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An implication system (ISE on a finite seSis a set of rules calleB-implications of the kindA —s B, with A/ BC S,

A subseX C SsatisfiesA —s Bwhen “A C X impliesB C X" holds, so ISs can be used to describe constraints on sets

of elements, such as dependency or causality. 1Ss are formally closely linked to the well known notions of closure
operators and Moore families. This paper focuses on their algorithmic aspects. A number of problems issued from an
IS X (e.g. is it minimal, is a given implication entailed by the system) can be reduced to the computation of closures
¢5(X), whereds is the closure operator associate@tdNVe propose a new approach to compute such closures, based
on the characterization of the direct-optimalIg, which has the following properties: 1. it is equivalentto?2.

ds,, (X) (thusds (X)) can be computed by a single scanning.gf-implications 3. it is of minimal size with respect

to ISs satisfying 1. and 2. We give algorithms that compig and fromZy, closuresps (X) and the Moore family
associated t¢s.

Keywords: Moore family, implicational system, closure operator, algorithm, lattice.

1 Introduction

As recalled in[[CM04], the basic mathematical notionatdsure operator(an isotone, extensive and
idempotent map) defined on a poseP( <) is fundamental in a number of fields linked to computer
science, in particular when defined on the latti2g C) of all subsets of a finite s& In this case, closure
operators are closely linked to the notionMdore family a familyF C 25 which containsSand is closed
under intersection (see [CM04] for more details). The notions of closure operator and Moore family both
involve the concept of logical or entail implication, used for instance in knowledge systems or relational
data-bases (these fields handle systems of implications, called for example functional dependencies in
relational data-bases [MR92, Mal83], and association rules in data-mining [PBTL99]). Hence the notion
of Implicational Systen(IS for short) defined in [CMQ04], to which is dedicated this paper.

Formally an IS orSdenoted by C 25 x 25is a set of rules calleB-implicationsof the kindA —; B,
with A/B C S A subsetX C S satisfies an implicatiod —s B when “A C X impliesB C X”. So ISs
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can be used to easily describe constraints between sets of elements, such as dependency or causality. Let
us give here an intuitive example which will also be used in the core of the paper (§ee Ex. 1 i Sect. 3).
Assume thaB= {a,b,c,d,e} is a set of events. The I5={a— b,ac— d,e— a}[f] can be interpreted

as “if aresp.e occurs then so dodsresp.a, and ifa andc occur then so doa¥’.

Given such a system, several types of questions arise. A common problem is to find a minimum
“full” system of implications, from which all implications between elements can be obtained. Another
very natural issue is for instance the question “is it possible dtetd e occur and not ?”. One can
answer using either thienplicational Moore family associated t& (Fs contains all subset® C Sthat
satisfy each>-implication) or theclosure operator associated s (¢r, maps a subseX C Son the
least elemenF € Fs s.t. X C F). In our example the answer is “yes” becaw®ec Fs andc ¢ ae
or because ¢ ¢, (ae) = abe Answering questions about a system using tlwsure ¢g, (X) has a
great advantage: it avoids the construction of the whole Moore family (which contains 14 elements in
our example). Moreovepr, can also be used to compute efficierly, whose direct definition-based
generation relies upon an exponential enumeration of all subs&sNidte that data-mining has to deal
with a reverse problem adressing the efficient generation of association rules from a family of closures
calleditemset§PBTL99].

The properties of implicational Moore families and ISs have been studied in [GD86,|\Wil94,|Wil95,
CMO04] from a theoretical point of view. This paper focuses on algorithmic issues. Following the intuition
given before, it is based on the efficient computatiorpgf(X). As detailed in the core of the paper,
this computation was addressed in several ways in [Mai83, MR92. Wid25]X) is obtained by several
enumerations of the implications Bf For instance in the previous example the computatidyrpfae) =
abeis performe by scanning once the-implications (first and third implications) but the computation
of ¢r, (ce) = abcdeis performed by scanning them twice: The first enumeration brawgs= ¢r, (ce)

(third implication) and the second one bring$e ¢, (ce) (first and second implications).

The new approach we propose is based on two fundamental algorithmic observations: 1. the compu-
tation of ¢, (X) is more efficient wherk is optimal where optimal means “of minimal size”; 2. the
enumeration number a-implications needed to compuge, (X) can be reduced to 1 whenis direct
Let us illustrate it on our example. The B = XU {e — b,ce— d} is direct and equivalent t& (it
is easy to check thdIde (ce) can be now computed by a single scanninggfimplications). It is not
optimal. The ISZ, = {e — ab,ac— d,a — b,ce— d} is similarly equivalent t& and direct, but also
direct-optimal in the sense that there exists no equivalent direct IS of smaller size (fwdghy). Our
approach also consists in computifig, (X) (henceFs) by exploiting the directness and optimality prop-
erties: We define thdirect-optimal 1SZ4, generated fronk. FirstZ is completed by some implications
into the direct IS4, thenZy is modified into the optimal I1Sq4, (Z, 24 andZ4, being equivalent).

The paper is organized as follows: S¢dt. 2 gives notations and standard definitions. Section 3 first
gives some preliminaries on the computationpef (X) (Sect.) then defines the notion of direct IS
and characterizes thdirect ISZy generated fronk (Sect[3.R). In the same way, Sdct.|3.3 defines the
notion of direct-optimal IS and characterizes theect-optimal 1Sz, generated from a direct I1S. By
combination of these two definitions, we naturally obtaindhiect-optimal IS>4, generated frona given

IS Z (Sect[3h).

Sectiorj 4 deals with algorithmic aspects of the above result. We first describe an efficient data structure

T We abuse notations and wriae for {a, c}.
* At this stage the reader should admit the following recipe: Initiadizg(X) with X, then iteratively scaiz-implications until
stabilization doing: IfA — B € Z andA C ¢y, (X) then addB to ¢, (X).
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introduced in[[Gan84, HN96, NR99] and callleticographic treetraditionally used to represent families
and extended here to represent ISs ($ec}. 4.1). We then give an algorithm to compute thepglgxyre
from a direct-optimal IS (Sedt. 4.2), and an algorithm to computeifeet-optimal IS4, generated from
some 1S3, whereX andZy, are represented by a lexicographic tree. We finally propose an algorithm to
generatd'y (Sect), based on properties of the lattiEg, C).

2 Definitions and Notations

Let us consider a finite set of elemeftsA family # onSis a set of subsets & 7 C 25. A Moore family

IF onSis a family stable by intersection and which conténS< F andF, F € FimpliesFiNF € F. The
poset(F, C) is a lattice with, for eaclk, R, e F, AR =F Nk andF VR =N{F eF|FRUFR CF}

(recall that a lattice is an order relation (i.e. reflexive, antisymmetric and transitive) over a set of elements
such that any paix,y of elements has jin (i.e. a least upper bound) denoted)byy, and ameetf(i.e. a
greatest lower bound) denoted kx ).

Let X, X’ be subsets oB. A closure operato on Sis a map on 2 which is isotone X C X’ implies
d(X) C o(X")), extensive X C ¢(X)) and idempotentd®(X) = ¢(X)). ¢(X) is called theclosureof X
by ¢. X is said to beclosedby ¢ whenever it is a fixed point fap, i.e.$(X) = X.

The set of all Moore families and the set of all closure operatorS are in a one-to-one correspon-
dence. The Moore famil¥y associated to the closure operajois the set of all closed elements ¢f

Fo ={F CS|F=¢(F)} @
The closure operatdyr associated to the Moore famiFyis such that, for anX C S ¢r(X) is the least
element € F that contains:
¢F(X):ﬂ{F eF|XCF} 2
In particulardy(0) = Ly. Note thathy(X) € F because Moore families are closed by intersection. More-
overforallF,R eF,FVR =¢r(FLUR) andF AR =¢r(FiNF) =FNF.
Let A,B be subsets 06 An Implicational SystenglS for short)> on Sis a binary relation on 2
T C 25x 25, A couple(A,B) € 3 is called a>-implication whosepremiseis A andconclusionis B. It is
written A —s B or A— B (meaning A impliesB”). The family Fs on Sassociated t& is:

Fs ={XCS|ACX=BCXforeachA—BeZX} 3

i.e. itis the set of setX C Ssuch that X containsA implies X containsB”. Fy is clearly a Moore family
called theimplicational Moore family on S associated 3o Several ISs can describe the same Moore
family: = and’ on Sareequivalentif Fs = Fs,. The problem is to find the smallest ones, according to
various criterial[Wil94].% is non-redundantf X\ {X — Y} is not equivalent t&, for all X — Y in Z. It

is minimumif |Z| < |¥'| for all IS ¥’ equivalent ta>. ¥ is optimalif s(Z) < s(¥') for all IS ¥’ equivalent

to X, wheres(%) is thesizeof Z defined by:

3) = Al+B 4
s(2) Aﬁ%ez(l |+1B]) (4)

Other definitions not recalled here can be found in the survey of Caspard and Monjardet [CMO04].

In the following, Sis endowed with a total ordety or simplya. A subsetX = {Xq,X2,...,%n} IS
viewed as the word;, Xj, ... Xj, sorted according ta: Xj;, <q Xj, <o ‘- <a Xj,- Zisan IS onS Fs or F
is the Moore family associated ¥ and¢r, or ¢ or simply ¢ is the induced closure operator.
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3 Characterization of ¢ from X

As explained in introduction, a number of problems related to akh t&n be answered by computing
closures of the kings (X), for someX C S Sectio presents important notions used further and in-
troduces our method: The idea is to perform the computatigrs 0X) not onZ but on another equivalent

IS which makes the computation more efficient. Sedfioh 3.2 defines such convenient and equivalent IS,
calleddirect Sectior] 3.B characterizes the smallest equivalent direct IS inferred from a direct one, called
direct-optimal Finally Sect[ 3.4 characterizes the direct-optimal IS equivalent to sorBe IS

3.1 Preliminaries
A direct and naive computation ¢f (or simply¢) follows from equationd (2) anf](3):

o(X) =N{X' < S| Xc X" and (5)
A C X" impliesB C X' for eachA —5 B}

It requires an enumeration of all subs¥tsuch thalX C X’ C S, plus a test on the premise and conclusion
of each implication. Moreover these enumerations must be done for each paXicuder consideration.
[Wil94] Wil95] propose a definition of (X) which induces a more efficient computation:

b2

D(X) = X= (6)

where
X*=XU| J{B|AC X andA —; B} 7

According to [Wil95] ¢(X) is in this way obtained itD(|S??|Z|) by iteratively scannin@-implications:
$(X) is initialized with X then increased witl for each implicationA —s B such thatp(X) contains
A. The computation cost depends on the number of iterations, in any case boun@®:dIbyorder to
practically limit this number (keeping the same complexity). [Wil95] tunes algorithms using additional
data structures.

It is worth noting that for some particular ISs the computatioth eféquires only one iteration. Such an
IS is calleddirect (one can also finderation-freein [Wil94]):

Definition 1 An IS is directif, for all X C S:
¢(X) =X>=XU| J{B|AC X and A—3 B} (8)

Instead of tuning algorithms applied to someSa possible approach is to infer frolan equiv-
alent and direct IS'. Once it is done, each closuggX) can be computed by simply enumerating
Y'-implications. As an illustration, let us considetl ISs, that are a classical type of direct ISs.

According to [CMO04] (Def. 49 p. 20), &l IS is a preorder (a reflexive and transitive relation) that
contains the preorder on 2 x 25 and isU-stable, that is it verifies the property:

forall A,B,C,D C S A— BandC — D imply AUC — BUD

As stated by Prof.]1, a full IS is direct.
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Proposition 1 (Corollary 53 in [CM04]) For Z a full IS,
o(X) = {BC S| X =z B} =X>

Starting from the notion of full IS, and given some S we define thefull IS 2 inferred fromZ,
equivalentto  (Prop.[2), and direct (Prop] 1): it contains alimplications, all implications due to
inclusions in 2 x 25, and all implications generated Byimplications and inclusions.

Definition 2 Thefull IS Z; inferred fromZ is defined as the small%Ss.t.:
1. >C > and
2. 2; verifies the three following properties: For allB,C,D C S,
P1 (inclusion axiom): B C A implies A—5, B
P2 (transitivity axiom): A —s5, B and B—y, C implies A—5, C
P3 (union axiom): A—5, B and C—s, D implies AUC —5, BUD
Proposition 2 > andX; are equivalent.

For completeness, we give the proof of this simple result.
Proof: Let us prove thaFs = Fs,.
D. Immediate sinc& C ;.
C. ConsiderF € Fs. It is easy to check by induction thét satisfies A C F implies B C F” for any
A —5, Binduced byP;, P> andPs. O

Using X, one can compute a closupg (X) in only one iteration. Nevertheless note that the directness

of % is due to the fact that any subs&tC S appears as a premise ofza-implication: it makes the

computation of; exponential thus impracticable. The idea is then to look for smaller ISs, not necessarily

full, but still direct and equivalent ta (andZ). The smallest such one is callditect-optimal

Definition 3 An IS is direct-optimalif it is direct, and if §%) < s(¥) for any direct ISY’ equivalent
to 2.

Our approach can be summarized as follows. Given sonae IS

e We start from the three axioms that describe a full IS (cf. Def. 2) to define in[Sect. Adi¢belS
24 inferred fromZ, whose directness is stated by [Th. 1;

e ConsiderX is direct but perhaps not optimal: In this case sdmienplications can be removed
or simplified, while preserving the directness and semantics. dh Sect]3.B we first formally
characterizelirect-optimallSs (Th[2) then, given direct IS Z, we define thealirect-optimallS Z,
inferred fromzZ.

e By combination of these two results, we obtain the definition ofdihect-optimal 1SX4, inferred

from some IS. Moreover, we state that equivalent ISs define an unique direct-optimal IS (Corol-

lary[1)). Closuregs(X) can then be computed by only one enumeratioBgfimplications, at a
minimal co

§ "Smallest” for the preordeg.

 “Minimal” in the sense that using any other equivalent direct IS would be less efficient; Nevertheless in the cases where few

closures are needed, or where a small non-direct IS is considered, it may be more efficient t&-ieenaneerations instead of
computingZy thenZqg.
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3.2 ZX4: aDirectIS Generated froman IS X

In this section we define an IS smaller than but still direct and equivalent ta. To do so, let us
consider again the three axioms that characteZiz¢Def.[J), and let us explain whai-implications
can be removed without altering the directness and semantics of the IS, or dually what implications must
necessarily be added ¥o We consider the computation ¢fX) indicated by), foX C S

Given a pair of implication$ls, ;) present in the IS under construction, the principle is to “summarize”
via a third implication the result of th¢(X) iterative computation process applied(tg, 12). Axioms P,
andP; do apply this principle. Nevertheless the inferred implications (included these inferieddrg
sometimes clearly redundant with properties particular to the closure opéralbis the case when no
iterative process is needed, becadseontains both the implications premises:

1. AssumeA C X. The implicationA —5, B stated byP; is redundant: it causes the explicit enrichment
of ¢(X) with B while according to Eq[]?) (and due to theextensiveness) we hagéX) D X, and
XDADB.

2. AssuméA, B C X. The implicationA —5, C stated byP is redundant witlB —5, C, which already
states the enrichment ¢ X) with C.

3. AssumeA,C C X. Similarly the implicatiorPAUC —5, BUD stated byPs is redundant witth —5, B
andC —s5, D.

When an iterative process is required to comppt¥), implications inferred by a combination of the
three axioms are necessary. For example let us consider the followkig 1S
{ac—sd , e—sa}

AssumeX = ce The computation of(X) = acdethroughX requires an iterative process: The fact
d € ¢$(X) is known from the first implication only when the intermedigteX) has been enriched with
(second implication). To be direct, the IS must contain the implication:

ce—sd
obtained by applying successively:
e P to infer the implicatiorc — c;
e P; applied toc — c ande —5 ato inferce— ac;

e P, applied toce— acandac —y d to inferce—s d.

Nevertheless implications— ¢ andce— acare redundant with others, as explained below. To avoid this
redundancy, let us consider the pair
{A—:B, C—3D} ©)

In the case where the computationddiX) requires an iterationA C X butC ¢ X. Becausé C X, the
first implication add$ to ¢(X). Now if C C X UB, the second implication ad@to ¢ (X). SinceA C X
andC C X UBiis equivalent tAU (C\ B) C X, we can summarize this reasoning by the implicafion (10):

AU(C\B) >3 D (10)



Efficient Algorithms on the Moore Family Associated to an Implicational System 321

In the previous examplee — d is indeed obtained from the pdie —5 a,ac —5 d}.

Note that the implication[ (10) is redundant with the dbe»s D whenBNC = 0, since it yields
AUC — D. This case does not happen here due to the conditignX (C £ X andC C X UB imply
CnB = 0): We enforce it by imposin@ N C # 0 as the application condition of the rule.

The rule that infers implicatiofi (10) from implications (9) (caltaeerlap axionin Def.[4) encompasses
the combination of axiomB, andP;3, but alsoP;: The goal ofP; is mainly to make appear any subset
A C Sas a premise of &¢-implication, in order to computé(X) by PropB. Since we compuggX) by
Equations[() and [7) instead, we can dRyp

The definition of thedirect IS inferred fron® now follows directly from what precedes:

Definition 4 Thedirect implicational systerly generated fronZ is defined as the smallest IS s.t.
1. XC 34 and
2. 24 verifies the following property:
P4 (overlap axiom) : forall A,B,C,D C S:
A—s5, B,C—5, Dand BNC # 0imply AU(C\B) —5, D
We now adapt Prop] 1 to characterizérom 3.
Theorem 1 ¢(X) = X% =XUJ{B|AC X and A—5, B}

Two lemmas are needed to prove this theorem. Le@ma 1 statesgthaks, therefore thaky is equiv-
alent toZ sincez C 24 andZ; is equivalent tox. Lemmeﬂ? is the core of the proof: it states that
contains all “significants-implications. By “significant” we mean an implicatign—y, Bs.t. AZ B, so
that it can add® '\ A to somep(X) and is not trivially redundant like implications inferred by P1 in Déf. 2.
Lemma[ 2 states that any sugk-implication A —5, B is imitated by a set oEq-implications, where a
>4-implication is associated to eagle B\A.

Lemmal 24 C ¢

Proof: Let {X — Yi }1<i<p be the implications successively addedtpoin order to complet& by appli-
cation of P4. We defingy = Z, % = %i_1 U{X — Yi} andZ, = Z4. The proof is by induction of with
0<i < p. The base case is obtained by definition and[Ipﬁoz:: 2 C .

Inductive stepfori > 1, let us prove thaf;_; C X impliesZ; C 2z, equivalently thak; — Y; € ;. Since
Xi —Y; is added t&;_, by application of P4, there exist—5, ;, BandC —5, ; D such thaBNC # 0,
Xi = AU(C\B) andY; = D. By induction hypothesi& — B € Z; andC — D € Z;. Then

e FromA — B € 2; (by hypothesis) anB — BNC € %; (by P1) we deduce from P2 that— BNC €
.

e FromA — BNC € % andC\B — C\B € s (by P1) we deduce from P3 thatU (C\B) — (BN
C)U(C\B)=Ce 3.

e FromAU (C\B) — C € 2 andC — D € Z; by hypothesis we deduce from P2 tiet (C\B) —
D e 3.

ThereforeX; — Y; € Z; and the proof is achieved. O
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Lemma 2 Forall X —5, Y and ye Y\X, there exists X—5, Y’ such that XC X and ye Y.

Proof: Let {X — Y; }1<i<p be the implications successively addedtan order to complete by appli-
cation of P1, P2 or P3. We defitg =%, % = %_1 U{X — Y} andX, = %;. The proof is by induction
oni,with0<i<p.

Base caseSinceXp =X andZ C Z4: for all X —5, Y andy € Y\X, the implicationX —5, Y verifies
XCXandyeY.

Inductive stepFori > 1, assume the property is proved &Ir 1, i.e. forallX —5, , Y, forally € Y\X,
there existX’ —5, Y’ such thaX’ C X andy € Y’. We consider the implicatioX; — Y; and some element
y € Y;\X and show that:

there exists</ —s, Y/ s.t. X/ C X andy €Y/ (11)

If Y; C X thenYi\X; =0 and ) is trivially satisfied. Assumé Z X; and let us consider thag — ;
has been added #_, by the application of P2 or P3 (since applying P1 implies that X;, which
contradicts the hypothesis). Let us consider successively the application of P3 and P2.

* Case P3:There existA —5, , B andC —5, , D such that, = AUC andY; = BUD, moreovery €
(BUD)\(AUC). We may assume thate B, the casey € D being dual. Thery € B\A and, since
A — B e Zj_; and by induction hypothesis: There exists—5, B’ such thatA’ C A andy € B'. Since
A CACAUC=X;, A —3, B satisfies[(1]L).

* Case P2:There existA —5,_, BandB —5,_, Csuch tha¥X; = A, Y; = C andy € C\A. Let us consider
the two sub-casesc B andy ¢ B.

e yc Bimpliesy € B\A, and sinceA — B € Z;_1: By induction hypothesis there existé —5, B’
such tha®¥ C Aandy € B'. SinceA' C A= X;, A' —5, B satisfies|(Il1).

e y¢ Bimpliesy € C\B, and sinceB — C € Zj_1: By induction hypothesis there exiss —5, C’
such thaB’ C Bandy € C'. If B' C A= X; thenB’ —3, C’ satisfies[(1}1). IB' Z A, let us write

B'\A= {yk}1<k<q

SinceB’ C B: yi € B\A, and sinceA — B € 3;_;: By induction hypothesis there exigtmplications
A —3, By such thath, C A andyy € By. Therefore:

B\AC |J BcandB CAU [J By
1<k<q 1<k<q

Axiom P4 is now used to build an implication whose premise is included Mm#nd whose con-
clusion isC/, so it verifies [(1]L) sinc& = A andy € C'. This implication is the last element of a
sequence df implicationsA; —5, C' obtained by applying iteratively, to implicationsAy —s, B.

— initialization: we defineA] —5, C’ as the result oP4 applied toA; —5, By andB’ —5, C'
(note thaty; C B;NB' soB;NB’ # 0 andP, can be applied), s&; = Ay UB'\ B;.

— induction: for 1< k < g, we defineAl —5, C' as:
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« the result ofP; applied toAx —5, By andA, ; —5, C'if BcNA, ; # 0, SOA, = A U
A{el\Bk
* A, —3, C otherwise, sd\ = A, ;.

To prove thaﬁ% C A, let us prove by induction ok € [1,q], that:

ACAU [ B
k<j<q

— initialization: Fork =1, we haveA] = AU (B'\B1) soA] C AU U1<j<qBj directly follows
fromB' C AU Ui<k<qBk andA; C A.

— induction step: Fok > 1, the induction hypothesis is

A 1CAU ] B

k-1<j<q

moreover the computation & depends on the emptinessB¥NA_;.
* If BenA_; =0, thenA, ; C (AUUk_1<j<qBj) \ Bk, moreove® = Al ;. So we directly
obtainAl € AUUy. j<4B;-
« If A,y NBx # 0, thenA,_; \ Bk € AU Uk j<qBj- MoreoverA, = AcU (A,_;\Bk) and
sinceA, C A, we also obtairy € AU Uk j<qBj-

We finally obtain
AGCAU |J BjCA
a<j<q

andA(q -3, C satisfies) (sincA = X; andy € C'). Thus the property is proved.

d

We can now prove Theorejn 1.
Proof of Theorem@ SinceX andZ; are stated equivalent by Pr@). 2, provifig X) = XZd for X C Sis
equivalent to proves, (X) = X, where from Propﬂl and D 1:

oz (X) =X> = J{BC S| X —5 B} (12)

X* =XU| J{BC S|A—z, BandAC X} (13)

D. Using Eq. )Xzf =XU{BC S|A—5, BandAC X}. ThenX2d C X* directly follows fromZ4 C
stated by Lemmfg|1.

C. Consider anp € X' If b € X thenb € X>d by (13). Assumé ¢ X. Sinceb € X', there exists by
)X —s3, Bsuch thab € B. b¢ X impliesb € B\X and by LemmﬂZ there exisé§ —5, B’ such that
A C X andb € B'. Sob € X* andX* C XZd, O
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3.3 Z,: a Direct-Optimal IS Generated from a Direct IS X

Let us consider a direct I5. If Z is not direct-optimal then there exists an equivalent direct IS of smaller
size. Like in Secf{. 3]2, it means that some premise or conclusion p&tarefredundant with some prop-

erties particular to closure operators. This redundancy can be suppressed without altering the directness
property. Let us consider the computationpdK) for X C Sand an implicatiorA —5 B.

1. AssumeA C X andANB # 0. A —5 B causes the explicit enrichment @fX) with B= (ANB)U
(B\A). TheAnB part is redundant with the isotony and extensivenesis fobm which we have
AC ¢(A) C §(X) (moreoverANB C A). So only the parB\ A of the A —5 B conclusion is useful.

2. AssumeC — D e ZwithC c A, BND # 0 andA C X. SinceC C X, C —5 D causes the explicit
enrichment ofp(X) with D = (BND)U(D\ B). The parBND is similarly redundant witth —5 B,
which already states the enrichmenipgX) with B= (BND)U (B\ D).

3. AssumeA — B’ € Z, with B # B'. Then the cardinalityA| is added twice to the size &, while
it is only added once if the paifA —5 B,A —5 B’} — in a way redundant — is replaced by the
equivalent implicatiorA — BUB'.

4. AssumeA C X andB = 0. A —3 Bis clearly useless to compuegX).

Theorenj  generalizes these remarks: it states that the absence of such redundancies is a necessary and
sufficient condition for a direct IS to be direct-optimal.

Theorem 2 A direct ISX is direct-optimal iff:

P5 (extensiveness axiom)for all A —5s B, ANB=10

P6 (isotony axiom): for all A —s B and C—s D,CC AimpliesBOD =0
P7 (premise axiom): for all A —s B and A—s B, B=B

P8 (not empty conclusion axiom):for all A —5 B, B## 0.

Two lemmas are needed to prove this theorem. Lefnma 3 states that the deletion of the previously
mentioned redundancies preserves the directness property of the considered IS. I lemma 4 we consider
the particular direct ISs whose conclusion parts are singletons. Suchatho&s not necessarily verifies
P7, but Lemm{]4 states that3f verify P5 and P6 the is smalle{ﬂ than any other equivalent such
IS(whose conclusions are also singletons).

Lemma 3 LetZ be a direct IS.

1. If A— B e X with AnB # 0thenZ\ {A —s B} U{A— B\ A} is also a direct IS equivalent % of
smaller size.

2. IfA—-BeXZXandC— D e > withCc Aand BOD # 0thenZ\ {A—;s B}U{A— B\D} is also
a direct IS equivalent t& of smaller size.

I'In the sense of inclusion.
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3. fA—-BeXand A— B € ZwithB#B thenZ\ {A—sBA—;B}U{A—BUB'}isalsoa
direct IS equivalent t& of smaller size.

4. If A— Be Zwith B=0thenXZ\ {A—; B} is also a direct IS equivalent tb of smaller size.
Proof:

1. LetA—s5 Bbe such tha@nB +# 0. Let us denote by’ the ISZ\ {A—3s B}U{A— B\ A}. Letus
considerX C Sand prove thak’ is a direct IS equivalent t&a by statinng' = X*. WhenA ¢ X,
the implications involved in the computation ¥F andX> are the same, thu$> = X*. When
AC X, X* is obtained as follows:

X¥ = XU{B|ANCXA -5 B}
= XU{B'|ACXA -5 B #A—yB\AJUB\A
= XU{B'|ACXA -5 B #A—y B\A}UB
sinceAC X soXU(B\A)=XUB
= XU{B|ANCXA —sB #£A—sBlUB
by definition of %’
= XU{B'|ANCXA 5B}
= X

2. The proof is the same f&k —5 B andC —5 D such thaC ¢ AandBND # 0. Let us denote by
¥/ the ISZ\ {A —s B} U{A — B\ D}. StatingX> = X allows to conclude tha¥’ is a direct IS
equivalent ta>. In this caseC —3 D € £ impliesD € X¥ whenC c AC X.

3. The proof is the same féx —5 B andA —s B such thaB # B'.
4. Immediate since the implicatioh—3 0 adds no element to closures.
O

Lemma 4 LetZ and¥’ be two equivalent and direct ISs whose conclusions are singletoBsvelfifies
P5 and P6 therx C ¥'.

Proof: Let A— B be a>-implication. By hypothesis, the conclusi@contains only one element, shy
Since’ only owns implications whose conclusion is a singleton, let us provestkad’ by stating that
A — bis also a¥’-implication.

Let us consideds (A), the closure ofAin ¥, as the union of three subsets:

0s/(A) = AU{D|CCAC—y D}
= AU{B'|A—yBlU{D|CCAC—yD}

Similarly ¢5(A) = AU{B'|A—z B} U{D |C C A,C —; D}. SinceX andX’ are equivalentps(X) =
$5(X) foranyX C S In particular sinceA — B € £ andB = {b}, b € ¢5(A) andb € ¢z (A).

SinceX verifies P5, we deduce frof— b € Z thatAn{b} = 0 andb ¢ A. SinceX verifies P6{b} "D =0
for any implicationC —5 D such tha€ C A. Sob¢ {D |C C A,C —3 D}. Sinceb ¢ A, we also have ¢ C
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andb ¢ ¢5(C) =CU{D |C —3s D} for eachC C A. Since¢s(C) = ¢ (C),bg {D|C c A,C—x D}.

Therefore, the only subset containibin ¢/ (A) is {B' | A—y B’} andA —y bis aZ’-implication. This

achieves the proof. O
We can now prove Theorem 2.

Proof of Theorem[2

=): By Lemmd3, we state thatis not direct-optimal when:

1. there exist®\ —s B such thatANB £ 0 or

2. there exisA —5 B andC —s D such thaC c AandBND ## 0 or
3. there exisA —s B andA —s B’ such thaB # B’ or

4. there exist&\ —s B such thaB = 0.

<): Let us introduces(X|A) as the size of an I8 reduced to itZ-implications of premisé C S. Note
that
s(2)= > s(z|A) (14)
2

Let = be an IS verifying P5, P6, P7 and P8, and3débe a direct IS equivalent ta. To prove that is
direct-optimal we have to show ths(®) < s(2’). To do so, we usé (14) and prove the stronger property:

VAC SS(Z|A) < S(Z|A) (15)

Let us consider a s@&tC S. If there is noZ-implication of premisé, then we have(Z|A) = 0 < s(Z'|A).
If there is aZ-implication A — B, whereB = {by, by, ...,by}, then it is the onlyz-implication of premise
Aby P7, anch > 0 by P8. LetA —5 By, ..., A —x Bn be them X'-implications whose premise afe
withf¥|m > 0, and letp be the total cardinality of their conclusions:

p=0 ifm=0
P=S1<i<m|Bi| ifm>0
Then:
S(Z|A) = |Al+n
SE|A) = mA+p
In order to compare(X|A) ands(Z’|A), let us define fronk another IS, whose conclusions are single-

tons by:
Z=U{C—di...C~dp|C—{dr....d} €Z,CC) (16)

2, is direct and equivalent t& by Lemm:ﬂa(’&). It also verifies P5 and P6. &tbe defined front’ in
the same wayZ, containsn > 0 implications of premisé: A —s, by,...,A —5, by, And Z, contains
p > 0 implications of premisé (whose conclusions are also singletons). So we have:

SE.A) = n(A/+1)

S(ZA) = p(A+1)

** Note thatm = 0 when there is n&'-implication of premiseA.
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SinceZ, verifies P5 and P6 and the conclusionssofand%, are of cardinality 1, Lemmfg] 4 states that
>, CZ.Then

S(ZL|A)
P(IAI+1)

S(Z.|A)

>
> n(JAl+1)

Thereforep > n> 0. Remark thap > 0 impliesp = 5 ;i< |Bi| andm > 0. We finally obtairs(Z'|A) >
S(Z|A) by:
s(Z'|A) =mA|+ p m/A|+n

>
> |A+n=sz/A)

We can now derive from Th] 2 trairect-optimal 1IS>, generated from a direct I5: -
Definition 5 Thedirect-optimal ISX, generated from airectISX is a direct IS s.t.:
P8 (optimization axiom) forall A/\BC S, A—Be %, iff B 0 and
B=|J{B'CSIA—:B}\ [ J{DCSIC—sDandCc A}\A (17)

3.4 Z4,: aDirect-Optimal IS Generated from an IS Z

Let us consider an IS. The combination of Def.]4 and Ddf| 5 descrit®g, the direct-optimal IS
generated fronx:

Definition 6 The direct-optimal IS4, generated from some Bis defined as the direct-optimal I1Sob-
tained by Def[ b from the direct [5; which itself is obtained by D€f| 4 frokh

Y40 is then an IS of minimal size, equivalent¥@nd such thaps (X) can be obtained by scanning only
once its implications (see BX. 1). Moreover equivalent ISs define an unique direct-optimal IS, as stated by
the following corollary.

Corollary 1 LetX and’ be equivalent ISs. Thefy, = Zj;,.
Proof: Let us define, from X4, andX) from X, as indicated by Eq6). Remark thag, (resp.Zq0’)
can dually be defined from, (resp.Z,) since it satisfies axiom P7:

Z4o ={C—{dy,...,dh} |C—s5, dy,...,C—5, dy,CC S} (18)

3, (resp.%’) is direct and equivalent tay, (resp.Zqo’) by LemmaﬂS(S). By constructioh, andZ,
satisfyP5 andP6. So by LemmalJ&, = =. We conclude using Ed. (.8):

2do :{C—>{d17...,dn}|C—>z* di,...,C—s, dn7C§S}
:{Cﬂ{dl,..‘,dn}|c—>zi dlv'“aC*)Z’* d,,CC S}
:zéjo
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Example 1 Consider the following IS on {a,b,c,d,e}:
l:a—b
>=<¢2:ac—d
3:e—a

The full ISZ; is not given since it contains more thah= 243implica-
tions{;ﬂ >4 andXy, are given below. Note thay is not direct-optimal
because (3) and (4) do not verify P7.

l:a—b .

2:ac—d gj:;bd
24=<¢3:e—a 2do = 8:e—>ab

4:e—b(P4on3andl) 9:ce—>d

5:ce—d(P4on3and?2)

For exampleg(ce) = ceUabud = abcde is directly deduced from im-

plications 8 and 9 by TH.]1. Similarlyy(ae) = aeubUab = abe is

deduced from implications 6 and 8. Itis also easy to chedRsofgiven  Fig. 1: F; for X given in Ex[]
on Fig.[ by its Hasse diagram where the cover relation of the order

relation is oriented from bottom to top.) that abcde (resp. abe) is the

least set off's that contains ce (resp. ae).

4 Algorithms

We give in this section algorithms that rely on the results obtained in[Sect. 3. We first presentfin $ect. 4.2
an algorithm which takes as inputdirect-optimallS 2 and a subseX C S, and computes the closure

s (X). We also give an algorithm which computes from anyzIfhe associated direct-optima),. In
Sect[4.B we give an algorithm which takes as input son®ed8d computes the associated Moore family

Fs, based not on the direct characterizatioffefbut on properties of the lattiog's, C). All algorithms

handle I1Ss and Moore families & Both are represented by a data-structure caéeitographic tree
presented in Se¢t. 4.1.

4.1 Lexicographic Tree

A nice and well-known data structure to represent a farfilpn S ordered by, a total order orf, is

its lexicographic treeof depth|S|. Using this tree basic operations gn(such as deletion, addition and
search of a subset) can be efficiently performe®i{fs|). Introduced for a distributive Moore family in
[Gan84/ MN96], it has been generalized [in_[NR99] to any fanfilyby introducing marked nodes. Its
principle is intuitively the following. Nodes represent subsetS S The tree contains a node for each
subsetX C F with F € #. Conventionally the root represents the empty set. A node that represents an
element of ¥ is marked. Edges are labelled by element§ab that labels of edges that leave a given

1'5¢ exactly contains 275 implications:
e 3% =243 implications such that the conclusion is a subset of the premise,
e and 32 implications such that the conclusion is not included in the premise.



Efficient Algorithms on the Moore Family Associated to an Implicational System 329

Fig. 2: The lexicographic tree associated to the Moore fatfityiven on Fig[] for the ordex =a<b<c<d<e.

node are sorted according tofrom left to right. Moreover consider a marked nodéhat represents
an elemenf € 7 sorted according ta. Then (see Prop]3 below) can be retrieved from the tree by
collecting labels along the path from the rootrtdlabels along such a path are by construction sorted
according tax).

Example 2 Figure[2 shows the lexicographic treg @ssociated to the Moore familygiven in Fig[] for
the ordera = a < b < ¢ < d < e, where each node n is labelled by the set X it repres@ngijotes)
and marked nodes are doubly circled.

A lexicographic tree is formally defined as follows:

Definition 7 Let ¥ be a family on S= {s,... ,513} whose elements are sorted accordingote- s1 <
S < ... <Sg. Thelexicographic tred s of F (or simply T) is a 3-upletN, child, mark), where:

e N is the set of nodes of T, where a nodeanN is associated to every subset X of some element
F € 7. By convention #is the root of the tree.

N={nx | XCFandFe ¥}
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e markis a boolean function used to distinguish nodes associated to elemehtdof ny € T:

mark(nx) = trueiffXe F

e child associates to each nodg iits children: for § € S, childnx,s) € N is either the empty set
or the target node of an edge labelled hyvhose source node ixnlf X = {x1,...,Xm} is sorted
according toa and m<i < |S]:

child(nx,s) = nNxuisy ifNxug €N
= OQelse

The depth of T i$S.

Note that in this definitiomx € N is seen either as a nodeDfor as the subsét C Sit represents. As
stated by Prop.|3, the subsétan easily be retrieved from the tree.

Proposition 3 Let ¥ be a family on S sorted according toand T its lexicographic tree. Then the
labels collected along the path from the rogtto a node g represent the subsetX {xy,...,Xnm} sorted
according toa:

X1 X2 Xm
No Nixg} Nixg %o} - - - Nix,

¥} = NX (19)

Consider a family¥ on S sorted according to.. Basic operations such as the test if a give@ S
belong to#, the addition or deletion of an element §h can be done off¢ in O(|S)) (its depth) by a
run from the root to a particular node (addition consists in adding or marking a node, deletion consists in
deleting or unmarking a node). This complexity is due to the linear order on elemegjtand is lower
than the complexity iO(| ¥ | - |S|) obtained wher¥ is represented by a list of subsets. The computation
of the elemenE € F associated to a marked node N is also done irD(|S) using Eq[(1P). Finally set
operations on families such as union, intersection, difference and inclusion test are @8 nstill
footnote to the linear order d&

We extend this lexicographic tree tawao-level lexicographic tre®o represent a binary relation oft 2
and thus an IS of.

Definition 8 LetX be an IS on S. Thisvo-level lexicographic tre@s of X is s.t.
e Theinitial lexicographic treés representing the familfA C S| A —5 B}. Its root is rp.

e Each marked nodeqof the initial tree is the root of gexicographic subtrerpresenting the family
{BC S|A—3B}.

By construction the depth of a two-level lexicographic tre&2|S| and complexities i©(|S)) given for
lexicographic trees are still valid. When the considered IS is direct-optimal, each lexicographic subtree
encodes only one subsBtC Ssince a marked nod& of the initial subtree is the premise of only one
implication, as stated by Th| 2.

Example 3 The two-level lexicographic trees [ associated to the 1S4, given in Ex[]L is shown on
Fig.[3, where a double circle indicates a marked node of the initial lexicographic tree, the lexicographic
subtrees appear in vertical boxes, and horizontal boxes indicate their marked nodes, labelled by the
corresponding implication.
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®
N [T

a->b

ac->d ce->d e->ab

Fig. 3: The two-level lexicographic tree fay, of Ex.[], with the lexicographic order=a<b<c<d<e.

4.2 Computation of ¢5(X), X C S

The functions presented here aim at computing closp€X) for some ISZ. The functioncl osur e in
Algorithm[]] is directly derived from the characterization of the closure opeggatassociated to a direct
IS (Def.[]). It compute®s (X) = ¢5,, (X) with Z4o as input. The functiomonpl et e in Algorithm@
first computegy from X using Def[ 4, then optimizeSy to obtainZy, using Def[b.

Name: cl osur e
Input: X C S, sorted according ta
A direct-optimal IS4, ONS

Output: ¢ (X)
begin

¢z (X) =X

foreachA —5,, B such that AZ X do

| addBto¢s(X)

return ¢s(X)
end

Algorithm 1: Computation oy (X)

Complexity 1

1. Functioncl osur e in Algorithm[i computeds (X) from Zyo with the following complexities:
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Name: conpl et e
Input: An implicational systenz onS
Output: The direct-optimal IS4, onS

begin
(Generation ok by completion ofx)
24=2

foreachA —5, Bdo
foreachC —3, D do
| if BNC# 0thenaddAU(C\B) — Dto Xy

(Generation ok 4, by optimization ofZy)
40 =0
foreachA —5, Bdo

B =B

foreachC —5, D do

if C=AthenB =B UD
L if Cc AthenB' =B'\D

B =B\A

addA — B’ to 24,
return Zgo

end

Algorithm 2: Computation ok, from X

e in function of X andye: in O(|Zgo] - [§(X)]);

e in function ofZgy, only: O(s(Zgo))
2. Functionconpl et e in Algorithm@ compute&y, fromZ in O(|Z4]?- |S))

Proof:
[1]. Atest for inclusiory C Y’ can be done imin([Y|,|Y’|). For the following complexities we shall use
either|Y| or [Y’|. Similarly for addingY toY’. Hence:

e In function of X andZq,: For each of thgX4,| implicationsA —5,, B, the testA C X is done
in O(|X]) < O(|$=(X)|), and addingB to ¢=(X) is done inO(|¢p=(X)|). Hence a complexity in
O(|Zdo| - 9= (X))

e In function of Z4o only: For each of thé>4,| implicationsA —5, B, the testA C X is done in
O(|A]), and addind to ¢5(X) is done inO(|B|). Hence a complexity iZa_.g|A|+ |B| = S(Zdo ).

@. Each of thé>4|? steps of the first nestefdor loop first performs set operations on subs&tss,
C andD that are done i©(|S). The second or loop (of |Z4|? steps) also performs set operations and
additions and deletions iy, in |O(S)|. Hence a complexity iD(|Z4[2- |S)). O
SinceXq is direct, the computation of the closure(X) (functioncl osur e) is performed ir0(s(Zqo))
with only one enumeration &y, -implications. However, a preprocessing (functaompl et e) is nec-
essary to computEq, from Z in O(|Z4|2-|S|). When the closure is directly computed frd(that can
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be greater or smaller thay,), it is obtained inO(|Z| - |S?) [Mai83,[Wil95] by several iterations ovér-
implications. So in the cases where few closures are needed, or where a small non-direct IS is considered,
it may be more efficient to iterate ovErenumerations instead of computiBg.

4.3 Generation of Fx

The definition ofFs (or simply F) as the family associated ts (Eq. (1)) or as the family generated
by = (Eq. (3)) cannot be directly used to generateit would make the computation exponential since
all subsets ofs have to be enumerated. We propose another characterizatibmdtinction of g5 that
exploits the fact thafFF, C) is a lattice: it uses lattice properties, in particular properties of its irreducible
elements. We first recall some basic definitions.

Consider a latticé. An elementj (resp.m) of L is ajoin-irreducible (resp.meet-irreducibl@of L if it
cannot be obtained as the join (resp. meet) of elemeritsadifdistinct fromj (resp. fromm). The set of
join-irreducible (resp. meet-irreducible) bfis denoted by, (resp.M.). A finite latticeL has a minimal
(resp. maximal) element denoted hy(resp.T). Conventionallyl. =\/0andT = A0, thereforel ¢ J_
andT ¢ M_. A join-irreducible (resp. meet-irreducible) elemgnt J_ (resp.m € M) covers (resp. is
covered by) an unique elementlin which is then denoted by~ (resp.m™). If an elemeni € L is not
a join-irreducible element, then there exists a subsetL such thatx = \/ X andx ¢ X: Eitherx = 1
(Remark that wheh = (Fz, C), one can have. = \/0 # 0 when0 —s A€ X andA# 0.) andX =0, or
it is easy to check that there existy’ € X such thak =y Vv y. For definitions and notations not recalled
here, se€ [Bir67, BM70].

As said befordlF, C) is a lattice, with, forX C S

\/X=n{F €F [F X} = pz(X) (20)

I is characterized in Tl 3 by considering two cases: EifherF is a join-irreducible element df or
not. It is based on the characterization of join-irreducible elemerifstyfLemmd$ (forx € Swe abuse
notations and writeh(x) for ¢ ({x})).

Lemma5 Jr C {¢s(X) | x€ S}

For completeness, we give a proof of this simple result.

Proof: Let us consider the lattic€F,C). Let F € Jr be an irreducible element that cove¥s, and
x € F\ F~. Let us prove by contradiction thet= ¢(x), i.e. thatF is the least element df that contains
X. Assumex € F’ for someF’ ¢ F s.t.F' CF. ThenF’ C F~ sox € F—, which leads to a contradiction.
a

Theorem 3 LetZX be an implicational system. Then:
Fs={¢:(0)} U {¢:(X) [x€ S} U {¢ps(F1UR) | F1,F2 € F5}

For completeness, we give a proof of this simple result, folklore in lattice theory.

Proof: Let ¥ = {¢s(0)} U {¢s(X) | x€ S} U {¢s(FLUR) | F1,F2 € F}. Let us prove thaFs = F.

D. Each subset of is a closureps (X) for X C S, so belongs td's (Eq. (7).

C. LetF €F. If F € Jr thenF € 7 follows from Lemmab. Assume ¢ J. If F = Ly thenF = ¢5(0) by
Eq. @) andF € 7. If F # Lg then itis the join of two subset§,F, € F,i.e. F =F VR =0s(FLUR),
thuskF € 7. O



334 Karell Bertet and Mirabelle Nebut

A generation ofFs on S= {xi,...,X,} can be derived from Tr[] 3. Let us define as the family
computed from altp(x;) with j <i:

Fi=0:(0)U{ds(xj) | xj € Sandj <i}U{dps(FLUR) | F,R € %}
where %y = ¢5(0). Clearly 7, = Fs and % can be generated froff_; by:
Fi=Fi-1 U {0z(x)} U {0z(FLUR) |F1,Fo € Fi},i>1 (21)

Using Lemmd:b that defines more precisely the elementg\iffi_1, % can be generated from_1
by:
Fi=Fi-1 U {9s(X)} U {¢s(FUPs(x)) | F € Fi-1} (22)
Lemma6 Leti<nand Fe %\ Fi_1.
Then there exists’FC S s.t. F= ¢ (F' Uz (%)) with F € F_; or F' = 0.

Proof: We consider two cases:

e Eitherds(x;) € Fi—_1: In this case it appears frof (21) thgt= Fi_1;

e Or ds(x) € F—1: In this case leF% F1,...FP be the closures successively addedio; to obtain
where:

° F0:¢Z(Xi)
° {Fl,...,Fp} = {(I)z(FlUFz) | Fi.R e ,7‘]}\,7‘],1

We prove by induction ol with 0 < j < pthat there exists’ C Ss.t.FI = ¢z (F' Uds(x)) with F' € F_1
orF' =0.
Base caseFor j = 0: FO = ¢5(x) = ¢z (0Uds (X)) (caseF’ = 0).
Inductive steplLet 0< j < p. Assume the property is proved forOk < j:

there exist§’ C Ss.t.FX = ¢x(F' Uds(x)) WithF' € 1 orF' =0
and consider the sét/. By ), Flis the upper bound of two closurBsandF in %: Fi = s (FLUR).
EitherFy,F, € Fi 1 or Fy, R in F\F 1 orF € %1 andF € )\ %1, or the converse. The first case
impliesF! € %1 by ), hence a contradiction with! € %\ %_1. We consider only the casg,F, €
F\ Fi—1, the other cases being similar.
By the induction hypothesis, there exiftse %1 (resp.F, € %_1) or F{ = 0 (resp. F; = 0) such that
Fi=0s(F{Uds (X)) (resp.Fo = s (F3Uds (X)) Therefoﬁ@ in the case wherg|,F; € %_1 (the other
cases are similar):

Flo= 45
03

FiUR)

bz (F{ Uz (%)) Uds(FUdx(x)))
o5 (F{UFUd5(x))

= ¢z(0z(F{UFR) Uds(x))

dz(F{ UR,) belongs tofi_1 by (21), and the proof is achieved.

—~ Y~~~

 Note thatds (5 (X) Uds(X')) = (X UX') sinceds is idempotent and extensive.
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O

The functionMbor e fami |y in Algorithm[3 is based on this characterization: it successively com-
putesfo C F1 C ... C Fn, where; is computed frontfi_; using [22). It uses the Functions$ osur e

andconpl et e. The use of a lexicographic tree to represent families leads to the following complexity:

Complexity 2 FunctionMbor e fani | y in Algorithm[3 computeB’ in
O(|Zal?- 19+ Fz|-S(1S +5(Zd0))).

Proof: The completion of into 24, is done inO(|Z4|2-|S]) by Functionconpl et e. The initial com-
putation ofFs = {closure(0,Z4o)} is done iNO(s(Z40)). For each of théS steps of the externdlor
loop, a closure is computed by Functiohosur e in O(s(Z40)) and an addition int@'s is done inO(|S).
The same operations occur in tfi#& | steps of the interndlor loop. The complexityC follows:

C = O(Zg|* S+ 5(Zdo) + S| (S(Zdo) +|Fs| - (S(Zdo) +|S) +1S))

= 0(|%4|?- 9 +5(Zdo) + |- S(Zdo) + |- [Fz| - S(Zdo ) + S - [F5| + [S?)
by developing the expression

= 0(|Zaf*- S+ |F5|-|S-S(Zdo) + S |F5])
by majoration

= 0(|=q|? S+ [Fs|-|S - (|S/+5(Zd0)))

Name: Moore family
Input: An implicational systenz on S
Output: The Moore familyFy
begin
Zdo =conpl et e(2)
Fs = {closure(0,%4o)}
foreachx € Sdo
C=cl osure(x,Zqo)
foreachF € Fy do
F’ =cl osure(FUC,34,)
L addF’ in Fy
addCin Fs
return Fs

end

Algorithm 3: computation oF's

5 Conclusion and Perspectives

Implicational systems on a finite s&tare formally linked to the notions of closure operators and Moore
families (see the recent survéy [CMO04]). The present work addresses algorithmic aspects of implicational
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systems through the same notions: Given ark I proposes new algorithms to compujig(X) (the
closure of a seX C Shy the operator associatedIpandFs (the Moore family associated &).

The computation ofs(X) was addressed in several wayslin [Mai83, MR92, Wil95]: Algorithms basi-
cally rely on a fix-point computation which iterates oeimplications. [Wil95] proposes improvements
due to sophisticated data structures. Our approach is different: We choose to improve the shape of ISs
so that the computation d@fs (X) can be performed by a single scanningeimplications. Such ISs are
said direct, or iteration-free|_[CM04] presents the notion of full ISs, that are particular direct ISs whose
axiomatic definition is very simple. Nevertheless the computation of the full IS inferredZradus tox
an exponential number of implications, thus is impracticable. Starting from the remark that some aspects
of full ISs are redundant with properties of the closure operator we want to compute, we define a smaller
direct ISZ4 inferred from and equivalent . Then we optimiz&q into the direct-optimal 1S4, which
is the unique IS of minimal size, equivalentIcand such thabsx) can be obtained by scanning only
once its implications. The derived algorithms, based on the representation of I1Ss by lexicographic trees,
computeZy, in O(|Z4|2-|S) anddz(X) from Zgo in O(S(Zgo))-

We finally address the computation Bf. Though(Fs,C) is a lattice, the construction ds we
propose does not use existing methods that build a lattice using a binary relation between its join and
meet-irreducible elements. Instead we charactéfjzesing the closure operatdg and properties of the
join-irreducible elements offfs,C). Due to the use of a lexicographic tree, we obtain an algorithm in
O(1Sl (|Zg 2+ IF| - |S| + |F| - S(Zqo0))-
Potential Applications of the Computation of $(X) As explained in the introduction the algorithms
related to ISs and Moore families we propose can be used for example in the field of knowledge systems.
Another potential application of the computation of closures concernstie analysisof programs
by means of abstract interpretation. In a nutshell the static analysis of a program aims at obtaining as
much information as possible on the set of its executions. However, a fully automatic approach has to
be avoided. Applications are e.g. proofs of some safety properties on critical systems, aliasing analysis,
etc. The approach relies aon-standard executiorthat perform computations using a description of
values @bstractvalues) and not concrete oneAbstract interpretatioris a theory that expresses static
analysis as a correspondence between the concrete semantics of a program and an abstract semantics
guided by the property to be proved. It was introduced by Cousot and Cousot/[CC77]. Informally the
property to be proved induces the choice faramcrete computation domain &d anabstract domain
A, connected by ambstraction functiora: C — A and aconcretizatioroney: C — A. (a,y) is a Galois
connection that verifies the following propertiesandy are monotonous/xa € A, Xa = doy(Xa); Vxc € C,
Xc Cc yoa(xe). Most of the work related to abstract interpretation use this formalism but, as mentioned
in the early Cousot works and as extensively used by Giacobazzil(e.g. [GRS00, IFGR96]), the theory
of abstract interpretation can also be described by means of closure operators between concrete domain
and an isomorphism of abstract domains. [GR98] addresses relational program analysis by means of
implicationsbetween pairs of objects. It could be interesting to investigate if this particular relational
abstract interpretation framework can benefit from our work. The link between works on 1Ss and works
on systems of boolean implications in classical logic should also be examined.

Equivalent ISs This paper mentions several particular ISs that describe a given Moore family, more or
less small with respect to their size: The full I5 that contains an exponential number of implications,

the direct 1ISZy, the direct-optimal 1S 4,. Some researchers [GDE6, CMO04] have highlighted other
smallest (e.g. in the sense of minimality, non-redundancy) representations of a Moore family by particular
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ISs calledbaseq(i.e. such a basis is unique and can generate any equivalent IS). The properties of these
bases have been well-studied. Some of them provide a nice — though exponential — characterization of
a basis from a given Moore family. They also imply that such a basis is not direct, so that a direct-optimal
IS is not a basis.

An interesting problem is therefore the characterization of the direct-optirag) f8om a given Moore
family IF, and its possibly polynomial generation frdmAs mentioned in introduction, this problem can
be found in data-mining where the family of frequent closed itemsets is used to generate association rules

[PBTL99].
Links between ISs and Representations of Lattices ISs are directly linked to lattices sin¢&s,C)

is a lattice, with some particular cases. For instance the Moore familgsZociated t& = 0 x 0 and
ordered by inclusion is booleanlattice. Another case concerns anl8vhose premises and conclusions
are singletons: They can be represented by a binary relati@tberefore by an ordd?. Fs is then the
set of ideals ofP, which is union-stable [Mor64, Bir67]. S@Fs,C) is adistributivelattice and can be
represented by (i.e. rebuilt from) the sub-order of its join-irreducible elements. Finally in Formal Concept
Analysis [GW99] theGalois lattice, also called theonceptlattice, is composed of two Moore families
on a setG of objects and a sé¥l of attributes respectively, associated to a binary relatioG@ndM
called a formal concept: The esprit of FCA is to understand the concept lattice as one lattice (of formal
concepts). This is the small difference, but which made FCA applicable in real world tasks. (Of course,
one can find in the concept lattice the two Moore famile<GoandM, resp., but in FCA that is not the
primary way to look at it.)

A natural question is then to highlight links between ISs as representations of Moore families (i.e. lat-
tices) and other representations of lattices like the sub-order of join-irreducible elements in the distributive
case, the reduced bipartite order, the concepts, the arrows relations [Bir67| BM70,[Wil83, BC02], etc.

Acknowledgements

The authors wish to thank anonymous referees for their useful comments on early versions of this paper.

References

[BCO2] K. Bertetand N. Caspard. Doubling convex sets in lattices: characterizations and recognition
algorithms.Order, 19:181-207, 2002.

[Bir67]  G. Birkhoff. Lattice theoryvolume 25. American Mathematical Society, 3rd edition, 1967.

[BM70] M. Barbut and B. MonjardetOrdre et classification, Algbre et combinatoireHachette, Paris,
1970. 2 tomes.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. Cionference Record on
the Fourth Annual ACM SIGPLAN-SIGACT Sympsosium on Principles of Programming Lan-
guagespages 238-252, Los Angs, California, USA, 1977. ACM Press.

[CM04] N. Caspard and B. Monjardet. Some lattices of closure systems on a finitdDssirete
Mathematics and Theoretical Computer Scienées63-190, 2004.



338 Karell Bertet and Mirabelle Nebut

[FGR96] G. Fik, R. Giacobazzi, and F. Ranzato. A unifying view on abstract domain desigiv
Computing Survey28(2):333-336, 1996.

[Gan84] B. Ganter. Two basic algorithms in concept lattices. Technical report, Technische Hochschule
Darmstadt, 1984.

[GD86] J.L.Guigues and V. Duquenne. Familles minimales d’implications informa#ésestant d’'un
tableau de dorées binaireMath. Sci. Hum.95:5-18, 1986.

[GR98] R. Giacobazzi and F. Ranzato. A logical model for relational abstract donf@id. Trans-
actions on Programming Languages and Syst&0165):1067-1109, 1998.

[GRS00] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations codapietal
of the ACM 47(2):361-416, 2000.

[GW99] B. Ganter and R. WilleFormal concept analysis, Mathematical foundatioBgringer Verlag,
Berlin, 1999.

[HN96] M. Habib and L. Nourine. Tree structure for distributive lattices and its applicatids
165:391-405, Octobre 1996.

[Mai83] D. Maier. The Theory of Relational DatabaseSomputer Sciences Press, 1983.

[MN96] M. Morvan and L. Nourine. Simplicial elimination scheme, extremal lattices and maximal
antichains latticesOrder, 13:159-173, 1996.

[Mor64] J. Morgado. Note on the distributive closure operators by means of one axtontugal
Maths 23:11-25, 1964.

[MR92] H. Mannila and K.J. Riha. The design of relational database&ddison-Wesley, 1992.

[NR99] L. Nourine and O. Raynaud. A fast algorithm for building lattices. Third International
Conference on Orders, Algorithms and ApplicatioMe®ntpellier, France, august 1999.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In LLNCS Springer Verlag, edit@DT’99, volume 1540, pages 398-416,
1999.

[Wil83] R. Wille. Subdirect decomposition of concepts latticeslgebra Universalis 17:275-287,
1983.

[Wil94] M. Wild. A theory of finite closure spaces based on implicatioAglvances in Mathematics
108:118-139, 1994.

[Wil95] M. Wild. Computations with finite closure systems and implications?toceedings of the 1st
Annual International Conference on Computing and Combinatorics (COCOON/8i)me
959 of LNCS pages 111-120. Springer, 1995.



	Introduction
	Definitions and Notations
	Characterization of  from 
	Preliminaries
	d: a Direct IS Generated from an IS 
	o: a Direct-Optimal IS Generated from a Direct IS 
	do: a Direct-Optimal IS Generated from an IS 

	Algorithms
	Lexicographic Tree
	Computation of (X), X S
	Generation of F

	Conclusion and Perspectives

