
HAL Id: hal-00958835
https://hal.archives-ouvertes.fr/hal-00958835

Preprint submitted on 14 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pedagogical lambda-cube: the λ2 case
Vincent Demange

To cite this version:

Vincent Demange. Pedagogical lambda-cube: the λ2 case. 2014. �hal-00958835�

https://hal.archives-ouvertes.fr/hal-00958835
https://hal.archives-ouvertes.fr

Pedagogical lambda-cube: the λ2 case

Vincent Demange

Loria, University of Lorraine, Nancy, France

vincent.demange@loria.fr

Abstract. In pedagogical formal systems one needs to systematically give examples of

hypotheses made. This main characteristic is not the only one needed, and a formal def-

inition of pedagogical sub-systems of the Calculus of Constructions (CC) has already been

stated. Here we give such a pedagogical sub-system of CC corresponding to the second-order

pedagogical λ-calculus of Colson and Michel. It thus illustrates the appropriateness of the

formal definition, and opens the study to stronger systems of the λ-cube, for which CC is

the most expressive representative. In addition we study the type-checking problem for the

formalisms of those pedagogical calculi of second-order.

Keywords: typed lambda-calculus, calculus of constructions, pedagogical formal systems,

mathematical logic, negationless mathematics, constructive mathematics.

1 Introduction

The Poincaré criterion The main feature of pedagogical formal systems is to
always require the user to give examples of used hypotheses. This need for systematic
exemplification has lead to the terminology of pedagogical formal systems, because it
is the formal counterpart of the usual informal teaching practice consisting of giving
examples of newly introduced notions. The necessity of such a constraint was already
observed by Poincaré [34] in the case of definitions by postulates: “A definition by
postulate has value only when the existence of the object defined has been proved
[...] by means of examples [...].”. Since every set of hypotheses made on some objects
(e.g. propositions or λ-terms) can be seen as a set of definitions by postulates, in the
following when for a formal system every set of used hypotheses can be exemplified
we will say it meets the Poincaré criterion.

Formal pedagogy More formally, for instance in propositional natural deduction
systems —studied by Colson and Michel up to the propositional second-order calculus
in [4, 5]— whenever one wants to use the set of formulas ∆ as hypotheses she must give
a substitution σ (the examples) from propositional variables to formulas such that
⊢σ(A) for each A ∈ ∆. Through the propositions-as-types correspondence [21] this
requirement extends to type systems —second-order λ-calculus studied by Colson and
Michel in [6]: a typing environment x1 : A1, . . . , xn : An can be exemplified if there
are terms ti and a substitution σ from type variables to types such that ⊢ti : σ(Ai).

1

From a logical point of view and in an intuitionist framework, this pedagogical
constraint does not allow the use of negation and reasoning by contradiction: it
is no more possible to assume a formula A that will reveal to be a contradiction
since no instance of this formula can be proved. It then agrees with the negationless
mathematics advocated by Griss as a refinement of intuitionism [16, 17, 18, 19].

From a computational point of view, it means that for every type at least one of
its instances has to be inhabited by a term. This last property leads to the notion of
usefulness of λ-terms in pedagogical type systems: every function f of type A → B

can be applied to a term u of type A when A is closed.

Overview of the article In this article, we will focus on the extension of these
results to the type systems of the Barendregt’s λ-cube [1]. Indeed those systems
have logical and computational meaning, and the most powerful is the Calculus of
Constructions (CC) of Coquand [7] for which a formal study of pedagogy has already
been investigated by Colson and Demange in [3]. First the formalism of CC being
more explicit, the Poincaré criterion become: if an environment x1 : A1, . . . , xn : An

is well-formed 1 then there are terms ti such that ⊢ti : Ai[x1, . . . , xi−1 ← t1, . . . , ti−1]
where [· ← ·] is the usual substitution from variables to terms. The conclusion
of the investigation was a complete formal definition of a pedagogical subsystem of
CC (see def. 10): the formal system has to (i) be a subsystem of CC; (ii) verify
subject reduction; (iii) meet the Poincaré criterion; (iv) and meet the converse of
the Poincaré criterion. The converse of the Poincaré criterion is needed to ensure
expressiveness: in [3] a system CCr satisfying (i), (ii) and (iii) but not (iv) has been
exhibited with a good computational power but strong logical limitations. Also in [5]
a weakly pedagogical second-order calculus Ps-Prop2 has been stated for which a type
system can be obtained satisfying (i), (iii) and (iv) but not (ii).

At the end of the study about pedagogical CC, it was suggested that it is possible
to build a pedagogical subsystem of CC in the precise sense of the previous definition,
corresponding to the pedagogical second-order λ-calculus P-Prop2 of [6]. This con-
struction is the main subject of this present paper, the difficulties were mainly due to
a difference in formalism, the one of P-Prop2—and of Girard’s System F [13]— being
more liberal than the one of CC, and the need to stick to the definition. Especially the
(i) of the previous definition does not allow the addition of constant symbols (initial
examples) to the calculus, which was the case in P-Prop2.

Outline of the article In section 2 we recall the usual notations, definitions and
well-known results about the calculus of constructions (CC) and its subsystem of
second order λ2. In sections 3, 4, 5 we define and study pedagogical subsystems of
CC of second order: first with explicit and total examples (also called motivations)
λ2
e, then with total motivations λ2

t and finally with partial motivations λ2
p. Each is

obtained from the previous by relaxing some constraints, the last one fully satisfying
the definition of pedagogical subsystem of CC. Then in section 6 we link those systems
with the previously stated pedagogical second order λ-calculus P-Prop2 of [6]. We end
in section 7 by showing the undecidabilty of type checking for all those type systems.
Finally we conclude in section 8 by suggesting a formalism to recover type checking

1The well-formedness of environments Γ are formal judgements in CC written Γwf .

2

in pedagogical formal systems, and open the study toward more expressive systems
of the λ-cube based on the current work.

Related works Obviously the works on pedagogical formal systems previously
mentioned are relevant: the minimal propositional calculus over →, ∧ and ∨ has
been studied in [4]; the second order propositional calculus in [5]; the second-order
λ-calculus in [6]; and an investigation on the whole Calculus of Constructions in [3].
A great overview of those works can be found in the introduction of [3], to which we
can add the following unmentioned and unpublished 2 result of Michel in [28]: every
λ-term of the second-order λ-calculus admit a continuation passing style translation
that can be typed in the pedagogical second-order λ-calculus, ensuring the preserva-
tion of programs.

Also in an intuitionistic framework, which is the case here, pedagogical mathemat-
ics are linked with the negationless mathematics philosophy. The idea of negationless
mathematics appeared in the middle of the last century when Griss expressed it as
a step further of the intuitionistic philosophy of Brouwer. Indeed, in intuitionistic
mathematics, a proof of a negative statement ¬A impose to assume A in order to
obtain a contradiction. But assuming A is no intuitive method for Griss since it will
reveal to be an impossible construction. First works of Griss [16, 17, 18, 19] constitute
an informal outline of a geometry, an arithmetic, a set theory and an analysis with-
out negation. Heyting [20] and Franchella [10] summarize differences of viewpoint
about intuitionism of Brouwer and that of Griss. Some formal developments of the
Griss desiderata has been proposed, from which we can cite those of Vredenduin [38],
Gilmore [12], Valpola [37], Nelson [32, 31], Minichiello [29], López-Escobar [24, 25],
Mezhlumbekova [27] and more recently of Krivtsov [22, 23], dealing with negationless
predicate logic and arithmetic in natural deduction systems or in sequent calculus.
One of the main ideas is the introduction of a quantified implication A(~x) →~x B(~x)
which is interpreted in intuitionistic logic by ∀~x A(~x) → B(~x) ∧ ∃~xA(~x). Mints [30]
provides a good overview of those works.

2 Background and Notations

In this section, we briefly recall usual notations, definitions and results about the
Calculus of Constructions (CC) and its subsystem of second-order λ2. At the end we
recall the formal definition of pedagogical sub-system of the Calculus of Constructions
resulting of the study in [3].

2.1 Definitions and notations

We try to use x, y, . . . as symbols for variables, u, v, w, t, . . . to denote terms, A,B, . . .

for types or formulas, Γ,Γ′, . . . for environments.
The set of raw terms of CC is defined by induction: the variables x, and constants

Prop and Type are raw terms; λxA.u, ∀xA.B and u v are raw terms if x is a variable

2Actually a stronger but non-constructive result concerning the preservation of programs that
can be typed in the λµ-calculus of Parigot [33] is present in [6].

3

and u, v, A, B are raw terms. S(u) is the set of sub-terms of u, containing u. For
brevity, in the following terms will refer to raw terms.
≡ is the syntactical equality of terms modulo renaming of bound variables 3. We

note by β the usual beta-reduction relation between terms;
∗
 β its reflexive and

transitive closure; and =β its equivalence closure. A term u is in normal form if it is
not reducible, i.e. there is no term t such that u β t. If all possible reductions from
a term u lead to a normal form, then the term u is said to be strongly normalizing.
V(t) is the set of free variables of t. If V(t) = ∅ then t is said to be closed. The usual

capture avoiding substitution of u for x in t is noted t[x ← u]; and t[x1, . . . , xn ←
u1, . . . , un] is the simultaneous substitution of u1 for x1, u2 for x2, etc. in t. When
dealing with substitutions as mathematical objects, we will use list symbolism: [] is
the empty substitution, and if σ is a substitution then σ::(x 7→ a) is a new substitution
mapping all variables y 6= x to σ(y) and x to a. The application of a substitution is
extended from variables to terms in the usual way: if σ ≡ (x1 7→ u1):: . . . ::(xn 7→ un)
then σ(t) = t[x1, . . . , xn ← u1, . . . , un].

To shorten notations, we might use a vector symbolism: ~t denotes a sequence of

terms t1, . . . , tn; and ∀~x
~A.B denotes ∀xA1

1 . . . ∀xAn
n .B. As usual, A → B is short for

∀xA.B when x does not appear in V(B).
An environment is a finite list of associations variable-term. The empty environ-

ment is noted [] or omitted, otherwise it is of the form x1 : A1, . . . , xn : An, or Γ,Γ′

where Γ and Γ′ are environments. The domain of an environment is the finite set of its
variables: dom(x1 : A1, . . . , xn : An) = {x1, . . . , xn}. Substitutions can be applied to
environments: (x1 : A1, . . . , xn : An)[y ← u] ≡ x1 : A1[y ← u], . . . , xn : An[y ← u].

Γ′ ≡ x1 : A1, . . . , xi : Ai is an initial segment of Γ ≡ x1 : A1, . . . , xn : An when
i ≤ n, abbreviated by Γ′ 4 Γ. Similarly for substitutions σ′ 4 σ. We will also write
Γ≤i or Γ<i for the first i-th (resp. i− 1-th) elements of Γ, similarly with σ≤i or σ<i.

In CC there are two kinds of judgements: Γwf
c means that the environment Γ is

syntactically well-formed, and Γ⊢c t : A expresses that the term t is of type A in the
environment Γ.

Implicitly, Γ⊢cA : κ signifies that there is κ ∈ {Prop,Type} such that this previous
statement holds. Γ⊢cA1 : A2 : . . . : An is the contraction of Γ⊢cA1 : A2, etc. and
Γ⊢cAn−1 : An. If the contraction appears as a premise of a rule it denotes n − 1
premises, and as a conclusion of a rule it expands to n − 1 possible conclusions (i.e.
n− 1 rules).

Rules of CC are presented in fig. 1: close presentations can be found in [8], with well
formed judgements; in [2] avoiding weakening rule; or [1] presenting usual properties
of CC. Removing some rules of CC we obtain λ2 of fig. 2, a subsystem corresponding
to the polymorphic λ-calculus also known as the system F of Girard-Reynolds [14, 35].
Notice that the raw-terms stay the same.

As usual a derivation of a judgement is a finite tree rooted by the judgement and
where leafs are instances of inference rules without premise. A sub-derivation is then
a sub-tree, and a strict sub-derivation is a sub-tree which is not the whole tree.

3As in [9], we assume De Bruijn indexes for bound variables and identifiers for free variables. So
there is no need for α-conversion notion which is implicit.

4

(c-env1)
[]wf

c

Γ⊢cA : κ x 6∈ dom(Γ)
(c-env2)

Γ, x : Awf
c

Γwf
c

(c-ax)
Γ⊢c Prop : Type

Γ, x : A,Γ′ wf c

(c-var)
Γ, x : A,Γ′ ⊢cx : A

Γ, x : A⊢cu : B : κ
(c-abs)

Γ⊢cλxA.u : ∀xA.B

Γ⊢cu : ∀xA.B Γ⊢c v : A
(c-app)

Γ⊢cu v : B[x← v]

Γ, x : A⊢cB : κ
(c-prod)

Γ⊢c ∀xA.B : κ

Γ⊢c t : A Γ⊢cA′ : κ A =β A′

(c-conv)
Γ⊢c t : A′

where κ stands for Prop or for Type.

Figure 1: Inference rules of CC.

(env1)
[]wf2

Γ⊢2A : κ x 6∈ dom(Γ)
(env2)

Γ, x : Awf
2

Γwf
2

(ax)
Γ⊢2 Prop : Type

Γ, x : A,Γ′ wf
2

(var)
Γ, x : A,Γ′ ⊢2x : A

Γ, x : A⊢2u : B : Prop
(abs)

Γ⊢2λxA.u : ∀xA.B

Γ⊢2u : ∀xA.B Γ⊢2 v : A
(app)

Γ⊢2u v : B[x← v]

Γ, x : A⊢2B : Prop
(prod)

Γ⊢2 ∀xA.B : Prop

Figure 2: Inference rules of λ2.

5

2.2 Properties of CC

In the sequel we shall need the following well-known results about CC and λ2 (omitted
proofs can be found in [1]). Starred relations refer to both CC and λ2, meaning that
the property holds in both systems.

Property 1 (free variables)

(i) If x1 : A1, . . . , xn : An wf
⋆ or x1 : A1, . . . , xn : An ⊢

⋆
w : C then for all i, V(Ai+1) ⊆

{x1, . . . , xi} and xi 6≡ xj for all i 6= j;

(ii) If x1 : A1, . . . , xn : An ⊢
⋆
w : C then in addition V(w,C) ⊆ {x1, . . . , xn}.

Property 2 If Γwf
⋆

or Γ⊢⋆w : C then Type 6∈ S(Γ) and Type 6∈ S(w).

Property 3 (environments validity)

(i) if Γwf
⋆, then for all environments Γ′ 4 Γ, Γ′ wf⋆ is a sub-derivation;

(ii) if Γ⊢⋆w : C, then for all environments Γ′ 4 Γ, Γ′ wf⋆ is a strict sub-derivation.

Property 4 (environment types validity) If x1 : A1, . . . , xn : An wf
⋆
, then for

all i there is κ such that x1 : A1, . . . , xi : Ai ⊢
⋆
Ai+1 : κ is a strict sub-derivation.

Property 5 (type uniqueness) If Γ⊢2w : C and Γ⊢2w : C ′ then C ≡ C ′.

Property 6 (type correctness) If Γ⊢⋆w : C then C ≡ Type or Γ⊢⋆C : κ.

Property 7

(i) If Γ⊢2C : Type then C ≡ Prop and the last used rule is (ax);

(ii) If Γ⊢2C : Prop then the last used rule is (var) or (prod).

Proof by case analysis on the last used rule.
(i) (var) Impossible case because Type can not be in the environment (prop. 2).

(app) There are two cases:

• B ≡ x and v ≡ Type: which is impossible (prop. 2);

• B ≡ Type: hence Γ⊢2 ∀xA.Type : κ (prop. 6), which is impossible (prop. 2).

(ii) (app) We have Γ⊢2 ∀xA.B : κ (prop. 6) which has to be obtained by the (prod)

rule, hence Γ, x : A⊢2B : Prop. From B[x← v] ≡ Prop we have two cases:

• B ≡ x and v ≡ Prop: the second premise is then Γ⊢2 Prop : A obtained by the
(ax) rule, hence A ≡ Type which is impossible (prop. 2);

• B ≡ Prop: then Γ, x : A⊢2 Prop : Prop which is impossible.

�

Property 8 If Γ⊢2C : Prop then for all x ∈ V(C), (x : Prop) ∈ Γ.

Proof by structural induction on the derivation: we only need to consider the rules
(var) and (prod) (prop. 7). �

6

Property 9 If Γ⊢2w : C or Γ⊢2C : κ or Γwf
2 where Γ ≡ x1 : A1, . . . , xn : An then C

and the Ai are in normal form.

Proof The proof can be split in two simple steps:

• if Γwf
2 or Γ⊢2C : κ with Γ ≡ x1 : A1, . . . , xn : An then λ does not appear in C

nor in any Ai, proved by structural induction on the derivation;

• every reducible raw term u contains the symbol λ, proved by induction on the
usual inductive definition of u β u′.

�

Definition 10 (pedagogical subsystem of CC)

CC⋆ is a pedagogical subsystem of CC if:
(i) CC⋆ is a subsystem of CC: Γwf

⋆ implies Γwf
c, and Γ⊢⋆ t : C implies Γ⊢c t : C.

(ii) CC⋆ satisfies subject reduction: if Γ⊢⋆ t : C and t β t′ then Γ⊢⋆ t′ : C.

(iii) CC⋆ meets the Poincaré criterion and its converse: x1 : A1, . . . , xn : An wf
⋆
if

and only if x1 : A1, . . . , xn : An wf
c

and there are terms t1, . . . , tn such that

⊢⋆ t1 : A1 ⊢⋆ t2 : A2[x1 ← t1] . . . ⊢⋆ tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

3 Total and explicit motivations

Usually the current state of a proof is indicated by a sequent Γ⊢t : A meaning that
“t is a proof of A under the assumptions Γ”. In the pedagogical practice we also need
examples of the hypotheses of Γ which we can make explicit using enhanced sequents
of the form Γ⊢σ t : A meaning “t is a proof of A under the assumptions Γ exemplified
by σ” where σ is a substitution from the variables of Γ to terms. In the same way
we switch from judgements Γwf to Γwfσ . Each assumption/variable of Γ has to be
examplified by σ, hence the total and explicit motivations system λ2

e of fig. 3.
Making the examples/motivations explicit have at least two benefits. First it

allows to better reflect the practice of pedagogical mathematics by using a global
example during a proof. Second it simplifies and specifies the statements about the
formalism: we can act on the motivations and then appreciate the constraints they
impose or they are subject to.

3.1 System definition

We extend the raw terms with the two constants o and ⊤. Inference rules of λ2
e are

presented on fig. 3. The (prod) rule of λ2 is constrained as (e-prod) in λ2
e in order

to avoid empty types as soon as possible (e.g. ∀AProp.A). Indeed those empty types
can not be examplified, and allowing to manipulate them could break the subject
reduction property (see [5]) or the Poincaré criterion if we introduce them into envi-
ronments. The added constraint then requires that the formed type to be compatible
with the current motivation σ, namely that the instance σ(∀xA.B) be inhabited.

Also the additional (second) premise of the rule (e-env2) should not be considered
as a constraint: the term a is already contained in the derivation of the first premise

7

(e-env1)
[]wf2e[]

Γ⊢2eσ A : κ ⊢2e[] a : σ(A) x 6∈ dom(Γ)
(e-env2)

Γ, x : Awf
2e
σ::(x 7→ a)

Γwf
2e
σ

(e-ax)
Γ⊢2eσ o : ⊤ : Prop : Type

Γ, x : A,Γ′ wf2eσ
(e-var)

Γ, x : A,Γ′ ⊢2eσ x : A

Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop
(e-abs)

Γ⊢2eσ λxA.u : ∀xA.B

Γ⊢2eσ u : ∀xA.B Γ⊢2eσ v : A
(e-app)

Γ⊢2eσ u v : B[x← v]

Γ, x : A⊢2eσ::(x 7→ a) B : Prop ⊢2e[] t : σ(∀xA.B)
(e-prod)

Γ⊢2eσ ∀x
A.B : Prop

Figure 3: Inference rules of λ2
e.

(see lem. 17). This last fact is important for explicit motivations systems: if Γ⊢2eσ A : κ
does not permit us to build an example a of σ(A) then it means the motivabilty, and
consequently the usability, of the type A has not been tested soon enough.

Remark 11

Substitutions and environments related by wf
2e or ⊢2e match: they have the same size,

and to each variable of the environment correspond a raw term at the same position
in the substitution (see lem. 13).

The constants o and ⊤, the initial examples, are mandatory to begin derivations:
otherwise one would only be allowed to derive []wf2e[] and ⊢2e[] Prop : Type.

In this section we show that λ2
e almost satisfies the required properties of a peda-

gogical subsystem of CC: indeed in λ2
e judgements and raw-terms are modified with

respect to those of λ2 and then CC.

3.2 Preliminary results

The properties 1, 2, 3, 4, 5, 6, 8, 9 are still valid for λ2
e, modulo the addition of the

corresponding explicit motivations.

Theorem 12 (λ2
e is a subsystem of λ2)

(i) if Γwf
2e
σ , then Γwf

2
;

(ii) if Γ⊢2eσ w : C, then Γ⊢2w : C.

Proof immediate by structural induction on the derivation: it is enough to “forget”
explicit motivations and to interpret in λ2 the constants o and ⊤ of λ2

e by, respectively,
λAProp.λxA.x and ∀AProp.A→ A. �

8

Lemma 13 If x1 : A1, . . . , xn : An wf
2e
σ or x1 : A1, . . . , xn : An ⊢

2e
σ w : C where

σ ≡ (y1 7→ t1):: . . . ::(ym 7→ tm) then m = n, and for all i xi ≡ yi and ti is closed.

Lemma 14 (generation) If Γ⊢2eσ t : T then one of these cases holds:
(i) if t ≡ o, then T ≡ ⊤;

(ii) if t ≡ ⊤, then T ≡ Prop;

(iii) if t ≡ Prop, then T ≡ Type;

(iv) if t ≡ x, then there is (x : A) ∈ Γ with T ≡ A;

(v) if t ≡ λxA.u, then there are B and a such that Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop is

a strict sub-derivation with T ≡ ∀xA.B;

(vi) if t ≡ u v, then there are A and B such that Γ⊢2u : ∀xA.B and Γ⊢2 v : A are
strict sub-derivations with T ≡ B[x← v];

(vii) if t ≡ ∀xA.B, then there are a and t such that Γ, x : A⊢2eσ::(x 7→ a) B : Prop and

⊢2e[] t : σ(∀xA.B) are strict sub-derivations with T ≡ Prop.

Lemma 15

(i) If Γ⊢2eσ C : Type then C ≡ Prop and the last derivation rule is (e-ax);

(ii) If Γ⊢2eσ C : Prop then the last derivation rule is (e-ax) or (e-var) or (e-prod).

Proof by case analysis on the last used rule, similar to the proof for λ2 (prop. 7):
to show that a derivation is impossible for λ2

e, it is enough to notice that λ2
e is a sub-

system of λ2 (thm. 12) and that the corresponding derivation is already impossible in
λ2. �

3.3 Results concerning pedagogy

Theorem 16 (λ2
e meets the Poincaré criterion)

If x1 : A1, . . . , xn : An wf
2e
σ , then for all i ⊢2e[] σ(xi) : σ(Ai) are strict sub-derivations.

Proof by structural induction on the derivation of x1 : A1, . . . , xn : An wf
2e
σ :

(e-env2)
Γ⊢2eσ A : κ ⊢2e[] a : σ(A) x 6∈ dom(Γ)

Γ, x : Awf
2e
σ::(x 7→ a)

From Γ⊢2eσ A : κ we know that Γwf
2e
σ is a strict sub-derivation (prop. 3), hence by

induction hypothesis, with Γ := y1 : B1, . . . , yn : Bn, we have ⊢2e[] σ(yi) : σ(Bi) are

strict sub-derivations of Γ⊢2eσ A : κ. The second premise allows us to conclude for x.

�

Lemma 17 If Γ⊢2eσ C : κ, then there is a term t such that ⊢2e[] t : σ(C).

Proof by structural induction on the derivation. The only rules to consider are
(e-ax), (e-prod) and (e-var) (lem. 15), and only the (e-var) case is non-trivial:

9

(e-var)
Γ, x : Prop,Γ′ wf2eσ

Γ, x : Prop,Γ′ ⊢2eσ x : Prop

By the Poincaré criterion (thm. 16) applied to the premise, ⊢2e[] σ(x) : Prop is a strict

sub-derivation. Hence by induction hypothesis there is a term t such that ⊢2e[] t : σ(x).

�

Lemma 18 (weakening) If Γ⊢2eσ w : C, Γ′ wf
2e
σ′ , Γ ⊆ Γ′ and σ ⊆ σ′, then Γ′ ⊢2eσ′ w : C.

Proof by structural induction on the derivation:

(e-abs)
Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop

Γ⊢2eσ λxA.u : ∀xA.B
Let Γ′ wf2eσ′ with Γ ⊆ Γ′ and σ ⊆ σ′.

From one premise we have that Γ⊢2eσ A : κ is a sub-derivation (prop. 3, 4), on which we

can apply induction hypothesis to get Γ′ ⊢2eσ′ A : κ and since also ⊢2e[] a : σ(A) (thm. 16)

hence ⊢2e[] a : σ′(A) then finally by the rule (e-env2) we have Γ′, x : Awf
2e
σ′::(x 7→ a) . The

induction hypothesis applied on the premises gives Γ′, x : A⊢2eσ′::(x 7→ a) u : B : Prop
and the (e-abs) rule finishes the proof.

(e-prod) Just as for the (e-abs) rule to be able to apply induction hypothesis.

�

Lemma 19 If ⊢2e[] w : C : κ and z 6∈ dom(Γ) then:

(i) if Γ[z ← w]wf2eσ then z : C,Γwf
2e
(z 7→ w)::σ ;

(ii) if Γ[z ← w]⊢2eσ D[z ← w] : κ′ then z : C,Γ⊢2e(z 7→ w)::σ D : κ′.

Proof by structural induction on the derivation:
(i)

(e-env1) From ⊢2e[] w : C : κ by (e-env2) we have z : C wf
2e
[(z 7→ w)] .

(e-env2)
Γ[z ← w]⊢2eσ A[z ← w] : κ′′ ⊢2e[] a : σ(A[z ← w]) x 6∈ dom(Γ[z ← w])

Γ[z ← w], x : A[z ← w]wf2eσ::(x 7→ a)

By induction hypothesis z : C,Γ⊢2e(z 7→ w)::σ A : κ′′ and also the second premise can

be rewritten as ⊢2e[] a : (z 7→ w)::σ(A) since w is closed and z 6∈ dom(σ) (lem. 13),
then by (e-env2) we get the result.

(ii) The case where D ≡ z can be processed in the following way:

From Γ[z ← w]⊢2eσ D[z ← w] : κ′ it follows that Γ[z ← w]wf2eσ is a strict

sub-derivation (prop. 3), then by induction hypothesis z : C,Γwf
2e
(z 7→ w)::σ

and using the (e-var) rule z : C,Γ⊢2e(z 7→ w)::σ z : C. Also C ≡ κ′ by type
uniqueness (prop. 5) since:

• we have Γ[z ← w]⊢2eσ w : κ′ by hypothesis;

10

• from ⊢2e[] w : C we get Γ[z ← w]⊢2eσ w : C by weakening (lem. 18).

Let us now deal with the cases where D 6≡ z, we only need to consider the rules
(e-ax), (e-var) and (e-prod) (lem. 15):

(e-ax)
Γ[z ← w]wf2eσ

Γ[z ← w]⊢2eσ ⊤ : Prop
with D[z ← w] ≡ ⊤ and D 6≡ z, hence D ≡ ⊤.

By induction hypothesis z : C,Γwf
2e
(z 7→ w)::σ and then using the (e-ax) rule we have

z : C,Γ⊢2e(z 7→ w)::σ ⊤ : Prop. We do the same for Γ[z ← w]⊢2eσ Prop : Type.

(e-var)
Γ[z ← w], x : κ′,Γ′[z ← w]wf2eσ::(x 7→ t)::σ′

Γ[z ← w], x : κ′,Γ′[z ← w]⊢2eσ::(x 7→ t)::σ′ x : κ′
with D[z ← w] ≡ x and D 6≡

z, hence D ≡ x.

The induction hypothesis gives z : C,Γ, x : κ′,Γ′ wf2e(z 7→ w)::σ::(x 7→ t)::σ′ then the
(e-var) rule finishes the proof.

(e-prod)
Γ[z ← w], x :A[z ← w]⊢2eσ::a B[z ← w] :Prop ⊢2e[] t :σ((∀xA.B)[z ← w])

Γ[z ← w]⊢2eσ ∀x
A[z←w].B[z ← w] : Prop

By induction hypothesis z : C,Γ, x : A⊢2e(z 7→ w)::σ::(x 7→ a) B : Prop, moreover the

second premise can be rewritten to ⊢2e[] t : (z 7→ w)::σ(∀xA.B) hence the result by
(e-prod).

�

Theorem 20 (λ2
e meets the converse of the Poincaré criterion)

If
⊢2e[] t1 : A1 : κ1 . . . ⊢2e[] tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1] : κn

(with the xi pairwise distinct), then

x1 : A1, x2 : A2, . . . , xn : An wf
2e
(x1 7→ t1)::(x2 7→ t2):: . . . ::(xn 7→ tn)

Proof by induction on n:
By hypothesis ⊢2e[] An[x1, . . . , xn−1 ← t1, . . . , tn−1] : κn which can be rewritten

to ⊢2e[] An[x1, . . . , xn−2 ← t1, . . . , tn−2][xn−1 ← tn−1] : κn since the xi are pairwise
distinct and the ti are closed (lem. 13). We can then generalize over xn−1 (lem. 19)

since we have ⊢2e[] tn−1 : An−1[x1, . . . , xn−2 ← t1, . . . , tn−2] : κn−1 in order to obtain

xn−1 :An−1[x1, .., xn−2 ← t1, .., tn−2]⊢2e(xn−1 7→ tn−1) An[x1, .., xn−2 ← t1, .., tn−2] :κn.
Proceeding the same, we generalize over the variables from xn−2 to x1 to finally

obtain x1 : A1, . . . , xn−1 : An−1 ⊢
2e
(x1 7→ t1):: . . . ::(xn−1 7→ tn−1) An : κn. Now since also

⊢2e[] tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1] then by (e-env2) we finally get the result. �

Lemma 21

(i) If z : C,Γwf
2e
(z 7→ c)::σ then Γ[z ← c]wf

2e
σ ;

11

(ii) If z : C,Γ⊢2e(z 7→ c)::σ w : D then Γ[z ← c]⊢2eσ w[z ← c] : D[z ← c].

Proof by structural induction on the derivation:

(e-var)
z : C,Γwf

2e
(z 7→ c)::σ

z : C,Γ⊢2e(z 7→ c)::σ z : C
is the only non-trivial case.

By induction hypothesis, we have Γ[z ← c]wf
2e
σ . And ⊢2e[] c : C by the Poincaré

criterion (thm. 16), hence by weakening (lem. 18) we finally obtain Γ[z ← c]⊢2eσ c : C.

(e-app)
z : C,Γ⊢2e(z 7→ c)::σ u : ∀xA.B z : C,Γ⊢2e(z 7→ c)::σ v : A

z : C,Γ⊢2e(z 7→ c)::σ u v : B[x← v]

By induction hypothesis, both Γ[z ← c]⊢2eσ u[z ← c] : ∀xA[z←c].B[z ← c] and

Γ[z ← c]⊢2eσ v[z ← c] : A[z ← c]. Hence applying the (e-app) rule on those we have

Γ[z ← c]⊢2eσ u[z ← c] v[z ← c] : B[z ← c][x ← v[z ← c]], but since c is closed
(lem. 13) then B[z ← c][x← v[z ← c]] ≡ B[x← v][z ← c].

(e-prod)
z : C,Γ, x : A⊢2e(z 7→ c)::σ::(x 7→ a) B : Prop ⊢2e[] t : (z 7→ c)::σ(∀xA.B)

z : C,Γ⊢2e(z 7→ c)::σ ∀x
A.B : Prop

By induction hypothesis Γ[z ← c], x : A[z ← c]⊢2eσ::(x 7→ a) B[z ← c] : Prop. And

(z 7→ c)::σ(∀xA.B) ≡ σ((∀xA.B)[z ← c]) since c is closed and z 6∈ dom(σ) (lem. 13).

Therefore ⊢2e[] t : σ(∀xA[z←c].B[z ← c]) and the (e-prod) rule allows us to conclude.

�

Lemma 22 If Γ⊢2eσ w : C then ⊢2e[] σ(w) : σ(C).

Proof by induction on the size of the environment:
Let Γ := x1 : A1, . . . , xn : An and σ := (x1 7→ t1):: . . . ::(xn 7→ tn). We have

⊢2e[] w[x1 ← t1] . . . [xn ← tn] : C[x1 ← t1] . . . [xn ← tn] after n substitutions of the
motivations (lem. 21). And since the ti are closed and the xi are pairwise distinct
(lem. 13) then w[x1 ← t1] . . . [xn ← tn] ≡ w[x1, . . . , xn ← t1, . . . , tn] ≡ σ(w) and
C[x1 ← t1] . . . [xn ← tn] ≡ C[x1, . . . , xn ← t1, . . . , tn] ≡ σ(C). �

Lemma 23 If Γ, z : C,Γ′ ⊢2eσ w : D and z 6∈ V(Γ′, w), then z 6∈ V(D).

Proof immediate by structural induction on the derivation. �

Lemma 24 (strengthening)

(i) If Γ, z : C,Γ′ wf2eσ::(z 7→ c)::σ′ and z 6∈ V(Γ′), then Γ,Γ′ wf2eσ::σ′ ;

(ii) If Γ, z : C,Γ′ ⊢2eσ::(z 7→ c)::σ′ w : D and z 6∈ V(Γ′, w), then Γ,Γ′ ⊢2eσ::σ′ w : D.

Proof by structural induction on the derivation, similar to [26, lem. 3.2.9]. The only
non-immediate case is the following one:

12

(e-abs)
Γ, z : C,Γ′, x : A⊢2eσ::(z 7→ c)::σ′::(x 7→ a) u : B : Prop

Γ, z : C,Γ′ ⊢2eσ::(z 7→ c)::σ′ λxA.u : ∀xA.B
with z 6∈ V(Γ′, λxA.u).

We have z 6∈ V(Γ′, A, u), therefore also z 6∈ V(B) (lem. 23). We can then apply the

induction hypothesis to get Γ,Γ′, x : A⊢2eσ::σ′::(x 7→ a) u : B : Prop and by (e-abs) the
result.

�

Lemma 25 If Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop, then Γ⊢2eσ λxA.u : ∀xA.B : Prop.

Proof By (e-abs) on the hypotheses we have Γ⊢2eσ λxA.u : ∀xA.B, so we obtain

⊢2e[] σ(λxA.u) : σ(∀xA.B) (lem. 22) which allows us to apply the (e-prod) and conclude.
�

Lemma 26 If Γwf
2e
σ and ⊢2e[] c : σ(C) : κ with z 6∈ dom(Γ), then Γ, z : C wf

2e
σ::(z 7→ c) .

Proof Let Γ ≡ x1 : A1, . . . , xn : An and σ ≡ (x1 7→ a1):: . . . ::(xn 7→ an).
By the Poincaré criterion (thm. 16) we have the derivations

⊢2e[] a1 : A1 ⊢2e[] a2 : A2[x1 ← a1] . . . ⊢2e[] an : An[x1, . . . , xn−1 ← a1, . . . , an−1]

and since for all i x1 : A1, . . . , xi−1 : Ai−1 ⊢
2e
σ<i

Ai : κi (prop. 4) then by substitutions

(lem. 22) ⊢2e[] Ai[x1, . . . , xi−1 ← a1, . . . , ai−1] : κi. The result then follows by applying
the converse of the Poincaré criterion (thm. 20) on:

⊢2e[] a1 : A1 : κ1 . . . ⊢2e[] an : An[x1, . . . , xn−1 ← a1, . . . , an−1] : κn

⊢2e[] c : C[x1, . . . , xn ← a1, . . . , an] : κ

�

Lemma 27 (replacement of equivalents)

If Γ⊢2eσ w : E[z1, . . . , zn ← C1, . . . , Cn] : Prop and there are terms (fi)1≤i≤n and
(gi)1≤i≤n such that for all i

Γ⊢2eσ fi : Ci → Di

Γ⊢2eσ gi : Di → Ci

and
Γ⊢2eσ Ci : Prop

Γ⊢2eσ Di : Prop

then there is a term w′ such that Γ⊢2eσ w′ : E[z1, . . . , zn ← D1, . . . , Dn] : Prop.

Proof by induction on the raw term E (generalize [6, lem. 14]):
Let us first notice that if E ≡ zi, then w′ := fi w suits. Now let us deal with

the cases when E is different from all the zi. We proceed by case analysis on the last
used rule producing Γ⊢2eσ E[z1, . . . , zn ← C1, . . . , Cn] : Prop, which limits the analysis
to three rules (lem. 15):

(e-ax) In this case E ≡ ⊤ and then w′ := w suits.

(e-var) In this case E ≡ y is a variable different from the zi and then w′ := w suits.

13

(e-prod) Let F [~z ← ~C] abbreviates F [z1, . . . , zn ← C1, . . . , Cn]:

Γ, x : A[~z ← ~C]⊢2eσ::(x 7→ a) B[~z ← ~C] : Prop ⊢2e[] t : σ(∀xA[~z←~C].B[~z ← ~C])

Γ⊢2eσ ∀x
A[~z←~C].B[~z ← ~C] : Prop

Since Γ⊢2eσ A[~z ← ~C] : κ (prop. 3, 4), we distinguish two cases depending on κ:

• κ ≡ Type: then A[~z ← ~C] ≡ Prop (lem. 15). If A ≡ zi then Γ⊢2eσ Ci : Type, which
is not allowed by type uniqueness (prop. 5). Necessarily A 6≡ zi for all i and then
A ≡ Prop. The rule can then be rewritten in the following simpler way:

Γ, x : Prop ⊢2eσ::(x 7→ a) B[~z ← ~C] : Prop ⊢2e[] t : σ(∀xProp.B[~z ← ~C])

Γ⊢2eσ ∀x
Prop.B[~z ← ~C] : Prop

Weakening (lem. 18) with Γ, x : Prop wf
2e
σ::(x 7→ a) (prop. 3) on the derivations

Γ⊢2eσ w : ∀xProp.B[~z ← ~C] : Prop, we get Γ, x : Prop ⊢2eσ::(x 7→ a) w : ∀xProp.B[~z ←
~C] : Prop. Then using (e-var) and (e-app): Γ, x : Prop ⊢2eσ::(x 7→ a) w x : B[~z ← ~C].

Now since Γ, x : Prop ⊢2eσ::(x 7→ a) B[~z ← ~C] : Prop then by induction hypothesis

there is a term u such that Γ, x : Prop ⊢2eσ::(x 7→ a) u : B[~z ← ~D] : Prop. Hence

Γ⊢2eσ λxProp.u : ∀xProp.B[~z ← ~D] : Prop (lem. 25), namely w′ := λxProp.u suits.

• κ ≡ Prop: then A[~z ← ~C] 6≡ Prop (lem. 14) and x 6∈ V(B[~z ← ~C]) (prop. 8).

From the first premise, we get ⊢2e[] a : σ(A[~z ← ~C]) : Prop (thm. 16 and lem. 22)

which can be rewritten to ⊢2e[] a : A[~z, ~y ← σ(~C), σ(~y)] : Prop with ~y denoting the

free variables of A[~z ← ~C]. Now since we have (lem. 22):

⊢2e[] σ(fi) : σ(Ci)→ σ(Di) ⊢2e[] σ(Ci) : Prop

⊢2e[] σ(gi) : σ(Di)→ σ(Ci) ⊢2e[] σ(Di) : Prop

and also (prop. 3, 8 and lem. 22):

⊢2e[] σ(yi) : Prop ⊢2e[] λz
σ(yi).z : σ(yi)→ σ(yi)

we can then apply the induction hypothesis on A to build a term a′ such that
⊢2e[] a

′ : A[~z, ~y ← σ(~D), σ(~y)] : Prop, namely ⊢2e[] a
′ : σ(A[~z ← ~D]) : Prop. And

since Γwf
2e
σ (prop. 3), we then have Γ, x : A[~z ← ~D]wf2eσ::(x 7→ a′) (lem. 26).

Therefore by (e-var) we have Γ, x : A[~z ← ~D]⊢2eσ::(x 7→ a′) x : A[~z ← ~D] and also

Γ, x : A[~z ← ~D]⊢2eσ::(x 7→ a′) A[~z ← ~D] : Prop (prop. 4, lem. 14, 15). Hence the

induction hypothesis gives a term u such that Γ, x : A[~z ← ~D]⊢2eσ::(x 7→ a′) u :

A[~z ← ~C] : Prop.

By weakening (lem. 18) on the hypothesis and using the (e-app) rule we get Γ, x :

A[~z ← ~D]⊢2eσ::(x 7→ a′) w u : B[~z ← ~C] and from the first premise Γ, x : A[~z ←
~C]⊢2eσ::(x 7→ a) B[~z ← ~C] : Prop, then by strengthening (lem. 24) we can remove

14

x from the environment, and by weakening (lem. 18) with x : A[~z ← ~D] we get

Γ, x : A[~z ← ~D]⊢2eσ::(x 7→ a′) B[~z ← ~C] : Prop. Hence by induction hypothesis we

have a term v such that Γ, x : A[~z ← ~D]⊢2eσ::(x 7→ a′) v : B[~z ← ~D] : Prop and

finally Γ⊢2eσ λxA[~z←~D].v : A[~z ← ~D]→ B[~z ← ~D] : Prop (lem. 25).

�

Lemma 28 If Γ⊢2eσ C : Prop, Γ⊢2eσ D : Prop with C and D closed, then there are two
terms f and g such that Γ⊢2eσ f : C → D : Prop and Γ⊢2eσ g : D → C : Prop.

Proof Since C and D are closed, then by strengthening (lem. 24) ⊢2e[] C : Prop and

⊢2e[] D : Prop and there are terms u and v such that ⊢2e[] u : C : Prop and ⊢2e[] v : D : Prop

(lem. 17). By (e-env2) z : C wf
2e
(z 7→ u) and z : Dwf

2e
(z 7→ v) . Weakening (lem. 18) then

gives z : C ⊢2e(z 7→ u) v : D : Prop and z : D ⊢2e(z 7→ v) u : C : Prop. Simultaneous

use of the (e-abs) and (e-prod) rules (lem. 25) gives ⊢2e[] λz
C .v : C → D : Prop and

⊢2e[] λz
D.u : D → C : Prop. Finally by weakening (lem. 18) with Γwf

2e
σ (prop. 3) we

obtain Γ⊢2eσ λzC .v : C → D : Prop and Γ⊢2eσ λzD.u : D → C : Prop. �

Lemma 29 (motivations exchange) If Γ⊢2eσ w : C and Γwf
2e
σ′ , then Γ⊢2eσ′ w : C.

Proof by structural induction on the derivation of Γ⊢2eσ w : C:

(e-abs)
Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop

Γ⊢2eσ λxA.u : ∀xA.B

Since Γ⊢2eσ A : κ is a strict sub-derivation (prop. 3, 4), then by induction hypothesis

Γ⊢2eσ′ A : κ. Hence we get a′ such that Γ, x : Awf
2e
σ′::(x 7→ a′) (lem. 17 and (e-env2)).

Now we can apply the induction hypothesis on the premises followed by an applica-
tion of the (e-abs) rule to obtain the result.

(e-prod)
Γ, x : A⊢2eσ::(x 7→ a) B : Prop ⊢2e[] t : σ(∀xA.B)

Γ⊢2eσ ∀x
A.B : Prop

As previously, we can start to show that Γ, x : Awf
2e
σ′::(x 7→ a′) for some a′. Hence by

induction hypothesis Γ, x : A⊢2eσ′::(x 7→ a′) B : Prop.

We can rewrite the second premise as ⊢2e[] t : (∀xA.B)[y1, . . . , ym ← σ(y1), . . . , σ(ym)]

where the yi are the free variables of ∀xA.B. Furthermore (yi : Prop) ∈ Γ (prop. 8),

then also ⊢2e[] σ(yi) : Prop and ⊢2e[] σ
′(yi) : Prop (thm. 16).

Since the σ(yi) and the σ′(yi) are all closed (lem. 13), we then have terms fi and gi
such that ⊢2e[] fi : σ′(yi)→ σ(yi) and ⊢2e[] gi : σ(yi)→ σ′(yi) (lem. 28). Hence replacing

the equivalents (lem. 27) there is a term t′ such that ⊢2e[] t
′ : (∀xA.B)[y1, . . . , ym ←

σ′(y1), . . . , σ′(ym)], namely ⊢2e[] t
′ : σ′(∀xA.B). We are then allowed to conclude using

the (e-prod) rule.

�

15

Lemma 30 (substitution lemma)

(i) If Γ, y : C,Γ′ wf2eσ::(y 7→ c)::σ′ and Γ⊢2eσ w : C, then there is a substitution ρ such that

Γ,Γ′[y ← w]wf2eσ::ρ ;

(ii) If Γ, y : C,Γ′ ⊢2eσ::(y 7→ c)::σ′ d : D and Γ⊢2eσ w : C, then there is a substitution ρ such

that Γ,Γ′[y ← w]⊢2eσ::ρ d[y ← w] : D[y ← w].

Proof by structural induction on the first derivation:

(e-env2) immediate by the induction hypothesis on the first premise followed by (e-
env2) and lem. 17.

(e-var) There are three cases depending on the position in the environment of the
extracted variable: before y, being y or after y. They are solved as usual using the
induction hypothesis, see [1, lem. 5.2.11]. The second case need an application of

weakening (lem. 18) on Γ⊢2eσ w : C in order to obtain Γ,Γ′[y ← w]⊢2eσ::ρ w : C.

(e-abs)
Γ, y : C,Γ′, x : A⊢2eσ::(y 7→ c)::σ′::(x 7→ a) u : B : Prop

Γ, y : C,Γ′ ⊢2eσ::(y 7→ c)::σ′ λxA.u : ∀xA.B

Induction hypothesis on the premises gives two substitutions ρ′ and ρ′′ such that

Γ,Γ′[y ← w], x : A[y ← w]⊢2eσ::ρ′::(x 7→ a′) u[y ← w] : B[y ← w]

Γ,Γ′[y ← w], x : A[y ← w]⊢2eσ::ρ′′::(x 7→ a′′) B[y ← w] : Prop

And we can exchange the motivation of the second one (lem. 29 and prop. 3) to obtain

Γ,Γ′[y ← w], x : A[y ← w]⊢2eσ::ρ′::(x 7→ a′) B[y ← w] : Prop

Finally we get the result by applying the rule (e-abs) with ρ := ρ′.

(e-app) As previously, since the induction hypothesis applied to the two premises
gives two substitutions ρ′ and ρ′′ potentially different, we chose one (lem. 29) and
deduce the result by the rule (e-app).

(e-prod)
Γ, y : C,Γ′, x : A⊢2eσ::(y 7→c)::σ′::(x 7→a) B : Prop ⊢2e[] t : σ::(y 7→ c)::σ′(∀xA.B)

Γ, y : C,Γ′ ⊢2eσ::(y 7→ c)::σ′ ∀xA.B : Prop

First, by induction hypothesis, we have a substitution ρ′ and a term a′ such that

Γ,Γ′[y ← w], x : A[y ← w]⊢2eσ::ρ′::(x 7→ a′) B[y ← w] : Prop

And transferring the motivation to the conclusion (lem. 22) and the second premise

⊢2e[] t : σ::(y 7→ c)::σ′(∀xA.B) : Prop (∗)

Second since all free variable z of ∀xA.B are of type Prop (prop. 8) then:

• when z 6≡ y: the Poincaré criterion (thm. 16) on the previous well-formed envi-

ronments (prop. 3) gives us ⊢2e[] σ::(y 7→ c)::σ′(z) : Prop and ⊢2e[] σ::ρ′(z) : Prop;

16

• when z ≡ y: the Poincaré criterion (thm. 16) and the transfer of the motivation

to the conclusion (lem. 22) gives us ⊢2e[] σ::(y 7→ c)::σ′(z) : Prop and ⊢2e[] σ(w) : Prop.

Since all those types are closed (prop. 1) they are equivalent (lem. 28), and we can
then freely exchange them (lem. 27) in (∗) to build a term t′ such that

⊢2e[] t
′ : σ::(y 7→ σ(w))::ρ′(∀xA.B) : Prop i.e. ⊢2e[] t

′ : σ::ρ′((∀xA.B)[y ← w]) : Prop

which allows us to conclude using (e-prod).

�

Theorem 31 (subject reduction) If Γ⊢2eσ t : C and t β t′, then Γ⊢2eσ t′ : C.

Proof by structural induction on the derivation followed by case analysis on the
definition of β, similar to the one of [7, prop. 7] or [1, thm. 5.2.15]:

(e-abs)
Γ, x : A⊢2eσ::(x 7→ a) u : B : Prop

Γ⊢2eσ λxA.u : ∀xA.B

A being in normal form (prop. 9), only the case u β u′ can happen: it is trivially
solved using the induction hypothesis on the first premise.

(e-app)
Γ⊢2eσ u : ∀xA.B Γ⊢2eσ v : A

Γ⊢2eσ u v : B[x← v]

There are three cases:

• u β u′: trivial using the induction hypothesis on the first premise and (e-app).

• v β v′: there are three more cases (prop. 6):

• A ≡ Type: impossible (prop. 6, 2);

• Γ⊢2eσ A : Type: then A ≡ Prop (lem. 15) hence v is not reducible (prop. 9);

• Γ⊢2eσ A : Prop: then A 6≡ Prop (lem. 14) and then x 6∈ V(B) (prop. 8) hence
we have B[x ← v′] ≡ B ≡ B[x ← v], and it is enough to apply the induction
hypothesis on the second premise followed by (e-app).

• u ≡ λxC .w and u v β w[x ← v]: generation (lem. 14) gives Γ, x : A⊢2eσ w : B
and by substitution (lem. 30) we have the result.

(e-prod) A term of type Prop is not reducible (prop. 9).

�

Lemma 32 (type correctness, see prop. 6)

If Γ⊢2eσ w : C then C ≡ Type or there is κ such that Γ⊢2eσ C : κ.

Proof by structural induction on the derivation (similar to prop. 6): for the (e-abs)
rule, the previous lemma 25 immediately gives us the result. �

Theorem 33 (λ2
e is a pseudo pedagogical sub-system of CC)

17

λ2
e satisfies the following properties:

(i) λ2
e is a sub-system of CC;

(ii) If Γ⊢2eσ t : C and t β t′, then Γ⊢2eσ t′ : C.

(iii) x1 :A1, .., xn :An wf
2e
(x1 7→ t1)::..::(xn 7→ tn) if and only if x1 :A1, .., xn :An wf

c
and

⊢2e[] t1 : A1 ⊢2e[] t2 : A2[x1 ← t1] . . . ⊢2e[] tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

Proof

(i) λ2
e is a sub-system of λ2 (thm. 12), itself a sub-system of CC.

(ii) It is exactly the statement of the theorem 31.

(iii) ⇒ It is exactly the statement of the theorem 16.

⇐ From ⊢2e[] ti : Ai[x1, . . . , xi−1 ← t1, . . . , ti−1] and since Ai 6≡ Type because

x1 : A1, . . . , xn : An wf
c and ti 6≡ Type (prop. 2), thanks to type correctness

(lem. 32) we have ⊢2e[] Ai[x1, . . . , xi−1 ← t1, . . . , ti−1] : κi and we can then apply
the theorem 20 to obtain the result.

�

4 Total motivations

In λ2
e examples has to be maintained during the whole proof: all premisses of rules use

the same motivation. But we have seen that motivations can be exchanged (lem. 29):

if Γ⊢2eσ w : C and Γwf
2e
σ′ then Γ⊢2eσ′ w : C. Hence we relax this constraint in the

system λ2
t (fig. 4) and allow for different motivations to be used during sub-proofs.

We then make the motivations implicit but still require them to completely exemplifies
environments when needed. Leaving enhanced judgements leads us a step closer to a
real pedagogical subsystem of CC (additional constants are maintained).

4.1 System definition

The following definitions of motivations of an environment or a type depend on the
formal system λ2

t (fig. 4). To solve the apparent circularity, we can break those defi-
nitions in two parts: first a convenient abbreviation needed for the definition of the
system; and second an effective definition once the inference rules of the system have
been stated.

Definition 34 (Motivation of an environment) A substitution σ motivates an

environment Γ ≡ x1 : A1, . . . , xn : An, abbreviated σ mot Γ, if for all i ⊢2t σ(xi) : σ(Ai).

Definition 35 (Motivation of a type) A substitution σ motivate a type C rela-
tively to an environment Γ, abbreviated σ motΓ C if (i) σ mot Γ and (ii) there is a

term t such that ⊢2t t : σ(C).

Depending on the context, σ mot Γ will denote the derivations ⊢2t σ(xi) : σ(Ai),
or the fact that the environment Γ can be motivated by σ. The same applies for the
σ motΓ C notation too.

18

(t-env1)
[]wf2t

Γ⊢2t A : κ x 6∈ dom(Γ)
(t-env2)

Γ, x : Awf
2t

Γwf
2t

(t-ax)
Γ⊢2t o : ⊤ : Prop : Type

Γ, x : A,Γ′ wf
2t

(t-var)
Γ, x : A,Γ′ ⊢2t x : A

Γ, x : A⊢2t u : B : Prop
(t-abs)

Γ⊢2t λxA.u : ∀xA.B

Γ⊢2t u : ∀xA.B Γ⊢2t v : A
(t-app)

Γ⊢2t u v : B[x← v]

Γ, x : A⊢2t B : Prop σ motΓ ∀x
A.B

(t-prod)
Γ⊢2t ∀xA.B : Prop

Figure 4: Inference rules of λ2
t .

4.2 Results

The properties 1, 3, 4 are still valid for λ2
t .

Theorem 36 (λ2
t is a subsystem of λ2)

(i) if Γwf
2t then Γwf

2
;

(ii) if Γ⊢2t w : C then Γ⊢2w : C.

Lemma 37 (see lem. 15)

(i) If Γ⊢2t C : Type then C ≡ Prop and the last rule of the derivation is (t-ax);

(ii) If Γ⊢2t C : Prop then the last rule of the derivation is (t-ax), (t-var) or (t-prod).

Lemma 38 (λ2
e is a sub-system of λ2

t) For every substitution σ:

(i) if Γwf
2e
σ then Γwf

2t;

(ii) if Γ⊢2eσ w : C then Γ⊢2t w : C.

Proof by structural induction on the derivation. Every cases but (e-prod) are im-
mediate: since we forget the explicit motivation, the rules are the same (or more
constrained in the case of e-env2) in λ2

e.

(e-prod)
Γ, x : A⊢2eσ::(x 7→ a) B : Prop ⊢2e[] t : σ(∀xA.B)

Γ⊢2eσ ∀x
A.B : Prop

with Γ ≡ y1 :D1, . . . , yn :Dn.

By the first premise we have the sub-derivation Γwf
2e
σ (prop. 3) and the Poincaré

criterion (thm. 16) gives ⊢2e[] σ(yi) : σ(Di) as strict sub-derivations, on which we can

apply induction hypothesis to obtain ⊢2t σ(yi) : σ(Di), namely σ mot Γ. Moreover,

19

induction hypothesis applied on the second premise gives us ⊢2t t : σ(∀xA.B) and we
then get σ motΓ ∀x

A.B. The induction hypothesis applied on the first premise and
the (t-prod) rule allow us to conclude.

�

Lemma 39 (λ2
t is a sub-system of λ2

e)

(i) if Γwf
2t then there is a substitution σ such that Γwf

2e
σ ;

(ii) if Γ⊢2t w : C then there is a substitution σ such that Γ⊢2eσ w : C.

Proof by structural induction on the derivation:

(t-env2)
Γ⊢2t A : κ x 6∈ dom(Γ)

Γ, x : Awf
2t

By induction hypothesis we have a substitution σ′ such that Γ⊢2eσ′ A : κ, and then
(lem. 17) there is a term a such that ⊢2e[] a : σ′(A). Hence by (e-env2) we obtain the
result with σ := σ′::(x 7→ a).

(t-abs)
Γ, x : A⊢2t u : B : Prop

Γ⊢2t λxA.u : ∀xA.B

By induction hypothesis we have Γ, x : A⊢2eσ1::(x 7→ a1) u : B for a substitution σ1 and

a term a1, and also Γ, x : A⊢2eσ2::(x 7→ a2) B : Prop for σ2 and a2. Hence by exchange

of motivations (prop. 3 and lem. 29) we also have Γ, x : A⊢2eσ1::(x 7→ a1) B : Prop and
finally the result by (e-abs).

(t-app) Performed as for (t-abs).

(t-prod)
Γ, x : A⊢2t B : Prop σ motΓ ∀x

A.B

Γ⊢2t ∀xA.B : Prop

In the following, (IH) will be the name of the induction hypothesis, which is appli-

cable to every strict sub-derivation of Γ⊢2t ∀xA.B : Prop.

Let Γ ≡ y1 : D1, . . . , yn : Dn. First we show by induction on i that

∀i y1 : D1, . . . , yi : Di wf
2e
σ≤i

• i = 0: by (e-env1) we have []wf2e[] .

• Assume
y1 : D1, . . . , yi : Di wf

2e
σ≤i

(IHi)

By the definition of σ motΓ ∀x
A.B we have ⊢2t σ(yi+1) : σ(Di+1) as a sub-

derivation, on which we can apply (IH) to obtain ⊢2e[] σ(yi+1) : σ(Di+1).

Since y1 : D1, . . . , yi : Di ⊢
2t Di+1 : κ is a sub-derivation of the first

premise (prop. 3, 4), using the induction hypothesis (IH) we can build a

20

substitution ρ such that y1 : D1, . . . , yi : Di ⊢
2e
ρ Di+1 : κ, hence by moti-

vations exchange (lem. 29) using (IHi) y1 : D1, . . . , yi : Di ⊢
2e
σ≤i

Di+1 : κ.

We then transfer the motivation to the conclusion (lem. 22) to obtain

⊢2e[] σ≤i(Di+1) : κ.

Finally since y1 :D1, . . . , yi :Di wf
2e
σ≤i

(IHi) and ⊢2e[] σ(yi+1) :σ≤i(Di+1) :κ,

then y1 : D1, . . . , yi : Di, yi+1 : Di+1 wf
2e
σ≤i+1

(lem. 26) which closes this
sub-proof.

Now, when i = n, we have Γwf
2e
σ . The induction hypothesis (IH) applied to the

first premise gives ρ and a′ such that Γ, x : A⊢2eρ::(x 7→ a′) B : Prop. Hence Γ⊢2eρ A : κ

(prop. 3, 4), so Γ⊢2eσ A : κ by exchange of motivations (lem. 29), and there is a such

that ⊢2e[] a : σ(A) (lem. 17). Using (e-env2) we have Γ, x : Awf
2e
σ::(x 7→ a) . By exchange

of motivations (lem. 29) we then get Γ, x : A⊢2eσ::(x 7→ a) B : Prop.

The definition of σ motΓ ∀x
A.B implies the existence of t such that ⊢2t t : σ(∀xA.B)

is a sub-derivation on which we can apply (HI) to obtain ⊢2e[] t : σ(∀xA.B). Finally
the (e-prod) rule gives the result.

�

Theorem 40 (λ2
t is a pseudo pedagogical sub-system of CC)

λ2
t satisfies the following properties:

(i) λ2
t is a sub-system of CC;

(ii) If Γ⊢2t t : C and t β t′ then Γ⊢2t t′ : C.

(iii) x1 : A1, . . . , xn : An wf
2t if and only if x1 : A1, . . . , xn : An wf

c
and there are

terms t1, . . . , tn such that

⊢2t t1 : A1 ⊢2t t2 : A2[x1 ← t1] . . . ⊢2t tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

Proof

(i) λ2
t is a sub-system of λ2 (thm. 36) itself a sub-system of CC.

(ii) From Γ⊢2t t : C we have a substitution σ such that Γ⊢2eσ t : C (lem. 39) and since

t β t′, then Γ⊢2eσ t′ : C (thm. 33) hence Γ⊢2t t′ : C (lem. 38).

(iii) ⇒ From x1 : A1, . . . , xn : An wf
2t we have x1 : A1, . . . , xn : An wf

2e
σ (lem. 39),

hence x1 : A1, . . . , xn : An wf
c and ⊢2e[] σ(xi+1) : σ(Ai+1) (thm. 33) and finally

⊢2t σ(xi+1) : σ(Ai+1) (lem. 38).

⇐ Similarly we move back and forth from λ2
t to λ2

e (lem. 38, 39).
�

5 Partial motivations

In [3] we designed CCr a subsystem of CC able to derive λAProp.λxA.x of type
∀AProp.A→ A, those two terms acting as initial examples like the constants o and ⊤
do for λ2

e and λ2
t (and P-Prop2 of [6]). In CCr the (c-prod) rule of CC is constrained

21

such that every occurrences of the formed type ∀xA.B has to be inhabited. In λ2
e

and λ2
t only one occurrence need to be inhabited, but it has lead us to use moti-

vations dealing with all the possible variables of the type to be motivated, namely
all the variables of the environments, making the motivations total. In order to re-
cover this behaviour of CCr and remove the need for additional constants, we can
make the motivations partial, that is allowing them to act on some variables of the
environments.

5.1 System definition

As for λ2
t the following definitions of partial motivation of an environment or a type

refer to the formal system λ2
p (fig. 5) and the apparent circularity can be circumvented

in the same way.

Definition 41 (Application of a partial motivation)

The application of the substitution σ to the environment Γ, whose result is an envi-
ronment abbreviated by σ(Γ), is recursively defined as:

σ([]) := []

σ(Γ, x : A) :=

{
σ(Γ) if x ∈ dom(σ)

σ(Γ), x : σ(A) otherwise

Definition 42 (Partial motivation of an environment) A substitution σ par-
tially motivates the environment Γ ≡ x1 : A1, . . . , xn : An, abbreviated σ m̃ot Γ,
if for all i xi ∈ dom(σ)⇒ σ(Γ<i)⊢

2p σ(xi) : σ(Ai).

Definition 43 (Partial motivation of a type) A substitution σ partially moti-
vates a type C relatively to an environment Γ, abbreviated σ m̃otΓ C if (i) σ m̃ot Γ

and (ii) there is a term t such that σ(Γ)⊢2p t : σ(C).

Depending on the context, σ m̃ot Γ will denote the previous derivations, or the
fact that the environment Γ can be partially motivated by σ. The same applies for
the σ m̃otΓ C notation.

Example 44 σ := [x2 7→ t2, x4 7→ t4] partially motivates the type C relatively to
Γ := x1 : A1, . . . , x5 : A5 if:

(i) x1 : A1 ⊢
2p t2 : A2 and x1 : A1, x3 : A3[x2 ← t2]⊢2p t4 : A4[x2 ← t2];

(ii) there is t such that x1 : A1, x3 : A3[x2 ← t2], x5 : A5[x2, x4 ← t2, t4]⊢2p t : σ(C).

Remark 45

When dom(Γ) ⊆ dom(σ) we have the total motivation definition of λ2
t . When

dom(σ) = ∅ the behaviour of CCr is recovered.

For every environment Γ, [] m̃ot Γ holds. However, for a type C, we of course do not
always have [] m̃otΓ C.

22

(p-env1)
[]wf2p

Γ⊢2p A : κ x 6∈ dom(Γ)
(p-env2)

Γ, x : Awf
2p

Γwf
2p

(p-ax)
Γ⊢2p Prop : Type

Γ, x : A,Γ′ wf
2p

(p-var)
Γ, x : A,Γ′ ⊢2p x : A

Γ, x : A⊢2p u : B : Prop
(p-abs)

Γ⊢2p λxA.u : ∀xA.B

Γ⊢2p u : ∀xA.B Γ⊢2p v : A
(p-app)

Γ⊢2p u v : B[x← v]

Γ, x : A⊢2p B : Prop σ m̃otΓ ∀x
A.B

(p-prod)
Γ⊢2p ∀xA.B : Prop

Figure 5: Inference rules of λ2
p.

5.2 Results

In this section, we will identify the constants o and ⊤ of the previous systems λ2
e and

λ2
t to their definitions in λ2

p, namely o := λAProp.λxA.x and ⊤ := ∀AProp.A→ A.

Lemma 46 We have the following derived rules:

Γwf
2p

Γ⊢2p o : ⊤ : Prop : Type

Proof immediate by using an empty motivation whenever the (p-prod) rule is used
(similar to the proof for CCr in [3, sec. 3.4]) . �

Theorem 47 (λ2
p is a subsystem of λ2)

(i) if Γwf
2p then Γwf

2;

(ii) if Γ⊢2p w : C then Γ⊢2w : C.

Proof immediate by structural induction on the derivation. �

Lemma 48 (λ2
t is a subsystem of λ2

p)

(i) if Γwf
2t then Γwf

2p;

(ii) if Γ⊢2t w : C then Γ⊢2p w : C.

Proof immediate by structural induction on the derivation:

• the (t-ax) case is done in the previous lemma 46;

23

• for the (t-prod) case, applying the induction hypothesis on all the derivations of
σ motΓ ∀x

A.B is enough to obtain σ m̃otΓ ∀x
A.B and to conclude using (p-prod).

�

In order to prove the converse of the previous lemma, namely that λ2
p is a subsys-

tem of λ2
t , we will need to complete partial motivation to make them total. Therefore

there is a need to define the substitution resulting of the composition of two substi-
tutions:

Definition 49 (Composition of substitutions)

σ ⊙ ρ is the composition substitution of the two substitutions σ and ρ defined by:

σ ⊙ ρ := ρσ::σ\dom(ρ)

where
[]σ := []

((y 7→ v)::τ)σ := (y 7→ σ(v))::τσ

and σ\dom(ρ) is σ where all (x 7→ v) such that x ∈ dom(ρ) are removed.

Lemma 50 For every raw term t and substitutions σ and ρ we have σ⊙ρ(t) ≡ σ(ρ(t)).
Moreover dom(σ ⊙ ρ) = dom(σ) ∪ dom(ρ).

Proof immediate by induction on the raw term t. �

Lemma 51 (λ2
p is a subsystem of λ2

t)

(i) if Γwf
2p then Γwf

2t;

(ii) if Γ⊢2p w : C then Γ⊢2t w : C.

Proof by structural induction on the derivation:

(p-prod)
Γ, x : A⊢2p B : Prop σ m̃otΓ ∀x

A.B

Γ⊢2p ∀xA.B : Prop
with Γ ≡ y1 : D1, . . . , yn : Dn.

By the definition of σ m̃otΓ ∀x
A.B, we have a term t such that σ(Γ)⊢2p t : σ(∀xA.B)

is a sub-derivation, and then by induction hypothesis σ(Γ)⊢2t t : σ(∀xA.B). Hence
there is a substitution ρ (lem. 39) such that

σ(Γ)⊢2eρ t : σ(∀xA.B) (∗)

We then have ρ⊙ σ motΓ ∀x
A.B since:

• if yi ∈ dom(σ), by the definition of σ m̃otΓ ∀x
A.B we have σ(Γ<i)⊢

2p σ(yi) : σ(Di)

is a sub-derivation, and then by induction hypothesis σ(Γ<i)⊢
2t σ(yi) : σ(Di).

Hence there is ρ′ such that σ(Γ<i)⊢
2e
ρ′ σ(yi) : σ(Di) (lem. 39) and then by exchange

of motivations (lem. 29 and prop. 3) σ(Γ<i)⊢
2e
ρ<i

σ(yi) : σ(Di). Then transferring

the motivation to the conclusion (lem. 22) ⊢2e[] ρ(σ(yi)) : ρ(σ(Di)) and then also

⊢2t ρ⊙ σ(yi) : ρ⊙ σ(Di) (lem. 38, 50).

24

• if yi 6∈ dom(σ) then yi ∈ dom(σ(Γ)), and then from (∗) using the Poincaré

criterion (thm. 16 and prop. 3) ⊢2e[] ρ(yi) : ρ(σ(Di)), namely, since yi 6∈ dom(σ),

⊢2e[] ρ(σ(yi)) : ρ(σ(Di)). Hence ⊢2t ρ⊙ σ(yi) : ρ⊙ σ(Di) (lem. 38, 50).

• finally from (∗), transferring the motivation to the conclusion (lem. 22) we have

⊢2e[] ρ(t) : ρ(σ(∀xA.B)). Hence ⊢2t ρ(t) : ρ⊙ σ(∀xA.B) (lem. 38, 50).

Thus the induction hypothesis applied to the first premise gives Γ, x : A⊢2t B : Prop
and the (t-prod) allows to conclude.

�

Theorem 52 (λ2
p is a pedagogical sub-system of CC)

λ2
p satisfies the following properties:

(i) λ2
p is a subsystem of CC;

(ii) If Γ⊢2p t : C and t β t′, then Γ⊢2p t′ : C.

(iii) x1 : A1, . . . , xn : An wf
2p if and only if x1 : A1, . . . , xn : An wf

c
and there are

terms t1, . . . , tn such that

⊢2p t1 : A1 ⊢2p t2 : A2[x1 ← t1] . . . ⊢2p tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1]

Proof (i) holds since λ2
p is a sub-system of λ2 (thm. 47) itself a sub-system of CC.

For (ii) and (iii) it is enough to notice that λ2
t are λ2

p equivalent (lem. 48, 51) in order
to import the results of the former (thm. 40) into the later. �

Let us emphasize that λ2
p is a pedagogical sub-system of CC in the sense of the

formal definition given at the beginning (def. 10).

6 Pedagogical system F

λ2
p is a pedagogical subsystem of CC, syntactically equivalent to the systems λ2

e and
λ2
t (lem. 38, 39, 48, 51). In this section we link those systems with the second order

pedagogical λ-calculus P-Prop2 of [6]. First we recall the system P-Prop2, then we
show that it is equivalent to λ2

t .

6.1 System definition

Definition 53 (Types of P-Prop2) Types of P-Prop2 are built according to the
following rules: (i) ⊤ is a type; (ii) types variables α, β, γ, . . . are types; (iii) if A

and B are types then A→B is a type; (iv) if α is a type variable and A a type then
∀α.A is a type. The finite set of free variables of a type A, noted V(A), is defined in
the usual way.

Definition 54 (Terms of P-Prop2) Terms of P-Prop2 are built according to the
following rules: (i) o is a term; (ii) term variables x, y, z, . . . are terms; (iii) if x is a
term variable, A a type and t a term then λxA.t is a term; (iv) if α is a type variable
and t a term then Λα.t is a term; (v) if t and u are terms then t u is a term; (vi) if t
is a term and U a type then t U is a term.

25

⊢pfσ ·∆
(P-Ax)

∆⊢pfo : ⊤

x : F ∈ ∆ ⊢pfσ ·∆
(P-Hyp)

∆⊢pfx : F

∆, x : A⊢pfu : B
(→i)

∆⊢pfλxA.u : A→B

∆⊢pfu : A→B ∆⊢pf v : A
(→e)

∆⊢pfu v : B

∆⊢pfu : B α 6∈ V(∆)
(∀i)

∆⊢pfΛα.u : ∀α.B

∆⊢pfu : ∀α.B ⊢pfσ · V
(P-∀e)

∆⊢pfu V : [α← V] ·B

Figure 6: Inference rules of P-Prop2.

Definition 55 (Substitutions of P-Prop2) A substitution of P-Prop2 is an appli-
cation from type variables to types. The application of a substitution σ to a type
A, defined in the usual way, is noted σ · A. A constant substitution but in a finite
number of points α1, . . . , αn, associated respectively to the types V1, . . . , Vn, is noted
[α1, . . . , αn ← V1, . . . , Vn].

Definition 56 (Contexts of P-Prop2) A context ∆ of P-Prop2 is a finite set of
couples x : A where x is a term variable and A a type. Moreover if x : A and x : B
are into the set ∆ then A = B. The context {x1 : A1, . . . , xn : An} is abbreviated to
x1 : A1, . . . , xn : An. The set of free variables of a context ∆ = x1 : A1, . . . , xn : An,
noted V(∆), is defined the usual way as the union of the V(Ai).

The following definitions of motivation refer to the formal system P-Prop2 (fig. 6):

Definition 57 (Motivations of P-Prop2) A substitution σ of P-Prop2motivates

a type A, noted ⊢pfσ · A, if there is a term t such that ⊢pf t : σ · A. By extension, a
substitution σ motivate a context ∆ = x1 : A1, . . . , xn : An, noted ⊢pfσ ·∆, if for all i
we have ⊢pfσ ·Ai.

Remark 58 In P-Prop2, and unlike λ2
t , substitutions and contexts are set based,

terms and types are disjoint, and a motivated type is not necessarily closed. Also
since types are not built into the system P-Prop2 every rules introducing new types
need to be constrained (see fig. 6).

6.2 Results

Definition 59 (Translation from P-Prop2 to λ2
t)

26

Let [[·]] be the translation from types and terms of P-Prop2 to the raw terms of λ2
t

defined by:
[[⊤]] := ⊤
[[α]] := α

[[A→B]] := [[A]]→ [[B]]
[[∀α.A]] := ∀αProp.[[A]]

[[o]] := o

[[x]] := x

[[λxA.t]] := λx[[A]].[[t]]
[[Λα.t]] := λαProp.[[t]]

[[t u]] := [[t]] [[u]]
[[t U]] := [[t]] [[U]]

where α is a type variable and x is a term variable.

Remark 60 We implicitly assumed that variables of λ2
t contains type and term vari-

ables of P-Prop2.

Lemma 61 For all types A, B and all type variable α of P-Prop2

[[[α← B] ·A]] ≡ [[A]][α← [[B]]]

Proof by structural induction on the type A of P-Prop2. �

Let us notice some results simplifying the extension of the translation of the con-
texts of P-Prop2 to the environments of λ2

t , in order to use the later like sets instead
of lists:

Lemma 62 (exchange in λ2
e) If y 6∈ V(D) then:

(i) If Γ, y :C, z :D,Γ′ wf
2e
σ::(y 7→c)::(z 7→d)::σ′ then Γ, z :D, y :C,Γ′ wf

2e
σ::(z 7→d)::(y 7→c)::σ′ ;

(ii) If Γ, y:C, z:D,Γ′ ⊢2eσ::(y 7→c)::(z 7→d)::σ′ w :E then Γ, z:D, y:C,Γ′ ⊢2eσ::(z 7→d)::(y 7→c)::σ′ w:E.

Proof by structural induction on the derivation:

(e-env2)
Γ, y : C ⊢2eσ::(y 7→ c) D : κ ⊢2e[] d : σ::(y 7→ c)(D) z 6∈ dom(Γ, y)

Γ, y : C, z : Dwf
2e
σ::(y 7→ c)::(z 7→ d)

Since y 6∈ V(D) by strengthening (lem. 24) on the first premise we get Γ⊢2eσ D : κ

then ⊢2e[] d : σ(D) (lem. 22). Hence by (e-env2) we have Γ, z : Dwf
2e
σ::(z 7→ d) .

From the first premise we deduce Γ⊢2eσ C : κ (prop. 4), which we can weaken (lem. 18)

to obtain a derivation of Γ, z : D ⊢2eσ::(z 7→ d) C : κ.

Since ⊢2e[] c : σ(C) (thm. 16) and z 6∈ V(C) (lem. 13) then also ⊢2e[] c : σ::(z 7→ d)(C),

and by (e-env2) we finally obtain the result Γ, z : D, y : C wf
2e
σ::(z 7→ d)::(y 7→ c) .

�

Lemma 63 (exchange in λ2
t) If y 6∈ V(D) then:

(i) If Γ, y : C, z : D,Γ′ wf2t then Γ, z : D, y : C,Γ′ wf2t;

(ii) If Γ, y : C, z : D,Γ′ ⊢2t w : E then Γ, z : D, y : C,Γ′ ⊢2t w : E.

Proof immediate (lem. 62) since λ2
t and λ2

e are equivalents (lem. 38, 39). �

Lemma 64 If Γ⊢2t w : C then we can split Γ in two environments Γ1 and Γ2 such
that: (i) Γ is a permutation of Γ1,Γ2; (ii) Γ1,Γ2 ⊢

2t w : C; (iii) for all y : D ∈ Γ1,
D ≡ Prop; (iv) for all y : D ∈ Γ2, D 6≡ Prop.

27

Proof Let Γ ≡ x1 : A1, . . . , xn : An. Since we have x1 : A1, . . . , xi : Ai ⊢
2t Ai+1 : κ

(prop. 4): either κ ≡ Type and then Ai+1 ≡ Prop (lem. 37); or κ ≡ Prop and then
Ai+1 6≡ Prop (lem. 14, 39). We can then put all the xi : Ai where Ai ≡ Prop in front
of the environment (lem. 63) to constitute the Γ1 part, the others constituting the Γ2

part. �

Remark 65 The elements of Γ1 can appear in any order (lem. 63). The same holds
also for Γ2 since the Ai only depend on the variables xj : Prop of Γ1 (prop. 8 and
lem. 39).

In the following, we will assume that the Γ1 part of Γ in judgements Γwf
2t or

Γ⊢2t w : C is implicit and then we will omit mentioning it. It can be reconstituted
by putting in it every free variables of Γ, w and C. This is allowed by the properties
of strengthening (lem. 24) and weakening (lem. 18) permitting us to add and remove
elements of type Prop into Γ.

Those observations allow for a simpler definition of the translation of contexts of
P-Prop2 to environments of λ2

t :

Definition 66 (Translation of a context of P-Prop2)

The translation of a context of P-Prop2 to an environment of λ2
t is defined by:

[[x1 : A1, . . . , xn : An]] := x1 : [[A1]], . . . , xn : [[An]]

Lemma 67 (type correctness of λ2
t) If Γ⊢2t w : C, then C ≡ Type or Γ⊢2t C : κ.

Proof immediate: it already holds for λ2
e (lem. 32), equivalent to λ2

t (lem. 38, 39). �

Lemma 68 If Γ⊢2t w : [[C]], then Γ⊢2t [[C]] : Prop.

Proof From Γ⊢2t w : [[C]] we deduce that there is κ such that Γ⊢2t [[C]] : κ (lem. 67).
But if κ ≡ Type, then [[C]] ≡ Prop (lem. 37), which is not possible by the definition
of [[·]]. As a consequence κ ≡ Prop. �

Definition 69 (Universal trivial motivation) The universal trivial motivation τ

is the constant substitution associating ⊤ to every type variable.

Property 70 If ∆⊢pfu : F then for every sub-type G of ∆, F we have ⊢pf τ ·G.

Proof in [6, thm. 19]. �

Lemma 71 If ∆⊢pfu : F then there is a derivation of ∆⊢pfu : F using only the trivial
motivation τ in the premise of the rules (P-Ax), (P-Hyp) and (P-∀e).

Proof by structural induction on the derivation. For each of the three rules, every
motivated formulas appear as a sub-type of the conclusion sequent. Thus they are
also motivable by τ (prop. 70). We can then replace everywhere the premise ⊢pfσ ·∆

by ⊢pf τ ·∆. �

Lemma 72 If ∆⊢pfw : C is a derivation using only the trivial motivation τ , then
[[∆]]⊢2t [[w]] : [[C]].

28

Proof by structural induction on the derivation:

(P-Ax)
⊢pf τ ·∆

∆⊢pfo : ⊤
where ∆ = {x1 : A1, . . . , xn : An}.

By hypothesis we have some terms ti such that ⊢pf ti : τ · Ai. Hence by induction
hypothesis ⊢2t [[ti]] : [[τ · Ai]]. But [[τ · Ai]] ≡ [[Ai]][~y ← ⊤] (lem. 61) where ~y are the

free variables of Ai. And since ⊢2t [[τ · Ai]] : Prop (lem. 68) then by the reciprocal of

the Poincaré criterion (thm. 40) x1 : [[A1]], . . . , xn : [[An]]wf
2t and then by the (t-ax)

rule we obtain the result.

(P-Hyp)
x : F ∈ ∆ ⊢pf τ ·∆

∆⊢pfx : F

As for (P-Ax), we show that [[∆]]wf2t. But since x : F ∈ ∆ implies x : [[F]] ∈ [[∆]],

then by (t-var) we have [[∆]]⊢2t x : [[F]].

(→i)
∆, x : A⊢pfu : B

∆⊢pfλxA.u : A→B

By the induction hypothesis [[∆]], x : [[A]]⊢2t [[u]] : [[B]] and [[∆]], x : [[A]]⊢2t [[B]] : Prop

(lem. 68). Hence by (t-abs) we obtain [[∆]]⊢2t λx[[A]].[[u]] : [[A]] → [[B]] (because x 6∈
V(B) implies x 6∈ V([[B]])).

(→e)
∆⊢pfu : A→B ∆⊢pf v : A

∆⊢pfu v : B

It is enough to apply the induction hypothesis to the two premises and use (t-app).

(∀i)
∆⊢pfu : B α 6∈ V(∆)

∆⊢pfΛα.u : ∀α.B

By induction hypothesis we have [[∆]]⊢2t [[u]] : [[B]]. There are two cases depending
on whether α ∈ V(B) or not:

• α ∈ V(B): then α : Prop is in the hidden implicit part of the translated environ-
ment, and since it does not appear in V(∆) it does not appear either in V([[∆]]). We
can then bubble up α : Prop in head position by successive permutations (lem. 63)

to obtain [[∆]], α : Prop ⊢2t [[u]] : [[B]].

• α 6∈ V(B): then α does not appear in the hidden part of the environment,
and we can then add α : Prop to [[∆]] by weakening (lem. 18, 38, 39) to obtain

[[∆]], α : Prop ⊢2t [[u]] : [[B]].

In both cases we also have [[∆]], α : Prop ⊢2t [[B]] : Prop (lem. 68) and (t-abs) allows
us to conclude.

(P-∀e)
∆⊢pfu : ∀α.B ⊢pf τ · V

∆⊢pfu V : [α← V] ·B

29

As for (P-Ax) and (P-Hyp), from ⊢pf τ · V we deduce z : [[V]]wf2t where z is a fresh

variable. We then get ⊢2t [[V]] : κ (prop. 4) where κ ≡ Prop (otherwise [[V]] ≡ Prop
by prop. 8 and lem. 38, 39 which is impossible).

By the induction hypothesis [[∆]]⊢2t [[u]] : ∀αProp.[[B]] and then [[∆]]wf
2t (prop. 3).

Thus by weakening we also have [[∆]]⊢2t [[V]] : Prop and then using the (t-app) rule

[[∆]]⊢2t [[u]] [[V]] : [[B]][α← [[V]]]. But [[B]][α← [[V]]] ≡ [[[α← V] ·B]] (lem. 61).

�

Lemma 73 If Γ⊢2t w : C and w 6≡ Prop then there is a term or a type w′ of P-Prop2

such that [[w′]] ≡ w.

Proof by structural induction on the derivation:

(t-abs)
Γ, x : A⊢2t u : B : Prop

Γ⊢2t λxA.u : ∀xA.B

First the induction hypothesis gives us a term u′ such that [[u′]] ≡ u. Then, since

Γ⊢2t A : κ (prop. 4) is a sub-derivation, we are faced to two cases:

• if κ ≡ Type, then A ≡ Prop (lem. 37) and in this case w′ := Λx.u′ fits;

• if κ ≡ Prop, then A 6≡ Prop, and we can apply the induction hypothesis to get a
term A′ such that [[A′]] ≡ A; hence w′ := λxA′

.u′ fits.

(t-prod)
Γ, x : A⊢2t B : Prop σ motΓ ∀x

A.B

Γ⊢2t ∀xA.B : Prop

The induction hypothesis gives us a term B′ such that [[B′]] ≡ B. We have to

consider two cases in the sub-derivation Γ⊢2t A : κ:

• if κ ≡ Type, then A ≡ Prop (lem. 37) and in this case w′ := ∀x.B′ fits;

• if κ ≡ Prop, then A 6≡ Prop and then x 6∈ V(B) (prop. 8), and the induction
hypothesis gives us a term A′ such that [[A′]] ≡ A, hence w′ := A′→B′ fits.

�

Corollary 74 If y1 : D1, . . . , yn : Dn ⊢
2t w : C then:

(i) if Di 6≡ Prop then there is a term or a type D′i of P-Prop2 such that [[D′i]] ≡ Di;

(ii) if w 6≡ Prop then there is a term or a type w′ of P-Prop2 such that [[w′]] ≡ w;

(iii) if C 6≡ Prop,Type then there is a term or a type C ′ of P-Prop2 such that
[[C ′]] ≡ C.

Proof

(i) From y1 : D1, . . . , yi : Di ⊢
2t Di+1 : κ (prop. 4) we can distinguish two cases:

• if κ ≡ Type, then Di+1 ≡ Prop (lem. 37);

• if κ ≡ Prop, then Di+1 6≡ Prop and the lemma 73 finishes the proof.

(ii) This is exactly the lemma 73.

30

(iii) We have three cases (lem. 67):

• C ≡ Type: then the implication is valid by vacuity;

• y1 : D1, . . . , yn : Dn ⊢
2t C : Type: then C ≡ Prop (lem. 37);

• y1 : D1, . . . , yn : Dn ⊢
2t C : Prop: then C 6≡ Prop and the lemma 73 concludes.

�

Lemma 75

(i) If [[∆]]wf2t then there is a substitution ρ such that ⊢pf ρ ·∆;

(ii) If [[∆]]⊢2t [[C]] : Prop then there is a substitution ρ such that ⊢pf ρ ·∆ and ⊢pf ρ ·C;

(iii) If [[∆]]⊢2t [[w]] : [[C]] then ∆⊢pfw : C.

Proof by structural induction on the derivation:

(t-env1) [[∅]]wf2t With ρ the empty substitution, we have trivially ⊢pf ρ · ∅.

(t-env2)
[[∆]]⊢2t A : κ x 6∈ dom([[∆]])

[[∆]], x : Awf
2t

There are two cases:

• if κ ≡ Prop then A 6≡ Prop, and A is the image of some A′ by [[·]] (cor. 74); the

induction hypothesis on the premise gives a substitution ρ satisfying ⊢pf ρ · (∆, A′);

• if κ ≡ Type then A ≡ Prop (lem. 37) and x : A is in the hidden part of the

environment; but since [[∆]]wf
2t (prop. 3) is a sub-derivation, then the induction

hypothesis gives a substitution ρ such that ⊢pf ρ ·∆.

(t-ax)
[[∆]]wf2t

[[∆]]⊢2t [[o]] : [[⊤]] : Prop

By induction hypothesis on the premise we have a substitution ρ such that ⊢pf ρ ·∆,
we can then derive ∆⊢pfo : ⊤ by (P-Ax), and then we have also ⊢pf ρ · (∆,⊤).

(t-var)
[[∆, x : A,∆′]]wf2t

[[∆, x : A,∆′]]⊢2t [[x]] : [[A]]

By induction hypothesis we have a substitution ρ such that ⊢pf ρ · (∆, x : A,∆′) and

then by (P-Hyp) we get ∆, x : A,∆′ ⊢pfx : A.

(t-abs) Depending on the type of x, we are faced to one on those two cases:

[[∆]], x : [[A]]⊢2t [[u]] : [[B]] : Prop

[[∆]]⊢2t [[λxA.u]] : [[A→B]]

[[∆]], x : Prop ⊢2t [[u]] : [[B]] : Prop

[[∆]]⊢2t [[Λx.u]] : [[∀x.B]]

Each case can be easily solved using the induction hypothesis on the first premise
and the (→i) and (∀i) rules (respectively).

31

(t-app) As previously, depending on the type of x we have two cases:

[[∆]]⊢2t [[u]] : [[A→B]] [[∆]]⊢2t [[v]] : [[A]]

[[∆]]⊢2t [[u v]] : [[B]]

[[∆]]⊢2t [[u]] : [[∀x.B]] [[∆]]⊢2t [[v]] : Prop

[[∆]]⊢2t [[u v]] : [[B]][x← [[v]]]

The induction hypothesis and the (→e) and (∀e) rules (respectively) solve them.

(t-prod) Once again, depending on the type of x we have to deal with two cases:

•

[[∆]], x : [[A]]⊢2t [[B]] : Prop σ mot[[∆]][[A→B]]

[[∆]]⊢2t [[A→B]] : Prop
where ∆ ≡ y1 : D1, . . . , yn : Dn.

By the definition of σ mot[[∆]][[A→B]], we have:

• terms ti such that ⊢2t ti : [[Di]][~α ← ~E] where ~α are the free variables of the

Di and then the Ej are such that ⊢2t Ej : Prop (prop. 8). We then have terms

E′j and t′i such that [[E′j]] ≡ Ej and [[t′i]] ≡ ti (cor. 74). Therefore ⊢2t [[t′i]] :

[[Di]][~α ← ~[[E′]]] namely ⊢2t [[t′i]] : [[[~α ← ~E′] · Di]] (lem. 61). The induction

hypothesis gives ⊢pf t′i : [~α← ~E′] ·Di namely ⊢pf ρ ·Di where ρ := [~α← ~E′].

• and a term u such that ⊢2t u : [[A→B]][~α ← ~E] which by the same way leads

us to ⊢pf ρ · (A→B).

•

[[∆]], x : Prop ⊢2t [[B]] : Prop σ mot[[∆]][[∀x.B]]

[[∆]]⊢2t [[∀x.B]] : Prop
Solved as previously.

�

Theorem 76 ∆⊢pfw : C if and only if [[∆]]⊢2t [[w]] : [[C]].

Proof ⇒ From ∆⊢pfw : C, we build a derivation using only τ as motivation
(lem. 71), and then [[∆]]⊢2t [[w]] : [[C]] (lem. 72).

⇐ It is exactly the (iii) of lemma 75 above. �

Corollary 77 We can embed the second order propositional calculus Prop2 and λ2

in the calculi λ2
e, λ2

t and λ2
p.

Proof The next property 79 recalls an embedding from Prop2 to P-Prop2, which
is enough because we can embed P-Prop2 in λ2

t (thm. 76), λ2
t being equivalent to λ2

e

and λ2
p (lem. 38, 39, 48, 51). Also λ2 and Prop2 are two different formalizations of the

same calculus (can be shown similarly as what we did for λ2
t and P-Prop2). �

7 Type checking

In this section we show that for all the pedagogical type systems of second-order
presented so far the so-called type-checking problem is not decidable. We use the
fact that the type inhabitation problem for Prop2 is not decidable. Prop2 is P-Prop2

without the constraints, also known as System F such as presented in [15].

32

Definition 78 (Type inhabitation) For a given formal system, the type inhabita-
tion problem is:

input: a context (or an environment) Γ, and a type A;

output: “true” if there is a term t such that Γ⊢⋆ t : A, and “false” otherwise.

Property 79 The type inhabitation problem for Prop2 can be reduced to the type
inhabitation problem for P-Prop2: for every ∆ and A there is t such that ∆⊢f t : A if
and only if there is t′ such that ∆γ ⊢pf t′ : Aγ , where γ is a translation from formulas
of Prop2 to formulas of P-Prop2.

Proof A (constructive) proof can be found in [5] about formal systems correspond-
ing to the type systems Prop2 and P-Prop2. The translation γ , inspired by the
A-translation of [11], consists in replacing every occurrences of type variables α by
α ∨ γ where γ is a fresh type variable. �

Property 80 Type inhabitation for Prop2 is undecidable.

Proof by Urzyczyn in [36]. �

Lemma 81 Type inhabitation for P-Prop2 is undecidable.

Proof by contradiction. Assume that type inhabitation for P-Prop2 can be decided
by an algorithm D: D(∆, A) = true if and only if there is a term t such that ∆⊢pf t : A.
We can then build an algorithm D′ able to decide the problem of type inhabitation
for Prop2: D′(∆, A) := D(∆γ , Aγ). Indeed:

D′(∆, A) = true iff D(∆γ , Aγ) = true

iff there is t′ such that ∆γ ⊢pf t′ : Aγ

iff there is t such that ∆⊢f t : A (prop. 79)

But we noticed that the type inhabitation for Prop2 is undecidable (prop. 80). �

Definition 82 (Type checking) For a given type system, the problem of type check-
ing is:

input: a context (or an environment) Γ, a term t and a type A;

output: “true” if there is a derivation of Γ⊢⋆ t : A, and “false” otherwise.

Lemma 83 The type inhabitation problem for P-Prop2 with an empty context can
be reduced to the type checking problem for λ2

t with an empty context: for every type

A there is t such that ⊢pf t : A with A closed if and only if ⊢2t [[A]] : Prop.

Proof ⇒ From ⊢pf t : A we can deduce ⊢2t [[t]] : [[A]] (thm. 76), and by type

correctness (lem. 67) ⊢2t [[A]] : κ. But κ 6≡ Type because otherwise [[A]] ≡ Prop
(lem. 37) which is not possible by the definition of [[·]], hence κ ≡ Prop.

33

⇐ From ⊢2t [[A]] : Prop we can build a term a such that ⊢2t a : [[A]] (lem. 17, 38, 39).

But a is the image of a term t by [[·]] (cor. 74), i.e. [[t]] ≡ a, hence ⊢2t [[t]] : [[A]]

and finally ⊢f t : A (thm. 76).
�

Lemma 84 The type inhabitation problem for P-Prop2 can be reduced to the type
inhabitation problem for P-Prop2 with an empty context: for every type A there is t

such that ∆⊢pf t : A if and only if there is t′ such that ⊢pf t′ : ∀~α.∆→A, where ∀~α.∆→A

is closed, ~α are the free variables of ∆ and A, and ∆→A denotes B1→ . . .→Bn→A

with ∆ = {y1 : B1, . . . , yn : Bn}.

Proof ⇒ From ∆⊢pf t : A we have ⊢pfλ∆.t : ∆→A using (→i) and then

⊢pfΛ~α.λ∆.t : ∀~α.∆→A using (∀i). So t′ := Λ~α.λ∆.t fits.

⇐ Conversely from ⊢pf t′ : ∀~α.∆→A using (∀e) we have ⊢pf t′ ~α : ∆→A since the

~α are motivable ⊤, and then by weakening we have ∆⊢pf t′ ~α : ∆→A and finally
using (→e) we obtain ∆⊢pf t′ ~α ∆ : A, namely t := t′ ~α ∆ fits.

Weakening for P-Prop2 has been proved in [6, prop. 21] if the introduced formula
can be motivated: here the formulas of ∆ are all motivable by the trivial substitution
τ since they appear as sub-formulas in ∀~α.∆→A (prop. 70). �

Theorem 85 The type checking problem for λ2
t is undecidable.

Proof by contradiction. Let us assume that the type checking problem for λ2
t can

be decided by an algorithm D: D(Γ, t, A) = true if and only if Γ⊢2t t : A. We can
then build an algorithm D′ to decide the type inhabitation problem for P-Prop2:
D′(∆, A) := D([], [[∀~α.∆→A]],Prop) with ~α the free variables of ∆ and A. Indeed:

D′(∆, A) = true iff D([], [[∀~α.∆→A]],Prop) = true

iff ⊢2t [[∀~α.∆→A]] : Prop

iff there is t such that ⊢pf t : ∀~α.∆→A (lem. 83)

iff there is t′ such that ∆⊢pf t′ : A (lem. 84)

But the type inhabitation problem for P-Prop2 is undecidable (lem. 81). �

Corollary 86 The type checking problem for λ2
p is undecidable.

Proof is an immediate consequence of the equivalence of λ2
t and λ2

p (lem. 38, 39). �

Definition 87 (Type checking with explicit motivations)

For a given type system with explicit motivations, the type checking problem for
explicit motivations is the following:

input: a context (or environment) Γ, a substitution σ, a term t and a type A;

output: “true” if there is a derivation of Γ⊢⋆σ t : A, and “false” otherwise.

Theorem 88 The type checking problem for λ2
e is undecidable.

34

Proof by contradiction. Let us assume that the type checking problem for λ2
e can

be decided by an algorithm D: D(Γ, σ, t, A) = true if and only if Γ⊢2eσ t : A. We can
then build an algorithm D′ to decide the type checking problem for λ2

t :

D′(Γ, t, A) :=





D([], [], ∀Γ.⊤,Prop) if A ≡ Type and t ≡ Prop

false if A ≡ Type and t 6≡ Prop

false if A ≡ Prop and t ≡ Prop

D([], [], ∀Γ.∀zt.⊤,Prop) if A ≡ Prop and t 6≡ Prop

D([], [], λΓ.t, ∀Γ.A) otherwise

with λΓ.A ≡ λyB1
1λyBn

n .A if Γ ≡ y1 : B1, . . . , yn : Bn, and similarly for ∀Γ.A.

First we show that D([], [], ∀Γ.⊤,Prop) = true iff there is σ such that Γwf
2e
σ :

⇒ From ⊢2e[] ∀Γ.⊤ : Prop by generation (lem. 14) we obtain a substitution σ such

that Γ⊢2eσ ⊤ : κ, and finally (prop. 3) Γwf
2e
σ .

⇐ From Γwf
2e
σ using (e-ax) we have Γ⊢2eσ o : ⊤ : Prop and then using (e-abs) and

(e-prod) (lem. 25) ⊢2e[] λΓ.o : ∀Γ.⊤ : Prop, so D([], [], ∀Γ.⊤,Prop) = true.

Now we can show that D′(Γ, t, A) = true iff Γ⊢2t t : A:

• A ≡ Type and t ≡ Prop:

D′(Γ, t, A) = true iff D([], [], ∀Γ.⊤,Prop) = true

iff there is σ Γwf
2e
σ

iff there is σ Γ⊢2eσ Prop : Type ((e-ax) and prop. 3)

iff Γ⊢2t Prop : Type (lem. 38, 39)

• A ≡ Type and t 6≡ Prop: D′(Γ, t, A) = false and Γ 6⊢2t t : Type (lem. 15).

• A ≡ Prop and t ≡ Prop: D′(Γ, t, A) = false and Γ 6⊢2t Prop : Prop (lem. 14)

• A ≡ Prop and t 6≡ Prop:

D′(Γ, t, A) = true
iff D([], [], ∀Γ.∀zt.⊤,Prop) = true

iff there are σ and w Γ, z : twf2eσ::(z 7→ w)

iff there is σ Γ⊢2eσ t : κ (prop. 4, lem. 17, (e-env2))

iff there is σ Γ⊢2eσ t : Prop (lem. 15)

iff Γ⊢2t t : Prop (lem. 38, 39)

• A 6≡ κ:

D′(Γ, t, A) = true iff D([], [], λΓ.t, ∀Γ.A) = true

iff ⊢2e[] λΓ.t : ∀Γ.A

iff ⊢2e[] λΓ.t : ∀Γ.A : κ′ (lem. 32)

iff ⊢2e[] λΓ.t : ∀Γ.A : Prop (lem. 15)

iff there is σ Γ⊢2eσ t : A : Prop (lem. 14, 25)

iff Γ⊢2t t : A (lem. 38, 39)

But the type checking problem for λ2
t is undecidable (thm. 85). �

35

8 Conclusion

In this paper, we have given an example of the formal definition of pedagogical sub-
system of the Calculus of Constructions of [3] that we called λ2

p, corresponding pre-
cisely to the pedagogical second-order λ-calculus of Colson and Michel [6]. Moreover
the formalism of CC used in the definition allows for an homogeneous description of
various type systems. For instance the introduced constraints for the second-order
necessarily need to be transferred to higher orders pedagogical calculi; conversely once
a pedagogical Calculus of Constructions will be obtained, pedagogical versions of the
λ-cube systems should appear by deletion of some rules and simplification of asso-
ciated constraints. Furthermore a pedagogical Calculus of Constructions can open
the study toward pedagogical pure type systems [1]. Thus we believe the objective of
giving a uniform formal handling of the study of formal pedagogy has been reached.

During the building of our system λ2
p we uncovered a formalism making explicit

into the judgements the needed motivations, λ2
e. This kind of formalism seems to be

natural for expressing pedagogical calculi. Also it allows to state more precise and
intuitive meta-mathematical properties about these systems. However we have shown
it does not carry enough useful information to consider an implementation, especially
because the type-checking is still undecidable.

As a conclusion, we suggest a simple solution to this problem: let us annotate types
with terms to ensure their motivability, just like the typed λ-calculus annotate pure
λ-terms with types to ensure their normalization. As an example we give modified
rules (env2) and (prod) implementing this (term annotation is at the bottom of types):

Γσ ⊢Aa : κ x 6∈ dom(Γ)
(env2)

Γσ, x : Aa wf

Γσ, x : Aa ⊢Bb : Prop ⊢t : σ(∀xAa .Bb)
(prod)

Γσ ⊢(∀xAa .Bb)t : Prop

In such a formalism, terms should contain the needed information to allow the rebuild
of the derivation and then type-checking.

References

[1] Henk Barendregt. Lambda calculi with types, volume 2 of Handbook of Logic in
Computer Science, pages 117–309. Oxford University Press, 1992.

[2] M.W. Bunder and Jonathan P. Seldin. Variants of the Basic Calculus of Con-
structions. Journal of Applied Logic, 2(2):191–217, 2004.

[3] Löıc Colson and Vincent Demange. Investigations on a pedagogical calculus of
constructions. Journal of Universal Computer Science, 19(6):729–749, 2013.

[4] Löıc Colson and David Michel. Pedagogical natural deduction systems: the
propositional case. Journal of Universal Computer Science, 13(10):1396–1410,
2007.

[5] Löıc Colson and David Michel. Pedagogical Second-order Propositional Calculi.
Journal of Logic and Computation, 18(4):669–695, 2008.

36

[6] Löıc Colson and David Michel. Pedagogical second-order λ-calculus. Theoretical
Computer Science, 410:4190–4203, 2009.

[7] Thierry Coquand. Une théorie des constructions. PhD thesis, Université Paris
VII, 31 January 1985.

[8] Thierry Coquand. An analysis of girard’s paradox. In Proceedings of the First
Annual IEEE Symposium on Logic in Computer Science (LICS 1986), pages
227–236. IEEE Computer Society Press, June 1986.

[9] Thierry Coquand. Metamathematical investigations of a calculus of construc-
tions. Technical Report 1088, INRIA, September 1989.

[10] Miriam Franchella. Brouwer and Griss on intuitionistic negation. Modern Logic
4, 3:256–265, 1994.

[11] H. Friedman. Classically and intuitionistically provably recursive functions. In
Springer, editor, Higher Set Theory, volume 669, pages 21–27, 1978.

[12] P.C.G. Gilmore. The effect of Griss’ criticism of the intuitionistic logic on de-
ductive theories formalized within the intuitionistic logic. Indagationes Mathe-
maticæ, 15:162–174, 175–186, 1953.

[13] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Thèse de doctorat d’état, Université Paris VII,
1972.

[14] Jean-Yves Girard. Le lambda-calcul du second ordre. In Séminaire N. Bourbaki,
number 678, pages 173–185, February 1987.

[15] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge
University Press, 1990.

[16] G.F.C. Griss. Negationless intuitionistic mathematics. Indagationes Mathemat-
icæ, 8:675–681, 1946.

[17] G.F.C. Griss. Negationless intuitionistic mathematics II. Indagationes Mathe-
maticæ, 12:108–115, 1950.

[18] G.F.C. Griss. Negationless intuitionistic mathematics III. Indagationes Mathe-
maticæ, 13:193–199, 1951.

[19] G.F.C. Griss. Negationless intuitionistic mathematics IVa, IVb. Indagationes
Mathematicæ, 13:452–462,463–471, 1951.

[20] Arendt Heyting. G. F. C. Griss and his negationless intuitionistic mathematics.
Synthese, 9:91–96, 1955.

[21] William A. Howard. The formulas-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press, 1980.

37

[22] Victor N. Krivtsov. A Negationless Interpretation of Intuitionistic Theories. I.
Studia Logica, 64(3):323–344, 2000.

[23] Victor N. Krivtsov. A Negationless Interpretation of Intuitionistic Theories. II.
Studia Logica, 65(2):155–179, 2000.

[24] E. G. K. López-Escobar. Constructions and negationless logic. Studia Logica,
30(1):7–22, 1972.

[25] E. G. K. López-Escobar. Elementary interpretations of negationless arithmetic.
Fundamenta Mathematicae, 82(1):25–38, 1974.

[26] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990.

[27] V. Mezhlumbekova. Deductive capabilities of negationless intuitionistic arith-
metic. Moscow University Mathematical Bulletin, 30(2), 1975.

[28] David Michel. Systèmes formels et systèmes fonctionnels pédagogiques. PhD
thesis, Université Paul-Verlaine – Metz, 2008.

[29] John Kent Minichiello. An extension of negationless logic. Notre Dame J. Formal
Logic, 10:298–302, 1969.

[30] Grigori Mints. Notes on Constructive Negation. Synthese, 148(3):701–717, Febru-
ary 2006.

[31] D. Nelson. A complete negationless system. Studia Logica, 32:41–49, 1973.

[32] David Nelson. Non-Null Implication. The Journal of Symbolic Logic, 31(4):562–
572, December 1966.

[33] Michel Parigot. λµ-calculus: An Algorithmic Interpretation of Classical Natural
Deduction. In Andrei Voronkov, editor, LPAR, volume 624 of Lecture Notes in
Computer Science, pages 190–201. Springer, 1992.

[34] Henri Poincaré. Dernières pensées. Flammarion, 1913.

[35] John Reynolds. Towards a theory of type structure. In B. Robinet, editor, Pro-
gramming Symposium, volume 19 of Lecture Notes in Computer Science, pages
408–425. Springer Berlin / Heidelberg, 1974.

[36] Pawe l Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic approach).
In Philippe de Groote and J. Roger Hindley, editors, Typed Lambda Calculi and
Applications, volume 1210 of Lecture Notes in Computer Science, pages 373–389.
Springer Berlin / Heidelberg, 1997.

[37] V. Valpola. Ein system der negationlosen Logik mit ausschliesslich realisierbaren
Prädicaten. Acta Philosophica Fennica, 9:1–247, 1955.

[38] P.G.J. Vredenduin. The logic of negationless mathematics. Compositio Mathe-
matica, 11:204–277, 1953.

38

	Introduction
	Background and Notations
	Definitions and notations
	Properties of CC

	Total and explicit motivations
	System definition
	Preliminary results
	Results concerning pedagogy

	Total motivations
	System definition
	Results

	Partial motivations
	System definition
	Results

	Pedagogical system F
	System definition
	Results

	Type checking
	Conclusion

