
HAL Id: hal-00966346
https://hal.inria.fr/hal-00966346v2

Preprint submitted on 26 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distinguishing and Key-recovery Attacks against
Wheesht

Anne Canteaut, Gaëtan Leurent

To cite this version:
Anne Canteaut, Gaëtan Leurent. Distinguishing and Key-recovery Attacks against Wheesht. 2014.
�hal-00966346v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49660671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00966346v2
https://hal.archives-ouvertes.fr

Distinguishing and Key-recovery Attacks
against Wheesht

Anne Canteaut and Gaëtan Leurent

Inria, France?

Abstract. Wheesht is one of the candidates to the CAESAR competition. In
this note we present several attacks on Wheesht, showing that it is far from the
advertised security level of 256 bits. In particular we describe a distinguishing
attack with 270.3 known plaintext words for any number of rounds of Wheesht,
and a key-recovery attack (recovering the encryption key) for versions of Wheesht
with a single finalization round with very little data and time complexity 2192.

1 Introduction

Wheesht[3] is an authenticated encryption algorithm submitted to the CAESAR
competition. The encryption of Wheesht is a stream cipher based on evaluating
a keyed function over a counter. More precisely, the main function computes a
keystream from

• An encryption key ki;

• Some constants qi;

• A public nonce ni;

• A secret nonce si;

• A block counter bi;

• Some extra parameters pi;

and is described in Figure 1. We use the notation xi, yi, zi for intermediate values
during the computation. All values are 64-bit wide.

2 Generic attacks

We first describe generic attacks based on the high-level structure of Wheesht, as
described in Figure 1. They are independent of the number of rounds tm and tf ,
and of the details of the permutation θ.

2.1 Distinguishing attack

Our first attack is a distinguishing attack with complexity around 264. The main
property used in this attack is that many values are fixed for all the blocks
(excepted the last one) of a given message: n, s, p are fixed, and only b is
incremented from one block to the next. In Figure 1, all the values that are kept
constant for a given message are shown with a dash-dotted pattern.

? SECRET project-team, {Anne.Canteaut, Gaetan.Leurent}@inria.fr

k0 ⊕ q0 k1 ⊕ q1 k2 ⊕ q2 k3 ⊕ q3 k0 ⊕ q4 k1 ⊕ q5 k2 ⊕ q6 k3 ⊕ q7

n0 n1 s0 s1

θtm θtm

b0 b1 p0 p1

θtm θtm

θtf θtf

z4 ⊕ k0 z1 ⊕ k1 z6 ⊕ k2 z3 ⊕ k3 z0 ⊕ k0 z5 ⊕ k1 z2 ⊕ k2 z7 ⊕ k3

k0 k1 k2 k3 k0 k1 k2 k3

x0 x1 x2 x3 x4 x5 x6 x7

x4 x1 ⊕ b0 x6 x3 ⊕ b1 x0 x5 x2 x7

y0 y1 y2 y3 y4 y5 y6 y7

y4 y1 y6 y3 y0 y5 y2 y7

z0 z1 z2 z3 z4 z5 z6 z7

keystream authentication key

Fig. 1. Wheesht main block. Values that are fixed for all blocks (excepted the last one) of a
given message are shown in a dash-dotted pattern.

More precisely, the generation of the keystream can be written as:

(y1, y3) = λx4,x1,x6,x3(b0, b1) (y0, y2) = µx4,x1,x6,x3(b0, b1)

(z1, z3) = χy4,y6(y1, y3) (z4, z6) = ξy4,y6(y0, y2)

where the functions λx4,x1,x6,x3 , µx4,x1,x6,x3 , χy4,y6 and ξy4,y6 are fixed for all the
blocks of a long message, and are expected to behave like random functions (with
128-bit input and output). In particular, we expect that the image set of any
of those functions is of size (1 − 1/e) · 2128. The set of possible (z1, z3) is the
image of the composition of two random functions; following [1, Theorem 2] we
expect its size to be about (1− exp(−1 + 1/e)) · 2128 ≈ 0.47 · 2128, rather than
(1− 1/e) · 2128 ≈ 0.63 · 2128 for a set of 2128 128-bit randomly chosen blocks.

In order to distinguish Wheesht keystream efficiently, we look for collisions
between the 128-bit values (σ4i+1, σ4i+3) (respectively, collisions between the
values (σ4i+0, σ4i+2)), i.e. two indexes i, j with (σ4i+1, σ4i+3) = (σ4j+1, σ4j+3).

In a random keystream, the first collision would be found after
√
π/2 · 264

blocks on average. Moreover, the time of the first collision follows a Rayleigh
distribution with parameter σ = 264 [2, pages 115–116]. However, with Wheesht
keystream, collisions are expected earlier, because they can occur either in λ or
in χ (respectively, either in µ or in ξ). Let B′ denote the random variable of the
time of first collision observed in a Wheesht keystream, and Bλ and Bµ the time
of the first collision in λ and µ with random inputs. We have B′ > t (i.e. the
first t keystream block are distinct) if and only if the first t (y1, y3) values are
distinct, and the corresponding outputs of χ are distinct. Since χ is evaluated on
distinct random values, we can write:

Pr
[
B′ > t

]
= Pr [Bλ > t]× Pr [Bχ > t]

From the Rayleigh distribution, we have Pr [Bλ > t] = Pr [Bµ > t] ∼ e−t
2/2σ2

,
with σ = 264. This gives:

Pr
[
B′ > t

]
∼ e−t2/2σ2 × e−t2/2σ2

= e−t
2/σ2

Therefore,B′ follows a Rayleigh distribution with parameter σ′ = σ/
√

2 = 264/
√

2.
In particular, the mean value of B′ is σ′

√
π/2 =

√
π/4 · 264 ≈ 0.89 · 264 (rather

than
√
π/2 · 264 ≈ 1.25 · 264).

This allows to build a very efficient distinguisher: we capture blocks of
keystream until we detect a collision between the 128-bit values (σ4i+1, σ4i+3),
and we measure the time until the first collision. Since the Rayleigh distribution
has a high variance (4−π2 σ2), we repeat the measure several times, and average
the results. We denote the average of n measures by Bn (respectively B′n). We
have:

E(Bn) =
√
π/2 · 264 Var(Bn) =

1

n
· 4− π

2
· 2128

E(B′n) =
√
π/4 · 264 Var(B′n) =

1

n
· 4− π

2
· 2127

In order to distinguish the distributions, we set a threshold at T = 264
√
π
(
2−
√

2
)
.

We can use Chebyshev’s inequality to bound the success probability of the distin-
guisher. For instance, with n = 32 we have:

|T − E(Bn)| ≥ 1.85 ·
√

Var(Bn) Pr [Bn < T] ≤ 0.3

|T − E(B′n)| ≥ 1.85 ·
√

Var(B′n) Pr
[
B′n > T

]
≤ 0.3

The detailed attack is given as Algorithm 1. The average number of required
keystream blocks for each measure of the time of the first collision is at most√
π/2 · 264 ≈ 264.33, implying that the average data complexity of the attack

corresponds to 16 known plaintexts, each of length corresponding to 264.33 blocks
(i.e., 269.33 bytes).

If each of the 16 known plaintexts contains more than 267 blocks, then the
time of the first collision can be observed with overwhelming probability since
Pr
[
B < 267

]
≈ 1− e−22×67/2129 ≥ 1− 2−46.

This attack has been verified experimentally with a reduced version of Wheesht
with 16-bit words, and experimental results agree with the analysis: the first
collision for Wheesht keystream is detected after 58079 blocks on average, rather
than 82137 blocks on average for a random data.

Algorithm 1 Distinguishing attack on Wheesht.

Capture 16 known plaintext messages of length 267 blocks.
Denote the keystream as

(
σ
(i)
j

)
, 0 ≤ i < 16, 0 ≤ j < 269

for 0 ≤ i < 16 do
for 0 ≤ k < 2 do
S ← ∅
for 0 ≤ j < 267 do

if (σ4j+k, σ4j+2+k) ∈ S then
B[2i+ k]← j
break loop

else
S ← S ∪ {(σ4j , σ4g+2)}

end if
end for

end for
end for
if Average(B) < 1.038 · 264 then

return 1: keystream is from Wheesht
else

return 0: keystream is random
end if

2.2 Key-recovery attack

Another important observation is that the keystream words (k1⊕ z1, k3⊕ z3) can
be computed from only eight values: x4, x1, x6, x3, y4, y6, k1, k3, and from the
block counter b. Moreover, for successive blocks of the same message, all those
values are fixed, only the block counter b is modified (incremented). We denote
this computation by f :

(z1, z3) = f(x4, x1, x6, x3, y4, y6, b), (σ1, σ3) = (z1, z3)⊕ (k1, k3).

Finally, since the key k1, k3 is only used at the end, it can be cancelled by XORing
two different outputs. In our attack we first compute the XOR of successive
output blocks for 23×64 = 2192 values of x4, x1, x6, x3, y4, y6; then we collect
plaintext/ciphertext pairs, and we use the offline computation to detect a match
for the values of x4, x1, x6, x3, y4, y6. We expect to find a match after about
23×64 = 2192 output blocks, due to the birthday paradox. The full attack is
described by Algorithm 2.

The attack uses only the high level structure of Wheesht, as shown in Figure 1.
It is independent of the number of rounds tm and tf , and of the details of the
permutation θ. The attack requires about 2192 known plaintext data, but the
data can come from any number of different sessions (with different nonces),

and even with different keys (in this case, only the key of one session will be
recovered). It is not clear whether this violates the designers claim (there is no
clear limit on the amount of data), but this seems to violate the security level of
256 bits.

Algorithm 2 Generic key-recovery attack on Wheesht.
. Offline computations:
(x4, x1, x6)← (0, 0, 0)
for all x3, y4, y6 do

for 0 ≤ i < 8 do
Evaluate (z

(i)
1 , z

(i)
3) = f(x4, x1, x6, x3, y4, y6, i)

end for
X ← (z

(i)
1 ⊕ z

(0)
1 , z

(i)
3 ⊕ z

(0)
3)7i=1

Store X, (x4, x1, x6, x3, y4, y6) in a hash table T
end for
. Online computations:
Capture 32× 23×64 words of known plaintext data
for all keystream words σ0, σ1, . . . σ31 do

Compute X = (σ4i+1 ⊕ σ1, σ4i+3 ⊕ σ3)7i=1

if X is in the table T then
Recover (x4, x1, x6, x3, y4, y6) from T
Recover k1, k3 from the keystream and z1, z3.
Recover k0, k2 by brute force

end if
end for

3 Low data complexity Attack

We now show a low data complexity attack using properties of the components
of Wheesht. In particular, we study the final transformation θtf . We target
Wheesht-3-1-256, which is supposed to give 256 bits of security with tf = 1.

Following the previous observations, we know that blocks inside a fixed
message have the same values y4 and y6. We now explain how to detect this using
the outputs z1 and z3. Figure 2 shows the details of the finalization function θtf ,
inspired by the Salsa family. In particular, we note that y6 can be computed from
z1, z2, z3. We denote this function as g: y6 = g(z1, z2, z3).

If we consider several blocks inside the same message, we can observe z1 ⊕ k1
and z3 ⊕ k3 from the keystream, and we know that the values must be coherent
with a fixed y6. If we guess k1 and k3, we can compute a set of possible values
of y6 as {g(z1, z2, z3), ∀z2 ∈ Z264} for every observation of (z1, z3); we expect
about (1− 1/e) · 264 distinct values in the set. If we take the intersection of the
sets corresponding to several observations, we expect a single remaining value
after a few hundred observations, or no value if the key guess was incorrect.
More precisely, with N = 128 observations, a wrong key will have a non-empty
intersection with probability (1− 1/e)128 ≈ 2−84, therefore we expect about 244

wrong candidates, and testing them is a negligible part of the attack. This leads
to the attack given in Algorithm 3.

The attack has been verified experimentally with a reduced version of Wheesht
with 8-bit words. Those experiments show two small differences with the theo-
retical analysis. First the most significant bit of z1 cannot be recovered because
flipping it only shifts the set of y6 candidates. Second, the filtering is slightly
lower than expected: after 32 blocks of keystream, bad key guess are still valid
with probability about 2−12, rather than the expected 2−20. Therefore, we suggest
to use N = 256 in the attack against the full Wheesht.

Algorithm 3 Low data complexity key-recovery attack on Wheesht.
Input: known keystream σ0, σ1, . . . σ4N−1, N ≈ 256

for all k1, k3 do
S ←

{
0, 1, . . . , 264 − 1

}
for 0 ≤ i < N do

z1 ← σ4N+1 ⊕ k1
z3 ← σ4N+3 ⊕ k3
T ←

{
g(z1, z2, z3), ∀z2 ∈ Z264

}
S ← S ∩ T

end for
if S 6= ∅ then

Recover k0, k2 by brute force
end if

end for

y4

y1

y6

y3

z0

z1

z2

z3

Fig. 2. θ function

Conclusion

We have described several attacks on Wheesht, proving that the security is far
from the target level of 256-bit. Their respective complexities are given in Table 1.

The attacks of Section 2 are based only on the high level structure of Wheesht
and can be applied with any number of rounds, while the attack of Section 3 use
properties of the finalization round to reduce the complexity of a key-recovery.

Our attacks assume that the image sets of several functions are close to the size
expected for a randomly chosen function. This has been checked experimentally
on reduced versions on Wheesht (e.g. for the function g, we used a reduced
version of θ operating on bytes instead of 64-bit words).

time complexity data complexity

(words)

distinguisher 270.3 270.3

generic key-recovery 2192 2197

key-recovery on Wheesht-3-1-256 2200 210

Table 1. Complexities of the proposed attacks. The data complexity of the distinguisher
corresponds to 16 known plaintexts of average length 266.3 words, while the data complexity of
the second attack corresponds to messages of 32 words from 2192 possibly different sessions.

In order to avoid those attacks, a simple tweak to Wheesht would be to
have more layers in the global structure. For instance, an extra finalization and
swapping step seem to avoid the issues reported here.

Acknowledgement

We would like to thank Peter Maxwell for fruitful discussions about those results.

References

1. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.J., Vandewalle, J.
(eds.) Advances in Cryptology - EUROCRYPT’89. Lecture Notes in Computer Science, vol.
434, pp. 329–354. Springer (1989)

2. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009)
3. Maxwell, P.: Wheesht: an AEAD stream cipher. Submission to CAESAR. Available from:

http://competitions.cr.yp.to/round1/wheeshtv03.pdf (v1) (March 2014)

http://competitions.cr.yp.to/round1/wheeshtv03.pdf

	Distinguishing and Key-recovery Attacks against Wheesht
	Introduction
	Generic attacks
	Distinguishing attack
	Key-recovery attack

	Low data complexity Attack

