neurons and spike
blocks of size R, this means 2NR possibilities, which is quite huge. On the
opposite, considering a raster of size T ∼ 106, dynamics will produce, at most,
T − R spike blocks of size R. Thus, the idea is to store only the observed
blocks and their transitions in order to estimate the transition probabilities.
Let us explain it clearer with an example. Suppose to have a raster plot of
this form

[

0 1 1 0 0 0 1 . . .

0 0 1 0 1 0 1 . . .

]

(5.1)

with D=1 (R=2), so all ω(1) should be 22·2 possibilities, it seems not too
much but if we have hundreds of neurons and a bigger range R, we should

51

have 2100R and this is huge! So the idea is to consider only the legal or
admissible transitions that are recorded from the raster plot. In our simple

case the possibilities will be only: if a step forward we have the prefix

[

0

0

]

,

all the possible transitions are

[

1

0

]

,

[

0

1

]

and

[

1

1

]

; if our prefix is

[

1

0

]

, the

only possible transition is

[

1

1

]

; if a step forward we have

[

1

1

]

, the admissible

transition is

[

0

0

]

; and finally if a step forward the prefix is

[

0

1

]

the transition

is

[

0

0

]

. In this way we reduce the number of transition that are observed.

That means we have only 6 different possibilities instead of 16.
Let now formalize what is stated above.
Let ω, ω′ be two spiking patterns, the transition ω → ω′ is legal or admissible

if there exists a neural state X such that neurons fire according to the firing
pattern ω and, the next time, according to the firing pattern ω′. If there
exists a finite integer r such that it is possible to construct a block of spiking
patterns ω(0) . . . ω(r − 1), there are at most 2Nr possible blocks. Label each
of these with a symbol α ∈ A, where A is called an alphabet. Define a
transition matrix Gγ : A×A→ {0, 1}, depending on the leak γ, with entries
gαβ, such that gαβ=1 if the transition α → β is admissible, and 0 otherwise.
To alleviate notations in the next equation write α(t) = [ω]t+r−1

t , ∀t ≥ 0. If

Σγ = {ω|gα(t+1)α(t) = 1, ∀t ≥ 0}, (5.2)

then all admissible raster plots are obtained via the transition matrix Gγ,
which provides the grammar of the spiking pattern sequences.

In practice, this kind of “mechanism” is used to calculate the empirical
average of the raster and it improves considerably the implementation. Thus,
in Kullback-Leibler divergence function it is created the grammar tree from
the raster given in input and, finally, the equation (4.36) is implemented.

52

5.2 Kullback-Leibler divergence minimization

During my internship in INRIA we developed in C++ the method to extrap-
olate weights from minimization of Kullback-Leibler divergence according to
section 4.5. For implementing the equation (4.53) we have to evaluate first

Π′
(

θ−Ci(ω
D−1
0)

σi(ω
D−1
0)

)

. For sake of simplicity, we define χ =
θ−Ci(ω

D−1
0)

σi(ω
D−1
0)

and we have:

Π(χ) =
1√
2π

∫ +∞

χ

e−
u2

2 du (5.3)

and its derivative
Π′(χ) = − 1√

2π
e−

χ2

2 . (5.4)

Then, from (4.53) we find:

Π′(χ)

Π(χ)
=

− 1√
2π
e−

χ2

2

1√
2π

∫ +∞
χ

e−
u2

2 du

Π′(χ)

1− Π(χ)
=

− 1√
2π
e−

χ2

2

1− 1√
2π

∫ +∞
χ

e−
u2

2 du
.

(5.5)

Concerning the implementation of the two functions above, we used, as did
before in section 5.1.2 the Erf, the error function.

Erf(x) =
2√
π

∫ x

0

e−u
2

du, (5.6)

so (5.3) becomes

Π(χ) = 1− 1√
2π

∫ χ

−∞
e−

u2

2 du = 1− 1√
2π

[∫ 0

−∞
e−

u2

2 du+

∫ χ

0

e−
u2

2 du

]

=

= 1− 1

2
− 1√

2π

∫ χ

0

e−
u2

2 du =
1

2

[

1− Erf

(

χ√
2

)]

(5.7)

53

(a) Π′(x) in red and Π(x) in green.

(b) Π′(x) in red and 1−Π(x) in green.

Figure 5.1: Plot of the error function and its derivative

54

Thus, studying mathematically the ratio Π′

Π
we note that when χ→ +∞

both Π and its derivative Π′ go to zero as show in figure 5.1. Even if it is
easy to calculate the limit analytically, for example with l’Hospital’s rule as
follows

lim
χ→+∞

− 1√
2π
e−

χ2

2

1√
2π

∫ +∞
χ

e−
u2

2 du
= lim

χ→+∞
χe−

χ2

2

−e−χ2

2

= lim
χ→+∞

−χ = −∞, (5.8)

we can see from figure 5.2 that problems with numerical implementation
start appearing for a very small values of χ, approximately in [6,+∞).
Thus, it becomes necessary to replace the ratio in this interval with the
asymptotic approximation. In [36] and [11] it is shown how to calculate the
asymptotic expansion for the complementary of the Erf function (Erfc(x) =
2√
π

∫ +∞
x

e−u
2
du). First it is possible to write it as a particulare case of gamma

function Erfc(x) = 2√
π
Γ
(

1
2
, x2

)

and its asymptotic expansion is known:

Erfc(x) ∼ e−x
2

x
√
π

[

1− 1

2x2
+

1 · 3
x2·2

− 1 · 3 · 5
x2·3

+ . . .

]

. (5.9)

Finally, we can make the ratio between its derivative and the function above
and we obtain the approximation to use in C++ code in the interval [6,∞).

Concerning the second relation in (5.5) we did the same for χ −→ −∞ and
we compute the asymptotic approximation in the intervall (−∞,−6]. Figure
5.3 shows the accuracy of the approximation with asymptotic expansions.
The code in C++ for the implementation of Π′

Π
(x) and Π′

1−Π
(x) to add to the

BMS potential class is below:

double BMSPotential::pi_prime_divby_pi(double x) const

{

if(x>tol_pi){

return (-0.9999999992*x-0.9999999992/x+

+1.999999999/pow(x,3)-9.999999992/pow(x,5)+

+73.99999996/pow(x,7)-705.9999997/pow(x,9)+

+8161.999994/pow(x,11)-1.104099999*pow(10,5)/pow(x,13)+

+1.708393999*pow(10,6)/pow(x,15));

}

else

return -one_over_sqrt2pi*exp(-pow(x,2)/2)/pi(x);

}

55

(a) Π′(x)
Π(x)

(b) Π′(x)
1−Π(x)

Figure 5.2: Plots that show numerical error when we calculate the ratio
between error function and its derivative

56

where tol_pi is equal to 6 and

double BMSPotential::pi_prime_divby_one_minus_pi(double

x) const

{

if(x<=-tol_pi){

return (x+1/x-2.000000001/pow(x,3)+10.00000001/pow(x,5)-

-73.99999996/pow(x,7)+706.0000002/pow(x,9)-

-8162.000006/pow(x,11)+1.104100000*pow(10,5)/pow(x,13)-

-1.708394001*pow(10,6)/pow(x,15));

}

else

return -one_over_sqrt2pi*exp(-pow(x,2)/2)/(1-pi(x));

}

Once we have solved the computational problems, we implement the gradient
of the potential (4.53) as follows:

double *BMSPotential::getGradientDivergence

(RasterBlockGrammar

*grammarSought , RasterBlockGrammar*grammarBMS , unsigned

int R)

{

/* grammarSought is generated by the raster we’d like

to approx */

/* grammarBMS is the raster that change every time we

iterate the method */

uint N=number_of_units;

double *Gdkl=new double[N*N];

for(unsigned i=0;i<N;i++)

for(unsigned j=0;j<N;j++)

Gdkl[i*N+j]=0;

/** Computing gradient **/

uint D=R-1;

for(RasterBlockIterator& it = grammar->reset();

it.hasNext ();){

const RasterBlock& word = it.getItem ();

RasterBlock event;

event.resetSubSequence(word ,D,1);

RasterBlock condition;

57

(a) Π′(x)
Π(x)

(b) Π′(x)
1−Π(x)

Figure 5.3: Plot of functions in C++ and their respective asymptotic ap-
proximations.

58

condition.resetSubSequence(word ,0,D);

double Pjoin=grammar->getJoinProbability(word);

for(unsigned i=0;i<N;i++){

double ui=0,xi=getX(i,condition);

if (event.getEvent(i,0)==1) {

ui=-pi_prime_divby_pi(xi);

}

else {

ui=pi_prime_divby_one_minus_pi(xi);

}

ui=ui*Pjoin/getSigma(i,condition);

for(unsigned j=0;j<N;j++){

Gdkl[i*N+j]+=ui*getEta(i,j,condition);

}

}

}

/** computing the gradient of the pressure **/

for(RasterBlockIterator& k = grammarBMS->reset ();

k.hasNext ();){

const RasterBlock& wordBMS = k.getItem ();

RasterBlock eventBMS;

eventBMS.resetSubSequence(wordBMS ,D,1);

RasterBlock conditionBMS;

conditionBMS.resetSubSequence(wordBMS ,0,D);

double

PjoinBMS=grammarBMS->getJoinProbability(wordBMS);

for(unsigned i=0;i<N;i++){

double uiBMS=0,xiBMS=getX(i,conditionBMS);

if (eventBMS.getEvent(i,0)==1) {

uiBMS=-pi_prime_divby_pi(xiBMS);

}

else {

uiBMS=pi_prime_divby_one_minus_pi(xiBMS);

}

uiBMS=uiBMS*PjoinBMS/getSigma(i,conditionBMS);

for(unsigned j=0;j<N;j++){

Gdkl[i*N+j]-=uiBMS*getEta(i,j,conditionBMS);

59

}

}

}

/** Normalizing gradient **/

double norm=0;

for(unsigned int i = 0; i < N; i++){

for(unsigned int j= 0; j < N; j++){

norm+=pow(Gdkl[i*N+j],2);

}

}

norm=sqrt(norm);

if (norm > 1)

for(unsigned int i = 0; i < N; i++){

for(unsigned int j= 0; j < N; j++){

Gdkl[i*N+j]/=norm;

}

}

for(unsigned int i = 0; i < N; i++){

for(unsigned int j= 0; j < N; j++){

printf(" %5.3lg ", Gdkl[i*N+j]);

}

printf("\n");

}

return Gdkl;

}

and finally the set up of synaptic weights reads:

BMSPotential& BMSPotential::setWeightsDivergence

(RasterBlockGrammar* grammar , RasterBlockGrammar *

grammarBMS , unsigned int R){

double *G=getGradientDivergence(grammar ,grammarBMS ,R);

uint N=number_of_units;

for (uint i=0;i<N;i++)

for (uint j=0;j<N;j++)

setWeight(i,j,W[i*N+j]+0.1*G[i*N+j]);

delete []G;

}

60

Concerning the minimization of the KL divergence with respect to the
input current and the set up of this, the procedure is basically the same as
it was for synaptic weights. The code for the gradient of the potential (4.56)
with respect to input current is below:

double *BMSPotential::getGradientDivergenceCurrent

(RasterBlockGrammar *grammarSought , RasterBlockGrammar*

grammarBMS ,unsigned int R) {

uint N=number_of_units;

double *GIdkl=new double[N];

for(unsigned i=0;i<N;i++) GIdkl[i]=0;

/** Computing gradient **/

uint D=R-1;

for(RasterBlockIterator& it = grammarSought->reset ();

it.hasNext ();){

const RasterBlock& word = it.getItem ();

RasterBlock event;

event.resetSubSequence(word ,D,1);

RasterBlock condition;

condition.resetSubSequence(word ,0,D);

double

Pjoin=grammarSought->getJoinProbability(word);

for(unsigned i=0;i<N;i++){

double ui=0,xi=getX(i,condition);

if (event.getEvent(i,0)==1) {

ui=-pi_prime_divby_pi(xi);

}

else {

ui=pi_prime_divby_one_minus_pi(xi);

}

ui=ui*Pjoin*

*((1-pow(unit_leak ,D-getTau(i,condition)))/

\((1-unit_leak)*getSigma(i,condition)));

GIdkl[i]+=ui;

}

}

/* computing the gradient of the pressure */

for(RasterBlockIterator& k = grammarBMS->reset ();

k.hasNext ();){

const RasterBlock& wordBMS = k.getItem ();

61

RasterBlock eventBMS;

eventBMS.resetSubSequence(wordBMS ,D,1);

RasterBlock conditionBMS;

conditionBMS.resetSubSequence(wordBMS ,0,D);

double PjoinBMS=

=grammarBMS->getJoinProbability(wordBMS);

for(unsigned i=0;i<N;i++){

double uiBMS=0,xiBMS=getX(i,conditionBMS);

if (eventBMS.getEvent(i,0)==1) {

uiBMS=-pi_prime_divby_pi(xiBMS);

}

else {

uiBMS=pi_prime_divby_one_minus_pi(xiBMS);

}

uiBMS=uiBMS*PjoinBMS*

*((1-pow(unit_leak ,D-getTau(i,conditionBMS)))/

/((1-unit_leak)*getSigma(i,conditionBMS)));

GIdkl[i]-=uiBMS;

}

}

/** Normalizig gradient **/

double norm=0;

for(unsigned int i = 0; i < N; i++){

norm+=pow(GIdkl[i],2);

}

norm=sqrt(norm);

sys::echo("\nIn gradDiv: norm=%lg",norm);

sys::echo("\n Gradient \n");

for(unsigned int i = 0; i < N; i++){

if (norm > 1)

GIdkl[i]/=norm;

printf(" %lg ", GIdkl[i]);

}

sys::echo("\n");

return GIdkl;

}

62

and the set up of the input current according to (4.58) reads:

BMSPotential& BMSPotential::setCurrentDivergence

(RasterBlockGrammar* grammar ,RasterBlockGrammar*

grammarBMS ,unsigned int R){

double *G=

=getGradientDivergenceCurrent(grammar ,grammarBMS ,R);

uint N=number_of_units;

for (uint i=0;i<N;i++)

unit_currents[i]+=0.1*G[i];

delete []G;

return *this;

}

We implemented the two methods from the minimization of the Kullback-
Leibler divergence in order to set up synaptic weights and input current
during simulation steps.

5.2.1 Remarks

Once we have implemented the functions in C++ in order to extrapolate
synaptic weights and input current, we need the Kullback-Leibler divergence
between approximated and real distributions to converge to zero. Thus, for
minimizing effectively this measure of probability distance and reach desired
synaptic weights and input current, one has to generate random initial values
for these parameters and repeat to call the two main functions implemented
above for a “big enough” number of iterations. We have to prove the converge
to zero of KL divergence when increasing this number.

We will see in the next section simulations that Neuromathcomp team
provided in order to reach a complete knowledge of the behavior of BMS
model changing parameters and increasing time length of the spike trains.
Further, we will discuss the convergence of the method implemented in sec-
tion 5.2 through several simulations to set model parameters and to find the
number of iterations required to reach the convergence.

63

Chapter 6

Numerical simulations

We report here some numerical simulations which has been conducted for
setting firstly the model parameters (γ, σB, Ie, N) in order to obtain suitable
conditional probabilities and a small Kullback-Leibler divergence between
empirical and modeled probability measures, and secondly simulations for
proving the convergence of the method developed in sections 4.5 and 5.2.

Before that, for sake of completeness it is better to explain theoretically
the variability of the BMS dynamics as a function of the parameters, in
agreement with [31].

6.1 BMS dynamics

6.1.1 Space phase (without noise!)

Since γ < 1 and σB = 0, we can define the phase space for V as a set
M = [Vmin, Vmax]

N such that

Vmin ≤ Vi(k) ≤ Vmax ∀i = 1, . . . , N, (6.1)

where

Vmin = min

0,
1

1− γ

 min
i=1,...,N

∑

j|Wijd<0

Wijd + Iexti

 (6.2)

and

Vmax = max

0,
1

1− γ

 max
i=1,...,N

∑

j|Wijd>0

Wijd + Iexti

 (6.3)

64

where the notation j|Wijd < 0 (j|Wijd > 0) specifies that all the weights
taken into account are negative (positive).

Thus, for each neuron we can decompose the interval I = [Vmin, Vmax]

into I0 ∪ I1 with I0 = [Vmin, θ) and I1 = [θ, Vmax]. If Vi ∈ I0 the neuron i

is quiescent, otherwise it fires. Further, this partition permits us to define
the spiking state, which can be expressed as an N dimensional binary vector,
ω = {ω1, . . . , ωN} ∈ Ω. Then,

M =
⋃

ω∈Ω
Mω (6.4)

where
Mω = {ω ∈ M|Vi ∈ Iωi

} . (6.5)

This allows us to classify the membrane potential vectors according to their
spiking state. The coefficient γ(1−Z[Vi]) in (4.6) corresponds to contraction
in direction i. Namely, suppose Vi ∈ I1, which means that Z[Vi] = 1, by con-
sequence the contraction coefficient will be zero and the membrane potential
reseted, otherwise the membrane potential will be contracted by a factor γ.
This effect is shown in figure 6.1b and 6.1a respectively.

Figure 6.1: Two examples of the partion space for non-perturbed balls in a
system of two neurons. The phase is partitioned from the firing state of the
neurons and is labeled as ω =

(

ω1

ω2

)

. [31]

65

6.1.2 Singularity set

The set
S = {V ∈ M, |∃i, Vi = θ} (6.6)

is called the singularity set and is the set of membrane potential vectors such
that at least one of the neurons has membrane potential exactly equal to the
threshold.

Let us consider the trajectory of a point V ∈ M, which has perturbations
with an amplitude < ǫ, this is equivalent to consider the evolution of a ǫ-ball
B(V , ǫ) under (4.6). Then, we have two cases:

• The non-critical case: when B does not intersect S, B(V , ǫ)∩S = 0.
In this scenario the perturbation have not a considerable effect on the
trajectory of V and it behaves as the previous case (fig 6.1)

• The critical case: when B intersects S, B(V , ǫ) ∩ S 6= 0.
Unlike the previous case, in this scenario the crossing of S induces a
strong effect: when B and S are intersected the trajectory of V changes
drastically, since the perturbed trajectory induces a new spiking state.

The critical case is represented in figure (6.2).

6.1.3 Asymptotic dynamics

Mathematical studies in [8] have proved the existence of three main regimes
in the asymptotic dynamics of BMS model for a finite size. These regimes
are denoted as: neural death, periodic and chaotic regimes.

The Neural Death corresponds to a regime where neurons stop to fire
due mainly to a weak activity in their synapses or a weak external current.
This definition assumes that Iexti < (1 − γ)θ and considers the set M =

{V |Vi < θ, ∀i}.
The Periodic one corresponds to trivial activities where the neurons present

repetitive patterns and occurs in the domain M1 = {V |Vi ≥ θ, ∀i}.
The Chaotic regime occurs, as well as the periodic, in the domain M1 =

{V |Vi ≥ θ, ∀i}, but where the period tends to be very large and the behavior
is in between the neural death and the periodic.

66

Figure 6.2: An example of the partitioned space for perturbed ǫ-balls in a
system of two neurons.

The last regime is the less trivial and essentially the more interesting for
studying not predictable evolution. For very small σB’s the dynamics are
almost deterministic and it is possible to recreate all the dynamical regimes.
Figure 6.3 shows the period and the chaotic regimes.

Furthermore, we studied the evolution of the Kullback-Leibler divergence
dKL(µ

(R), π(T)) as a function of T for several values of R, σB, γ and with an
external current of the form Iextk = 0.7 sin2

(

2πk
N

)

as shown in figure (6.13).
For each set of parameters T, R, σB, γ, 48 networks where generated and

we average dKL out of these samples; this also provides error bars. Example
curves are plotted in fig. 6.5. Note that the plot is in logscale. In some cases
the error bars were larger than the average value: this explains why some
error bars hit the x-axis.

We observe, for large enough R, that dKL(µ(R), π(T)) → 0 as T → +∞, as
expected. However, the convergence rate depends on γ, σB, R. Moreover,
increasing R does not necessarily improve the numerical results. The rea-
son is that, the larger R, the larger the phase space to sample (2NR blocks).
Thus, for N = 8, R = 4 the phase space has 232 blocks. In fact, many of
these blocks have a small probability and do not contribute significantly to
the KL divergence. Nevertheless, one needs large times rasters to sample cor-

67

Figure 6.3: Fig (left) Periodic orbit and (right) Chaotic regime, both gener-
ated by BMS potential simulations.

rectly the phase space. When one multiplies the range by 2, as shown in the
simulations, one increases the phase space dimension by 2NR and so, rapidly,
one is not able to generate sufficiently large rasters to sample correctly the
phase space. This effect is enhanced by increasing σB. Indeed, generating
typical rasters one sees that for small σB the dynamics is essentially periodic.

To better understand the quality of the approximation we add here the
plots of the conditional probabilities (fig 6.6). For several values of γ, σB and
ranges R we plotted, for each observed block ωD0 in abscissa the theoretical
probability P

[

ω(D)|ωD−1
0

]

and in ordinate the empirical average of blocks

π
(T)
ω

[

ω(D)|ωD−1
0

]

computed on an empirical raster ω of size T . Thus, each
block is represented by a point in this graph. The closer this point to the
diagonal, the best is the estimation. However, finite size sampling produces
errors. In figure 6.6 we have compared the empirical probability of blocks
observed in a raster generated by BMS model, to the theoretical probability.
We have done this for the same value of γ, σB as in fig. 6.5 where a small
range potential (R = 4) provides already a good approximation. For σB =

0.1, 0.2 the results are relatively good with a spread of points around the
diagonal where the spreading increases with the error made on the estimation
of empirical probabilities. The spread increases with σB, as expected since,
the larger the noise, the more uniform is the probability of blocks, the larger
must be T in order to have a good estimate of the empirical probabilities.

68

Figure 6.4: Current profile for N=8.

To quantify the amount of error on the graph we used color plots.
To summarize, we use the approximation made in section 4.4.3 of a finite

range potential. For example, it is clear that R = 2 does not give a correct
approximation. Thus, in order to achieve a good numerical fit of the model
within a reasonable time, one needs to consider a small leak γ, which affords
to consider a low range approximation (but not too low), and a moderate
σB ≤ 0.2 in order to limit fluctuations of empirical probabilities.

Thus, from now on we will use R = 4, which allows us to keep T ≤ 107.
Indeed, simulations indicate that T is the parameter that influences most the
computational time. Since our purpose is to study the dynamics increasing
size of the network of neurons in order to evaluate better the experimental
data from real retina, we will simulate systems increasing the number of neu-
rons N .

69

(a) γ = 0.1, σB = 0.1 (b) γ = 0.1, σB = 0.2

(c) γ = 0.2, σB = 0.1 (d) γ = 0.2, σB = 0.2

Figure 6.5: Plot of the Kullback-Leibler divergence of a function of T for
N = 8

70

(a) γ = 0.1, σB = 0.1 (b) γ = 0.1, σB = 0.2

(c) γ = 0.2, σB = 0.1 (d) γ = 0.2, σB = 0.2

Figure 6.6: Plot of empirical conditional probability for T = 107, R = 4 and
N = 8.

71

6.2 Convergence of the minimization of KL

divergence with respect to synaptic weights

In order to prove the convergence of the method based on minimization of
KL divergence (section 4.5), we generate two raster plots with the BMS
model. The first one is at the place of a real experimental raster and we
indicate it as the sought raster. The second one is the initial condition for
the raster that will be change during simulation steps, since we apply the
method of minimization of the KL divergence (between this and the sought
raster probabilities). The method modifies the synaptic weights and the
input current in the BMS model that generates this second raster. We want
this raster to approximate the first one and we denote it as the approximated
raster. Thus, in any simulation step we will have the sought raster with fixed
BMS model parameters and the approximated raster which changes from step
to step because of different BMS model parameters set by the minimization
method.

Thus, we can start effective simulations. We generate randomly the “real”
weights to be approximated and every time we call the function setWeights-

Divergence, we generated the BMS raster which will be modified by the func-
tion. Then, we have to decide how to initialize the matrix of synaptic weights
to give as a parameter of the model the first time we start the simulation.
Since we do not know a priori which one is the best, we made different trials
with different initial weights matrices to ensure the independence on initial
conditions. We used weights of the form: a matrix only of zero values, a
matrix in which all elements are equal to the elements of the sought weights
matrix and finally one of random elements.

Our purpose is to verify that the output weights, after a suitable number
of iterations, converge to the real sought weights (that we generate as well
with BMS model). Thus, to evaluate this effect, we plot the mean differ-
ence between the approximated weights and the sought weights, we call it
“distance”, for each iteration as follows:

Distance(t) =
1

N2

∑

i,j

∣

∣W ext
ij (t)−W real

ij

∣

∣ , (6.7)

where

W ext
ij (t) = W ext

ij (t− 1) +
dW ext

ij

dt
, (6.8)

72

withW ext
ij (0) the initial value for all i, j = 1, . . . , N . We observed for different

initial weight matrices more or less the same trend and we report in figures
6.7 the more significant, the one with randomly generated weights.

These two figures show examples of distance changing in fig (a) the num-
ber of neurons or the time length of the rasters in fig (b). It is clear that
the distance converges and from figure 6.7b we can note that increasing T

the convergence limit decreases. Nevertheless, it seems it does not converge
exactly to zero as we expected. In this previous simulation we used an
ǫ = 0.5 for 4.54, thus to improve the converge we can try to make different
trials with different ǫ’s and we checked if the KL divergence of the estimated
raster decreases with the distance. We plot in figures 6.8 the KL divergence
between the sought raster and approximated raster probabilities for three
different values of ǫ. The KL divergence is calculated every time our method
setWeightsDivergence is called, thus it changes in any iteration and we expect
it to converge to zero.

73

(a) Changing number of neurons.

(b) Changing the time lenght of the raster T .

Figure 6.7: The mean difference (distance) between approximated weights
and real weights for R = 4, γ = 0.2, σB = 0.2. We use here random initial
weights and ǫ = 0.5. 74

(a) ǫ = 1. (b) ǫ = 0.5.

(c) ǫ = 0.1. (d) The distance between sought and esti-
mated weights for different ǫ.

Figure 6.8: Plots of KL divergence in (a), (b) and (c) and in (d) the distance
between weights, for N = 5, R = 4, γ = 0.2, σB = 0.2 and T = 105 changing
different ǫ’s

75

From figure 6.8 we observe that the choice of ǫ = 0.1 arises naturally.
For this value the KL divergence converges to zero without fluctuations and
the limit of the distance is nearer to zero. It is important to underline that
the choice of taking into account the KL divergence is not casual. First of
all the implemented method needs the KL divergence to go to zero for its
definition, than this quantity is the most important one in order to approxi-
mate the statistics of rasters, since for example it could be possible to have
different synaptic weight matrices with the same probability measure. Fur-
thermore, when we will show simulations with experimental data from real
retina, KL divergence will be the only index we have to check the goodness
of our method.

Another encouraging factor is the improvement in convergence of the dis-
tance and KL divergence when the length T increases as it was in plot 6.5
for the empirical probability. We can see it from figures 6.9 which show for
“standard” model parameters the trend of the distance and the KL diver-
gence.

Having set the more important parameters as ǫ and the number of it-
erations, we evaluate the distance averaged over randomly generated initial
weights, maintaining fixed the real sought weights. In addition, we computed
the variance of this quantity (error bars in the plot) to better evaluate it,
figures 6.10 and 6.11.

76

(a) Distance between sought and estimated weights changing T .

(b) KL divergence changing T .

Figure 6.9: Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8

77

We would like to obtain similar results as before, namely to obtain the
convergence of the divergence and the averaged distance. We add here the
code we used to averaged on initial weights for sake of completeness:

const unsigned int Nmax=300; // Number of iterations

const unsigned int Nsamp=50;

// Number of different initial matrix

weights

for(unsigned int j=0;j<Nsamp;j++){

// generation of initial weight loop

BMSPotential bms_test;

bms_test.reset(N, leak , sigmaB , Ie);

bms_test.setWeights(sigma , bias);

printf("\n%d-th initial weights. \n", j+1);

PrintWeights(bms_test);

RasterBlock *raster =

=bms_test.getRasterBlock(transients ,T);

RasterBlockEmpiricalProbability Prob;

Prob.reset(*raster);

double rate=Prob.getAverageEmpiricalRate ();

for(unsigned int i=0; i<Nmax; i++) {

// Iteration loop

double k=0;

sys::echo("\n\nWeights computation");

bms_test.setWeightsDivergence (&grammar ,R);

sys::echo("done");

double dkl=bms_test.getDivergence(raster ,R);

sys::echo("done");

k=L1distance(bms_test ,bms_sought);

diff_moy[i]+=k;

diff_var[i]+=pow(k,2);

}

}

for(unsigned int i=0;i<Nmax;i++){

diff_mean[i]/=(double)Nsamp;

diff_variance[i]=sqrt (((diff_var[i]/(double)Nsamp)-

-pow(diff_moy[i],2))*((double)Nsamp/

/(double)(Nsamp-1)));

}

The results with the same parameters as above are in agreement with previ-
ous results, as we can see in figures 6.10 and 6.11.

78

(a) KL divergence and distance averaged for T = 105.

(b) Distance averaged between sought and estimated weights changing T .

Figure 6.10: Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 8, both
the quantity averaged on 50 different matrices of initial weights.

79

Figure 6.11: Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1
and N = 8, averaged on 50 different matrices of initial weights.

6.3 Convergence of the minimization of KL

divergence with respect to input current

We repeated the same simulations as previous paragraph applied to the input
current. The KL divergence and the distance with respect to input current
seems to converge to zero even better the KL and distance with respect to
the weights, as we can see from figures 6.13.

Thus, we can compare for the same model parameters the KL diver-
gence between probabilities of the sought raster and the extrapolated approx-
imated raster where only synaptic weights are derived from the minimization
method, and the KL divergence between probabilities of the sought raster
and the approximated raster where both synaptic weights and input current
are derived from minimization methods. We can see from figure 6.14 that,
as we expected, the convergence adding the method for extrapolating the
current input improves.

80

Figure 6.12: Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1
and N = 5 with input current updated with minimization method.

81

(a) KL divergence and distance between sought and estimated currents for N = 5
and T = 105.

(b) Distance between sought and estimated currents changing T .

Figure 6.13: Plots for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1 and N = 5

82

Figure 6.14: Plots of the KL divergence for R = 4, γ = 0.2, σB = 0.2, ǫ = 0.1
and N = 5. The green curve is with the current updating and the red one is
without.

6.4 Experimental data from a real retina

We applied our methods to some experimental data taken from a retina in
vitro at which it is shown a movie of a moving fish.

The result in figure 6.15 we obtain after simulations is not yet fully satisfy-
ing. Nevertheless, we have to take into account that this is only a preliminary
trial where we used σB, γ and other parameters by chance without knowing
the real ones. Furthermore, in these simulations only 20 neurons over hun-
dreds present in the data file are exploited, that the reason why we are not
so surprised to find a convergence not perfectly to zero. If we apply both
the methods of minimization with respect to the weights and with respect
to the input current together, we can see a considerable improvement in the
convergence than before (fig 6.16), even though it is not converging to zero
for the reasons explained above.

83

Figure 6.15: Plots of the KL divergence only with minimization with respect
to the weights for experimental data in retina, with R = 4, γ = 0.2, σB =
0.2, ǫ = 0.1 and N = 8. The time length of the real raster is T = 10818

It is worth to underline that to reach perfect condition in simulations on
real experimental data it will be taken months to study the nature of data
and to set the best the parameters for that data. This is only a preliminary
application to real spikes from retina in order to understand if the method
is conducting us in the right direction, and results from figure 6.16 are quite
encouraging.

84

Figure 6.16: Plots of the KL divergence only with minimization with respect
to the weights (red) and minimization with respect to the weights and current
(green) for experimental data in retina, with R = 4, γ = 0.2, σB = 0.2, ǫ =
0.1 and N = 8. The time length of the real raster is T = 10818

85

Chapter 7

Conclusions and perspectives

In this thesis, a statistical analysis of sequences of action potential emitted
by a network of neurons is discussed. This analysis is based on the attempt
to infer the hidden distribution of these spike trains from data with the
help of the Kullback-Leibler (KL) divergence as a measure of the distance
between probabilities. In chapter 3, we illustrated all the essential math-
ematical and statistical tools useful to understand the theory behind this
manuscript. According to thermodynamics formalism [9] in statistical me-
chanics, the network is studied as a macroscopic system where neurons are
considered as microscopic particles which can assume only two values 1 or 0
if respectively the neuron fires or not. From the ergodic theory, the Gibbs
distribution of Markov Chains which maximizes the entropy is used to ap-
proximate the hidden probability and the degree of the approximation can
be control with KL divergence [37] [6] [5].

Taking into account the difficulties in obtaining a statistical model di-
rectly from experimental data (controlling the parameters or having “clean”
data) or in selecting one model among many others or other complications
such as finite sampling effects, adaptation mechanism, non-stationarity and
more, it appeared easier [3] [2] to characterize spike trains statistics in neural
networks models where one controls exactly the neural network parameters,
the number of involved neurons, the number of samples, and the duration of
the experiment. In chapter 4, the BMS model, a particular example of Leak
Integrate-and-fire model (LIF) was defined [31] [3].

In the present thesis, a novel contribution to the existing literature is the
method developed in section 4.5, where we made use of the minimization
of the KL divergence between the “real” and the approximated distributions

86

to fit parameters of the model such as synaptic weights and input current.
We extrapolate the derivative of KL divergence with respect to synaptic
weights and with respect to input current in order to measure time variations
of these two parameters. Basically, we add a temporal dependence of the
parameters that we do not have before in works such as [3] [4] where all
model parameters are set at the begin of simulations. From biophysical
point of view, the temporal dependence is widely recognized to be essential
for information processing in brain. It has been studied [1] [30] [2] [12] [14] [16]
[19] [22] that synaptic plasticity, which is responsable of learning and memory,
changes in time the connections between neurons and takes into account
the spiking timing of neurons. Despite being far from providing a complete
model to mimic STDP (spike time dependent plasticity) or Hebbian learning
(mechanisms explained in sections 2.3 and 2.4), our proposed formulation
introduces a temporal component into a previously developed model [3] [4].
In chapter 5, we reported the C++ code of BMS model’s functions developed
by INRIA researchers and the implementation of the updating of synaptic
weights and input current thanks to the minimization of KL divergence.

Finally, in chapter 6 we tried the method applying it first to spike trains
generated artificially by the BMS model and than to real experimental data
taken from a retina in vitro. We observed in the first case that the KL diver-
gence goes effectively to zero when the length of spike sequences increases,
whereas for experimental data the converge to zero is more difficult to reach
even increasing greatly the length of sequences. This is mostly due to the
fact that we apply the method without knowing anything about some right
parameters to fix in the model and we take them by chance. Moreover, we
considered only 20 neurons over hundreds present in the data file since the
duration of simulations was already too long to handle. However, we be-
lieve this thesis to be a small step forward that needs to be explored and
pursue more deeply. It would be interesting to continue to investigate the
method for experimental data of different nature, for different parameters
model and further splitting the C++ code in parallel processes in order to
carry out simulations that involve a lager number of neurons. Moreover, an-
other viable option to investigate could be to apply the proposed method to
different neuron models largely discussed in literature, such as generalized
Integrate-and-Fire [8] or Fitzhugh-Nagumo model [13].

87

Bibliography

[1] L. F. Abbott and P. Dayan. Theoretical Neuroscience. The MIT press,
2001.

[2] A. Burkitt, J. L. Van Hemmen, and M. Gilson. Spike-timing-dependent
plasticity for neurons with recurrent connections. Biological Cybernetics,
96:533–546, 2007.

[3] B. Cessac. A discrete time neural network model with spiking neurons.
Journal of Mathematical Biology, 56:311–345, 2008.

[4] B. Cessac. Statistics of spike trains in conductance-based neural net-
works : Rigorous results. Journal of Mathematical Neuroscience, 1:1–42,
2011.

[5] B. Cessac and R. Cofré. Spike train statistics and Gibbs distributions.
Journal of physiology, Paris, 107:360–368, November 2013.

[6] B. Cessac and A. Palacios. Spike Train Statistics from Empirical Facts to
Theory: The Case of the Retina. In Modeling in Computational Biology

and Biomedicine, pages 261–302. Springer Berlin Heidelberg, 2013.

[7] B. Cessac and J. C. Vasquez. Parametric estimation of spike train
statistics by Gibbs distributions: an application to bio-inspired and ex-
perimental data. In Cinquième conférence plénière française de Neu-

rosciences Computationnelles, "Neurocomp’10", volume 1, pages 1–5,
2010.

[8] B. Cessac and T. Viéville. On dynamics of integrate-and-fire neural
networks with conductance based synapses. Frontiers in computational

neuroscience, 2:2, 2008.

88

[9] J. Chazottes and G. Keller. Pressure and equilibrium states in ergodic

theory. Springer New York, 2011.

[10] G. Gallavotti, F. Bonetto, and G. Gentile. Aspects of ergodic, qualitative

and statistical theory of motion. Springer-Verlag Berlin Heidelberg, 2004.

[11] L. Gatteschi. Funzioni speciali. Unione tipografico-editrice torinese,
1973.

[12] J. P. Gavornik, M. G. H. Shuler, Y. Loewenstein, M. F. Bear, and H. Z.
Shouval. Learning reward timing in cortex through reward dependent
expression of synaptic plasticity. Proceedings of the National Academy

of Sciences of the United States of America, 106(16):6826–6831, 2009.

[13] W. Gerstner. Integrate-and-fire neurons and networks. The handbook of

brain theory and neural networks, (1998):1–12, 2002.

[14] W. Gerstner and W. M. Kistler. Spiking Neuron Models single neurons,

populations, plasticity. Cambrige University Press, 2002.

[15] W. Gerstner, A. K. Kreiter, H. Markram, and A. V. M. Herz. Neural
codes: firing rates and beyond. Proceedings of the National Academy of

Sciences of the United States of America, 94(24):12740–12741, Novem-
ber 1997.

[16] M. Gilson. STDP in recurrent neuronal networks. Frontiers in compu-

tational neurosciencecomputational neuroscience, 4:1–15, 2010.

[17] M. Gilson, A. N. Burkitt, D. B. Grayden, Thomas D. A., and J. L.
Van Hemmen. Emergence of network structure due to spike-timing-
dependent plasticity in recurrent neuronal networks IV Structuring
synaptic pathways among recurrent connections. Biological Cybernet-

ics, 101:427–444, 2009.

[18] M. Gilson, T. Masquelier, and E. Hugues. STDP allows fast rate-
modulated coding with Poisson-like spike trains. PLoS computational

biology, 7(10):e1002231, 2011.

[19] R. Gütig, R. Aharonov, S. Rotter, and H. Sompolinsky. Learning Input
Correlations through Nonlinear Temporally Asymmetric Hebbian Plas-
ticity. The Journal of neuroscience : the official journal of the Society

for Neuroscience, 23(9):3697–3714, 2003.

89

[20] D. Heeger. Poisson model of spike generation. Handout, University of

Standford, pages 1–13, 2000.

[21] E. M. Izhikevich, J. A. Gally, and G. M. Edelman. Spike-timing dynam-
ics of neuronal groups. Cerebral cortex, 14(8):933–944, 2004.

[22] H. Markram, W. Gerstner, and P. J. Sjöström. A history of spike-
timing-dependent plasticity. Frontiers in computational neuroscience,
3(August):1–24, 2011.

[23] R. H. Masland. Cell populations of the retina: the Proctor lecture. In-

vestigative ophthalmology & visual science, 52(7):4581–4591, June 2011.

[24] T. Masquelier and G. Deco. Learning and Coding in Neural Networks.
In Principles of Neural Coding, chapter 26, pages 513–526. CRC Press,
2012.

[25] A. Mohemmed and S. Schliebs. SPAN : Spike Pattern Association Neu-
ron for Learning Spatio-Temporal Spike Patterns. International Journal

of Neural Systems, 22(4):1–16, 2012.

[26] B. Nessler, M. Pfeiffer, and W. Maass. STDP enables spiking neurons
to detect hidden causes of their inputs. Advances in Neural Information

Processing Systems, 22:1357–1365, 2010.

[27] W. Parry and M. Pollicott. Zeta functions and the periodic orbit struc-

ture of hyperbolic dynamics. Asterisque, 1990.

[28] C. Pouzat and A. Chaffiol. On goodness of fit tests for models of neuronal
spike trains considered as counting processes, 2009.

[29] D. S. Reich, F. Mechler, K. P. Purpura, and J. D. Victor. Interspike
intervals, receptive fields, and information encoding in primary visual
cortex. The Journal of neuroscience, 20(5):1964–1974, March 2000.

[30] B. Romain. Generation of correlated spike trains. Neural computation,
21:188–215, 2009.

[31] H. Rostro-gonzález. Computing with spikes, architecture, properties and

implementation of emerging paradigms. PhD thesis, 2011.

90

[32] E. Schneidman and M. Berry. Weak pairwise correlations imply string
correlated network states in a neural population. Nature, 440:1007–1012,
2006.

[33] J. Shlens. Notes on kullback-leibler divergence and likelihood theory.
Systems Neurobiology Laboratory, 92037:1–4, 2007.

[34] J. Shlens, G. D. Field, J. L. Gauthier, M. I. Grivich, D. Petrusca,
A. Sher, A. M. Litke, and E. J. Chichilnisky. The structure of multi-
neuron firing patterns in primate retina. The Journal of neuroscience,
26(32):8254–8266, 2006.

[35] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learn-
ing through spike-timing-dependent synaptic plasticity. Nature neuro-

science, 3(9):919–926, September 2000.

[36] F. G. Tricomi. Fonctions hypergéométriques confluentes. Gauthier-
Villars, 1960.

[37] J. C. Vasquez and B. Cessac. How Gibbs Distributions May Naturally
Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumen-
tation. Journal of Statistical Physics, 136(6):565–602, 2009.

[38] J. C. Vasquez, B. Cessac, and T. Vieville. Entropy-based parametric
estimation of spike train statistics. Technical report, INRIA Research
Report, 2010.

[39] A. Wohrer and P. Kornprobst. Virtual Retina: a biological retina model
and simulator, with contrast gain control. Journal of computational

neuroscience, 26(2):219–249, 2009.

91

	Introduction
	Neuronal Anatomy
	Neurons
	Synapses
	Synaptic Plasticity
	From Hebbian rule to STDP

	Spike Trains Statistics
	Definitions
	Raster Plots
	Transition Probabilities define Markov Chains
	Observables
	Empirical averages
	Potential
	Entropy

	Maximum Entropy Principle
	Equilibrium distribution and the Gibbs Property
	Kullback-Leibler Divergence
	Transition matrix
	Results from Perron-Frobenius Theorem
	Remarks

	Neuron Models
	Integrate-and-Fire model
	The BMS model
	Markov chain for the BMS model
	The last firing time
	The conditional probability for the membrane potential
	Some remarks
	The transition probability
	Stationarity

	Maximum entropy principle applied to the BMS model
	Equilibrium state
	Entropy for the BMS model
	Finite Range approximation
	Convergence of the finite approximation
	Kullback-Leibler divergence for BMS model

	Minimizing Kullback-Leibler divergence
	Minimizing with respect to synaptic weights
	With respect to input current
	Remarks

	Numerical implementation
	BMS model
	Members of BMS membrane potential class
	Methods of BMS membrane potential class

	Kullback-Leibler divergence minimization
	Remarks

	Numerical simulations
	BMS dynamics
	Space phase (without noise!)
	Singularity set
	Asymptotic dynamics

	Convergence of the minimization of KLdivergence with respect to synaptic weights
	Convergence of the minimization of KLdivergence with respect to input current
	Experimental data from a real retina

	Conclusions and perspectives
	Bibliography

