
HAL Id: hal-00957809
https://hal.archives-ouvertes.fr/hal-00957809

Submitted on 11 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward on-line robot vibratory modes estimation
Romain Delpoux, Richard Béarée, Adel Olabi, Olivier Gibaru

To cite this version:
Romain Delpoux, Richard Béarée, Adel Olabi, Olivier Gibaru. Toward on-line robot vibratory
modes estimation. American Control Conference (ACC), IEEE, Jun 2014, Portland, United States.
�10.1109/ACC.2014.6858969�. �hal-00957809�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49668535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00957809
https://hal.archives-ouvertes.fr


Toward on-line robot vibratory modes estimation

Romain Delpoux, Richard Béarée, Adel Olabi and Olivier Gibaru

Abstract— This paper is concerned with preliminary results
on robot vibratory modes on-line estimation. The dominating
oscillatory mode of the robot arm is isolated by comparing the
robot position given by the motors encoders and an external
measure at the tool-tip of the robot arm. In this article the
external measurement is provided by a laser tracker. The
isolation of the oscillation permits to identify the vibratory
mode, i.e. the natural frequency and the damping ratio of the
undesired phenomena. Here we propose a comparison between
the algebraic method and the sliding modes for the parameter
identification. This comparison is motivated by the fact that
both methods provide finite time convergence. Experimental
identifications are proposed on a 6 degrees of freedom (DOF)
manipulator robot, Stäubli RX-170B.

Index Terms— Manipulator robots, dominating oscillatory
mode, parameter estimation, algebraic approach, sliding modes.

I. INTRODUCTION

Manipulator robots are widely used in many fields of

industry. Such processes can be used to carry out repeti-

tive tasks, for example, pick and place or assembly tasks.

However to improve the performance in terms of speed, such

robots are becoming more lightweight and thus more flexible.

Speed and accuracy require consideration of vibration of the

end effector [21].

In the literature, solutions are proposed to guarantee trajec-

tories which do not excite the vibration modes of the systems.

Among these techniques it can be mentioned the Input Shap-

ing (IS) [28]. IS methodology consists in the convolution

of impulse sequences with a desired system command to

produce a shaped input that is used to drive the system [29].

However, IS are designed for a given frequency. In industrial

applications, where uncertain or time-varying parameters are

considered, IS can lose efficiency. IS with parameter adapta-

tions have been proposed, known as Adaptive Input Shaper

(AIS). AIS solutions can be designed based on frequency

domain [31] or time domain [5], [22]. The development

of such algorithms has motivated the comparison of two

methods for on-line parameter. identification.

Many different methods for the parameter identification

exist in the literature. One of the most popular concept is

the regression (linear or nonlinear) [30]. Observer based
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approaches can also be found, such as asymptotic observers

using the extended Kalman filter [4] or finite time ones like

sliding modes observers. Another approach for the parameter

identification is based on an algebraic method. In this paper

we propose to compare the algebraic method and the sliding

modes for the parameter identification. The objective to

characterize the oscillatory behaviour of manipulator robots,

i.e. the natural frequency and damping ratio in order to com-

pensate the vibrations. Both methods lead to non-asymptotic

convergence estimation procedure.

The algebraic approach was introduced by M. Fliess and

H. Sira-Ramı́rez in [14], [15]. The method is based on

differential algebra and operational calculus. The desired

parameters are expressed as a function of integrals of the

measured outputs and inputs of the system. It does not

need any statistical knowledge of the noise (for instance the

assumption that the noise is Gaussian is not required). This

method has already been successfully applied to parameter

estimation [10], [18], [20], [24], to abrupt change detections

and the efficient identification of time delays [2], [13].

Numerical differentiation of noisy signals may also benefit

from this approach, as demonstrated in [19], [26].

Sliding modes have been popularized by the precursor

article of V.-I. Utkin [32]. Their popularity is due to the

robustness properties with respect to perturbations and un-

certainties [12], [23]. Chattering phenomenon was a main

drawback of the method, however the introduction of high-

order sliding modes has overcome this problem. In this

paper second order sliding modes observers are presented

[7]. These observers ensure the finite time convergence to

the observed variables, providing equivalent output injection

(EOI). The EOI is exploited to obtain the desired parameter

estimations [8]. Sliding modes have been used in a wide

range of application for the control, the observation and the

identification [1], [11], [16], [17], [25], [27].

The paper is organized as follows: Section II describes

the problem statement, the robotic system and a description

of vibratory phenomena. The algebraic and sliding mode

identifications algorithms are presented III. Finally, the last

section presents experimental results on the manipulator

robot.

II. PROBLEM STATEMENT

A. Robotic system description

The vibratory study presented in this article is realized

on a Stäubli RX-170. This manipulator, depicted in Fig.

1, is a 6 degrees of freedom (DOF) industrial robot with

revolute joints. Industrial robots are known to have a good

repeatability. The static and dynamic accuracy is far beyond,



Fig. 1. Stäubli RX-170B robot arm.

typically around some millimeters. Dynamic accuracy is

mainly deteriorated by joint deformations, which induced

low-damped vibrations of the tip of the robot. Classically,

each robot axis are submitted to a dominating flexible vibra-

tory mode [21]. This paper focused on the fast estimation of

this vibration for one axis of the robot.

The Stäubli CS8 controller provides access to the actual

joints positions and velocities measured through encoders

on the motor shafts. The controller is sampled at a sampling

frequency of 4ms (250Hz). In order to measure the absolute

position of the robot, a Laser Tracker from API inc. is used,

where a retroreflector target is mounted on the tool-tip of the

robot. The system resolution is 10µ.m−1 and the sampling

frequency is 3ms (333Hz).

B. Vibratory dynamics

Considering the first dominating flexible mode, robot axis

can be considered as a two mass coupled system, having the

rigid link driven by electrical motor through a rotational joint

transmission undergoing a viscoelastic joint deformation

with a constant stiffness K and a viscosity D (see Fig. 2).

The objective of the paper is to identify the flexible

vibratory mode of this axis, i.e. the equivalent harmonic

oscillator parameters between the gearbox output and the end

of the axis. This behavior can be represented in continuous

Fig. 2. Flexible mode interpretation.

time domain by the second order system:

θl(s)

θr(s)
=

Y (s)

U(s)
=

Kω2
n

s2 + 2ξωns+ ω2
n

, (1)

where Y (s) is the output (the angular position of the axis),

U(s) is the input (angular position of the gearbox output

shaft), ξ is the damping ratio, ωn is the natural frequency and

K is the gain of the system. This model is considered with

the assumption that the system is governed by one vibration

mode and that the others have negligible contributions.

Consider the equation (1), expressed as a second order

differential equation:

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = Kω2

nu(t). (2)

In order to simplify the following developments, equation

(2) is expressed as:

ÿ(t) + α2ẏ(t) + α1y(t) = α3u(t), (3)

where:

ξ =
α2

2
√
α1

, ωn =
√
α1,K =

α3

α1

. (4)

Introducing the variables x1 = y, x2 = ẏ, the model (3)

can be rewritten under the state-space form:

ẋ1 = x2,

ẋ2 = −α1x1 − α2x2 + α3u.
(5)

The different representations introduced in this section will

be thereafter used to develop the identification algorithms.

III. PARAMETERS ESTIMATION

A. Algebraic Approach

The algebraic estimator presented in this article is based

on the basic approach introduced by M. Fliess and H. Sira-

Ramı́rez and can be found in [22] for its application on a

second order system. In this article a theoretical development

was proposed with the objective to tune an Adaptive Input

Shaping. Modifications are proposed to estimate the system’s

gain. Consider the differential equation (3). Its Laplace

Transform is given by:

s2Y (s)− sy(0)− ẏ(0) + α1(sY (s)− y(0))
+α2Y (s)− α3U(s) = 0.

(6)

The initial conditions which appear in the equation (6) are

annihilated by taking two derivatives with respect to the

complex variable s. One obtains

s2
d2Y

ds2
+ 4s

dY

ds
+ 2Y + α1

(

s
d2Y

ds2
+ 2

dY

ds

)

+α2

d2Y

ds2
− α3

d2U

ds2
= 0.

(7)

Recall that derivation w.r.t. s in the operational domain

translates into multiplication by −t in the time domain.

Multiplication by s in the operational domain corresponds to

derivation in the time domain. Applying the linear estimator

(7) is not appropriate. Derivation amplifies the high fre-

quency components and consequently, the noise contribution.

A simple solution is to make the estimator proper. It is



enough to multiply both sides of (7) by s−2, to eliminate

the derivation terms and obtain a relationship in function of

integral operators.

After algebraic manipulations, one has:

d2Y

ds2
+ 4s−1dY

ds
+ 2s−2Y

+α1

(

s−1 d
2Y

ds2
+ 2s−2dY

ds

)

+α2

(

s−2 d
2Y

ds2

)

− α3

(

s−2 d
2U

ds2

)

= 0.

(8)

By application of the Laplace inverse, the equivalent time

domain expression is:

η1(t) + α1η2(t) + α2η3(t)− α3η4(t) = 0, (9)

in which:

η1(t) = t
2
y(t)− 4

∫
t

0

σy(σ)dσ + 2

∫
t

0

∫
σ

0

y(λ)dλdσ,

η2(t) =

∫
t

0

σ
2
y(σ)dσ − 2

∫
t

0

∫
σ

0

λy(λ)dλdσ,

η3(t) =

∫
t

0

∫
σ

0

λ
2
y(λ)dλdσ,

η4(t) =

∫
t

0

∫
σ

0

λ
2
u(λ)dλdσ.

(10)

As mentioned in [22], the set of equations can be imple-

mented by means of time varying linear (unstable) filters.

From equation (9) we have one equation for three un-

known parameters. A solution would consist in integrating

(9) successively twice to obtain a set of three independent

equations linear with respect to the parameter to be identified.

The resulting equation (9), is linear in the unknown

parameters. We rewrite it as:

p1(t)θ = q1(t), (11)

where p1(t) =
[

−η1(t) −η2(t) η3(t)
]

, q1(t) = η1(t) and

θ =
[

α1 α2 α3

]

.

B. Sliding Modes Approach

Consider a second order system written under the state

space form:

ẋ1(t) = x2(t),
ẋ2(t) = f(t, x1(t), x2(t), u(t)) + ζ(t, x1(t), x2(t), u(t)),
y(t) = x1(t),

(12)

where f(t, x1(t), x2(t), u(t)) is a known function

while the uncertainties are concerned in the term

ζ(t, x1(t), x2(t), u(t)).

1) Observer design: The proposed Super-Twisting ob-

server has the form:

˙̂x1(t) = x̂2(t) + z1(t),
˙̂x2(t) = f(t, x1(t), x̂2(t), u) + z2(t),

(13)

where x̂1(t) and x̂2(t) are the state estimations, and the

correction variables z1(t) and z2(t) are the output injections

of the form:

z1(t) = λ|x1(t)− x̂1(t)|1/2sign(x1(t)− x̂1(t)),
z2(t) = αsign(x1(t)− x̂1(t)).

(14)

where z1(t) and z2(t) are the variables of the Super Twisting

Algorithm proposed in [7].

At the initial moment, x̂1(0) = x1(0) and x̂2(0) = 0.

Taking e1(t) = x1(t) − x̂1(t) and e2(t) = x2(t) − x̂2(t)
the error equations are given by:

ė1(t) = e2(t)− λ|x1 − x̂1(t)|1/2sign(x1 − x̂1(t)),
ė2(t) = F (t, x1(t), x̂2(t), u(t)) − αsign(x1(t)− x̂1(t)),

(15)

where F (t, x1(t), x̂2(t), u(t)) = f(t, x1(t), x2(t), u(t)) −
f(t, x1(t), x̂2(t), u(t))+ζ(t, x1(t), x2(t), u(t)). Suppose that

the system states can be assumed bounded then the existence

is ensured for a constant f+, such that the inequality:

|F (t, x1(t), x̂2(t), u(t))| < f+, (16)

holds for any possible t, x1(t), x2(t) and x̂2(t) <

2sup|x2(t)|.
Let α and λ satisfy the inequalities:

α > f+,

β >

√

2

α− f+

(α+ f+)(1 + p)

(1− p)
,

(17)

where p is some chosen constant, 0 < p < 1.

Theorem 3.1: Suppose that the parameters of the observer

(13), (14) are selected according to (17) and condition (16)

holds for system (12). Then, the variables of the observer

converge in finite time to the states of the system, i.e.

(x̂1(t), x̂2(t)) → (x1(t), x2(t)).
Proof, see [7].

2) Parameter Identification Formulation: The parameter

identification developed in this section comes from [9]. The

finite time convergence to the second order sliding mode set

ensures that there exists the time constant t0 > 0 such that

for all t ≥ t0, from (15) the following identity holds:

0 ≡ ė2(t)
0 ≡ F (t, x1(t), x̂2(t), u(t))− αsign(x1(t)− x̂1(t)),

(18)

notice that F (t, x1(t), x̂2(t), u(t)) = ζ(t, x1(t), x2(t), u(t))
because x̂2(t) = x2(t). Then the equivalent output injection

zeq is given by:

zeq ≡ α1sign(e1(t)) ≡ ζ(t, x1(t), x̂2(t), u(t)). (19)

Consider that ζ(t, x1(t), x̂2(t), u(t)) can be decomposed

using the regressor notation [30] as:

ζ(t, x1(t), x̂2(t), u(t)) = θ(t)ϕ(t, x1(t), x̂2(t), u(t)), (20)

where θ(t) ∈ R
n×l is a matrix composed by the value of

the uncertain parameters and ϕ(t, x1(t), x2(t), u(t)) ∈ R
l is

a known nonlinear function vector.



For the case where the system parameters are time in-

variant, i.e. θ(t) = θ, the equivalent output injection can be

represented in the form:

ζ(t, x1(t), x2(t), u(t)) = θϕ(t, x1(t), x2(t), u(t)). (21)

Applied to the article configuration, none of the parameters

are known. The equation (12) is expressed with:

f(t, x1(t), x2(t), u(t)) = 0,
ζ(t, x1(t), x2(t), u(t)) = −α1x1(t)− α2x2(t) + α3u(t).

(22)

Equation (21) can then be expressed by

p2(t)θ = q2(t), (23)

where p2(t) =
[

−x1(t) −x2(t) u(t)
]

, q2(t) =
ζ(t, x1(t), x2(t), u(t)) and θ =

[

α1 α2 α3

]

.

Remark 1: For the purpose of this article, we have consid-

ered that none of the parameters were known. Another con-

figuration could have consider that we have nominal parame-

ters expressed by f(t, x1(t), x2(t), u(t)) and parameter vari-

ations to be identified expressed by ζ(t, x1(t), x2(t), u(t)).

C. Parameters Identification

The proposed approaches for the parameter identification

based on an algebraic approach and on sliding modes led to

the two similar linear expressions (11) and (23). The solution

for θ is obtained as a classical solution given by the Least

Squares method [6]

θ̂i =

[
∫ t

0

pTi (σ)pi(σ)dσ

]−1 [∫ t

0

pTi (σ)qi(σ)dσ

]

. (24)

for i ∈ {1, 2}. The algebraic parameter estimation is given

for i = 1 while the sliding modes parameters identification

is given for i = 2.

In the next section, the algorithms for the parameter iden-

tification are applied experimentally for the robot system.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The experimental results are carried out on the manipulator

robot described in the Section II. In order to exhibit the

oscillatory behavior, the desired trajectory was planned as

an angular motion of the first joint (30◦), represented Fig.

1, while the five others are fixed. The positions measured

by the encoders are collected during the displacement. The

position of the robot in the cartesian frame is obtained using

the kinematic model of the robot, which was previously

identified. At the same time, a laser tracker measures the

position of the tool-tip. The frames of the robot and the laser

tracker have been matched using an Iterated Closest Points

(ICP) algorithm [3]. The two trajectories are represented Fig.

3. Although the trajectories are close the figure exhibits the

oscillatory behavior at the end effector.
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Fig. 3. Experimental measurement of the robot trajectory tracking in the
(X, Y,Z) Cartesian frame.

B. Off-line deformation analysis

In this section is presented the identification of the param-

eters ωn, ξ and K along the X position. Fig. 4 represents the

temporal evolution of the X position. On top, the blue curve

represents the encoder measure, the red one, the laser. In

order to exhibit the oscillatory behavior, the second subplot

represents the difference between the two measures whether

the deformation noted ∆θ. This figure shows that indeed the

assumption of a second order system for the modelling of the

flexible mode makes sense (see section II-B for more details).

Using classical results on temporal response of second order

system one can easily define the parameters to be compared

with the ones identified using the on-line approaches. Indeed

the damping ratio can be defined using the formula:

ξ =
ln
(

∆1

∆2

)

√

(2π)2 + ln
(

∆1

∆2

)2
, (25)

From Fig. 4 one has d1 = 0.74mm and d2 = 0.43mm

thus from this response, we have a damping ratio ξ = 8.6%.

The figure also show a static gain close to zero. A measure

of the oscillation period could give the natural frequency,

however to be more precise we propose to compute the

Fourier transform of the deformation. The analysis of the

Fourier transform highlight the different frequencies. The

Fourier transform of this signal is represented Fig. 5 and

shows that dominating mode as a pure natural frequency of

8.13Hz.

The off-line analysis previously presented gives an idea of

the parameters to be estimated. Note that these parameters

have been identified experimentally and cannot be considered

as reference parameters. These values are used to give an
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order of magnitude to be compared with the online estimation

presented in the next section.

C. On-line parameter estimation

Before comparing the estimation results, it is important

to show the convergence of the sliding mode observer.

Indeed as mentioned in Section III, the estimation via sliding

modes relies on the design of an observer. The finite time

convergence of the observer is based on the assumption

of bounded system states. Without loss of generalities, one

can assume that the modal deformation of the robot axis

is bounded (its derivative equally). The observer gains are

chosen in accordance with equation (17). In Fig. 6 the

axis deformation ∆θ is represented with its estimation ∆θ̂.

The estimation error plotted in the second subplot show

the good behavior of the proposed observer. Note that the

observer tracking error represents an interesting criterion for
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Fig. 5. Fourier transform of the X deformation.
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Fig. 6. Sliding mode deformation observation and its error.

the parameter estimation convergence.

The experimental comparison of the identification methods

is represented Fig. 7. The figure shows that after conver-

gence, the estimations give the same results, whether ξ =
8.4%, ωn = 8.12Hz and K = 0.02 moreover the results are

close to the ones obtained off-line. However, for the sliding

mode approach, the convergence is faster (around 0.07s for

the Sliding modes and 0.12s for the algebraic method). The

algebraic approach does not require gain tuning, which can

be a complicated task. Note that the parameter convergence

time can be obtained using a method based on the standard

deviation of the estimated parameters [22].

V. CONCLUSION

In this paper was proposed an experimental comparison

between two on-line parameter estimation methods. The

algebraic approach was compared to the sliding modes ap-
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Fig. 7. On-line parameter estimation, (blue) sliding modes approach, (red)
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proach. The algorithms have been evaluated experimentally

on an industrial robot axis. The objective was to identify

the first modal deformation of the robot axis. This vibratory

dynamics were modelled by a second order system, where

the natural frequency and the modal damping were the

parameters to be identified.

The comparison between both algorithms has shown sim-

ilar results in terms of estimated parameter results although

the time of convergence is faster for the sliding modes

approach. The main difference between these algorithms

concern the gains tuning and the algorithmic complexity. The

sliding modes structure is simpler to implement, however ob-

servers are based on gains which depend on the perturbation

amplitudes. The algebraic method, on the other hand, does

not depend on parameter tuning but are more complex to

implement.

Regarding the convergence time of both the algorithms,

experiments have pointed that around one period of the

vibration signal was necessary for the estimators to converge.

This result can be considered insufficient for most of the vi-

bration shaping methods require half a period to be efficient.

The observation can be relativized considering the sampling

frequency of the sensor. Higher sampling frequency could

lead to faster estimation convergence. One can note that

the sensing device used for these estimations, a 3d absolute

position system, works at a maximum sampling frequency of

333Hz. A simpler and lower-cost vibration sensor, such as

accelerometer, can be used with higher sampling frequency.

Future works on vibration control concern the on-line

implementation of these estimation approach for real-time

adaptation of input-shaping parameters.
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[21] A. Olabi, R. Béarée, O. Gibaru, and M. Damak. Feedrate planning

for machining with industrial six-axis robots. Control Engineering

Practice, 18(5):471–482, 2010.
[22] E. Pereira, J.-R. Trapero, I.-M. Dı́az, and V. Feliu. Adaptive input

shaping for manoeuvring flexible structures using an algebraic identi-
fication technique. Automatica, 45(4):1046–1051, 2009.

[23] W. Perruquetti and J.-P. Barbot. Sliding mode control in engineering.
Control Engineering Series, Marcel Dekker Inc, New York, 2002.

[24] W. Perruquetti, V. Bonnet, M. Mboup, R. Ushirobira, and P. Fraisse.
An algebraic approach for human posture estimation in the sagittal
plane using accelerometer noisy signal. In 51st IEEE Conference on
Decision and Control, pages 7389–7394, Maui, Hawaii, United States,
December 2012. Ieee.

[25] A. Pisano, A. Davila, L. Fridman, and E. Usai. Cascade control
of PM-DC drives via second-order sliding mode technique. In 10th

International Workshop on Variable Structure Systems, pages 268–273,
Antalya, Turkey, 2008.

[26] S. Riachy, Y. Bachalany, M. Mboup, and J.-P. Richard. Différentiation
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