
HAL Id: hal-00958573
https://hal.inria.fr/hal-00958573

Submitted on 25 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delegation Proxies: The Power of Propagation
Erwann Wernli, Oscar Nierstrasz, Camille Teruel, Stéphane Ducasse

To cite this version:
Erwann Wernli, Oscar Nierstrasz, Camille Teruel, Stéphane Ducasse. Delegation Proxies: The Power
of Propagation. Modularity, Apr 2014, Lugano, Switzerland. �hal-00958573�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49667853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00958573
https://hal.archives-ouvertes.fr

Delegation Proxies: The Power of Propagation ∗

Erwann Wernli Oscar Nierstrasz
Software Composition Group, University of Bern,

Switzerland

Camille Teruel Stéphane Ducasse
RMOD, INRIA Lille Nord Europe,

France

Abstract

Scoping behavioral variations to dynamic extents is useful to sup-
port non-functional requirements that otherwise result in cross-
cutting code. Unfortunately, such variations are difficult to achieve
with traditional reflection or aspects. We show that with a modi-
fication of dynamic proxies, called delegation proxies, it becomes
possible to reflectively implement variations that propagate to all
objects accessed in the dynamic extent of a message send. We
demonstrate our approach with examples of variations scoped to
dynamic extents that help simplify code related to safety, reliabil-
ity, and monitoring.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages — Constructs and Features

Keywords Reflection, proxy, dynamic extent

1. Introduction

Non-functional concerns like monitoring or reliability typically
result in code duplication in the code base. The use of aspects is the
de-facto solution to factor such boilerplate code in a single place.
Aspects enable scoping variations in space (with a rich variety of
static pointcuts), in time (with dynamic aspects), and in the control
flow (with the corresponding pointcuts). Scoping a variation to
the dynamic extent [39] of an expression is however challenging,
since scoping between threads is not easily realized with aspects.
Traditional reflection and meta-object protocols suffer from similar
limitations.

This is unfortunate since scoping variations to dynamic extents
increases the expressiveness of the language in useful ways [38,
39]. With such variations, it is for instance possible to execute code
in a read-only manner [4] (thus improving safety), or to track all
state mutations to ease recovery in case of errors (thus improving
reliability), or to trace and profile methods at a fine-grained level
(thus improving monitoring).

∗ PREPRINT. Cite as: Erwann Wernli, Oscar Nierstrasz, Camille Teruel,
and Stephane Ducasse. Delegation Proxies: The Power of Propagation. In
Proceedings of the 13th International Conference on Modularity, pp. 1–12,
ACM, New York, NY, USA, 2014. doi: 10.1145/2577080.2577081

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577081

We show in this paper that with minor changes to the way dy-
namic proxies operate, it becomes possible to reflectively imple-
ment variations that are scoped to dynamic extents. A dynamic
proxy [18, 28, 42] is a special object that mediates interactions be-
tween a client object and another target object. When the client
sends a message to the proxy, the message is intercepted, reified,
and passed to the proxy’s handler for further processing. To scope
variations to dynamic extents using proxies, we must first slightly
adapt the proxy mechanism, then implement specific handlers.

Our adaptation of dynamic proxies has the following character-
istics: 1) it supports delegation [27] by rebinding self-reference, 2)
it intercepts state accesses, both for regular fields and variables cap-
tured in closures, 3) it intercepts object creations. We refer to our
extension of dynamic proxies as delegation proxies.

With delegation proxies, it becomes possible to implement han-
dlers that will wrap all objects the target object accesses. Such a
handler wraps the result of state reads and object instantiations, and
unwraps the arguments of state writes. A proxy can consequently
encode a variation that will be consistently propagated to all ob-
jects accessed during the evaluation of a message send (i.e., its dy-
namic extent), without impacting objects in the heap.

Delegation proxies have several positive properties. First, del-
egation proxies do not lead to meta-regressions — infinite recur-
sion that arises in reflective architectures when reflecting on code
that is used to implement the reflective behavior itself. In aspect-
oriented programming, this arises when an advice triggers the as-
sociated pointcut. The solutions to this problem generally add an
explicit model of the different levels of execution [15, 40]. With
delegation proxies, this problem doesn’t appear since the proxy and
its target are distinct objects and the propagation is enabled only
for the proxy. No variation is active when executing the code of
the handler. Second, variations expressed with delegation proxies
compose, similarly to aspects. For instance, tracing and profiling
variations can be implemented with delegation proxies and then
composed to apply both variations. Third, delegation proxies nat-
urally support partial reflection [41]. Only the objects effectively
accessed in the dynamic extent of an execution involving a proxy
pay a performance overhead; all other objects in the system remain
unaffected, including the target.

In this paper, we explore and demonstrate the flexibility of
delegation proxies in Smalltalk with the following contributions:

• A model of proxies based on delegation that intercepts object
instantiations and state accesses (including variables in clo-
sures) (Section 2);

• A technique to use delegation proxies to scope variations to
dynamic extents (Section 2);

• Several examples of useful applications of variations scoped to
dynamic extents (Section 3);

http://doi.acm.org/10.1145/2577080.2577081

• A formalization of delegation proxies and the propagation tech-
nique (Section 4);

• An implementation of delegation proxies in Smalltalk based on
code generation (Section 5).

2. Delegation Proxies

We now describe how delegation proxies work and exemplify them
with an implementation of tracing. Let us consider the Smalltalk
method Integer>>fib 1 which computes the Fibonacci value of
an integer using recursion:

Integer>>fib
self < 2 ifTrue: [� self].
� (self - 1) fib + (self - 2) fib

Listing 1. Fibonacci computation

The computation of the Fibonacci value of 2 corresponds to
the following sequence of message sends (first the receiver of the
message, then the message with its arguments):

2 fib
2 < 2
false ifTrue: [� self]
2 - 1
1 fib
1 < 2
true ifTrue: [� self]
[� self] value
2 - 2
0 fib
0 < 2
true ifTrue: [� self]
[� self] value
1 + 0

Listing 2. Trace of 2 fib

To automatically trace message sends, we can use delegation
proxies to intercept message sends and print them. Like a dynamic
proxy, a delegation proxy is a special object that acts as a surrogate
for another object, called its target. The behavior of a proxy is
defined by a separate object called its handler, whose methods are
referred to as traps [42]. When an operation (message send, state
access, etc.) is applied to a proxy, the proxy reifies the operation
and instead invokes the corresponding trap in the handler. When an
operation is intercepted, the handler can take some action and can
reflectively perform the original operation on the target. Figure 1
shows the relationships between a proxy, a handler and a target.

The distinction between proxies and handlers is called strati-
fication [9, 28, 42]. Stratification avoids name conflicts between
application methods and traps, i.e., between the base-level and the
meta-level.

The target and the handler can be regular objects or proxies as
well. By using proxies as the targets of other proxies, we obtain
a chain of delegation. Each of the variations implemented by the
handlers of the proxies in the chain will be triggered in order. This
is a natural way to compose different variations together.

A tracing proxy can be obtained by instantiating a proxy with
a tracing handler. For convenience, we add method Object>>
tracing that returns a tracing proxy for any object. For instance,
2 tracing returns a tracing proxy for the number 2.

1 In Smalltalk, closures are expressed with square brackets ([. . .]) and
booleans are objects. The method ifTrue: takes a closure as argument: if
the receiver is true, the closure is evaluated by sending the message value.
The up-arrow (↑ ...) denotes a return statement.

targetclient

msg

handleMessage:

myself:

target:

proxy

handler

Figure 1. Example of message interception. First, the client sends
the message msg to a proxy. Then, the proxy intercepts the mes-
sage and invokes the handler trap associated with message recep-
tion (handleMessage:myself:target:) with three arguments: the
reified message, the proxy itself and the target.

Object>> tracing
� Proxy handler: TracingHandler new target: self.

Listing 3. Creation of a tracing proxy

To trace messages, the tracing handler must define a message
trap that prints the name of the reified message. Listing 4 shows the
code of such a message trap:

TracingHandler>>handleMessage: m myself: p target: t
Transcript

print: t asString;
space;
print: m asString;
cr.

� t perform: m myself: p.

Listing 4. A simple tracing handler

The reflective invocation with perform: takes one additional
parameter myself, which specifies how self is rebound in the
reflective invocation. The handler can thus either rebind self to
the proxy (delegation) or rebind self to the target (forwarding).
Delegation proxies thus trivially subsume traditional forwarding
proxies. In the case of a reflective invocation with delegation, the
method is executed with self rebound to the proxy, which allows
the proxy to further intercept operations happening during this
method execution.

If the target of a proxy is another proxy, proxies form chains
of delegation. The identity of the proxy that received the original
message send is consistently passed to the handlers.

2.1 Propagation

The tracing handler in the previous section defines a message trap.
Doing so ensures that messages received by the proxy are traced,
including self-sends in the method executed with delegation. How-
ever, it would fail to trace messages sent to other objects. The
evaluation of 2 tracing fib would print 2 fib, 2 < 2, 2 - 1,

2 - 2, but all the messages sent to 1, 0, true, false and
[� self] would not be traced.

To consistently apply a variation during the evaluation of a
message send, all objects accessed during the evaluation must be
represented with proxies. To achieve this, we can implement a
handler that replaces all object references accessed by proxies. This
way, the variation will propagate during the execution.

In a given method activation, a reference to an object can be
obtained from:

• an argument,

• a field read,

• the return value of message sends,

• the instantiation of new objects or the resolution of literals.

The following rules suffice to make sure that all objects are
represented with proxies. To distinguish between the initial proxy
and the proxies created during the propagation, we call the former
the root proxy. We need three rules to control how objects must be
wrapped:

• Wrap the initial arguments. When the root proxy receives a
message, the arguments must be wrapped with proxies. We
don’t need to wrap the arguments of other message sends: the
following rules ensure that the arguments were already wrapped
in the context of the caller.

• Wrap field reads. This way, references to fields are represented
with a proxy.

• Wrap object instantiation. The return value of primitive mes-
sage sends that “create” new objects must be wrapped. Such
primitive messages include explicit instantiations with new and
arithmetic computations with +,-,/. Similarly, the resolution of
literal must be wrapped.

We don’t need to wrap the return value of other message sends.
Indeed, if the receiver and the arguments of a message send
are already wrapped, and if the results of state reads and object
instantiations are also wrapped in the execution of the method
triggered by this message send, this message send will neces-
sarily return a proxy.

Additionally, we need two rules to control how objects must be
unwrapped:

• Unwrap field writes. When a field is written, we unwrap the
value of the assignment before performing it. This way, the
proxies created during the propagation are only referred to
from within the call stack and don’t pollute the heap via the
fields of target objects. They can be garbage collected once the
propagation is over.

• Unwrap the initial return value. The root proxy unwraps the
objects returned to the clients.

Applying this technique to the code in Listing 1, the subtrac-
tions self-2 and self-1 return proxies as well. Figure 2 depicts
the situation. This way, tracing is consistently applied during the
computation of Fibonacci numbers.

2.2 Traps

In Smalltalk, an object is instantiated by sending the message new

to a class, which is an object as well. The interception of object
instantiations does thus not require a specific trap and is realized
indirectly. The following set of traps is thus sufficient to intercept
all method invocations, state accesses, and object instantiations:

• handleMessage:myself:target:

The trap for message sends takes as parameters the reified
message, the original proxy2 and the target.

• handleReadField:myself:target:

The trap for field reads takes as parameters the field name, the
original proxy and the target.

2 In case of chain proxies, the original proxy is not necessarily the one that
intercepted the operation but the root of the chain

2

1

2'

1'
target

target
-

2

1

2'

1'
target

target
-

2

1

2'

1'
target

target
- 2

1

2'

1'
target

target
-

returns

-

returns

-

a b

c d

Figure 2. Illustration of propagation during the subtraction 2 - 1. A
proxy to 2 receives the subtraction message “-” with a proxy to 1 as
argument (a). The message is forwarded to 2 to perform the actual
subtraction (b) that returns 1 (c). Finally the result is wrapped (d).

• handleWriteField:value:myself:target:

The trap for field writes takes as parameters the field name, the
value to write, the original proxy and the target.

• handleLiteral:myself:target:

The trap for the resolution of literals (symbols, string, numbers,
class names, and closures) takes as parameters the resolved
literal, the original proxy and the target.

Instantiations of objects using literals, e.g., the instantiation of
a string, are intercepted with the literal trap. In Java, an additional
trap would be needed to intercept constructor invocations. Similar
considerations hold for access to static fields and invocation of
static methods.

Similarly to perform:, reflective methods to read fields, to
write fields and to resolve literals are extended with an addi-
tional parameter myself. They become instVarNamed:myself:,
instVarNamed:put:myself and literal:myself:. The parameter
myself is needed, because proxies may form chains of delegation.
When invoked on a proxy, the reflective operations will trigger the
corresponding trap. The parameter myself is passed to the traps
along the chain to preserve the identity of the proxy that originally
intercepted the operation.

With the support of delegation and the ability to intercept state
accesses and object instantiations, it becomes possible to imple-
ment a handler that realizes the propagation technique. The code of
such a propagating handler is shown in Listing 5. We assume the
existence of a class Reflect to unwrap proxies.

PropHandler>>initialize
isRoot := true

PropHandler>>handleMessage: m myself: p target: t
� m selector isPrimitive

ifTrue: [self wrap: (t perform: m myself: p)]
ifFalse: [

self isRoot
ifTrue: [

m arguments: (self wrapAll: m arguments).
self unwrap: (t perform: m myself: p)]

ifFalse: [t perform: m myself: p]]

PropHandler>>handleReadField: f myself: p target: t
� self wrap: (t instVarNamed: f myself: p).

PropHandler>>handleWriteField: f value: v proxy: p

target: t
t instVarNamed: f put: (self unwrap: v) myself: p.
� v

PropHandler>>handleLiteral: l myself: p target: t
� self wrap: l

PropHandler>>wrap: anObject
| handler |
handler := self class new.
handler isRoot: false.
� Proxy handler: handler target: anObject

PropHandler>>wrapAll: aCollection
� aCollection collect: [:each | self wrap: each]

PropHandler>>unwrap: aProxy
� Reflect targetOf: aProxy

PropHandler>>isRoot: aBoolean
isRoot := aBoolean

Listing 5. Tracing handler implementing the propagation tech-
nique.

2.3 Closures

A closure should be evaluated with the variations that are active
in the current dynamic extent, and not the variations that were
active when the closure was created. For instance, if the closure
[self printString] is created when tracing is enabled, its eval-
uation during a regular execution should not trace the message
printString. Conversely, if the closure [self printString] is
created during a regular execution, its evaluation when tracing is
enabled should trace the message printString. For this to work
correctly, closures are always created in an unproxied form, and
proxying is only applied on demand.

Variables captured in a closure are stored in indexed fields. Let
us describe first how creation works and illustrate it with the closure
[self printString] and tracing:

1. The closure is created by the runtime and captures variables as-
is. Tracing example: the closure captures self, which refers to
a proxy.

2. The closure creation is intercepted by the literal trap of the
creator. Tracing example: the closure is treated like other literals
and thus proxied.

3. If the closure was proxied, the runtime invokes the write trap of
the closure’s proxy for all captured variables. Tracing example:
the runtime invokes the write trap of the closure’s proxy passing
0 as field index and the self proxy as value. The trap unproxies
the value and reflectively invokes instVarNamed:put:myself:

for field 0. This overwrites the previous value in the closure with
a reference to the base object.

Evaluation of closures follows the inverse scheme:

1. If the closure is evaluated via a proxy, the runtime invokes the
read trap each time a captured variable is accessed. Tracing
example: the runtime invokes the read trap of the closure’s
proxy passing 0 as field index. The trap reflectively invokes
instVarNamed: for field 0 and wraps the result with a proxy.
The message printString is sent to the proxy.

Note that this scheme is quite natural if we consider that clo-
sures could be encoded with regular objects, similarly to anony-
mous classes in Java. In that case, captured variables are effectively
stored in synthetic fields initialized in the constructor. The instanti-

ation of the anonymous class would trigger write traps, and evalu-
ation would trigger read traps.

Adding method valueWithHandler: in BlockClosure, tracing
2 fib can also be achieved with [2 fib] valueWithHandler:

TracingHandler new instead of 2 tracing fib. When we evaluate
the closure via the proxy, the literal trap will wrap 2 before it is
used. Closures provide a convenient way to activate a behavioral
variation in the dynamic extent of expression.

BlockClosure>> valueWithHandler: aHandler
� (Proxy handler: aHandler target: self) value.

Listing 6. Convenience method to wrap and evaluate a closure

2.4 Transparency

Traps are implemented in a separate handler and not in the proxy
itself. If an application defines an application-level method whose
name collides with the name of a trap, the explicit invocation of this
method will be trapped by the handler. It avoids conflicts between
the base-level and the meta-level. The proxy can expose the exact
same interface as its target.

It is impossible to deconstruct a proxy to obtain its handler or its
target without using reflective capabilities. Since security is not a
concern, we assume for simplicity the existence of a class Reflect

that exposes the following methods globally:

• Reflect class>>isProxy: aProxy
Returns whether the argument is a proxy or not.

• Reflect class>>handlerOf: aProxy
If the argument is a proxy, returns its handler. Fails otherwise.

• Reflect class>>targetOf: aProxy
If the argument is a proxy, returns its target. Fails otherwise.

For increased security, these methods could to be stratified with
mirrors [9], in which case handlers would need to have access to a
mirror when instantiated.

3. Examples

Since delegation proxies subsume dynamic proxies, they can be
used to implement all classic examples of dynamic proxies like lazy
values, membranes, remote stubs, etc. We omit such examples that
can be found elsewhere in the literature [13, 18, 28].

We focus in this section on new examples enabled by dele-
gation proxies. They all rely on the propagation technique pre-
sented earlier. We assume that the handlers inherit from the class
PropHandler that implements the propagation technique for reuse
(see Listing 5).

3.1 Object Versioning

To tolerate errors, developers implement recovery blocks that undo
mutations and leave the objects in a consistent state [33]. Typically,
this requires cloning objects to obtain snapshots. Delegation prox-
ies enable the implementation of object versioning elegantly. Be-
fore any field is mutated, the handler shown below records the old
value into a log using a reflective field read. The log can be used
in recovery block, for instance to implement rollback. Similarly to
the other examples that follow, we assume that the handler inherits
from a base handler that implements the propagation technique.

RecordingHandler>>handleWriteField: f value: v
myself: p target: t

| oldValue |
oldValue := t instVarNamed: f.
log add: { t. f. oldValue }.
� super handleWriteField: f value: v myself: p target: t

Listing 7. Recording handler

A convenience method can be added to enable recording with
[. . .] recordInLog: aLog.

BlockClosure>>recordInLog: aLog
� self valueWithHandler: (RecordingHandler log: aLog)

Listing 8. Enabling recording

The log can then be used to reflectively undo changes if needed.

aLog reverseDo: [:m |
m first instVarNamed: m second put: m third

]

Listing 9. Undoing changes (m stands for mutation)

3.2 Read-only Execution

Read-only execution [4] prevents mutation of state during evalua-
tion. Read-only execution can dynamically guarantee that the eval-
uation of a given piece of code is either side-effect free or raises an
error.

Classical proxies could restrict the interface of a given object
to the subset of read-only methods. However, they would fail to
enable read-only execution of arbitrary functions, or to guarantee
that methods are deeply read-only. Read-only execution can be
implemented trivially using propagation and a handler that fails
upon state writes.

ReadOnlyHandler>>handleWriteField: f value: v myself: p
target: t

ReadOnlyError signal: ’Illegal write’.

Listing 10. Read-only handler

3.3 Dynamic Scoping

In most modern programming languages, variables are lexically
scoped and can’t be dynamically scoped. Dynamic scoping is
sometimes desirable, for instance in web frameworks to access
easily the ongoing request. Developers must in this case use alter-
natives like thread locals. It is for instance the strategy taken by
Java Server Faces in the static method getCurrentInstance() of
class FacesContext

3).
Dynamic scoping can be realized in Smalltalk using stack ma-

nipulation [16] or by accessing the active process. Delegation prox-
ies offer an additional approach to implement dynamic bindings
by simply sharing a common (key,value) pair between handlers.
If multiple dynamic bindings are defined, objects will be proxied
multiple times, once per binding. When a binding value must be
retrieved, a utility method locates the handler corresponding to the
request key, and returns the corresponding value:

ScopeUtils>>valueOf: aKey for: aProxy
| h p |
p := aProxy.
[Reflect isProxy: p] whileTrue: [

h := Reflect handlerOf: p.
(h bindingKey == aKey) ifTrue: [

� h bindingValue.
].
p := Reflect targetOf: p.

].
� nil. "Not found"

Listing 11. Inspection of a chain of proxies

During the evaluation of a block, a dynamic variable can be
bound with [. . .] valueWith: #currentRequest value: aRequest

and accessed pervasively with ScopeUtils valueOf: #currentRequest

for: self.

3 http://www.webcitation.org/6FOF4DFab

3.4 Profiling

Previous sections already illustrated delegation proxies using trac-
ing. The exact same approach could be used to implement other
interceptors like profiling or code contracts. The following handler
implements profiling. It stores records of the different execution
durations in an instance variable tallies for later analysis.

ProfilingHandler>>initialize
tallies := OrderedCollection new

ProfilingHandler>>handleMessage: m myself: p target: t
| start |
start := Time now.
[� super handleMessage: m myself: p target: t]

ensure: [
| duration |
duration := Time now - start.
tallies add: {t. m. duration}]

Listing 12. A simple profiling handler

4. Semantics

We formalize delegation proxies by extending SMALLTALKLITE

[6], a lightweight calculus in the spirit of CLASSICJAVA [19] that
omits static types. This paper does not assume any prior know-
ledge of it. Our formalization simplifies three aspects of the seman-
tics presented in the previous sections: it doesn’t model first-class
classes, literals or closures. Consequently, a literal trap does not
make sense. Instead, we introduce a new trap that intercepts object
instantiations.

The syntax of our extended calculus, SMALLTALKPROXY, is
shown in Figure 3. The only addition to the original syntax is the
new expression proxy e e.

P = defn∗e
defn = class c extends c { f∗meth∗ }
meth = m(x∗) { e }

e = new c | x | self | nil | f | f = e
| e.m(e∗) | super.m(e∗) | let x = e in e
| proxy e e

Figure 3. Syntax of SMALLTALKPROXY

During evaluation, the expressions of the program are annotated
with the object and class context of the ongoing evaluation, since
this information is missing from the static syntax. An annotated ex-
pression is called a redex. For instance, the super call super.m(v∗)
is decorated with its object and class into super〈c〉.m〈o〉(v∗) be-
fore being interpreted; self is translated into the value of the cor-
responding object; message sends o.m(v∗) are decorated with the
current object context to keep track of the sender of the message.
The rules for the translation of expressions into redexes are shown
below.

Redexes and their subredexes reduce to a value, which is either
an address a, nil, or a proxy. A proxy has a handler h and a target
t. A proxy is itself a value. Both h and t can be proxies as well.
Redexes may be evaluated within an expression context E. An
expression context corresponds to an redex with a hole that can
be filled with another redex. For example, E[expr] denotes an
expression that contains the sub-expression expr.

Translation from the main expression to an initial redex is car-
ried out by the o[[e]]

c
function (see Figure 4). This binds fields to

their enclosing object context and binds self to the value o of the
receiver. The initial object context for a program is nil. (i.e., there

http://www.webcitation.org/6FOF4DFab

o[[new c]]
c

= new〈o〉 c
o[[x]]

c
= x

o[[self]]
c

= o
o[[nil]]

c
= nil

o[[f]]
c

= f〈o〉
o[[f = e]]

c
= f〈o〉 = o[[e]]

c

o[[e.m(e∗i)]]c = o[[e]]
c
.m〈o〉(o[[ei]]

∗

c
)

o[[super.m(e∗i)]]c = super〈c〉.m〈o〉(o[[ei]]
∗

c
)

o[[let x = e in e′]]
c

= let x = o[[e]]
c

in o[[e′]]
c

o[[proxy e e′]]
c

= proxy o[[e]]
c
o[[e′]]

c

Figure 4. Translating expressions to redexes

ǫ = o | new〈o〉 c | x | self | nil
| f〈o〉 | f〈o〉 = ǫ | ǫ.m〈o〉(ǫ∗)
| super〈c〉.m〈o〉(ǫ∗) | let x = ǫ in ǫ

E = [] | f〈o〉 = E | E.m〈o〉(ǫ∗)
| o.m〈o〉(o∗ E ǫ∗) | super〈c〉.m〈o〉(o∗ E ǫ∗)
| let x = E in ǫ | proxy E ǫ | proxy o E

o, h, t = nil | a | proxy h t

Figure 5. Redex syntax

are no global fields accessible to the main expression). So if e is the
main expression associated to a program P , then nil[[e]]Object is the
initial redex.

P ⊢ 〈ǫ,S〉 →֒ 〈ǫ′,S ′〉 means that we reduce an expression
(redex) ǫ in the context of a (static) program P and a (dynamic)
store of objects S to a new expression ǫ′ and (possibly) updated
store S ′. The store consists of a set of mappings from addresses
a ∈ dom(S) to tuples 〈c, {f 7→ v}〉 representing the class c of an
object and the set of its field values. The initial value of the store is
S = {}.

The reductions are summarized in Figure 6. Predicate ∈∗

P is
used for field lookup in a class (f ∈∗

P c) and method lookup
(〈c,m, x∗, e〉 ∈∗

P c′, where c′ is the class where the method
was found in the hierarchy). Predicates ≤P and ≺P are used
respectively for subclass and direct subclass relationships.

If the object context 〈o〉 of an instantiation with new〈o〉 c is an
object (i.e., not a proxy), the expression reduces to a fresh address a,
bound in the store to an object whose class is c and whose fields are
all nil(reduction [new]). If the object context of the instantiation is
a proxy, the newTrap is invoked on the handler instead (reduction
[new-proxy]). The trap takes the result of the instantiation new〈t〉 c
as parameter; it can take further action or return it as-is.

The object context 〈o〉 of field reads and field writes can be an
object or a proxy. A local field read in the context of an object
address reduces to the value of the field (reduction [get]). A local
field read in the context of a proxy invokes the trap readTrap on the
handler h (reduction [get-proxy]). A local field write in the context
of an object simply updates the corresponding binding of the field
in the store (reduction [set]). A local field read in the context of a
proxy invokes the trap writeTrap on the handler h (reduction [set-
proxy]).

Messages can be sent to an object or to a proxy. When we send a
message to an object, the corresponding method body e is looked-
up, starting from the class c of the receiver a. The method body
is then evaluated in the context of the receiver, binding self to the
address a. Formal parameters to the method are substituted by the
actual arguments. We also pass in the actual class in which the
method is found, so that super sends have the right context to start

their method lookup (reduction [message]). When a message is sent
to a proxy, the trap messageTrap is invoked on the handler. The
object context 〈s〉 that decorates the message corresponds to the
sender of the message. The trap takes as parameters the message
and its arguments, and the initial receiver of the message proxy h t.

Super-sends are similar to regular message sends, except that
the method lookup must start in the superclass of the class of
the method in which the super send was declared. In the case of
super-send, the object context 〈s〉 corresponds to the sender of the
message as well as the receiver. The object context is used to rebind
self (reduction [super]). When we reduce the super-send, we must
take care to pass on the class c′′ of the method in which the super
reference was found, since that method may make further super-
sends.

Finally, let in expressions simply represent local variable bind-
ings (reduction [let]). Errors occur if an expression gets ÒstuckÓ
and does not reduce to an a or to nil. This may occur if a non-
existent variable, field or method is referenced (for example, when
sending any message to nil, or applying traps on a handler h that
isn’t suitable). For the purpose of this paper we are not concerned
with errors, so we do not introduce any special rules to generate an
error value in these cases.

4.1 Identity Proxy

As was discussed in subsection 2.4, the system requires the ability
to reflectively apply operations on base objects and proxies to be
useful. For simplicity, we extend the language with three additional
non-stratified reflective primitives: send, read, and write. The se-
mantics of these primitives is given in Figure 7.

All three primitives take a last argument my (shortcut for “my-
self”) representing the object context that will be rebound. When
applied to a proxy, the operations invoke the corresponding trap in
a straightforward manner, passing my as-is. When read or write is
applied to an object address, the argument my is ignored. When
send is applied to an object address, my defines how self will be
rebound during the reflective invocation.

With these primitives, we can trivially define the identity han-
dler, idHandler. idHandler is an instance of a handler class that
defines the following methods:

newTrap(t,my) = t
readTrap(t, f,my) = t.read(f,my)
writeTrap(t, f, o,my) = t.write(f, o,my)
messageTrap(t,m, o∗,my) = t.send(m, o∗,my)

We can show that sending a message to an identity proxy will
delegate the message to the target, and rebind self to the proxy.

Let us consider an object s that sends the message m(o) to a
proxy p = proxy idHandler t. Object t is an instance of class c
which defines method m(x) with body e = self n(x).

p.m〈s〉(o)
idHandler.messageTrap(t,m, o, p) [send-proxy]
t.send(m, o, p) [send]
p[[e[o/x]]]

c
[reflect-message]

p[[self]]
c
.n〈p〉(o) [translation]

p.n〈p〉(o) [translation]

4.2 Propagating Identity Proxy

Following the technique of propagation presented in subsection 2.1,
we propose a propagating identity handler, propHandler. This han-
dler defines the behavior of the root proxy and uses another handler
propHandler∗ to create the other proxies during propagation. This
technique requires the ability to unwrap a proxy. The expression
unproxy is added to the language as defined in Figure 7. We also
assume the existence of the traditional sequencing (;) operation.

P ⊢ 〈E[new〈r〉 c],S〉 →֒ 〈E[a],S[a 7→ 〈c, {f 7→ nil | ∀f, f ∈∗

P c}〉]〉 [new]
where a 6∈ dom(S)

P ⊢ 〈E[new〈proxy h t〉 c],S〉 →֒ 〈E[h.newTrap(new〈t〉c, proxy h t)],S〉 [new-proxy]

P ⊢ 〈E[f〈a〉],S〉 →֒ 〈E[o],S〉 [get]
where S(a) = 〈c,F〉 and F(f) = o

P ⊢ 〈E[f〈proxy h t〉],S〉 →֒ 〈E[h.readTrap(t, f, proxy h t)],S〉 [get-proxy]

P ⊢ 〈E[f〈a〉 = o],S〉 →֒ 〈E[o],S[a 7→ 〈c,F [f 7→ o]〉]〉 [set]
where S(a) = 〈c,F〉

P ⊢ 〈E[f〈proxy h t〉 = o],S〉 →֒ 〈E[h.writeTrap(t, f, o, proxy h t)],S〉 [set-proxy]

P ⊢ 〈E[a.m〈s〉(o∗)],S〉 →֒ 〈E[a[[e[o∗/x∗]]]
c′
],S〉 [message]

where S[a] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗

P c′

P ⊢ 〈E[(proxy h t).m〈s〉(o∗)],S〉 →֒ 〈E[h.messageTrap(t,m, o∗, proxy h t)],S〉 [message-proxy]

P ⊢ 〈E[super〈c〉.m〈s〉(o∗)],S〉 →֒ 〈E[s[[e[o∗/x∗]]]
c′′
],S〉 [super]

where c ≺P c′ and 〈c′,m, x∗, e〉 ∈∗

P c′′ and c′ ≤P c′′

P ⊢ 〈E[let x = o in ǫ],S〉 →֒ 〈E[ǫ[o/x]],S〉 [let]

Figure 6. Reductions for SMALLTALKPROXY

P ⊢ 〈E[a.send(m, o∗,my)],S〉 →֒ 〈E[my[[e[o∗/x∗]]]
c′
],S〉 [reflect-message]

where S[a] = 〈c,F〉 and 〈c,m, x∗, e〉 ∈∗

P c′

P ⊢ 〈E[(proxy h t).send(m, o∗,my)],S〉 →֒ 〈E[h.messageTrap(t,m, o∗,my)],S〉 [reflect-message-proxy]

P ⊢ 〈E[a.read(f,my)],S〉 →֒ 〈E[o],S〉 [reflect-get]
where S(a) = 〈c,F〉 and F(f) = o

P ⊢ 〈E[(proxy h t).read(f,my)],S〉 →֒ 〈E[h.readTrap(t, f,my)],S〉 [reflect-get-proxy]

P ⊢ 〈E[a.write(f, o,my)],S〉 →֒ 〈E[o],S[a 7→ 〈c,F [f 7→ o]〉]〉 [reflect-set]
where S(a) = 〈c,F〉

P ⊢ 〈E[(proxy h t).write(f, o,my)],S〉 →֒ 〈E[h.writeTrap(t, f, o,my)],S〉 [reflect-set-proxy]

P ⊢ 〈E[unproxy(proxy h t)],S〉 →֒ 〈E[t],S〉 [unproxy]

Figure 7. Reflective facilities added to SMALLTALKPROXY

The handler propHandler is defined as follows:

newTrap(t,my) = proxy propHandler∗ t
readTrap(t, f,my) = proxy propHandler∗ (t.read(f,my))
writeTrap(t, f, o,my) = t.write(f, unproxy o,my); o
messageTrap(t,m, o∗,my) = unproxy(t.send(m,

(proxy propHandler∗o1, . . . ,
proxy propHandler∗on),my))

The handler propHandler∗ is defined as follows:

newTrap(t,my) = proxy propHandler∗ t
readTrap(t, f,my) = proxy propHandler∗ (t.read(f,my))
writeTrap(t, f, o,my) = t.write(f, unproxy o,my); o
messageTrap(t,m, o∗,my) = t.send(m, o∗,my)

We can formally express the intuitive explanation of subsec-
tion 2.1 about soundness of the propagation.

Let us assume that all values in the expression E[e] are proxies
(using the propHandler∗). The reduction rules that can match are
[new-proxy], [get-proxy], [set-proxy], [super], [let], and [message-
proxy]. According to the definition of the propHandler∗ traps, rule
[new-proxy] will preserve the invariant that all values are proxies.
Rule [get-proxy] does so as well. Rule [set-proxy] preserves the

assumption since it returns the value written, which we know is a
proxy. Rules [super] and [let] do as well since they only bind vari-
ables with existing values, which we know are proxies. Similarly,
rule [message-proxy] will bind self with the expected proxy (see
previous section). It also binds the variables with the passed ar-
guments, which are known to be proxies. Since all values remain
proxies, the evaluation is consistent.

The initial redex is evaluated with nil as object context: nil[[e]]Object.
If the proxy p = proxy propHandler nil is used instead of nil, the
assumption is initially true, and will not be broken during evalua-
tion.

5. Implementation

We have implemented a prototype of delegation proxies in Smalltalk
that relies on code generation. For each existing method in a base
class, a hidden method with an additional parameter myself and
a transformed body is generated. Instead of self, myself is used
in the generated method body (this is similar to Python’s explicit
self argument). Following the same approach as Uniform Proxies
for Java [18], proxy classes are auto-generated. Let us consider the
class Suitcase:

Object>>subclass: #Suitcase

instanceVariableNames: ’content’

Suitcase>>printString
� ’Content: ’ concat: content.

Listing 13. Original code of class Suitcase

Applying our transformation, the class Suitcase is augmented
with synthetic methods to read and write the field content and to
resolve literals.

Suitcase>> literal: aLiteral myself: slf
� aLiteral

Suitcase>> readContentMyself: slf
� content

Suitcase>> writeContent: value myself: slf
� content := value

Listing 14. Synthetic methods to read and write instance variable
content and literal resolution

In Smalltalk, fields are encapsulated and can be accessed only
by their respective object. The sender of a state access is always
myself, and can thus be omitted from the traps. For each existing
method in class Suitcase, a hidden method with a transformed
body and one additional parameter myself is generated.

Suitcase>>printStringMyself: slf
� (slf literal: ’Content: ’ myself: slf)

concat: (self readContentMyself: slf).

Listing 15. A transformed version of method printString

A proxy class for Suitcase is then generated. It inherits
from a class Proxy, which defines the handler field common to
all proxies. The generated class implements the same methods
as the Suitcase class, i.e., printString, printStringMyself:,
readContentMyself:, and writeContent:myself:. The methods
invoke respectively message, read and write traps on the handler.

SuitcaseProxy>> printString
� self printStringMyself: self

SuitcaseProxy>> printStringMyself: slf
| msg |
msg := Message selector: #printString arguments: {} .
� handler message: msg myself: slf target: target.

Listing 16. Sample generated method in proxy class of Suitcase

5.1 Classes

Smalltalk has first-class classes whose behaviors are defined in
meta-classes. The class and meta-class hierarchies are parallel.
Classes can be proxied like any object. Consequently, meta-classes
are rewritten and extended with synthetic methods similarly to
classes. However, the generated proxy classes do not inherit from
Class, but Proxy, as is shown in Figure 8.

5.2 Closures

Closures are regular objects that are adapted upon creation and
evaluation according to subsection 2.3. When a closure defined
in an original uninstrumented method is proxied, the code of the
closure is transformed lazily.

Point

ColorPoint

Point class

ColorPoint class

ColorPointProxy

PointProxy

ColorPointClassProxy

PointClassProxy

Object

ClassProxy

subclass of

instance of

proxy class of

Figure 8. Inheritance of classes, meta-classes, and auto-generated
proxy classes.

5.3 Weaving

Sending a message to a proxy entails reification of the message,
invocation of the handler’s trap, and then reflective invocation of the
message on the target. In addition, the handler might take additional
actions that entail costs. The handler and the proxy can be woven
into specialized classes for less levels of indirection. For instance,
a SuitcaseProxy with a Tracing handler can be woven into a
SuitcaseTracingProxy:

SuitcaseTracingProxy>> printStringMyself: slf
| msg |
msg := Message selector: #printString arguments: {} .
Transcript

print: target asString;
space;
print: msg asString;
cr.

� target printStringMyself: slf.

Listing 17. Sample woven method

We have implemented a simple weaver that works for basic
cases. We plan to mature it in the future and leverage techniques
for partial evaluation [20] developed for aspect compilers [29].

5.4 Performance

Delegation proxies have no impact on performance if not used: the
transformation adds new code but does not alter the existing one.
When used, we need to distinguish between the performance of
delegation proxies themselves and the overhead of the propagation
technique.

Used sparingly, delegation proxies do not entail performance
issues. The situation is similar to traditional forwarding proxies.
Used extensively with our propagation technique, the cost of del-
egation proxies is prohibitive unless weaving is used. With weav-
ing, benchmarks of Fibonacci4 reveal a performance degradation of
below one order of magnitude (8x slower). We believe it is an en-
couraging result given that delegation proxies enable unanticipated
behavioral reflection, which is known to be costly.

With our propagation technique, a given object might be
wrapped multiple times, producing multiple equivalent proxies.
In the Fibonacci examples, 1, 2 and [^ self] are literals that are
intercepted and wrapped thousands of times. This increases the

4 CogVM 6.0, Mac OS X, 2.3 GHz Intel Core

number of objects created and puts pressure on the garbage collec-
tor. Future work could address this issue, possibly with caching.

6. Discussion

Scoping Scoping variations to dynamic extents was the motiva-
tion for delegation proxies. However, the propagation technique
that we have presented covers only one particular form of scoping
that can be realized with delegation proxies. Since the propagation
is implemented reflectively, it can be customized in many ways.

If a variation is active in all threads, the propagation can for
instance be adapted to proxy only instances of application classes
and skip kernel classes (string, dictionaries, arrays, etc.). The ap-
plication and the kernel form two layers. Any application object
referenced by a kernel object has necessarily been provided by the
application. If application objects are wrapped, this guarantees that
kernel objects hold only references to proxies of application ob-
jects. Therefore, if a kernel object sends a message to an application
object, the propagation will start again. Kernel objects will not un-
wrap proxies of application objects upon state writes, and the heap
might contain references to proxies (the variation must thus be ac-
tive in all threads). Omitting kernel objects from the propagation
could be desirable to improve performance.

It is also be possible to adapt the propagation so that the root
proxies doesn’t unwrap the objects they returns. Variations that
apply security concerns such as access control usually have this
requirement [4].

Closure wrapping rules can also be customized in different
ways. It is possible to control which closures should “escape” the
dynamic extent as proxy or not. If a method parallelizes work
internally using multiple threads, the propagation could for instance
be customized to propagate to those threads as well. Or if the
system uses callbacks, the callbacks could restore the variation that
was active when they were created.

Delegation proxies provide flexible building blocks to imple-
ment various forms of scopes, possibly blurring the line between
static and dynamic scoping, similarly to Tanter’s scoping strategies
[39].

Static Typing There is no major obstacle to port our implemen-
tation to a statically-typed language. Delegation proxies preserve
the interface of their target, like traditional forwarding proxies. For
type compatibility, the generated proxy must inherit from the orig-
inal class. Reflective operations can fail with run-time type errors.
Forwarding and delegation proxies suffer from the same lack of
type safety from this perspective.

If closures cannot be adapted at run time with the same flex-
ibility as in Smalltalk, the implementation might require a global
rewrite of the sources to adapt the code of the closures at compile-
time.

Delegation proxies require that reflective operations have an
additional parameter that specifies how to rebind self. Naturally,
this parameter must be of a valid type: in practice it will be either
the target of the invocation or a proxy of the target. Both implement
the same interface.

7. Related Work

Method Dispatch MOPs, AOP and proxies are various ap-
proaches that enable the interception and customization of method
dispatch. MOPs reify the execution into meta-objects that can be
customized [23]. AOP adopts another perspective on the problem
and enables the definition of join points where additional logic is
woven [24]. MOP and AOP share similarities with method combi-
nation of CLOS [14].

Many languages provide support for dynamic proxies. When a
message is sent to a dynamic proxy, the message is intercepted and

reified. Dynamic proxies have found many usefully applications
that can be categorized as “interceptors” or “virtual objects” [42].
An important question for proxies is whether to support them
natively at the language level or via lower-level abstractions.

Most dynamic languages support proxies via traps that are in-
voked when a message cannot be delivered [28]. However, modern
proxy mechanisms stratify the base and meta levels with a han-
dler [18, 28, 42], including Java that uses code generation to en-
able proxies for interfaces. The mechanism was extended to enable
proxies of classes as well [18].

AOP and MOP inherently suffer from meta-regression issues,
unless the meta-levels are explicitly modeled [11, 15, 40]. In con-
trast to AOP and MOPs, delegation proxies do not suffer from
meta-regression issues since the adapted object and the base object
are distinct. For instance, the tracing handler in Listing 4 does not
lead to a meta-regression since it sends the message asString to
the target, which is distinct from the proxy (in parameter myself).
System code can in this way be adapted. Also, delegation proxies
naturally enable partial reflection [41] since objects are selectively
proxied.

Recent works on proxies in dynamic languages have studied
orthogonal issues related to stratification [12, 42], preservation
of abstractions and invariants [13, 37], and traps for values [5].
Only Javascript direct proxies support delegation [13]. However,
Javascript proxies do not enable the interception of object instan-
tiations; the variables captured in a closure will not be unproxied
upon capture and proxied upon evaluation.

In addition to full-fledged MOPs and AOP, reflective language
like Smalltalk provide various ways to intercept message sends
[17]. Java and .NET support custom method dispatch via JSR 292
[31] and the Dynamic Language Runtime [30].

Composing Behavior Inheritance leads to an explosion in the
number of classes when multiple variations (decorations) of a given
set of classes must be designed. Static traits [35] or mixins enable
the definition of units of reuse that can be composed into classes,
but they do not solve the issue of class explosion.

One solution to this problem is the use of decorators that re-
fine a specific set of known methods, e.g., the method paint of
a window. Static and dynamic approaches have been proposed to
decoration. Unlike decorators, proxies find their use when the re-
finement applies to unknown methods, e.g., to trace all invocations.
Büchi and Weck proposed a mechanism [10] to statically param-
eterize classes with a decorator (called wrapper in their terminol-
ogy). Bettini et al. [8] proposed a similar construct but composition
happens at creation time. Ressia et al. proposed talents [34] which
enable adaptations of the behavior of individual objects by com-
posing trait-like units of behavior dynamically. Other works enable
dynamic replacement of behavior in a trait-like fashion [7].

The code snippet below illustrates how to achieve the decoration
of a Window with a Border and shows the conceptual differences
between these approaches. The two first approaches can work with
forwarding or delegation (but no implementations with delegation
are available). The third approach replaces the behavior or the
object so the distinction does not apply.

Window w = new Window<Border>(); // Buchi and Weck

Window w = new BorderWrap(new Window()); // Bettini

Window w = new WindowEmptyPaint(); // Ressia

w.acquire(new BorderedPaint());

Listing 18. Differences between approaches to decoration

Several languages that combine class-based inheritance and ob-
ject inheritance (i.e., delegation) have been proposed [25, 43]. Del-
egation enables the behavior of an object to be composed dynami-
cally from other objects with partial behaviors. Essentially, delega-
tion achieves trait-like dynamic composition of behavior.

Ostermann proposed delegation layers [32], which extend the
notion of delegation from objects to collaborations of nested ob-
jects, e.g., a graph with edges and nodes. An outer object wrapped
with a delegation layer will affects its nested objects as well. Sim-
ilary to decorators, the mechanism refines specific sets of methods
of the objects in the collaboration.

Dynamic Scoping The dynamic extent of an expression corre-
sponds to all operations that happen during the evaluation of the
expression by a given thread of execution. Control-flow pointcuts
are thus not sufficient to scope to dynamic extents, since they lack
control over the thread scope. Control-flow pointcuts are popu-
lar and supported by mainstream AOP implementations, e.g., As-
pectJ’s flow and cfbelow. Aware of the limitations of control-flow
pointcuts, some AOP implementations provide specific constructs
to scope to dynamic extents, e.g., CaesarJ’s deploy [2]. Imple-
mented naively, control-flow pointcuts are expensive since they en-
tail a traversal of the stack at run time, but they can be implemented
efficiently using partial evaluation [29].

In context-oriented programming (COP) [22, 44], variations can
be encapsulated into layers that are dynamically activated in the
dynamic extent of an expression. Unlike delegation proxies that
support homogenous variations, COP supports best heterogenous
variations [1]. COP can be seen as a form of multi-dimensional
dispatch, where the context is an additional dimension.

Other mechanisms to vary the behavior of objects in a contex-
tual manner are roles [26], perspectives [36], and subjects [21].
Delegation proxies can realize dynamic scoping via reference flow,
by proxying and unproxying objects accesses during the execution.
Delegation proxies can provide a foundation to design contextual
variations.

Similarly to our approach, the handle model proposed by Ar-
naud et al. [3, 4] enables the adaptation of references with behav-
ioral variations that propagate. The propagation belongs to the se-
mantics of the handles, whereas in our approach, the propagation
is encoded reflectively. Propagation unfolds from a principled use
of delegation. Our approach is more flexible since it decouples the
notion of propagation from the notion of proxy.

8. Conclusions

We can draw the following conclusions about the applicability of
delegation proxies:

• Expressiveness. Delegation proxies subsume forwarding prox-
ies and enable variations to be propagated to dynamic extents.
This suits well non-functional concerns like monitoring (trac-
ing, profiling), safety (read-only references), or reliability (roll-
back with object versioning). Since the propagation is writ-
ten reflectively, it can be customized to achieve other forms of
scopes.

• Metaness. Delegation proxies naturally compose, support par-
tial behavioral reflection, and avoid meta-regressions. We can
for instance trace and profile an execution by using tracing
proxies and profiling proxies that form chains of delegation
(composition). Objects are wrapped selectively. Adapting ob-
jects during an execution will not affect other objects in the sys-
tem (partial reflection). Proxies and targets represent the same
object at two different levels but have distinct identities (no
meta-regression).

• Encoding. Delegation proxies can be implemented with code
generation. In our Smalltalk implementation, only new code
needs to be added; existing code remains unchanged. Delega-
tion proxies have thus no overhead if not used. Delegation prox-
ies do not entail performance issues when used sporadically
(same situation as with forwarding proxies). The overhead of

our propagation technique is of factor 8 when handlers are wo-
ven into dedicated proxies. Excluding system classes, if viable,
can improve performance further. For optimal performance, the
language should provide native support of delegation proxies.

In the future, we plan to further mature our implementation,
notably the weaver, and explore native support at the VM level.

Acknowledgments

We thank Jorge Ressia, Mircea Lungu, Niko Schwarz and Jan Kurš
for support and feedback about ideas in the paper. We gratefully
acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Assessment” (SNSF
project Np. 200020-144126/1, Jan 1, 2013 - Dec. 30, 2015) and
of the French General Directorate for Armament (DGA).

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE

Trans. Softw. Eng., 34(2):162–180, Mar. 2008.

[2] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An overview
of CaesarJ. Transactions on Aspect-Oriented Software Development,
3880:135 – 173, 2006.

[3] J.-B. Arnaud. Towards First Class References as a Security Infras-

tructure in Dynamically-Typed Languages. PhD thesis, Université des
Sciences et Technologies de Lille, 2013.

[4] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel, and
M. Suen. Read-only execution for dynamic languages. In Proceed-

ings of the 48th International Conference on Objects, Models, Com-

ponents, Patterns (TOOLS EUROPE’10). LNCS Springer Verlag, July
2010.

[5] T. H. Austin, T. Disney, and C. Flanagan. Virtual values for language
extension. In Proceedings of the 2011 ACM international conference

on Object oriented programming systems languages and applications,
volume 46 of OOPSLA ’11, pages 921–938, New York, NY, USA, Oct.
2011. ACM.

[6] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits
and their formalization. Journal of Computer Languages, Systems and

Structures, 34(2-3):83–108, 2008.

[7] L. Bettini, S. Capecchi, and F. Damiani. On flexible dynamic trait
replacement for java-like languages. Science of Computer Program-

ming, 2011.

[8] L. Bettini, S. Capecchi, and E. Giachino. Featherweight wrap java. In
Proc. of SAC (The 22nd Annual ACM Symposium on Applied Comput-

ing), Special Track on Object-Oriented Programming Languages and

Systems (OOPS), pages 1094–1100. ACM Press, 2007.

[9] G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings

of the International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’04), ACM SIGPLAN

Notices, pages 331–344, New York, NY, USA, 2004. ACM Press.

[10] M. Büchi and W. Weck. Generic wrappers. In E. Bertino, editor,
ECOOP 2000 - Object-Oriented Programming, 14th European Con-

ference, Sophia Antipolis and Cannes, France, June 12-16, 2000, Pro-

ceedings, volume 1850 of Lecture Notes in Computer Science, pages
201–225. Springer, 2000.

[11] S. Chiba, G. Kiczales, and J. Lamping. Avoiding confusion in metacir-
cularity: The meta-helix. In K. Futatsugi and S. Matsuoka, editors,
Proceedings of ISOTAS ’96, volume 1049 of Lecture Notes in Com-

puter Science, pages 157–172. Springer, 1996.

[12] T. V. Cutsem and M. S. Miller. On the design of the ECMAScript
reflection api. Technical report, Vrije Universiteit Brussel, 2012.

[13] T. V. Cutsem and M. S. Miller. Trustworthy proxies: Virtualizing
objects with invariants. In ECOOP 2013, 2013.

[14] L. G. DeMichiel and R. P. Gabriel. The Common Lisp object system:
An overview. In J. Bézivin, J.-M. Hullot, P. Cointe, and H. Lieberman,

editors, Proceedings ECOOP ’87, volume 276 of LNCS, pages 151–
170, Paris, France, June 1987. Springer-Verlag.

[15] M. Denker, M. Suen, and S. Ducasse. The meta in meta-object
architectures. In Proceedings of TOOLS EUROPE 2008, volume 11
of LNBIP, pages 218–237. Springer-Verlag, 2008.

[16] P. Deutsch. Building control structures in smalltalk-80. Byte,
6(8):322–346, aug 1981.

[17] S. Ducasse. Evaluating message passing control techniques in
Smalltalk. Journal of Object-Oriented Programming (JOOP),
12(6):39–44, June 1999.

[18] P. Eugster. Uniform proxies for java. In Proceedings of the 21st

annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications, OOPSLA ’06, pages 139–152,
New York, NY, USA, 2006. ACM.

[19] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 171–183, New York,
NY, USA, 1998. ACM Press.

[20] Y. Futamura. Partial evaluation of computation process: An approach
to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–
391, 1999.

[21] W. Harrison and H. Ossher. Subject-oriented programming (a critique
of pure objects). In Proceedings OOPSLA ’93, ACM SIGPLAN No-

tices, volume 28, pages 411–428, Oct. 1993.

[22] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), Mar. 2008.

[23] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, ECOOP’97: Proceedings of the 11th European

Conference on Object-Oriented Programming, volume 1241 of LNCS,
pages 220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

[25] G. Kniesel. Type-safe delegation for run-time component adaptation.
In R. Guerraoui, editor, Proceedings ECOOP ’99, volume 1628 of
LNCS, pages 351–366, Lisbon, Portugal, June 1999. Springer-Verlag.

[26] B. B. Kristensen. Object-oriented modeling with roles. In J. Murphy
and B. Stone, editors, Proceedings of the 2nd International Conference

on Object-Oriented Information Systems, pages 57–71, London , UK,
1995. Springer-Verlag.

[27] H. Lieberman. Using prototypical objects to implement shared behav-
ior in object oriented systems. In Proceedings OOPSLA ’86, ACM

SIGPLAN Notices, volume 21, pages 214–223, Nov. 1986.

[28] M. Martinez Peck, N. Bouraqadi, M. Denker, S. Ducasse, and L. Fab-
resse. Efficient proxies in smalltalk. In Proceedings of the Interna-

tional Workshop on Smalltalk Technologies, IWST ’11, pages 8:1–
8:16, New York, NY, USA, 2011. ACM.

[29] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and op-
timization model for aspect-oriented programs. In Proceedings of

the 12th international conference on Compiler construction, CC’03,
pages 46–60, Berlin, Heidelberg, 2003. Springer-Verlag.

[30] Microsoft. Microsoft .net dynamic language runtime.

[31] Oracle. Jsr 292: Supporting dynamically typed languages on the java
platform.

[32] K. Ostermann. Dynamically composable collaborations with dele-
gation layers. In Proceedings of the 16th European Conference on

Object-Oriented Programming, ECOOP ’02, pages 89–110, London,
UK, 2002. Springer-Verlag.

[33] F. Pluquet, S. Langerman, and R. Wuyts. Executing code in the past:
efficient in-memory object graph versioning. In Proceedings of the

24th ACM SIGPLAN conference on Object oriented programming

systems languages and applications, OOPSLA ’09, pages 391–408,
New York, NY, USA, 2009. ACM.

[34] J. Ressia, T. Gîrba, O. Nierstrasz, F. Perin, and L. Renggli. Talents:
an environment for dynamically composing units of reuse. Software:

Practice and Experience, 2012.

[35] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Com-
posable units of behavior. In Proceedings of European Conference on

Object-Oriented Programming (ECOOP’03), volume 2743 of LNCS,
pages 248–274, Berlin Heidelberg, July 2003. Springer Verlag.

[36] R. B. Smith and D. Ungar. A simple and unifying approach to
subjective objects. TAPOS special issue on Subjectivity in Object-

Oriented Systems, 2(3):161–178, Dec. 1996.

[37] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-
erones and impersonators: Run-time support for reasonable interposi-
tion. In OOPSLA ’12: Proceedings of the ACM International Confer-

ence on Object Oriented Programming Systems Languages and Appli-

cations, Oct. 2012. To appear.

[38] É. Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-

Oriented Software Development (AOSD 2008), pages 168–179, Brus-
sels, Belgium, Apr. 2008. ACM Press.

[39] É. Tanter. Beyond static and dynamic scope. In Proceedings of the 5th

symposium on Dynamic languages, DLS ’09, pages 3–14, New York,
NY, USA, 2009. ACM.

[40] É. Tanter. Execution levels for aspect-oriented programming. In
Proceedings of AOSD’10), pages 37–48, Rennes and Saint Malo,
France, Mar. 2010. ACM Press. Best Paper Award.

[41] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proceedings

of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov 2003.

[42] T. Van Cutsem and M. S. Miller. Proxies: design principles for robust
object-oriented intercession apis. In Proceedings of the 6th symposium

on Dynamic languages, DLS ’10, pages 59–72, New York, NY, USA,
2010. ACM.

[43] J. Viega, B. Tutt, and R. Behrends. Automated delegation is a viable
alternative to multiple inheritance in class based languages. Technical
report, University of Virginia, Charlottesville, VA, USA, 1998.

[44] M. von Löwis, M. Denker, and O. Nierstrasz. Context-oriented pro-
gramming: Beyond layers. In Proceedings of the 2007 International

Conference on Dynamic Languages (ICDL 2007), pages 143–156.
ACM Digital Library, 2007.

	Introduction
	Delegation Proxies
	Propagation
	Traps
	Closures
	Transparency

	Examples
	Object Versioning
	Read-only Execution
	Dynamic Scoping
	Profiling

	Semantics
	Identity Proxy
	Propagating Identity Proxy

	Implementation
	Classes
	Closures
	Weaving
	Performance

	Discussion
	Related Work
	Conclusions

