A Comparison of Geometric and Energy-Based Point Cloud Semantic Segmentation Methods

Mathieu Dubois¹, Paola K. Rozo², Alexander Gepperth¹, Fabio A. González O.² and David Filliat¹

¹ENSTA ParisTech - INRIA Flowers Team

²Universidad Nacional de Colombia mathieu.dubois@ensta.fr

Context

Semantic navigation for indoor robots:
mapping
recognize objects, rooms, *etc.*Low-cost RGB-D cameras:
use depth information

CAROTTE competition
http://www.defi-carotte.fr

Problem

Object recognition at the category level is difficult:

 ⇒ focus on segmentation: try to recognize the structure of the environment (walls, ground) and the presence of objects
 Multimodal segmentation:

 $\dot{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} \operatorname{P}(\boldsymbol{x}|\boldsymbol{A},\boldsymbol{S},\boldsymbol{G})$

Baseline system

Developed for the PACOM system (Filliat et al. 2012), inspired by Rusu et al. 2009

Purely geometric

- Detect the ground plane and remove the points
- Detect walls *i.e.* planes perpendicular to ground and remove the points (1)
- Project remaining points and group them: objects (2)
- Decompose objects into planes and regroup them (3)
- + No training, very good performance, decompose objects
- Many parameters (including robot specific)

MRF-based system

$$E = \lambda_{color} \sum_{i=1}^{N} E^{A}(i) + \lambda_{shape} \sum_{i=1}^{N} E^{S}(i) + \lambda_{geom} \sum_{i=1}^{N} E^{G}(i)$$
$$+ \lambda_{prior} \sum_{i=1}^{N} E^{prior}(i) + \lambda_{normals} \sum_{(i,j)\in E} E^{normals}(i,j)$$
$$+ \lambda_{depth} \sum_{(i,j)\in E} E^{depth}(i,j)$$
Inference algorithm: Werner 2007

Multimodal SLIC Superpixels

Adaptation of the k-means algorithm with local search (linear complexity)

Distance function: given 2 pixels *i* and *j*:

 $D(i,j) = \sqrt{d_c(i,j)^2 + \frac{m^2}{S^2}d_s^2(i,j)}$

where:

$$egin{aligned} & d_c(i,j) = \sqrt{(l_j - l_i)^2 + (a_j - a_i)^2 + (b_j - b_i)^2} \ & d_s(i,j) = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2 + (z_j - z_i)^2} \end{aligned}$$

Large *m* enforce compact superpixels, small *m* enforce adherence to image boundaries

Energies (green = learned parameter)

Unary:

- *E^A*(ℓ) = -log P (*w^A*|ℓ) where *w^A* is the quantized SIFT descriptor
 E^S(ℓ) = -log P (*w^S*|ℓ) where *w^S* is the quantized depth descriptor (Shotton et al.
- 2011) $E^{G}(\ell) = -\log \mathcal{N}(\boldsymbol{g}|\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}) \text{ where }$
- $\boldsymbol{g} = [x, y]'$ is 2D position
- $\blacksquare E^{\mathsf{prior}}(\ell) = -\log \mathbb{P}(\ell)$
- \Rightarrow Necessary for unbalanced dataset

Easy to learn: discrete or Gaussian PDF

Binary:

■ $E^{\text{normals}}(\ell_1, \ell_2) = -\log P(\ell_1, \ell_2 | \bar{\phi})$ where $\bar{\phi}$ is the quantized angle between normals ⇒ Enforce detection of different surfaces

Acquired during competition

Autonomous robot navigation

using the baseline method

- 100 manually labeled point clouds
- 3 classes (wall, ground, object) decomposed into detailed classes (9 walls, 8 grounds, 16 objects)
 Unbalanced
- + Usable for segmentation and recognition

Results: 5-fold cross-validation								
	Algorithm		Precision			Recall		
	Aiguntin	Walls	Ground	Objects	Walls	Ground	Objects	Overall
	Baseline	93.3	97.8	65.0	87.7	91.2	98.1	94.9
	MRF strong regul. ($\lambda_{normal} = \lambda_{depth} = 1.0$)	96.4	89.5	46.8	77.6	79.5	41.6	76.0
	MRF weak regul. ($\lambda_{normal} = \lambda_{depth} = 0.2$)	94.7	89.4	88.1	82.8	80.4	23.5	77.86
	MRF no regul ($\lambda_{normal} = \lambda_{depth} = 0$)	94.7	88.8	64.8	81.1	78.5	32.1	76.8

MRF is less good than domain-specific algorithm but gives interesting results
 MRF models have several advantages:

⇒ We use only 3 classes
http://cogrob.ensta.fr/pacom

More generic
 Less tuning

Use appearance
 Probabilistic output

References

R. Achanta et al. "SLIC Superpixels Compared to State-of-the-art Superpixel Methods". In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2012).

- D. Filliat et al. "RGBD object recognition and visual texture classification for indoor semantic mapping". In: Proceedings of the 4th International Conference on Technologies for Practical Robot Applications (TePRA). 2012, pp. 127–132.
- R. B. Rusu et al. "Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments". In: IROS. IEEE, 2009, pp. 1–6.
- J. Shotton et al. "Real-time human pose recognition in parts from single depth images". In: CVPR. IEEE, 2011, pp. 1297–1304.
- T. Werner. "A linear programming approach to max-sum problem: A review". In: IEEE PAMI 29.7 (2007), pp. 1165–1179.