
HAL Id: hal-00957673
https://hal.inria.fr/hal-00957673

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locality optimization on a NUMA architecture for
hybrid LU factorization

Adrien Rémy, Marc Baboulin, Masha Sosonkina, Brigitte Rozoy

To cite this version:
Adrien Rémy, Marc Baboulin, Masha Sosonkina, Brigitte Rozoy. Locality optimization on a NUMA
architecture for hybrid LU factorization. [Research Report] RR-8497, INRIA. 2014. �hal-00957673�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49668653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00957673
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
84

97
--

F
R

+
E

N
G

RESEARCH

REPORT

N° 8497
Mars 2014

Project-Team Postale

Locality optimization on

a NUMA architecture for

hybrid LU factorization

Adrien Rémy, Marc Baboulin, Masha Sosonkina, Brigitte Rozoy

RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves

Bâtiment Alan Turing

Campus de l’École Polytechnique

91120 Palaiseau

Locality optimization on a NUMA architecture

for hybrid LU factorization

Adrien Rémy∗, Marc Baboulin†, Masha Sosonkina‡, Brigitte

Rozoy§

Project-Team Postale

Research Report n° 8497 — Mars 2014 — 13 pages

Abstract: We study the impact of non-uniform memory accesses (NUMA) on the solution of
dense general linear systems using an LU factorization algorithm. In particular we illustrate how
an appropriate placement of the threads and memory on a NUMA architecture can improve the
performance of the panel factorization and consequently accelerate the global LU factorization.
We apply these placement strategies and present performance results for a hybrid multicore/GPU
LU algorithm as it is implemented in the public domain library MAGMA.

Key-words: ccNUMA, thread placement, dense linear systems, LU factorization, MAGMA
library.

∗ Inria and Université Paris-Sud, France (adrien.remy@lri.fr).
† Inria and Université Paris-Sud, France (marc.baboulin@inria.fr).
‡ Old Dominion University, USA (masha@scl.ameslab.gov).
§ Université Paris-Sud, France (Brigitte.Rozoy@lri.fr).

Optimisation de localité sur une architecture NUMA pour

une factorisation LU hybride

Résumé : Nous étudions l’impact des effets NUMA sur la solution de systèmes linéaires
denses en utilisant un algorithme de factorisation LU. En particulier nous montrons comment un
placement approprié des threads et de la mémoire sur une architecture NUMA peut améliorer la
performance de la factorisation du panel et par conséquent accélerer la factorisation LU globale.
Nous appliquons ces stratégies de placement et proposons des analyses de performances pour une
factorisation LU hybride sur multicœurs/GPU telle qu’elle est implémentée dans la bibliothèque
logicielle du domaine public MAGMA.

Mots-clés : ccNUMA, placement de threads, systèmes linéaires denses, factorisation LU,
bibliothèque MAGMA.

Locality optimization on a NUMA architecture for hybrid LU factorization 3

Introduction

On modern parallel systems, the main memory bandwidth plays a crucial role in high-performance
computing (HPC) applications. On shared memory parallel computers, a large number of pro-
cessors work on a common, shared physical address space. There are two types of shared memory
systems that propose similar functionalities to the programmer but have different performance
in terms of main memory access.

Unified Memory Access (UMA) systems consist of a single memory bank for which the la-
tency and bandwidth are the same for all threads, regardless of the memory location. The
downside of UMA systems is that, when many application threads are trying to access the main
memory simultaneously, bandwidth bottlenecks can occur. To overcome this problem of scala-
bility, architectures referred to as ccNUMA (cache coherent Non Uniform Memory Access) are
commonly used in clusters of nodes. Recently, the ccNUMA has been adapted inside multicore
nodes (see, e.g., [15] and the references therein). On ccNUMA systems, the memory is physically
distributed but logically shared. The mechanism is transparent from the programmer point of
view, the required protocols being handled by the hardware (e.g. HyperTransport for AMD and
QuickPath for Intel). Each bank of memory is associated with a set of cores and this association
forms a NUMA node. Due to this physical distribution, the performance of memory accesses
varies depending on the mutual location of a given thread and the memory bank that the thread
accesses. Accessing the remote memory banks may become slow and, if a lot of threads are
used, this will affect the application scalability [21]. When using HPC applications on ccNUMA
systems, we face two main difficulties. The first one is the locality problem. It happens when
a thread located on a node accesses data stored in the memory bank of another node. This
kind of nonlocal transfer can hurt performance. The second problem is contention, which occurs
when two threads located on different nodes access memory in another node, and thus, fight for
memory bandwidth. For each thread, the access to data should be restricted to its own node
to avoid these two problems. If no particular data placement is proposed, the default memory
affinity policy of the operating system is used. In most Linux-type operating systems, the default
policy (called first touch) places the data in the memory node that is local to the thread that is
writing the data first. This ensures fast access for the thread inside the node regardless of the
other threads accessing the data [18]. In a multithreaded application, the fact that the master
thread usually initializes multiple shared data structure can exacerbate the problem (all these
shared data structures will be allocated in the same node as the master thread). This problem
can be approached by using the software tools, such as the libnuma library [19] or the likwid

software [26], that provide user interfaces to allocate memory into the desired nodes [19] or by
initializing the data by multiple (possibly all) threads. The Servet Benchmark Suite [13] also
provides an API to handle threads mappings based on communication or memory performance.
Even if data locality is respected, the thread scheduling is important. If the scheduler ignores
the locality information, the effect of caches is reduced. Switches into uncached process contexts
will cause cache and TLB misses and cache line invalidations for the other processes [8]. The
cost of thread scheduling can be reduced by moving thread management and synchronization to
the user level [3].

In this paper, we study the effect of NUMA on the solution of dense general linear systems.
To solve square linear systems Ax = b, the method commonly used is Gaussian Elimination
with partial pivoting (GEPP). GEPP is performed as an LU factorization that decomposes the
input matrix A into L×U , where L is a unit lower triangular matrix and U an upper triangular
matrix. Libraries, such as LAPACK [1], provide a block algorithm version of GEPP where
the factorization is performed by iterating over blocks of columns (panels). LAPACK has been
redesigned to use heterogeneous systems of multi/manycore CPUs and accelerators, such as

RR n° 8497

4 Baboulin et al.

GPUs. Examples of the redesign are PLASMA [22] and MAGMA [4], which take advantage of
current multicore and hybrid multicore/GPU architectures [7]. In a classical LU factorization,
the panel is first factored and then the trailing submatrix is updated using level 3 BLAS routines
for high performance [2]. The update consisting of matrix-matrix products performed by the
GPU is very efficient, making the panel factorization the bottleneck of the performance [25].
Indeed, due to its data access pattern the panel factorization is widely affected by memory access
performance. By reducing the time of the panel factorization, we can improve the performance
of the overall computation.

In the following we show how a proper placement of the threads and memory on a NUMA
architecture can improve the performance of the panel factorization and consequently accelerate
the global LU factorization as it is implemented in the MAGMA library for multicore/GPU
systems. The paper is organized as follows. In Section 2.1, we describe the LU factorization
algorithm for hybrid CPU/GPU architectures as implemented in MAGMA. Then in Section 2.2,
we describe different strategies for thread pinning and data placement on NUMA architectures.
Section 3 presents the experimental setup and performance results of LU factorization on a given
platform using the different placement strategies given in Section 2.2. Concluding remarks are
given in Section 4.

1 Locality optimization for LU algorithm

1.1 LU factorization for hybrid architecture

We consider here the hybrid LU factorization (right looking factorization [12, p. 85]) as im-
plemented in the MAGMA library. The factorization is illustrated in Figure 1 where the com-
putation is split so that the panel is factored on the CPU (black tasks) while the updates are
performed on the GPU (gray tasks). The initial matrix has been downloaded to the GPU and
we describe here a current iteration:

1. The current panel is offloaded to the CPU.

2. The panel is factored by the CPU and the result is sent back to the GPU.

3. The GPU updates in priority the column block that corresponds to the next panel in the
trailing submatrix.

4. The updated panel is sent to the CPU and asynchronously factored on the CPU while the
GPU updates the rest of the matrix.

The technique that consists of factoring the next panel while still updating the rest of the
trailing submatrix is often referred to as look-ahead [20]. Depending on the problem size and on
the hardware used, MAGMA proposes a default value for the width of the panel. Note that the
communication between GPU and CPU is limited to the transfer of the successive panels.

In the remainder, we will consider two MAGMA implementations for the LU factorization.
These two versions differ mainly in the way the panel is factored. In the first version, the panel
is factored using GEPP (partial pivoting) while the second version does not pivot since it also
uses randomization as a preprocessing to avoid pivoting [6]. We point out that in both MAGMA
implementations the panel is factorized as a BLAS 3 algorithm where we consider an inner panel
(factored using BLAS 2) inside the global panel. The size of this inner panel is set to 128 for
the no pivoting version, and cannot be tuned for the partial pivoting when we use an MKL [17]
implementation. Note that larger size of the panel results in more BLAS 3 operations, and thus,
increasing the computation-to-memory access ratio in the panel factorization.

Inria

Locality optimization on a NUMA architecture for hybrid LU factorization 5

Due to the search for the pivot and to the subsequent row interchange, GEPP performs
a lot of memory accesses, whereas they are minimal for the version without pivoting. In the
following we focus on the panel factorization, because its memory-bound characteristics make it
particularly dependent on NUMA.

C
P
U

G
P
U

C
P
U

G
P
U

· · ·

Step 1 Step 2 Step 3

Figure 1: Hybrid LU factorization (4 panels).

1.2 Placement strategies

In this section we describe how threads may be bound to cores and how data may be placed in
memory, which may be achieved using the following tools.

• Before each execution the data are placed in the node using the mbind() function from the
libnuma [19] library.

• The threads may be pinned to the cores using the sched_setaffinity() Unix function,
the likwid [26] or numactl [19] tools.

• Before each execution, using the same tools, the data may be placed in the nodes to which
the threads are bound.

For the thread pinning, we consider the following strategies, which are illustrated in Figure 2
by considering three nodes of six cores. For all the different strategies the data are interleaved
over the memory banks of the NUMA nodes used (i.e., the data are spread in a round-robin
fashion in the memory pages across all the nodes).

1 2
3 4
5 6

7 8
9 10

(a) Sequential pinning 1

5 9
3
2 8

7
1 4
10 6

(b) Sequential pinning 2

1 4 2 5 3

(c) Cyclic pinning

Figure 2: Examples of pinning methods

No pinning: The threads and data are assigned automatically by the system, without manual
intervention. We refer to this strategy as noPin.

Sequential pinning 1: The number of threads assigned to a node corresponds to its number
of cores. When a given node is full while more threads need to be placed, the next thread
will be “spilled” to the next node. In a sense, nodes are provided one by one for the thread
placement purposes. An example is given in Figure 2(a), where we use 10 threads. Note
that the thread placement within a node is not fixed explicitly and may be governed by

RR n° 8497

6 Baboulin et al.

the application. For example, the MKL Intel mathematical library may assign threads to
cores dynamically. We refer to this strategy as seqPin1.

Sequential pinning 2: To avoid the problem of load balancing among the nodes when the
number of threads is not a multiple of the number of cores per node, we allow the application
to place threads evenly on several nodes at once. Specifically, these “occupied” nodes
are taken as the first nodes that can accommodate all the threads. In Figure 2(b), the
application will place them on the first two nodes, such that each node may have a free
core. We refer to this strategy as seqPin2.

Cyclic pinning: The threads are cyclically placed onto all the nodes allotted to the application
in a round-robin manner. For example in Figure 2(c), we use five threads in three nodes.
Note that, although this approach is a rather load-balanced (the number of threads in each
node may differ by one at most), it is not compact in terms of processing power. On the
other hand, as will be shown later, its memory availability may be attractive. We refer to
this strategy as cycPin.

Since the data are interleaved only among the nodes that are effectively used, sequential
pinnings result in mostly local memory accesses. The memory accesses may incur extra latency
for the cyclic pinning. However, for the cyclic pinning, there will be less competition among
threads inside a node to access L3 cache. Moreover, the global amount of L3 cache available
for all the threads will be larger for cycPin because this strategy uses more nodes. Note that
if the number of threads used is the same as the number of cores available, the sequential and
the cyclic pinning are equivalent in terms of data locality. In [23] and [24], we have investigated
more sophisticated strategies for memory binding to NUMA nodes, which improved performance
on sparse matrix computations with irregular matrix and vector access patterns. For the dense
matrices and dynamic thread placement within a node, interleaving data in memory is sufficient
mainly due to the dynamic nature of the thread placement by MKL.

2 Experiments

2.1 Experimental framework

Our experiments have been carried out using a MagnyCours-48 system. This machine is com-
posed of four AMD Opteron 6172 processors running at 2.1GHz with twelve cores each (48 cores
total) and 128GB of memory. Each processor contains two NUMA nodes with 6MB of L3 cache
per node. Thus, we have 8 NUMA nodes of 6 CPU cores and 16 GB of main memory each. The
GPU device is an NVIDIA Fermi Tesla S2050 with 448 CUDA cores running at 1.15 GHz and
2687 MB memory.

For a thread accessing memory in the same NUMA node the relative distance to the memory
(latency) is taken as 10 in the ACPI specification [16]. The relative distances between the nodes
are reproduced in Table 1 as obtained by the numactl tool [19]. For example, if node 0 accesses
data stored in node 3, the cost of this access is 2.2 times larger than if the data were stored
in node 0. The 8 nodes are linked by HyperTransport links. When a thread pinned on a core
accesses data, if the data is located inside the same NUMA node as the core, the relative cost
to access the memory will be 10. If the data is located in the memory from a node directly
connected by an HyperTransport link the cost will be 16. If the memory is in a node that is not
directly linked to the current then the cost will be 22 (the data have to pass through 2 links).

We suppose now that the threads are scattered on all the nodes and that data are interleaved
on the nodes. Then, assuming that each thread performs the same number of memory accesses

Inria

Locality optimization on a NUMA architecture for hybrid LU factorization 7

Table 1: Node distances with respect to NUMA accesses.
node 0 1 2 3 4 5 6 7

0: 10 16 16 22 16 22 16 22
1: 16 10 22 16 22 16 22 16
2: 16 22 10 16 16 22 16 22
3: 22 16 16 10 22 16 22 16
4: 16 22 16 22 10 16 16 22
5: 22 16 22 16 16 10 22 16
6: 16 22 16 22 16 22 10 16
7: 22 16 22 16 22 16 16 10

on each node, we can compute the average memory access cost as (10+ 16+ 16+ 22+ 16+ 22+
16 + 22)/8 = 17.5 in each of the eight nodes since all the rows in Table 1 have the same entries
but in a different order. Therefore, the average memory access cost is 1.75 times larger than in
the case of only local accesses.

2.2 Performance for the panel factorization

We test the performance of an LU panel factorization. This performance is expressed in Gflops/s.
We measure it by summing the total number of flops executed in factoring successively each panel
throughout the factorization and dividing it by the time spent in all the panel factorizations.
The algorithms that we consider in our experiments are LU with partial pivoting and LU with
no pivoting. The former uses the LAPACK implementation of GEPP (routine dgetrf) while
the latter is a panel factorization with no pivoting (used in e.g., [5]), both linked with the multi-
threaded BLAS from MKL.

In Figure 3, we compare the performance resulting from the different strategies of thread
placements. The sequential pinning shown in the legend corresponds to the seqPin2 strategy as
described in Section 1.2, which provides a better load balance than seqPin1. For each type of
placement, we measure the performance using a number of threads varying from 1 to 48.

When comparing the different types of pinning in Figure 3, we are interested in the peak
performance obtained by each strategy and by the number of threads that enables us to obtain
this rate. Indeed, since the scalability of the panel factorization is limited to a certain number
of threads, it is not always recommended to use all the CPU cores available. In particular, using
the 48 cores available in our experiments is never the most efficient solution. A first comment is
that, as expected, the pivoting LU algorithms outperforms the nonpivoting one with at least a
factor 4. This is consistent with the results obtained and analyzed in [5, 11] and confirms that the
communication overhead due to pivoting is critical for factorizing the panel [6, 14]. We observe
that the sequential and cyclic pinnings give better results than noPin, and they are similar for
larger numbers of threads (in the range 40-48).

For the partial pivoting case (dgetrf), the sequential pinning applied to a problem of size
10240 gives better performance than the cyclic pinnings for small thread counts due to a better
data locality (i.e., because fewer NUMA nodes are involved). In our experiments, the best
performance for size 10240 is obtained using 10 threads and consequently two nodes. We use
nodes 0 and 1 which gives, using Table 1, an average memory access cost of 13 ((10 + 16)/2).
The cyclic pinning gives better performance for the problem of size 15360, since there are more
BLAS 3 operations that take better advantage of the cache and require fewer main memory
accesses, possibly in remote NUMA nodes. We observe that for the sequential pinning, we have
a performance drop for some number of threads, due to the addition of a new NUMA domain,

RR n° 8497

8 Baboulin et al.

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

G
fl
o
p
/s

Number of threads

dgetrf Matrix size = 10240, panel size = 320

No pinning
sequential pinning

Cyclic pinning

 0

 10

 20

 30

 40

 50

 60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

G
fl
o
p
/s

Number of threads

dgetrf nopiv Matrix size = 10240, panel size = 320

No pinning
sequential pinning

Cyclic pinning

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

G
fl
o
p
/s

Number of threads

dgetrf Matrix size = 15360, panel size = 512

No pinning
sequential pinning

Cyclic pinning

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

G
fl
o
p
/s

Number of threads

dgetrf nopiv Matrix size = 15360, panel size = 512

No pinning
sequential pinning

Cyclic pinning

Figure 3: Performance of thread pinning strategies for LU panel factorization with pivoting (left)
and no pivoting (right). Panel sizes: 10240× 320 and 15360× 512.

namely when the number of threads is a multiple of 6, reducing then the data locality.
For the no pivoting case (dgetrf_nopiv), cycPin provides the best performance for all prob-

lem sizes. As expected, dgetrf_nopiv is less affected by data locality than dgetrf since there
is no search for pivots, and thus, fewer memory access. Thereby, cache is used more efficiently,
which is favored by the cycPin strategy that may make more cache available to threads due
to the use of more nodes than for seqPin2 in general. For example, if only one node is used,
the amount of L3 cache available for the threads will be, on our architecture, 6MB and all the
threads on the node will have to share it. If all of the 8 nodes are used then the memory accesses
will be more expensive but the cache memory available will be 8×6 = 48 MB. Moreover, on this
system the latency of the L3 cache is 20 ns, whereas the latency of the memory (inside a same
node) is 60 ns. We also mention that these behaviors (ratio of cache misses, number of memory
accesses) have been confirmed by measurements using the PAPI [9] library.

2.3 Performance for the hybrid code

Let us evaluate the impact of the thread/data placement on a hybrid CPU/GPU LU factorization.
In this case, as explained in Section 1.1, the panel is factored by the CPU while the updates are
performed by the GPU. In these experiments, the CPU uses a fixed number of threads and the

Inria

Locality optimization on a NUMA architecture for hybrid LU factorization 9

matrix size varies.

 0

 50

 100

 150

 200

 250

 300

1024 2048 3072 4160 5120 6144 7168 8256 9216 10240 11264 12416 13312

G
F

lo
p
s
/s

Matrix size

Pinning strategies for LU factorization

NoPin/
SeqPin/
CycPin/

Partial pivoting
No pivoting
CPU only (48 threads)

Figure 4: Performance for hybrid LU factorization with partial pivoting and no pivoting (12
threads).

Figure 4 compares the performance of the seqPin2 and cycPin strategies with the noPin

for the partial pivoting and no pivoting factorizations. The GPU was used along with the 12
CPU threads. For sake of comparison, we included in Figure 4 the performance for a CPU-only
LU factorization using 48 threads (MKL implementation), the data being interleaved on all the
nodes using the numactl tool. The NoPin curves represent the performance of the MAGMA
codes without any modification. The SeqPin curves represent the performance of the MAGMA
codes modified to have the threads pinned via the seqPin2 strategy and the data placed only on
the nodes that are actually used. The CycPin curves represent the performance with the threads
pinned with the cycPin strategy with the data interleaved on the nodes.

We observe that the pinning methods outperform the noPin version and that for partial
and no pivoting, the seqPin2 strategy gives the best performance. Note that the difference of
performance between the pivoting and no pivoting routines is smaller that for the panel factor-
ization as depicted in Figure 3. Indeed, the update phase represents most of the computation
and is performed by the GPU and the cost of the panel factorization has less impact on the
global performance [5, 10]. Note also that asymptotically, when the matrix size increases and as
mentioned in [6], the performance of the pivoting and no pivoting LU should be close because
communication involved in pivoting becomes negligible compared to the O(n3) computations for
large dimensions.

3 Conclusion

In this work we studied different methods (referred to as sequential and cyclic pinning) to place
threads and data for an LU factorization algorithm executed on NUMA architecture using GPU
accelerator. The two methods of placement improve the performance up to 2x compared with the
default memory and thread placement. The choice of the most efficient method depends on the

RR n° 8497

10 Baboulin et al.

data pattern access of the algorithm and on the ability of the implementation to take advantage
of cache memory. This choice is also influenced by the size of the problem. Consequently to
this work we will develop a heuristic to choose automatically the best placement strategy. This
technique has been implemented as an external function that can be easily applied to other
algorithms with panel blocking and we are currently applying a similar approach to the QR
factorization algorithm.

Acknowledgements

We are grateful to Jack Dongarra and Stanimire Tomov (Innovative Computing Laboratory,
University of Tennessee) for allowing us to perform experimentation on their multicore/GPU
machines.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, 3 edition, 1999.

[2] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. Technical
report, April 1990. (LAPACK Working Note #19).

[3] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The performance implications of thread
management alternatives for shared-memory multiprocessors. IEEE Transactions on Com-
puters, 38(12):1631–1644, 1989.

[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, and V. Volkov. Enhancing the performance
of dense linear algebra solvers on GPUs in the MAGMA project. Poster at Supercomputing,
8, 2008.

[5] M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Rémy, and S. Tomov. A class of
communication-avoiding algorithms for solving general dense linear systems on CPU/GPU
parallel machines. In International Conference on Computational Science (ICCS 2012),
volume 9 of Procedia Computer Science, pages 17–26. Elsevier, 2012.

[6] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. Accelerating linear system solutions
using randomization techniques. ACM Trans. Math. Softw., 39(2), 2013.

[7] M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear algebra for multicore
and special purpose architectures. In 9th International Workshop on State-of-the-Art in Sci-
entific and Parallel Computing (PARA’08), volume 6126-6127 of Lecture Notes in Computer
Science. Springer-Verlag, 2008.

[8] F. Bellosa and M. Steckermeier. The performance implications of locality information usage
in shared-memory multiprocessors. Journal of Parallel and Distributed Computing, 37(1):113
– 121, 1996.

[9] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming in-
terface for performance evaluation on modern processors. International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

Inria

Locality optimization on a NUMA architecture for hybrid LU factorization 11

[10] S. Donfack, J. Dongarra, M. Faverge, M. Gates, J. Kurzak, P. Luszczek, and I. Yamazaki.
On algorithmic variants of parallel gaussian elimination: Comparison of implementations
in terms of performance and numerical properties. Technical report, Innovative Computing
Laboratory, University of Tennessee, jul 2013. University of Tennessee Computer Science
Technical Report (also LAWN 280).

[11] S. Donfack, L. Grigori, and A. K. Gupta. Adapting communication-avoiding LU and QR
factorizations to multicore architectures. In Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1–10. IEEE, 2010.

[12] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst. Numerical Linear Algebra for
High-Performance Computers. SIAM, Philadelphia, 1998.

[13] J. Gonzàlez-Domìnguez, G. L. Taboada, B. B. Fraguela, M. J. Martín, and J. Touriño. Auto-
matic mapping of parallel applications on multicore architectures using the servet benchmark
suite. Computers & Electrical Engineering, 38(2):258 – 269, 2012.

[14] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding Gaussian elimination.
2008. In Proceedings of the IEEE/ACM SuperComputing SC08 Conference.

[15] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and
Engineers. CRC Press, 2011.

[16] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech-
nologies Ltd., Toshiba Corporation. ADVANCED CONFIGURATION AND POWER
INTERFACE SPECIFICATION 4.0a, April 2010. http://www.acpi.info/DOWNLOADS/

ACPIspec40a.pdf.

[17] Intel. Math Kernel Library (MKL). http://www.intel.com/software/products/mkl/.

[18] R. Iyer, H. Wang, and L.N. Bhuyan. Design and analysis of static memory management
policies for cc-numa multiprocessors. Journal of systems architecture, 48(1):59–80, 2002.

[19] A. Kleen. A numa api for linux. Technical report, Novel Inc, 2004. http://www.halobates.
de/numaapi3.pdf.

[20] J. Kurzak and J. Dongarra. Implementing linear algebra routines on multi-core processors
with pipelining and a look ahead. LAPACK Working Note 178, September 2006.

[21] C. Lameter. Local and remote memory: Memory in a linux/numa system. In Linux Sym-
posium (OLS2006), Ottawa, Canada, 2006. ftp://ftp.tlk-l.net/pub/linux/kernel/

people/christoph/pmig/numamemory.pdf.

[22] University of Tennessee. PLASMA Users’ Guide, Parallel Linear Algebra Software for Mul-
ticore Architectures, Version 2.3. 2010.

[23] A. Srinivasa and M. Sosonkina. Nonuniform memory affinity strategy in multithreaded
sparse matrix computations. In Proceedings of the 2012 Symposium on High Performance
Computing, HPC ’12, pages 9:1–9:8, San Diego, CA, USA, 2012.

[24] A. Srinivasa, M. Sosonkina, P. Maris, and J.P. Vary. Effcient shared-array accesses in ab
initio nuclear structure calculations on multicore architectures. Procedia CS, 9:256–265,
2012.

RR n° 8497

http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
 http://www.intel.com/software/products/mkl/
http://www.halobates.de/numaapi3.pdf
http://www.halobates.de/numaapi3.pdf
ftp://ftp.tlk-l.net/pub/linux/kernel/people/christoph/pmig/numamemory.pdf
ftp://ftp.tlk-l.net/pub/linux/kernel/people/christoph/pmig/numamemory.pdf

12 Baboulin et al.

[25] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU
accelerated manycore systems. Parallel Computing, 36(5&6):232–240, 2010.

[26] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. In Proceedings of PSTI2010, the First International
Workshop on Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010.

Inria

Locality optimization on a NUMA architecture for hybrid LU factorization 13

Contents

1 Locality optimization for LU algorithm 4

1.1 LU factorization for hybrid architecture . 4
1.2 Placement strategies . 5

2 Experiments 6

2.1 Experimental framework . 6
2.2 Performance for the panel factorization . 7
2.3 Performance for the hybrid code . 8

3 Conclusion 9

RR n° 8497

RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves

Bâtiment Alan Turing

Campus de l’École Polytechnique

91120 Palaiseau

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Locality optimization for LU algorithm
	LU factorization for hybrid architecture
	Placement strategies

	Experiments
	Experimental framework
	Performance for the panel factorization
	Performance for the hybrid code

	Conclusion

