
HAL Id: hal-00966985
https://hal.inria.fr/hal-00966985

Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

To satisfy impatient Web surfers is hard
Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, Nicolas

Nisse

To cite this version:
Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, Nicolas Nisse. To sat-
isfy impatient Web surfers is hard. Theoretical Computer Science, Elsevier, 2014, 526, pp.1-17.
�10.1016/j.tcs.2014.01.009�. �hal-00966985�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49660188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00966985
https://hal.archives-ouvertes.fr

To Satisfy Impatient Web surfers is Hard∗

Fedor V. Fomin1, Frédéric Giroire2, Alain Jean-Marie3,4, Dorian Mazauric2,3 and Nicolas Nisse3,2

1Department of Informatics, University of Bergen, Norway.
2Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France.

3Inria, France
4 LIRMM (CNRS/Univ. Montpellier 2), France.

Abstract

Prefetching is a basic mechanism for faster data access and efficient computing. An important issue

in prefetching is the tradeoff between the amount of network’s resources wasted by the prefetching and

the gain of time. For instance, in the Web, browsers may download documents in advance while a Web

surfer is surfing. Since the Web surfer follows the hyperlinks in an unpredictable way, the choice of the

Web pages to be prefetched must be computed online. The question is then to determine the minimum

amount of resources used by prefetching that ensures that all documents accessed by the Web surfer have

previously been loaded in the cache.

We model this problem as a two-player game similar to Cops and Robber Games in graphs. Let k ≥ 1

be any integer. The first player, a fugitive, starts on a marked vertex of a (di)graph G. The second player,

an observer, marks at most k vertices, then the fugitive moves along one edge/arc of G to a new vertex,

then the observer marks at most k vertices, etc.

The fugitive wins if it enters an unmarked vertex, and the observer wins otherwise. The surveillance

number of a (di)graph is the minimum k such that the observer marking at most k vertices at each step

can win against any strategy of the fugitive. We also consider the connected variant of this game, i.e.,

when a vertex can be marked only if it is adjacent to an already marked vertex.

We study the computational complexity of the game. All our results hold for both variants, connected

or unrestricted. We show that deciding whether the surveillance number of a chordal graph is at most 2

is NP-hard. We also prove that deciding if the surveillance number of a DAG is at most 4 is PSPACE-

complete. Moreover, we show that the problem of computing the surveillance number is NP-hard in split

graphs. On the other hand, we provide polynomial time algorithms computing surveillance numbers of

trees and interval graphs. Moreover, in the case of trees, we establish a combinatorial characterization

of the surveillance number.

Keywords: Prefetching, Cops and robber games, PSPACE-complete, Interval Graphs.

1 Introduction

Prefetching is a basic technique in computer science. It exploits the parallelism between the execution of one

task and the transfer of information necessary to the next task, in order to reduce waiting times. The classical

instance of the problem occurs in CPU, where instructions and data are prefetched from the memory while

previous instructions are executed. The modern instance occurs in the Web, where browsers may download

∗This work has been done during the visit of the first author at the team-project COATI, INRIA, I3S, Sophia Antipolis, France.

A short version of this paper has been presented in the 6th International Conference on FUN with Algorithms [?].

1

documents connected to the currently viewed document (Web page, video, etc.) while it is being read or

viewed. Accessing the next document appears to be instantaneous to the user, and gives the impression

of a large navigation speed [phd]. For this reason, link prefetching has been proposed as a draft Internet

standard by Mozilla [Inc99]. However, prefetching all documents that can be accessed in the current state

may exceed networking capacities, or at least, result in a waste of bandwidth since most of the alternatives

will not be used. Hence, it is necessary to balance the gain of time against the waste of networking resources.

Local storage memory is also a potential issue, and prefetching is classically associated with the question of

cache management. However, memory in modern computers is not scarce anymore, which makes network

resources the critical ones.

The models developed so far in the literature to study prefetching problems are based on the execution

digraph, where the nodes represent the tasks (e.g., Web pages) and arcs model the fact that a task can

be executed once another has been done (e.g., arcs represent hyperlinks that can be followed from a Web

page). The execution of the program or the surfing of the Web then corresponds to a path in the execution

digraph. The quantitative optimization of prefetching will then be based on some cost function defined on

paths, reflecting for instance the inconvenience of waiting for some information while executing the tasks

or surfing the Web, and possibly taking into account the consumption of network or memory resources. The

related dimensioning problem consists in determining how much network bandwidth should be available so

that the prefetching performance stays within some predetermined range.

It is quite likely that such optimization problems are very difficult to solve exactly. For instance, in

Markovian models [JG97], where arcs of the execution digraph are associated with transition probabilities

(modeling a random Web surfer), the prefetching problem can then be cast as an optimization problem in

the Stochastic Dynamic Programming framework [GCD02, MJM10]. Its exact solution requires a compu-

tational effort which is exponential with respect to the number of nodes in the execution digraph: this is the

size of the state space of these Markov Decision models.

As a first step in the analysis of prefetching optimization, we therefore consider the following simpler

problem. We consider a surfer evolving over the execution digraph, and we are concerned with perfect

prefetching, i.e., ensuring that the Web surfer never accesses a document that has not been prefetched yet.

In other words, the surfer is “impatient” in the sense that it does not tolerate waiting for information. Due

to network’s capacity (bandwidth) limitation, it is important to limit the number of Web pages that can be

prefetched at each step: We aim at determining its minimum value. In addition to being simpler than a fully

specified optimization problem, this question does not need specific assumptions on the behavior of the Web

surfer as in [GCD02, MJM10].

Let D be an execution digraph and let v0 ∈V (D) be a node corresponding to the Web page from which

the surfer starts. At each step, some amount of Web pages are prefetched and then the surfer either moves

along an arc to an out-neighbor of its current position, or skips its move. The surveillance number of D

starting in v0 is the minimum integer k such that, prefetching at most k Web pages at each step guarantees

the Web surfer never waits (whatever the surfer does).

1.1 Our results

We model the above prefetching problem as a two-player game similar to Cops and Robber game (e.g.,

see [NW83, Qui83, FT08, Als04]). We first prove that “monotonicity does not help”, that is, if the fugitive

follows only induced paths, the smallest k such that there is a winning k-strategy is equal to the surveillance

number. We prove that the problem of deciding whether the surveillance number of a chordal graph is

at most 2 is NP-hard. In particular, this shows that the decision problem associated with the surveillance

number is not Fixed Parameter Tractable. Then, we show that computing the surveillance number is NP-

2

hard in split graphs, a subclass of chordal graphs. In the case of digraphs, we show that deciding if the

surveillance number of a DAG is at most 4 is PSPACE-complete. We propose an exact exponential-time

algorithm to compute the surveillance number in general (di)graphs.

On the other hand, we provide polynomial time algorithms that compute the surveillance number and

a corresponding optimal strategy in trees and interval graphs. Moreover, in the case of trees, we establish

a combinatorial characterization of the surveillance number. Specifically, we show that the surveillance

number of a tree T starting in v0 ∈ V (T) equals maxS

⌈

|N[S]|−1

|S|

⌉

, where S is taken among all subtrees of T

containing v0 and N[S] denotes the closed neighborhood of S. We conclude with several open questions.

1.2 Cops and Robber games

Two-player turn-by-turn games in graphs have been widely studied in the literature (e.g. Maker-Breaker

games, Avoider-Enforcer games, Cops and Robber games). The game we consider here is similar to Cops

and Robber games because our surfer aims at escaping the observer as the robber does in Cops and Robber

games. In the initial variant of these games [NW83, Qui83], one cop is placed at a vertex of a graph, then

the robber chooses one vertex to be placed on, and then the players move their token along the edges of the

graph, alternately starting with the cop. The cop wins if at some step of the game it occupies the same vertex

as the robber. In [AF84], the Cop Player is allowed to use a team of k ≥ 1 cops. One optimization problem

is then to decide the cop number of a graph G, i.e., the minimum number of cops that are required to capture

the robber in G. It is known to be W[2]-hard in general [GR95, FGK+10]. Lower and upper bounds on the

cop number of various classes of graphs have been proved [And86, Fra87, Sch01, ?].

Several variants have been studied such as when the cops and the robber have different speeds [FGK+10,

CCNV11, ?, Meh11], when the robber can be captured at some distance [BCP10], when each cop can be

moved a bounded number of times [FGL10], etc. In the variant proposed in [FGH+08, FGL09], the goal for

the cops is to guard some part of a graph, i.e., to prevent the robber to reach some particular vertices in the

graph. Eternal dominating set and eternal vertex cover can also be viewed as cops and robber games, where

the robber has no token but can attack a vertex (or an edge) at each step and the cop must move its tokens in

response to the attack [GK08, FGG+10].

2 Preliminaries

In this section, we formally define the problems we consider and present the notations used throughout the

paper. We also present some basic results.

For any (di)graph G = (V,E) considered in this paper, when v0 ∈ V is fixed as the starting vertex, we

assume that, for any v ∈V , there is a (directed) path from v0 to v. In particular, if G is an undirected graph,

we assume that G is connected.

Let ∆(G) be the maximum degree of G (we denote it by ∆ when no ambiguity occurs). If G is a digraph,

we denote by ∆+(G) its maximum out-degree.

For any undirected graph G=(V,E) and any S⊆V , let G[S] be the subgraph induced by S in G. The open

neighborhood N(S) of set S is the set of vertices in V \S having a neighbor in S and the closed neighborhood

of S, denoted by N[S], is defined as N(S)∪S. If S = {v}, we use N(v) and N[v] instead of N({v}) and N[{v}].
Similarly, in a directed graph D = (V,E), N+[S] denotes the closed out-neighborhood of S ⊆V , i.e., the set

of vertices that are in S or are an out-neighbor of a vertex in S.

A graph is a tree if it has no cycle as a subgraph. A digraph is a directed acyclic graph (DAG) if it has

no directed cycle as a subgraph. A graph is chordal if it does not contain an induced cycle of length at least

3

4. A graph G = (V,E) is a split graph if there is a partition (A,B) of V such that A induces a clique and B

induces an independent set. Finally, G is an interval graph if V is a set of real intervals and two vertices are

adjacent if their corresponding intervals intersect.

2.1 The surveillance game

The surveillance problem deals with the following two-player game in an n-node (di)graph G = (V,E) with

a given starting vertex v0 ∈V . There are two-player, fugitive and observer. The fugitive wants to escape the

control of an observer whose purpose is to keep the fugitive under constant surveillance.

Let k ≥ 1 be a fixed integer.

The game starts when the fugitive stands at v0 which is initially marked. All nodes of G but v0 are initially

not marked. Then, turn by turn, the observer controls, or marks, at most k vertices and then the fugitive either

moves along an edge to a (out-) neighbor of its current position, or skips its move. In particular, at every step

of the game, the observer enlarges the observable part of the graph by adding to it at most k vertices. His

task is to ensure that the fugitive is always in the observable area. Note that, once a vertex has been marked,

it remains marked until the end of the game. The fugitive wins if, at some step, it reaches an unmarked

vertex; and the observer wins otherwise. That is, the game ends when either the fugitive enters an unmarked

vertex (and then the fugitive wins) or all vertices have been marked (and then observer wins).

A configuration of the game consists of a pair (M, f) where v0 ∈ M ⊆V represents the set of the vertices

that have already been marked (containing v0) and f ∈ M corresponds to the current position of the fugitive.

A k-strategy (for the observer) is a function σ that assigns to any configuration C the set σ(C) of at most k

vertices that must be marked by the observer in this configuration. Note that, at each step, the observer has

interest to mark as many unmarked vertices as possible.

More formally, a configuration is a pair (M, f) with v0 ∈ M ⊆ V and f ∈ M. A k-strategy is a function

σ : 2V ×V → 2V that assigns, to any configuration (M, f), a subset S = σ(M, f) ⊆ V \M such that |S| =
min{k, |V \M|}.

A k-strategy is winning if the observer using that strategy wins whatever be the walk followed by the

fugitive starting in v0. In other words, a strategy σ is winning if N(f)\M ⊆ σ(M, f) for any configuration

(M, f) that is realizable starting from ({v0},v0) with the observer following σ.

The surveillance number of G starting from v0, denoted by sn(G,v0), is the smallest k such that there is

a winning k-strategy in G starting from v0.

In the surveillance game, the fugitive plays the role of the Web surfer moving in the execution (di)graph

while the observer must prefetch the Web pages before the fugitive reaches them. Before going further, we

discuss some hypotheses of our model.

First, we assume a constant prefetching time for all the Web pages. It is however not a strong assumption

since the surveillance game may also model the fact that some Web pages are heavier than others. Indeed,

let us assume that each Web page u has a proper size W (u) and so a proper prefetching time, assumed to be

an integer. Consider the graph Gp obtained by replacing any node u of G by a clique Ku of size W (u) and

any edge {u,v} by a complete bipartite graph between Ku and Kv. Thus, the surveillance problem for the

weighted graph G is equivalent to the problem in Gp.

Another assumption of our model is that Web-pages are all equivalent, in the sense that the Web surfer

does not spend more time on some pages than on other pages. We actually assume that the step duration is

the minimum visiting time among all pages. If there exists a perfect prefecthing strategy with this constant

duration time, then this strategy is also a perfect prefecthing strategy with the initial visiting times for all

4

the pages. This hypothesis corresponds to studying the worst case in which the visiting time of all pages is

constant (and so corresponds to the minimum visiting time among all the pages).

Finally, we implicitly assume that all prefetched pages fit in the memory. This assumption is discussed

in the conclusion.

2.2 Connectivity and Bounds

In this section, we define a variant of the game by introducing new natural constraints and prove basic

results.

In the connected variant of the surveillance game, the observer must mark only vertices that have neigh-

bors already marked. In other words, the set of marked vertices must always induce a connected subgraph.

A connected strategy σ is a strategy with the additional constraint that σ(M, f)∪M must induce a connected

subgraph for any connected subset M ⊆V containing v0. Note that it is not required that σ(M, f) induces a

connected subgraph. Let csn(G,v0) be the smallest k such that there is a winning connected k-strategy in G

when the fugitive starts from v0.

We first show that imposing the connectedness of a strategy is a strong constraint.

Lemma 1. Let k ≥ 2. There exist a graph G and a vertex v0 ∈V (G) such that csn(G,v0)> sn(G,v0) = k.

Proof. Let k ≥ 2. Let G be the graph with 6k vertices, built as follows: a path (v0,v1,v2) then 2k vertices ai

and bi, 1 ≤ i ≤ k, such that ai is adjacent to v2 and bi, and finally a set K of 4k−3 vertices each of which is

adjacent to all bi, i ≤ k. Then k = sn(G,v0)< csn(G,v0) = k+1.

Indeed, the following k-strategy is winning: at each step, the observer marks all i ≥ 0 unmarked neigh-

bors of the current position of the fugitive, and then marks k− i vertices in K. Hence sn(G,v0)≤ k.

On the other hand, in the connected variant, at least 4 vertices, say {v1,v2,a1,b1}, must be marked before

at least one vertex in K is marked. The fugitive first goes to v1 and v2. Then if a vertex ai is unmarked, the

fugitive goes to it and wins. Otherwise, it goes to a2 and then b2. At the fifth turn of the fugitive, at least

k+ 4 vertices not in K must have been marked (that is the set of vertices {v1,v2,a1, . . . ,ak,b1,b2}). Then,

when at most k vertices can be marked per step, at most 5k − (k + 4) = 4k − 4 vertices of K have been

marked. Thus, the fugitive can win reaching an unmarked vertex in K. Hence csn(G,v0)> k.

Finally, it is easy to show that csn(G,v0)≤ k+1 and that sn(G,v0)> k−1.

Question 1. Does there exist a constant bounding the ratio (or the difference) between csn and sn in all

graphs?

The surveillance number of a graph is constrained by the degrees of its vertices. More precisely:

Claim 2. For any (di)graph G with maximum (out-)degree ∆(+) and for any v0 with (out-)degree deg(+)(v0),
we have deg(+)(v0)≤ sn(G,v0)≤ csn(G,v0)≤ ∆(+). Moreover, in undirected graphs, csn(G,v0) = ∆ if, and

only if, v0 has degree ∆.

Proof. Clearly, sn(G,v0) ≥ deg(+)(v0) and by definition sn(G,v0) ≤ csn(G,v0). On the other hand, the

following ∆(+)-strategy is winning for the observer. At each step, the observer simply marks all unmarked

(out-)neighbors of the current position of the fugitive. Hence, csn(G,v0)≤∆(+). Moreover, in the undirected

case, the fugitive always arrives to any vertex (but v0) through a neighbor already marked. Hence, following

the previous strategy, the observer marks at most ∆− 1 vertices at each step, except the first one. So, if

deg(+)(v0)< ∆ then we get that csn(G,v0)< ∆.

The next lemma is a straightforward consequence of the previous claim.

5

Lemma 3. Let G be a connected undirected graph with maximum degree ∆ ≤ 3 and at least one edge. Then,

1 ≤ csn(G,v0) = sn(G,v0)≤ 3 and

• csn(G,v0) = sn(G,v0) = 1 iff G is a path, where v0 has degree one;

• csn(G,v0) = sn(G,v0) = 3 iff v0 has degree 3.

Thus, the problem of computing the surveillance number of a graph with maximum degree at most 3 is

trivial.

Question 2. What is the complexity of computing the surveillance number in the class of graphs with maxi-

mum degree 4? with bounded degree?

The proof of the following lemma is also straightforward.

Lemma 4. Let G be an undirected graph with a universal vertex. For any v0 ∈V (G), we have

sn(G,v0) = csn(G,v0) = max{deg(v0),
⌈

n−1
2

⌉

}.

2.3 The monotone variant of the game

Finally, we define a restriction of the game that will be useful throughout this paper.

In the monotone variant of the surveillance game, the fugitive is restricted to move at every step and to

follow only induced paths in G. That is, for all ℓ > 0, after having followed a path (v0, · · · ,vℓ), the fugitive

is not allowed to reach a vertex in N[{v0, · · · ,vℓ−1}]. Note that if the fugitive cannot move, then it loses. Let

msn(G,v0) be the smallest k such that there is a winning monotone k-strategy in G when the fugitive starts

from v0, i.e., the observer can win, marking at most k vertices at each step, against a fugitive constrained to

follow induced paths.

The monotone game is easier to analyze. Furthermore, we now prove that “monotonicity does not help”,

that is, for any graph G and v0 ∈V (G), msn(G,v0) = sn(G,v0). In other words, if the fugitive follows only

induced paths, no k-strategy can be a winning (monotone) strategy, for any k < sn(G,v0). This means that in

the following proofs, we can always consider that the fugitive follows induced paths, and so that the fugitive

has to move at every step because an induced path is necessarily a simple path.

To prove the announced result, we give an alternative definition of a winning strategy in terms of trees

reminiscent of those used in the decomposition of graphs.

First, we give some intuition about the proof. Consider a monotone k-strategy σ for the observer. We

turn this strategy into a non-monotone k-strategy handling all possible trajectories (not only along induced

paths) of the fugitive. To do so, while the fugitive follows an induced path, the observer uses σ. Now,

assume that the fugitive follows a walk W = (v0,v1, . . . ,vm) and then moves to vm+1 which is a neighbor of

v j for 0 ≤ j ≤ m−1. Intuitively, we can find a subset of V (W) inducing an induced path P from v0 to v j and

then to vm+1, and such that the observer can apply the strategy σ as if the fugitive had followed P.

Recall that a strategy is defined by a function σ : 2V ×V → 2V , where |σ(M, f)| ≤ k for any M ⊆V, f ∈V

and σ(M, f) represents the set of vertices that must be marked when the fugitive is in f and the vertices in

M have already been marked. Clearly, such a strategy can be viewed as a decision-tree, where each vertex

of this decision tree represents a path that has been followed by the fugitive.

We first describe a tree-structure to represent the paths of G, starting from v0. An internal vertex of a

rooted tree is a vertex with at least one child, other vertices are called the leaves.

6

Definition 1. Let G be a (di)graph and v0 ∈ V (G). A path-tree is a pair (T,ω), where T is a tree rooted

at r ∈V (T) and ω : V (T)→V (G) is a mapping from the vertices of the tree to that of the (di)graph, such that

ω(r)= v0 and any internal vertex t ∈V (T) has ℓ= |N(+)[ω(t)]| children {t1, · · · , tℓ} with {ω(t1), · · · ,ω(tℓ)}=
N(+)[ω(t)].

In a path-tree T , any vertex ti ∈ V (T) (i ≥ 0), where (r = t0, t1, · · · , ti) is the path from r to ti in T

represents the walk Pti = (v0 = ω(r),ω(t1), · · · ,ω(ti)) in G. The next structure restricts the paths we want to

represent to the induced paths of G starting from v0.

Definition 2. Let G be a (di)graph and v0 ∈ V (G). An induced path-tree is a pair (T,ω), where T is a

tree rooted at r and ω : V (T) → V (G) such that ω(r) = v0 and, for any internal vertex ti ∈ V (T), where

(r = t0, t1, · · · , ti) is the path from r to ti in T and N = N
(+)
G (ω(ti))\N

(+)
G [{ω(t0),ω(t1), · · · ,ω(ti−1)}], then ti

has ℓ= |N| children {u1, · · · ,uℓ} with {ω(u1), · · · ,ω(uℓ)}= N.

Definition 3. A (monotone) k-decision-tree (k-DT) rooted at v0 of a (di)graph G is a triple (T,ω,M) defined

as follows. (T,ω) is a (induced) path-tree rooted at r and M : V (T)→ 2V (G) and the following properties

are satisfied: v0 ∈ M(r) and, for any vertex ti ∈V (T), where (r = t0, t1, · · · , ti) is the path from r to ti in T ,

• |M(ti)\{v0}| ≤ k;

• for any child t of ti, ω(t) ∈ ∪ j≤iM(t j);

• ti is a leaf iff

– In a k-decision-tree: ∪ j≤iM(t j) =V (G);

– In a monotone k-decision-tree: either ∪ j≤iM(t j) =V (G) or ω(t0),ω(t1), · · · ,ω(ti) is a maximal

induced path in G.

The (induced) path-tree allows to represent all walks (induced paths) starting in v0 in G. Namely, given

ti ∈ V (T) with P = (r, t1, · · · , ti) the path in T from r to ti, ti represents the (induced) path Pti = (v0 =
ω(r),ω(t1), · · · ,ω(ti)) in G. Moreover, for any t ∈ V (T), the bag M(t) represents the subset of vertices

that must be marked at the step after the fugitive has followed the path Pt in G. As a consequence of the

properties stated in Definition 3, no more than k vertices are marked at each step and no path in G may allow

the fugitive to avoid marked vertices.

Decision-trees should be more constrained to express that it is useless to mark several times the same

vertex or not to mark the maximum number of vertices at each step.

Definition 4. A (monotone) k-decision-tree (T,ω,M) is said to be refined if

• for any internal vertex t ∈V (T), |M(t)\{v0}|= k;

• for any vertex ti ∈V (T), where (r = t0, t1, · · · , ti) is the path from r to ti in T , M(ti)⊆V (G)\∪ j<iM(t j).

Recall that the height of a rooted tree is the maximum length (number of edges) of a path between the

root and a leaf of the tree. Note that a refined k-DT of n-node graph G has height at most
⌈

n−1
k

⌉

.

Lemma 5. If G admits a (monotone) k-decision-tree rooted at v0, then G admits a (monotone) refined

k-decision-tree rooted at v0.

7

Proof. We show that every decision-tree that is not refined can be transformed into one “more refined”.

Iterating the process ends with a (monotone) refined k-decision-tree rooted at v0.

Let (T,ω,M) be a (monotone) k-DT rooted at v0. Among the paths (r = t0, t1, · · · , ti) in T , that do

not satisfy the conditions of a refined k-DT, pick one for which ti is the closest from r, the root of T . If

M(ti)∩∪ j<iM(t j) 6= /0, then replace M(ti) with M(ti)\∪ j<iM(t j). Otherwise, let v ∈V (G)\∪ j≤iM(t j) and

replace M(ti) with M(ti)∪{v}. Finally, if ∪ j≤iM(t j) = V (G), remove from T all subtrees rooted at a child

of ti. The path now satisfies the conditions of a refined DT.

Lemma 6. A (di)graph G admits a (respectively, monotone) k-decision-tree rooted at v0 if, and only if,

sn(G,v0)≤ k (respectively, if, and only if, msn(G,v0)≤ k).

Proof. Assume sn(G,v0) ≤ k (respectively, msn(G,v0) ≤ k) and let σ be a k-strategy such that σ(M, f) ⊆
V (G)\M, and |σ(M, f)|= k or M∪σ(M, f) =V (G) for any M ⊆V (G), f ∈ M. Let (T,ω) be the (induced)

path-tree representing all walks (or induced paths) of G starting in v0 and of length at most
⌈

|V (G)|−1

k

⌉

. Then,

let M(r) = {v0}∪σ({v0},v0), and, for any vertex ti ∈ V (T)\{r}, where (r = t0, t1, · · · , ti) is the path from

r to ti in T , let us define M(ti) = σ(∪ j<iM(t j),ω(ti)). All conditions of Definition 3 are satisfied and thus

(T,ω,M) is a (monotone) k-DT rooted at v0. In particular, the third condition is satisfied because of the

height of T and the fact that σ marks as many unmarked nodes as possible at each step.

Let (T,ω,M) be a k-DT rooted at v0. Let σ : 2V (G)×V (G)→ 2V (G) be any application satisfying that,

for any ti ∈ V (T), where (r = t0, t1, · · · , ti) is the path from r to ti in T , σ(∪ j<iM(t j),ω(ti)) = M(ti) \ {v0}.

Then, σ is a winning k-strategy.

Now, we can prove the main result of this section.

Theorem 7. For any (di)graph G and v0 ∈V (G), sn(G,v0) = msn(G,v0).

Proof. By definition, sn(G,v0)≥ msn(G,v0).
If msn(G,v0) ≤ k, by Lemma 6, there is a monotone k-DT of G rooted at v0. By Lemma 5, there is a

refined monotone k-DT of G rooted at v0. We show that a k-DT rooted at v0 of G can be built from any

refined monotone k-DT (T,ω,M) of G rooted at v0. Then, by Lemma 6, sn(G,v0)≤ k.

Let (T,ω,M) be a refined monotone k-DT of G rooted at v0. If (T,ω,M) is a k-DT, we are done. Assume

therefore that (T,ω,M) is not a k-DT. This means that (T,ω) is an induced path-tree and not a path-tree.

In other words, there is a vertex t ∈ V (T) with children (u1, · · · ,uℓ) such that there is, in G, a neighboring

vertex y ∈ NG[ω(t)] and, for all i ≤ ℓ, ω(ui) 6= y. We say that such a vertex t satisfies property P , with y a

“bad neighbor”. Consider one such vertex closest to r. Two cases are to be considered according to whether

the bad vertex y is ω(t) or in NG(ω(t)).

• Assume first y = ω(t). Let S be the subtree of T rooted at t. We transform (T,ω,M) into (T ′,ω′,M′)
by adding the sub-decision-tree “induced” by S as a child of t in T . That is: T ′ is obtained from

T by adding a copy of S with its root adjacent to t in T . Then, for any z ∈ V (T ′) = V (T)∪V (S),
ω′(z) = ω(z) and M′(z) = M(z). Then, let (T ∗,ω∗,M∗) be obtained by refining the resulting path-tree,

i.e., by applying to (T ′,ω′,M′) the process described in the proof of Lemma 5.

• Now, assume that y ∈ NG(ω(t)). Let (r = t0, t1, · · · , ti = t) be the path from r to t in T . Since y /∈
{ω(u j) : j ≤ ℓ}, by definition of monotone decision-trees, it means that there is j < i such that t j has

a child s and ω(s) = y. Let S be the subtree of T rooted at s. We transform (T,ω,M) by adding the

sub-decision-tree “induced” by S as a child of t in T . Then, we refine the obtained decision-tree.

8

The process consists in repeating the transformation while there is a node t that satisfies property P .

Note that, while there still are some vertices satisfying P , the resulting structure is neither a decision-tree

nor a monotone decision-tree since the tree T ∗ of this structure is neither a path-tree nor an induced path-

tree (actually, it is “between” a path-tree and an induced path-tree). However, all other properties of a

decision-tree remain satisfied.

We finally show that a finite number of such transformations is sufficient to obtain a decision-tree.

Indeed, it is sufficient to remark that the following “potential function” Φ strictly decreases each time the

transformation is applied. Moreover, the size of the structure remains bounded in the size of the initial

monotone decision-tree (T,ω,M) since we consider only refined versions.

Let Φ(T,ω,M) be the sum of the values φ(d(t,r))× (|N
(+)
G [ω(t)]|− |{ω(s) : s child of t in T}|), over all

vertices t in V (T), where d(t,r) is the distance between t and r and φ is any function such that for all i,

φ(i)−∆⌈
n−1

k ⌉−i+1φ(i+1)≥ c > 0, where c is some positive constant.

Each time we apply the procedure on a node t ∈ V (T) at distance i of the root, we add one child to

t. Hence, (|N
(+)
G [ω(t)]|− |{ω(s) : s child of t in T}|) is decreased by one and this contributes to decreasing

Φ(T,ω,M) by φ(i). However, as “child” of t, we add a subtree S with height at most
⌈

n−1
k

⌉

− i (because it

is refined). Therefore, S may have at most ∆⌈
n−1

k ⌉−i vertices and the contribution of each vertex is at most

∆ ·φ(i+1). This contributes to increasing the global sum Φ(T,ω,M) of at most ∆⌈
n−1

k ⌉−i+1φ(i+1). Since

φ(i)−∆⌈
n−1

k ⌉−i+1φ(i+1)> c, the global sum Φ(T,ω,M) decreases by at least c at each step. Furthermore,

a finite number of transformations is sufficient because for all i, φ(i)−∆⌈
n−1

k ⌉−i+1φ(i+1)≥ c.

The same result holds for the connected variant. Indeed, a (monotone) decision-tree (T,ω,M) corre-

sponds to a connected strategy if and only if for any path (r = t0, · · · , ti) in T , the set ∪0≤ j≤iM(t j) induces

a connected subgraph of G. Starting from a decision-tree that corresponds to a connected strategy, the

transformation of decision-trees described in the proof of previous theorem preserves this property (i.e., the

connectivity of the strategy).

Let mcsn(G,v0) be the smallest k such that there is a winning monotone connected k-strategy in G when

the fugitive starts from v0, i.e., the observer can win, marking at most k vertices at each step such that the

set of marked vertices must always induce a connected subgraph, against a fugitive constrained to follow

induced paths.

Theorem 8. For any (di)graph G and v0 ∈V (G), csn(G,v0) = mcsn(G,v0).

3 Difficult problems

In this section, we study the computational complexity of the decision version of the problem: given a graph

G with v0 ∈V (G) and an integer k, the task is to decide whether sn(G,v0)≤ k. We also consider the variant

of the problem where the fugitive must win in a fixed number of steps. Moreover, for all the G graphs we

consider in our reductions, it happens that sn(G,v0) = csn(G,v0). Hence, our hardness results also apply to

the connected variant of the problem.

We use in Theorem 9 and in Theorem 10, a reduction from the 3-Hitting Set Problem. In the 3-Hitting

Set Problem, we are given a set I of elements, a set S of subsets of size 3 of I and k ∈ N as the input. The

question is to decide whether there exists a set H ⊆ I of size at most k such that H ∩S 6= /0 for all S ∈ S . The

3-Hitting Set Problem is a classical NP-complete problem [GJ90].

We start by proving that deciding whether sn(G,v0) ≤ 2 for a graph G and v0 ∈ V (G) is NP-hard on

chordal graphs. Let us remind that a graph is chordal if it contains no induced cycle of length at least 4.

9

Theorem 9. Deciding if sn(G,v0)≤ 2 (respectively, csn(G,v0)≤ 2) is NP-hard in chordal graphs.

Proof. Let (I = {e1, · · · ,en},S = {S1, · · · ,Sm}) and k ≥ 1 be an instance of the 3-Hitting Set Problem. We

construct the chordal graph G as follows. Let P = {v0, · · · ,vm+k−2} be a path, Km be the complete graph

with vertices {S1, · · · ,Sm} and e1, · · · ,en be n isolated vertices. We add an edge from vm+k−2 to all vertices

of Km, and for each i ≤ n and j ≤ m, add an edge between ei and S j if and only if ei ∈ S j. Clearly, G is

chordal.

First, we show that, if there exists a set H ⊆ I of size k such that H∩S 6= /0 for all S ∈ S , then sn(G,v0)≤
2. The 2-strategy of the observer first consists in marking the vertices v1 to vm+k−2 in order, then the vertices

of Km and finally the vertices of H. This can be done in m+k−1 steps where, at each step, all neighbors of

the current position of the fugitive are marked. Because H is a hitting set of S , after the (m+ k−1)-th step,

each vertex Si, i ≤ m, has at most two unmarked neighbors, all other vertices have all their neighbors marked

and only some vertices in e1, . . . ,en can be unmarked. Finally, from this step, the strategy of the observer

consists in marking the unmarked neighbors of the current position of the fugitive. Clearly, the fugitive

cannot win and the strategy we described is a winning 2-strategy. Note that this strategy is a connected

2-strategy. Hence, sn(G,v0)≤ csn(G,v0)≤ 2.

Now, assume that, for any H ⊆ I of size at most k, there is S ∈ S such that S∩H = /0. We show that

sn(G,v0)> 2 in this case. Assume that the observer can mark up to 2 vertices in each step, and we describe

a winning strategy for the fugitive, which implies that 2 < sn(G,v0) ≤ csn(G,v0). The escape strategy for

the fugitive first consists of going to vm+k−2 (this takes m+k−2 steps). Then, we may assume that after the

(m+k−1)-th step of the observer, all vertices of P and Km are marked—otherwise the fugitive either would

have won earlier, or can win by going to an unmarked vertex in Km in its next move. This means that at

most k of e1, · · · ,en has been marked up to this step. Let H denote the set of these vertices. Hence, when it

is the turn of the fugitive who is occupying vertex vm+k−2, there is Si ∈V (Km) with H ∩Si = /0, i.e., all three

neighbors of Si are unmarked. Then, the fugitive goes to Si. The observer marks at most 2 of the neighbors

of Si, and the fugitive can reach an unmarked vertex. Hence, sn(G,v0)> 2.

We prove that the problem of deciding whether sn(G,v0) ≤ k is is NP-hard on split graphs. Let us

remind that a graph is a split graph if the vertices can be partitioned into a clique and an independent set.

Furthermore, we prove that this NP-hardness result also holds if the number of steps is constrained to be at

most 2.

Let ℓ≥ 1. We define a restriction of the game where the fugitive wins if it reaches an unmarked vertex in

at most ℓ steps. Let sn(G,v0, ℓ) (respectively, csn(G,v0, ℓ)) be the smallest k such that there is a (connected)

winning k-strategy in G against a fugitive starting from v0 in this setting.

Theorem 10. The problems of deciding whether sn(G,v0) ≤ k, or csn(G,v0) ≤ k, or sn(G,v0,2) ≤ k, or

csn(G,v0,2)≤ k are NP-hard in split graphs with k as part of the input.

Proof. Again, we reduce the 3-Hitting Set Problem to this problem. Let (I = {x1, · · · ,xn},S = {S1, · · · ,Sm})
and k ≥ 1 be an instance of the 3-Hitting Set Problem.

Let us build the split graph G described in Figure 1. Let Km+1 be the complete graph with vertices

{v0,S1, · · · ,Sm} and let {x1, · · · ,xn} be n isolated vertices. For all 1 ≤ i ≤ m, add m+k−2 extra nodes, each

of degree 1, adjacent to Si and for all 1 ≤ j ≤ n add an edge between x j and Si if x j ∈ Si. Note that, in this

graph, there are no induced paths starting from v0 and with more than two edges. Hence, by Theorems 7

and 8, sn(G,v0) = sn(G,v0,2) and csn(G,v0) = csn(G,v0,2).
As in the proof of Theorem 9, we prove that sn(G,v0) ≤ k+m (and csn(G,v0) ≤ k+m) if and only if

(I = {x1, · · · ,xn},S = {S1, · · · ,Sm}) admits a hitting set of size at most k.

10

L(i)

L(1)

Si

S1

x j

Sm

x1

L(m)

v0

S I

xn

Figure 1: Example of graph G in the reduction of the proof of Theorem 10. L(j), j ≤ m, represents the set

of m+ k−2 leaves adjacent to S j.

Indeed, if there is a hitting set H of size k, then the observer, allowed to mark k+m vertices per step,

first marks all vertices of Km+1 (except v0 that is already marked) and all vertices of H. At the second step,

the observer marks the unmarked neighbors of the current position of the fugitive.

Conversely, assume that S admits no hitting set of size at most k and let us assume that the observer can

mark at most m+ k vertices. The first move of the fugitive is to go toward a vertex S j (1 ≤ j ≤ m) with

at least m+ k+ 1 unmarked neighbors. Then, the fugitive wins after its second move. This concludes the

proof.

Next, we show that the problem of deciding whether sn(G,v0)≤ 4 is PSPACE-complete in DAGs. In the

following, we reduce the 3-QSAT problem to our problem. For a set of boolean variables x0,y0,x1,y1, · · · ,xn,yn

and a boolean formula F =C1 ∧ ·· ·∧Cm, (C j is a 3-clause), the 3-QSAT problem aims at deciding whether

the expression Φ = ∀x0∃y0∀x1∃y1 · · ·∀xn∃ynF is true. 3-QSAT is PSPACE-complete [GJ90].

Lemma 11. The problem of deciding whether sn(G,v0)≤ 4 (respectively, csn(G,v0)≤ 4) is PSPACE-hard

in DAGs.

Proof. Let F =C1 ∧·· ·∧Cm be a boolean formula with x0,y0,x1,y1, · · · ,xn,yn as variables and

Φ = ∀x0∃y0∀x1∃y1 · · ·∀xn∃ynF

be an instance of the 3-QSAT Problem. Let D be the DAG built as follows.

We start with the set of vertices {ui,vi,x
′
i, x̄

′
i,xi, x̄i,y

′
i, ȳ

′
i,yi, ȳi}0≤i≤n. For all 0 ≤ i ≤ n, there are arcs from

vi to x′i and x̄′i, one arc from x′i to xi and one arc from x̄′i to x̄i. For all 0 ≤ i ≤ n, there are arcs from x′i and

x̄′i to ui, arcs from ui to both y′i and ȳ′i and arcs from both of y′i and ȳ′i to both of yi and ȳi. Then, for all

0 ≤ i < n, there is one arc from ui to vi+1. Add the directed path (w1, · · · ,wm−1) with one arc from un to

w1 and such that wm−1 has m out-neighbors C1, · · · ,Cm. For all j ≤ m and 0 ≤ i ≤ n, add one arc from C j

11

2

2 2 2

2

2

2
2

3 3 3 3 3 3 3

2

C1

C2

Cm

2

2 2

2

2

22

2

2

2

2

2

2

3

u0 u1 u2

un−1

vn

un

v1 v2 v3v0

C j = (ȳ0 ∨ x2 ∨ x̄n)

x′1x′0 x′2

wm−1

w1

wm−2

w2

x0 x1 x2 xn

x′n

x̄0

x̄′0

x̄n

x̄′2 x̄′n

x̄1 x̄2

x̄′1

ȳ0 ȳ1 ȳ2 ȳn

ȳ′1 ȳ′2 ȳ′nȳ′0

y0

y′2

yny1 y2

y′0 y′ny′1

Figure 2: Example of the reduction in the proof of Lemma 11. A black node labeled with integer i and that

is the out-neighbor of a vertex v, corresponds to i leaves that are in N+(v).

to xi (respectively, x̄i,yi, ȳi) if xi (respectively, x̄i,yi, ȳi) appears in the clause C j. Finally, for all 0 ≤ i ≤ n,

k ≤ m−1, j ≤ m add two out-neighbors leaves to each vertex in {vi,x
′
i, x̄

′
i,wk,C j}, and, for all 0 ≤ i ≤ n, add

three out-neighbors leaves to each of y′i and ȳ′i. An example of such DAG D is depicted in Figure 2.

Since v0 has out-degree 4, csn(D,v0)≥ sn(D,v0)≥ 4 and the first step of the observer, endowed with 4

marks, is to mark all four out-neighbors of v0 (the two leaves and x′0 and x̄′0). We now show that sn(D,v0) = 4

(and csn(D,v0) = 4) if and only if Φ is true.

Intuitively, during the game, the fugitive chooses the xi’s arbitrarily, and the observer chooses the yi’s

accordingly. The fugitive chooses each xi by entering it, and the observer chooses each yi by marking it.

More precisely, the fugitive will have to follow a path from v0 to w1 because otherwise, we prove that it loses.

During this walk, the fugitive chooses the xi’s arbitrarily: at each step it occupies some node vi (0 ≤ i ≤ n),

it may go to x′i which will force the observer to mark xi ∈ N(x′i), or the fugitive may go to x̄′i and then x̄i must

be marked. Moreover, our construction ensures that the observer can mark only one of xi and x̄i. On the

other hand, our construction ensures that, when the fugitive arrives at some node ui (0 ≤ i ≤ n), the observer

can freely choose to mark either yi or ȳi. In particular, this choice of the observer depends on the previous

choices of the fugitive and of the observer. We show that, if the observer can ensure that its choices satisfy

Φ then it wins, and the fugitive wins otherwise.

We first prove that the fugitive has to follow an induced path from v0 to w1 and that, when it arrives

there, some property (see Claim 12) is satisfied. This property will allow us to prove the lemma.

Claim 12. After the 3(n+1)th move of the fugitive,

1. the fugitive occupies vertex w1 after having followed the directed path

P = (v0,a
′
0,u0,v1,a

′
1,u1, · · · ,vn,a

′
n,un,w1), where a′j ∈ {x′j, x̄

′
j} for all 0 ≤ j ≤ n, and

2. at this step, the set of vertices marked consists of all the vertices of P and the out-neighbors of the

vertices in P but N+(w1), plus, for all j ≤ n, exactly one of y j and ȳ j, and

3. for all j ≤ n, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not

on the path followed by the fugitive).

12

Proof. First, we will prove by induction on i that, after the (3i+ 1)th step of the observer, some property

Pi is satisfied, for all 0 ≤ i < n. Then, assuming that Pn−1 is satisfied after the (3(n− 1)+ 1)th step of the

observer, we can prove the claim using the same arguments as in the induction.

For all 0 ≤ i < n, we say that Property Pi is satisfied if, after the (3i+1)th step of the observer:

1. the fugitive occupies vertex vi after having followed the directed path

P = (v0,a
′
0,u0,v1,a

′
1,u1, · · · ,vi−1,a

′
i−1,ui−1,vi), where a′j ∈ {x′j, x̄

′
j} for all 0 ≤ j < i, and

2. at this step, the set of vertices marked consists of all the vertices in P and the out-neighbors of the

vertices in P plus, for all j < i, exactly one of y j or ȳ j, and

3. for all j < i, the choice of which vertex has been marked in {y j, ȳ j} depends only on the observer (not

on the path followed by the fugitive).

All these assumptions are satisfied for i = 0: P0 holds true. Now, let us assume that Pi holds for some

0 ≤ i ≤ n. We show that: Pi+1 holds if i < n, and that the claim holds if i = n.

Consider the game just after the (3i+ 1)th step of the observer. Note that, by the induction hypothesis

(Pi holds), the four out-neighbors of vi (two of which are leaves) are marked. Since it is useless for the

fugitive to remain at vi (Theorem 7), then it goes to a′i ∈ {x′i, x̄
′
i}. Node a′i has four out-neighbors that are,

by the induction hypothesis, unmarked. Hence, the observer must mark these four vertices. In particular, if

a′i = x′i (respectively, if a′i = x̄′i) then the observer marks ai = xi (respectively, ai = x̄i) while x̄i (respectively,

xi) remains unmarked. Then, the fugitive must go to ui since the other three out-neighbors of a′i have no

out-neighbors.

Since ui has three out-neighbors (y′i, ȳ
′
i and vi+1), the observer must mark these three vertices. Moreover,

assume that the fourth vertex marked by the observer at this step is neither yi nor ȳi: then the fugitive goes

to the vertex in {y′i, ȳ
′
i} with still its five out-neighbors unmarked, and then the fugitive will win at the next

step. Hence, the observer must mark bi that is either yi or ȳi. It is important to note that the choice of which

of these two vertices is marked is completely free for the observer. After this step of the observer, both y′i
and ȳ′i have four unmarked out-neighbors and all the five out-neighbors of y′i and ȳ′i have no out-neighbors

themselves. Hence, the fugitive would lose if it went to y′i or ȳ′i. Hence, the fugitive must go to vi+1 (where

vn+1 is set to be w1).

If i < n, then vi+1 has exactly four out-neighbors that must be marked by the observer, and then the

induction hypothesis is satisfied for i+1. If i = n, then vi+1 = w1 and the claim holds.

Let X be the set of vertices consisting of {w2, · · · ,wm−1,C1, · · · ,Cm} plus the 2(m− 1) leaves adjacent

to w1, · · · ,wm−1. Let Y be the set of vertices consisting of {x0, x̄0,y0, ȳ0, · · · ,xn, x̄n,yn, ȳn} plus the 2m leaves

adjacent to the C j’s.

By Claim 12, after the 3(n+ 1)th move of the fugitive, no vertices in X are marked. Moreover, the set

of marked vertices in Y is {a0,b0, · · · ,an,bn}, where, for all i ≤ n, ai ∈ {xi, x̄i} has been imposed by the

fugitive and bi ∈ {yi, ȳi} has been chosen by the observer. In particular, if Φ is true, the observer can choose

the bi’s such that F(a0,b0, · · · ,an,bn) is true whatever be the choices of the fugitive. On the other hand, if

Φ is false, the fugitive can choose the ai’s such that F(a0,b0, · · · ,an,bn) is false whatever be the choices of

the observer.

Now, from the (3n+ 1)th step of the observer to the end of its (3n+m)th step, the observer can mark

at most 4(m− 1) = |X | vertices. Moreover, between these steps, the fugitive must follow the path Q =
(w1, · · · ,wm−1) (all other vertices the fugitive can access having no out-neighbors). Hence, the only choice

for the observer is to successively mark all vertices in X otherwise, at some step along the path Q or just

13

after the (3n+m)th step of the observer, the fugitive could have reached an unmarked vertex. Note that the

marking process can be done in a connected way.

Finally, after the (3n+m)th step of the observer, the fugitive stands on wm−1, all vertices in {C1, · · · ,Cm}
are marked while the set of marked vertices in Y is {a0;b0, · · · ,an,bn}. Now, if Φ is false, by the choice

of the ai’s by the fugitive, there is a clause C j with its five out-neighbors unmarked: the fugitive goes to C j

and will win at the next step. On the other hand, if Φ is true, by the choice of the bi’s by the observer, all

C j’s have at most four unmarked out-neighbors. Whatever be the next moves of the fugitive, it will reach a

marked vertex without out-neighbors.

This concludes the proof of Lemma 11.

Lemma 13. For every k ≥ 1, the problem of deciding whether sn(G,v0) ≤ k (respectively, csn(G,v0) ≤ k)

is in PSPACE.

Proof. The proof is similar as that of Lemma 4 in [FGL10], so we do not go into the details. Let n be the

number of vertices in graph G. Every game lasts at most n rounds. At each round, the configuration (M, f)
can be encoded within polynomial space. This means that the problem is in NPSPACE (nondeterministic

polynomial space) — a nondeterministic Turing machine deciding the problem uses polynomial space on

every branch of its computation. By Savitch’s theorem [Sav70], the problem is in PSPACE.

Theorem 14. The problem of deciding whether sn(G,v0)≤ 4 is PSPACE-complete in DAGs.

An interesting question is to determine if the problem remains PSPACE-hard in undirected graphs.

In comparison, Mamino recently proved that the cops and robber game is PSPACE-hard in undirected

graphs [?].

The following theorem provides an exponential algorithm for computing sn(G,v0) (respectively, csn(G,v0)).
Here, we use a modified big-Oh notation that suppresses all polynomially bounded factors. For functions f

and g we write f (n) = O∗(g(n)) if f (n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Theorem 15. Given an n-node graph and a node v0 ∈ V (G), sn(G,v0) (respectively, csn(G,v0)) can be

computed in time O∗(4n).

Proof. For each k ≥ 1, we decide if sn(G,v0) ≤ k. We consider the arena digraph G whose vertices are

configurations of the game, i.e., the pairs (M, f), where v0, f ∈ M ⊆ V (G), N[f] ⊆ M and |M \ {v0}| = ki

for some i > 0 (or M = V (G)). Moreover, there is an arc from (M, f) to (M′, f ′) if f ′ ∈ N(f) and M ⊂ M′

and |M′|= |M|+k (or |V (G)\M| ≤ k and M′ =V (G)). Note that G is a DAG (because of M ⊂ M′) and that

|V (G)| ≤ 2nn (since there are at most 2n choices for M and n choices for f). Hence, the amount of arcs in

G is O∗(4n).
We consider the following labeling process. Initially, all configurations (V (G),v), for all v ∈V (G), are

labeled with
⌈

n−1
k

⌉

, and all other configurations are labeled with ∞. Iteratively, a configuration (M, f) with

|M| = ki+ 1 is labeled i if, for all f ′ ∈ NG(f), then f ′ ∈ M and there is an out-neighbor (M′, f ′) of (M, f)
and that is labeled at most i+1. We show that sn(G,v0) ≤ k if and only if there is a configuration (M,v0),
|M|= k+1, labeled with 1.

We first show by induction on i, that the observer can win starting from any configuration labeled with
⌈

n−1
k

⌉

− i. If i = 0, the result holds trivially. Assume that the result holds for some i, 0 < i <
⌈

n−1
k

⌉

− 1.

Let (M, f) be a configuration labeled with
⌈

n−1
k

⌉

− (i+1). For any f ′ ∈ N(f), by definition of the labeling

process, there is a configuration (M′, f ′) out-neighbor of (M, f) and labeled with
⌈

n−1
k

⌉

− i. If the fugitive

goes from f to f ′, then the observer marks the vertices in M′ \M and the game reaches the configuration

(M′, f ′). Hence, by the induction hypothesis, the observer wins. So, applying the result for i =
⌈

n−1
k

⌉

− 1,

14

the observer wins starting from any configuration (M,v0), |M|= k+1, labeled 1. To reach this configuration,

the first step of the observer is to mark the k vertices in M \{v0}. Therefore, sn(G,v0)≤ k.

Now assume that sn(G,v0) ≤ k. Let σ be a winning k-strategy for the observer. For any walk W =
(v0,v1, · · · ,vi) followed by the fugitive, let M(W) be the set of vertices marked by the observer (using σ)

after the fugitive has followed W until vi and when it is the turn of the fugitive. By reverse induction on i,

the labeling process labels (M(W),vi) with i+1. This shows that ({v0}∪σ({v0},v0),v0) is labeled with 1.

For each k, the algorithm runs in time proportional to the size of G (number of arcs). Thus the total

running time of the algorithm is O∗(4n) since at most n values of k must be tested.

To obtain the same result with csn(G,v0), it is sufficient to modify the definition of a configuration

(M, f) by imposing that M must induce a connected subgraph.

4 Polynomial-time algorithms in some graph classes

In this section, we describe polynomial-time algorithms to compute the surveillance number of trees and

interval graphs. Moreover, in both these classes of graphs, we show that connectedness does not cost, in the

sense that the surveillance number equals the connected surveillance number.

4.1 Keeping a tree under surveillance

We first present a polynomial-time algorithm to compute sn(T,v0) = csn(T,v0) for any tree T = (V,E) and

any v0 ∈ V . For convenience but without loss of generality, we will say that T is rooted at v0. Recall that

the height of T is the maximum length (number of edges) of a path between the root v0 and a leaf of T . Let

k0 ≥ 0.

In the following, we will use a generalization of the original game, in which v0 plus at most k0 other

vertices chosen by the observer are initially marked. Said differently, during its first move in the game, the

observer may mark k+ k0 vertices. Let k ≥ 0. We define the function fk : V (T) → N in the following

recursive way:

• fk(v) = 0 for any leaf v of T ;

• for any v ∈V (T) with d children, fk(v) = max{0,d +∑w∈C fk(w)− k}, where C is the set of children

of v.

Lemma 16. Let T be a tree rooted at v0. Then fk(v0) = 0 if, and only if, sn(T,v0) ≤ k, and if, and only if,

csn(T,v0)≤ k.

Proof. We prove by induction on the height of T that the observer cannot win the game by marking at most k

vertices per step, even if any set of at most fk(v0)−1 vertices in V (T)\{v0} are initially marked. Moreover,

we prove that the observer can win in a connected way, marking at most k vertices per step, if some set of at

most fk(v0) vertices (chosen by the observer) plus v0 are initially marked.

The result holds if T is reduced to one vertex. So we may assume that T has height at least 1.

If T has height 1 and v0 has degree d, then fk(v0) = max{0,d−k} and the result holds. Indeed, if v0 and

fk(v0) other vertices are initially marked, then during its first step, the observer marks all remaining vertices

(their number is at most k) and wins. Such a strategy is clearly connected. On the other hand, if v0 and at

most fk(v0)− 1 vertices are marked, then after the first step of the observer (when he has marked k other

vertices), at least one neighbor of v0 is still unmarked. The fugitive can go there and wins.

15

Now, assume that the result holds for any tree of height at most h ≥ 1. Let T be rooted at v0 and be of

height h+1. We show that the result holds for T .

Let (v1, · · · ,vr) be the children of v0 and let Ti be the subtree of T rooted at vi, 1≤ i≤ r. By the induction

hypothesis, for all 1 ≤ i ≤ r, there is a set Ii ⊆ V (Ti) \ {vi} of fk(vi) vertices such that Ii ∪{vi} induces a

subtree of Ti and, if the vertices of Ii and vi are initially marked in Ti, then the observer can win in Ti starting

from vi, marking at most k vertices per step, and in a connected way. On the contrary, if strictly less than

fk(vi) vertices are initially marked in V (Ti) \ {vi}, then the fugitive wins in Ti against an observer marking

at most k vertices per step.

We describe a connected k-strategy that allows the observer to win in T when it can mark fk(v0) extra

vertices during its first step. First, the observer marks all nodes in J = (N[v0]∪ (
⋃

1≤i≤r Ii))\{v0}. The set

J ∪{v0} induces a connected subtree of T and it is possible since |J| ≤ fk(v0)+ k. Then the fugitive moves

to some child vi (1 ≤ i ≤ r) of v0. Since the vertices of Ii and vi are already marked, the observer will win in

Ti in a connected way.

On the contrary, if strictly less than fk(v0) vertices can be marked initially in V (T)\{v0}, then there is

at least one child vi (1 ≤ i ≤ r) such that either vi is not marked after the first step of the observer, or at most

fk(vi)− 1 vertices in V (Ti) \ {vi} are marked after the first step of the observer. In both cases, the fugitive

will win in Ti.

Theorem 17. For any tree T and any v0, the value of sn(T,v0) = csn(T,v0) can be computed in time

O(n · logn).

Proof. By definition of the connected variant of the surveillance game, we have csn(T,v0)≥ sn(T,v0). The

strategy for the observer described in the proof of Lemma 16 is connected. Thus sn(T,v0) = csn(T,v0) =
min{k : fk(v0) = 0}. Note that, v being fixed, fk(v) is a decreasing function of k. The result comes from the

fact that fk(v0) can be computed in linear time and so, the minimum k such that fk(v0) = 0 can be searched

using dichotomy.

We now give a combinatorial characterization of sn(T,v0) for any tree T rooted at v0.

Lemma 18. For any tree T , for any v0 ∈V (T), and for any k < sn(T,v0), there is a set of vertices S ⊆V (T)

inducing a subtree of T containing v0 and such that
⌈

|N[S]|−1

|S|

⌉

> k.

Proof. Let k < sn(T,v0). By Lemma 16, fk(v0)> 0. Let S be the inclusion-maximal subtree of T containing

v0 and such that fk(v) > 0 for all vertices v in S. We show by induction on the height of S that fk(v0) =
|N[S]|− 1− k|S|. If S = {v0} and v0 has degree d, then fk(v0) = d − k = |N[S]|− 1− k|S| > 0 because for

any child v of v0, fk(v) = 0.

Assume that the result holds for any subtree of height at most h and assume that S has height h+ 1.

Let d be the degree of v0 and let v1, · · · ,vr, 1 ≤ r ≤ d, be the children of v0 with fk(vi) > 0. Let Si be the

subtree of S rooted at vi, 1 ≤ i ≤ r, and let N[Si] be the vertices of Si or in the neighborhood of Si in the

subtree of T rooted at vi. By the induction hypothesis, fk(vi) = |N[Si]| − 1− k|Si| for all 1 ≤ i ≤ r. Now,

fk(v0) = d − k+∑1≤i≤r fk(vi) = d − k+∑1≤i≤r(|N[Si]| − 1− k|Si|) = d − k+(|N[S]| − 1− (d − r))− r−
k(|S|−1) = |N[S]|−1− k|S|.

Lemma 19. For any tree T , for any v0 ∈V (T), for any k ≥ sn(T,v0), for any S ⊆V (T) inducing a subtree

of T containing v0, we have
⌈

|N[S]|−1

|S|

⌉

≤ k.

16

Proof. We consider the following game. Initially, an unbounded number of fugitives are in v0 which is

initially marked. Then, at most k vertices of T \ {v0} are marked. At each turn, each fugitive can move

along an edge of the tree, and then, for each vertex v that is reached for the first time by a fugitive, at most

k vertices can be marked in Tv the subtree of T rooted at v. The fugitives win if at least one fugitive reaches

an unmarked vertex. They lose otherwise.

We first show that if k ≥ sn(T,v0) then the fugitives lose in this game. Assume that k ≥ sn(T,v0). Then

there is a winning k-strategy σ for the “normal” surveillance game in T starting from v0. Recall that by

Theorem 7, we can restrict the fugitive to follow an induced path. Since for any t ∈V (T), there is a unique

induced path from v0 to t, σ can be defined uniquely by the position of the fugitive. That is, in the case of

trees, we can define a k-strategy as a function that assigns a subset σ(t) ⊆ V (Tt) (of size at most k) to any

vertex t ∈ V (T). Now, in the game with several fugitives, we consider the following strategy: each time a

vertex t is reached for the first time by a fugitive, we mark the vertices in σ(t). The fugitives cannot win

against such a strategy.

Finally, we show that if there is a subtree S containing v0 such that
⌈

|N[S]|−1

|S|

⌉

> k, then the fugitives win

the new game. Indeed, the fugitives first occupy all vertices of S. At this step, at most k · |S|+ 1 vertices

have been marked (because S is connected and v0 is marked and for each vertex in S at most k vertices in

V (T)\{v0} are marked). Since |N[S]|> k · |S|+1, at least one unmarked vertex in N[S] will be reached by

some fugitive during the next step.

Hence, sn(T,v0)≥ max
⌈

|N[S]|−1

|S|

⌉

, where the maximum is taken over all S ⊆V (T) inducing a subtree of

T containing v0.

Theorem 20. For any graph G and v0 ∈ V (G), we have sn(G,v0) ≥ max
⌈

|N[S]|−1

|S|

⌉

, where the maximum

is taken over all subsets S ⊆ V (G) inducing a connected subgraph of G containing v0. Moreover, there is

equality in the case of trees.

Proof. Let S ⊆ V (G) that induces a connected subgraph containing v0. Let TS be a spanning tree of G[S]
rooted at v0 and let T be a spanning tree of G having TS as a subtree. Clearly, sn(G,v0) ≥ sn(T,v0). By

Lemma 19, sn(T,v0) ≥
⌈

|N[S]|−1

|S|

⌉

. Hence, sn(G,v0) ≥ max
⌈

|N[S]|−1

|S|

⌉

, the maximum being taken over all

S ⊆V (G) inducing a connected subgraph of G containing v0.

In the case of trees, the equality follows from Lemma 18.

4.2 Keeping interval graphs under surveillance

We recall that an interval graph G is the intersection graph of a set of real intervals. This set of real intervals

is a realization of G. In this section, we give a polynomial-time algorithm for computing the surveillance

number in interval graphs. Moreover, we show that surveillance numbers for the connected variant and the

unrestricted variant are equal in this class of graphs. It is important to recall that, by Theorems 7 and 8, we

do not help the observer when forcing the fugitive to move at each step and to follow induced paths (in both

variants). Hence, in this section, we assume that the fugitive obeys these restrictions.

Let G be a connected interval graph and v0 ∈V (G). We consider any realization I of G such that, no two

intervals have a common end (such a realization always exists). Let us say that v ≺L w if the left (smallest)

end of (the interval of) v is smaller than the left end of w, and v ≻R w if the right (largest) end of v is larger

than the right end of w.

We partition V (G) into several subsets. Let C be the subset of vertices the interval of which contains the

interval of v0. Note that v0 ∈ C ⊆ N[v0] and that C induces a clique. Since G is an interval graph, V \N[v0]

17

induces a subgraph H the connected components of which are interval graphs. Let L be the vertices of the

components of H with their interval more to the left than the interval of v0, i.e., the largest end of an interval

in L is strictly smaller than the smallest end of the interval of v0. Similarly, let R be the vertices of the

components of H with their interval more to the right than the interval of v0. Note that R and L are disjoint

and are separated by N[v0] because G is an interval graph: no interval can be both more to the left and more

to the right than the interval of v0. Let CL be the vertices in N(v0)\C with neighbors in L and let CR be the

vertices in N(v0) \C with neighbors in R . Finally, let C ′ = V (G) \ (L ∪CL ∪C ∪CR ∪R). Note that, for

any v ∈ C ′, v0 ∈ N(v)⊆ N[v0].

Claim 21. (L ,CL,C ,C ′,CR,R) is a partition of V (G).

Proof. Since, N[v0] = C ∪C ′ ∪CR ∪CL, (L ,CL,C ,C ′,CR,R) covers V (G). It only remains to prove that

CR ∩CL = /0. Indeed, if v ∈ CR ∩CL, then v must be adjacent to a vertex in L and to a vertex in R . However,

it means that the interval of v contains the one of v0 and v ∈ C , a contradiction.

Recall that the fugitive is forced to follow an induced path. We now describe the structure of induced

paths in G. Roughly, the next lemma says that once the fugitive has chosen a “side” (left or right) it has to

remain on this side, and the choice occurs after one or two moves. Moreover, once the fugitive has chosen a

side, it must go “further” into this side or it should stop.

Lemma 22. Let P = (v0,v1, · · · ,vp) be an induced path starting from v0 in any connected interval graph G.

Let L ,CL,C ,C ′,CR,R be defined as above. Then, there are three possible cases:

1. Either v1 ∈ C ′ and then p = 1;

2. Either v2 ∈ L , and

• for all i > 1, vi ∈ L and v1 ∈ CL ∪C ;

• for all 0 < i < p−1, vi+1 ≺L vi;

• if vp−1 ≺L vp then N(vp)⊆ N(vp−1).

3. Or v2 ∈ R , and

• for all i > 1, vi ∈ R and v1 ∈ CR ∪C ;

• for all 0 < i < p−1, vi+1 ≻R vi;

• if vp−1 ≻R vp then N(vp)⊆ N(vp−1).

Proof. Clearly, v2 cannot be in N[v0] = C ∪ C ′ ∪ CR ∪ CL because P is induced. Hence, v2 ∈ R ∪L . If

v1 ∈ C ′, then all neighbors of v1 are in N[v0] and thus p = 1. Let us assume that v2 ∈ L . The case v2 ∈ R
can be delt with similarly.

By the previous remark, v2 cannot be adjacent to a vertex in CR∪C ′. Hence, v1 ∈ CL∪C = N[v0]\ (CR∪
C ′). Moreover, for all i > 1, vi /∈ N[v0] because P is induced. Since N[v0] separates R and L , and since

v2 ∈ L , for all i > 1, vi ∈ L .

Let us assume that vi ≺L vi+1 for some 0 < i < p such that i is minimum with this property. We show

that i = p−1 and N(vp)\∪ j<pN(v j) = /0.

We first consider the case when the interval of vi does not contain the interval of vi+1. Since vi ≺L vi+1,

we get that vi+1 ≻R vi. Since P is induced, vi+1 /∈ N(vi−1). This implies, since vi ∈ N(vi−1), that vi ≻R vi−1.

Since, by minimality of i, vi ≺L vi−1, the interval of vi−1 must be contained in the interval of vi. Therefore,

18

if i > 1, then N(vi−1) ⊆ N(vi), which contradicts vi−2 ∈ N(vi−1) \N(vi). Then i = 1 and the interval of

vi−1 = v0 is strictly more to the left than the interval of vi+1 = v2 which contradicts the fact that v2 ∈ L .

Therefore, the interval of vi+1 must be contained into the interval of vi. Then N(vi+1) ⊆ N(vi) ⊆
∪ j≤iN(v j). If i < p−1, then vi+2 ∈ N(vi+1)∩N(vi) contradicting the fact that P is induced. Hence i = p−1,

and we get N(vp)\∪ j<pN(v j) = /0.

The next lemma shows that, in interval graphs, we can define few particular induced paths that “domi-

nate” all paths. That is, if the observer is able to win when the fugitive is constrained to follow one of these

particular paths, then the observer always wins.

Let vL ∈ CL be smallest vertex of CL according to ≺L, i.e., vL ≺L w for every w ∈ CL \ {vL}. For any

v1 ∈ C ∪{vL}, let us define PL(v1) as the longest induced path (v0,v1,v2, · · · ,vp) such that, for all i ≥ 1, vi+1

is the smallest vertex of N(vi) according to ≺L, i.e., vi+1 ≺L w for every w ∈ N(vi). Intuitively, except for

the first move, we choose as next vertex the neighbor with leftmost left end.

Symmetrically, let vR ∈ CR be the largest vertex of CR according to ≻R, i.e., vR ≻R w for any w ∈
CR \ {vR}. For any v1 ∈ C ∪{vR}, let us define PR(v1) as the longest induced path (v0,v1,v2, · · · ,vp) such

that, for all i ≥ 1, vi+1 is the largest vertex of N(vi) according to ≻R, i.e., vi+1 ≻R w for every w ∈ N(vi).
Except for the first move, we choose as next vertex the neighbor with rightmost right end.

Finally, for any path P = (v0, · · · ,vp) and for all i ≤ p, let Pi = N[{v0, · · · ,vi}] the set of the vertices that

are in {v0, · · · ,vi} or that have a neighbor in {v0, · · · ,vi}.

Lemma 23. Let G be a connected interval graph, let P = (v0, · · · ,vp) be an induced path starting from v0

with p > 1, and let Q be the path defined as follows:

• Q = PL(vL) if v1 ∈ CL;

• Q = PR(vR) if v1 ∈ CR;

• Q = PL(v1) if v1 ∈ C and v2 ∈ L , and

• Q = PR(v1) if v1 ∈ C and v2 ∈ R .

For all i ≤ p, we have Pi ⊆ Qi′ , where i′ = min{i, |Q|−1}.

Proof. By Lemma 22, P must satisfy one of the four cases.

Let us first assume that v1 ∈ CL, and let Q = PL(vL) = (v0,vL,q2,q3, · · · ,qp′). By Lemma 22, vi ∈ L for

all i ≥ 2. Hence, since no vertices of L ∪CL have a neighbor in R , we have N[P]⊆ L ∪N[v0].
Similarly, N[Q] ⊆ L ∪N[v0]. We show that N[Q] = L ∪N[v0]. Clearly, N[v0] ⊆ N[Q]. Let v ∈ L \Q.

Note that L ∪ N[v0] is connected and let R = (v0,a1,a2, · · · ,ai,v) (i ≥ 1) be a shortest path from v0 to

v. Since, v ∈ L and R is a shortest path, we get ai ≺L ai−1 ≺L · · · ≺L a1 ≺L v0. Furthermore, either

v ≺L ai or ai contains v. By induction on j ≤ i, we show that (v0,vL,q2, · · · ,q j,a j+1, · · · ,ai,v) is a shortest

path from v0 to v and therefore v ∈ N[Q]. Since vL is the smallest neighbor of v0 according to ≺L, then

a2 ∈ N[vL] (or v ∈ N[vL] if i = 1) and then (v0,vL,a2, · · · ,ai,v) is a shortest path from v0 to v. Assume that

(v0,vL,q2, · · · ,q j,a j+1, · · · ,ai,v) is a shortest path from v0 to v for some j < i. Then, j < p′ because other-

wise, Q would not be a maximal induced path. Moreover, since q j+1 is the smallest neighbor of q j according

to ≺L, then a j+2 ∈ N[q j+1] (or v ∈ N[q j+1] if j = i−1) and then (v0,vL,q2, · · · ,q j,q j+1,a j+2, · · · ,ai,v) is a

shortest path from v0 to v. Hence, L ∪N[v0]⊆ N[Q] and so N[Q] = L ∪N[v0].
Therefore, for all i ≥ p′ = |Q|−1, Pi ⊆ L ∪N[v0] = N[Q] = Qp′ .

Now, we show by induction on i < p′ that Pi ⊆ Qi. Since P0 = Q0 = N[v0], the result holds for i = 0. Let

0 ≤ i < p′−1 and assume that Pi ⊆ Qi. Let v ∈ Pi+1 \Pi. Then, (v0,v1, · · · ,vi+1,v) is an induced path from

19

v0 to v. As above, we show that (v0,vL,q2, · · · ,qi+1,v) is an induced path from v0 to v. Therefore, v ∈ Qi+1

and the result holds.

The case v1 ∈ CR can be handled similarly by symmetry.

Now, if v1 ∈ C and v2 ∈ L , we can prove in a similar way that N[P]⊆ L ∪N[v1] = N[PL(v1)]. Hence, for

all i ≥ p′ = |PL(v1)|−1, Pi ⊆ L ∪N[v0] = N[PL(v1)] = Qp′ . Moreover, a similar induction on i < p′ allows

to prove that Pi ⊆ Qi. The case v1 ∈ C and v2 ∈ R is symmetric.

The previous two lemmas roughly say that the fugitive can only choose five kinds of induced paths: the

ones with second vertex in C ′ (such induced paths have only one edge), the ones with second vertex in CL

and going through L , those with second vertex in CR and going through R , and the paths with second vertex

x ∈ C and then either going through L or through R . Moreover, once the observer knows which kind of path

has been chosen, it is sufficient for it to protect one particular path. However, during the first step (before the

first move of the fugitive), the first set S0 of marked vertices must be chosen by the observer independently

of what the fugitive will choose. Similarly, if the fugitive first goes to x ∈ C , the observer cannot guess yet

on which side the fugitive will flee. Hence, the set Sx of marked vertices during the second step (before the

second move of the fugitive) must be independent of the next choice of the fugitive (Sx may only depend on

x). The next theorem formalizes these ideas.

Now, we order the vertices of V (G) in the following way. The vertices in N[v0] are ordered arbitrarily,

any vertex in L is smaller than a vertex in N[v0] and any vertex in R is larger than the vertices in N[v0].
Finally, vertices in L are ordered according to ≻R, i.e., for any v,w ∈ L , v < w if, and only if, w ≻R v.

Symmetrically, vertices in R are ordered according to ≺L. We say that a set S ⊆ V (G) is contiguous if for

any a,b ∈ S and a < w < b, then w ∈ S. Note that a contiguous subset including N[v0] of a connected interval

graph induces a connected subgraph.

Theorem 24. Let G be an interval graph and v0 ∈V (G). Let k be the smallest integer such that:

• there exists S0 ⊆V (G) with N[v0]⊆ S0, |S0 \{v0}| ≤ k, and

• for all i > 0, |Pi
L(vL)\S0| ≤ i · k and |Pi

R(vR)\S0| ≤ i · k, and

• for any x ∈ C \{v0}, there is Sx ⊆V (G)\S0 with N[v0]∪N[x]⊆ S0 ∪Sx and |Sx| ≤ k, and

• for all i > 1 and any x ∈ C \{v0}, |Pi
L(x)\ (S0 ∪Sx)| ≤ (i−1) · k and |Pi

R(x)\ (S0 ∪Sx)| ≤ (i−1) · k.

Then, sn(G,v0) = csn(G,v0) = k. Moreover, S0 can be chosen contiguous and the sets Sx can be chosen such

that S0 ∪Sx is contiguous for any x ∈ C (without increasing k).

Proof. Let k be the smallest integer defined as in the statement of the theorem. We first show that k′ =
sn(G,v0) is at least k.

Claim 25. sn(G,v0) = k′ ≥ k.

Let σ be any optimal winning strategy for the observer, i.e., marking k′ vertices at each step. Let

S0 = σ({v0},v0)∪{v0} and, for any x ∈ C , let Sx = σ(S0,x). Obviously, |S0| ≤ k′+1, |Sx| ≤ k′, N[v0]⊆ S0

and N[x]∪N[v0]⊆ S0 ∪Sx.

Now, assume that the fugitive follows the induced path PL(x) = (v0,x,v2, · · · ,vp) for some x ∈ C . At

step i (1 < i ≤ p), when it is the turn of the fugitive that stands at vi, the observer must have marked at least

the vertices in N[{v0,x,v2, · · · ,vi}]. Moreover, during the first two steps of the strategy, the observer has

marked the vertices of S0 and Sx by definition of σ. Hence, during the i−1 steps after the first two steps, the

20

observer must have marked the vertices in N[{v0,x,v2, · · · ,vi}]\ (S0 ∪Sx) = Pi
L(x)\ (S0 ∪Sx) which proves

that |Pi
L(x)\ (S0 ∪Sx)| ≤ (i−1) · k′.

The other properties can be proved in the same way and thus, k′ ≥ k.

Claim 26. There exist S∗0 and S∗x (x ∈ C) that are contiguous sets and that satisfy the same properties as S0

and Sx (x ∈ C). In other words, S0 and Sx (x ∈ C) may be chosen contiguous.

Proof. Recall that to define contiguous sets, we have ordered the vertices in V (G).
Let ℓ = |S0 ∩L | and r = |S0 ∩R |. Let S∗0 be the set obtained from the union of N[v0], the ℓ greatest

vertices in L and the r smallest vertices in R . Note that S∗0 is contiguous and that S0 = S∗0 if, and only if, S0

is contiguous.

Similarly, for any x ∈ C , let ℓx = |Sx ∩L | and rx = |Sx ∩R |. Let S∗x be the set obtained from the union of

the ℓx greatest vertices in L \ S∗0 and the rx smallest vertices in R \ S∗0. Note that S∗0 ∪ S∗x is contiguous and

that Sx = S∗x if, and only if, S0 ∪Sx is contiguous.

We claim that S∗0 and the sets S∗x , x ∈ C , satisfy the desired properties.

Indeed, (N[v0],S0 ∩L ,S0 ∩R) is a partition of S0 hence, k+ 1 = |N[v0]|+ r+ ℓ and then |S∗0| = k+ 1

and N[v0]⊆ S∗0. Moreover, |S∗x |= ℓx + rx = |Sx| ≤ k. Since N[v0]∪N[x]⊆ S0 ∪Sx, N[x]∩L ⊆ (S0 ∪Sx)∩L .

Hence, |N[x]∩L | ≤ ℓ+ ℓx. Moreover, N[x]∩L must be contiguous. Therefore, N[x]∩L ⊆ (S∗0 ∪ S∗x)∩L .

By symmetry, N[x]∩R ⊆ (S∗0 ∪S∗x)∩R , and then N[v0]∪N[x]⊆ S∗0 ∪S∗x .

Let i > 1 and x ∈ C \ {v0}. We have |Pi
L(x) \ (S0 ∪ Sx)| ≤ (i− 1) · k. Moreover, Pi

L(x) \ (S0 ∪ Sx) ⊆ L ,

hence |Pi
L(x)∩ L | ≤ (i − 1) · k + ℓ+ ℓx. Also, Pi

L(x)∩ L must be contiguous, so either Pi
L(x) ⊆ S∗0 ∪ S∗x

in which case the result is trivial, or (S∗0 ∪ S∗x)∩L ⊆ Pi
L(x)∩L . In the latter case, |Pi

L(x) \ (S
∗
0 ∪ S∗x)| =

|Pi
L(x)∩L |− |(S∗0 ∪S∗x)∩L | ≤ (i−1) · k.

The other properties can be checked in a similar way.

Now, we describe a k-winning connected strategy for the observer. According to Claim 26, we may

assume that the sets S0 and Sx (x ∈ C) are contiguous.

Claim 27. csn(G,v0)≤ k.

Proof. We define a winning, connected k-strategy for the observer when the fugitive is constrained to follow

induced paths. By Theorem 7, this is sufficient to prove the claim.

Initially, the observer marks the vertices in S0. Let P = (v0,v1, · · ·) be an induced path followed by the

fugitive starting from v0. If v1 ∈ C ′ then the fugitive must stop there and loses. So assume that v1 /∈ C ′. By

Lemma 22, v1 ∈ C ∪CR ∪CL and v2 ∈ L ∪R . First: if v1 ∈ C , at the second step, the observer marks the

vertices in Sv1
. Next, if v1 ∈ CL or v2 ∈ L , then at each step (but the second one if v1 ∈ C), the observer

marks the k greatest vertices unmarked in L . Finally, if v1 ∈ CR or v2 ∈ R , then at each step (but the second

one if v1 ∈ C), the observer marks the k smallest vertices unmarked in R . Such a strategy is connected since,

at each step, the set of marked vertices is contiguous and connected to the set of previously marked vertices.

It is a k-strategy: the observer marks at most k vertices at each step because |S0 \{v0}| ≤ k and |Sv1
| ≤ k.

Let us show that the strategy is winning. Assume that v1 ∈ C and v2 ∈ L ; the other cases can be

handled in a similar way. Clearly, the fugitive cannot win during the first two steps since N[v0] ⊆ S0 and

N[v0]∪N[v1] ⊆ S0 ∪ Sv1
. Now, after its ith step, i > 2, the observer has marked the vertices in S0 ∪ Sv1

and

the vertices in the set M formed with the (i−2) ·k greatest vertices in L \ (S0 ∪Sv1
). Since M is contiguous,

Pi−1
L (v1) \ (S0 ∪ Sv1

) is also contiguous and |Pi−1
L (v1) \ (S0 ∪ Sv1

)| ≤ (i− 2) · k, we get that Pi−1
L (v1) \ (S0 ∪

Sv1
)⊆ M. Finally, by Lemma 23, Pi−1 = N[{v0,v1, · · · ,vi−1}]⊆ Pi−1

L (v1). Therefore, Pi−1 ⊆ M∪ (S0∪Sv1
).

Hence, all neighbors of the current position vi−1 of the fugitive are marked and the fugitive cannot escape

during its next move.

21

Hence, csn(G,v0)≤ k.

This concludes the proof of Theorem 24.

Theorem 28. Given an n-node interval graph with maximum degree ∆ and a node v0 ∈V (G), the value of

sn(G,v0) (respectively, csn(G,v0)) can be computed in time O(n ·∆3).

Proof. By Theorem 24, it is sufficient to prove that the smallest integer k defined in Theorem 24 can be

computed in polynomial time. An exhaustive check is sufficient: k being fixed, it can be be checked in

polynomial-time whether k satisfies the properties. Indeed, by Theorem 24, the sets S0 and Sx (x ∈ C) that

must be checked can be restricted to be contiguous.

Consequently, since S0 has k+ 1 vertices and must contain v0, there are at most k such sets. Then, for

any x ∈ C , S0 being fixed, there are at most k sets Sx since S0 ∪ Sx must be contiguous. Moreover, given

x,x′ ∈ C , Sx and Sx′ can be checked independently.

Hence, for any integer k, we have to check at most k sets S0 and k sets Sx for each x ∈ C . Since each test

can be done in linear time with respect to n, since C ⊆ N[v0] and k ≤ ∆, the complexity of the algorithm is

O(n ·∆3).

5 Conclusion and further work

In this section, we summarize open questions and we discuss the different variants we plan to investigate.

We first solve the case of an invisible fugitive. Generally, in cops and robber games, both visible and

invisible robbers are difficult to handle. In our game, the invisible (or blind) case is trivial. In the case of an

invisible fugitive, a winning k-strategy for the observer is a sequence (X1, · · · ,Xr) of subsets of vertices of G

such that |Xi| ≤ k for all i ≤ r and for any walk W (followed by the fugitive) starting from v0 and of length i,

W ⊆
⋃

j≤i X j ∪{v0}. The strategy is connected if
⋃

j≤i X j ∪{v0} induces a connected subgraph for all i ≤ r.

Let bsn(G,v0) (cbsn(G,v0)) be the smallest k such that there exists a (connected) winning k-strategy for the

observer. It is straightforward that:

Theorem 29. For any connected (di)graph G and v0 ∈ V (G), bsn(G,v0) = cbsn(G,v0) and equals the

smallest k such that, for all i ≥ 1, |Vi| ≤ ki+1, where Vi is the set of vertices at distance at most i from v0.

Moreover, it can be computed in linear time in the number of edges.

We now recall the questions we have asked throughout the paper and add some new questions:

• Does the problem of deciding sn in undirected graphs belong to NP?

• Does there exist a constant bounding the ratio (or the difference) between csn and sn in any graph?

• Does there exist a constant bounding the ratio (or the difference) between max
⌈

|N[S]|−1

|S|

⌉

, where the

maximum is taken over all S ⊆V (G) inducing a connected subgraph of G containing v0, and sn(G,v0)
for any graph G and any v0?

• What is the complexity of computing the surveillance number in the class of graphs with maximum

degree 4? With bounded degree? With bounded treewidth?

• Does there exists a constant c < 4 and an algorithm that computes sn(G,v0) in time O(cn) in general

graphs G?

22

To conclude, we discuss the different variants of the problem we plan to study in the future. In this

paper, the strongest assumption is probably about the unbounded memory: when a Web page is prefetched,

then it remains prefetched. In other words, a vertex that is marked remains marked for all the following

steps of the surveillance game. We plan to investigate two more realistic models corresponding to two

cache management policies. The first variant assumes that a marked vertex becomes unmarked after a

constant number of steps. The second model allows the observer to unmark some vertices, respecting the

constraint that the total number of nodes that are marked never exceeds a given threshold corresponding to

the maximum number of Web pages that can be prefetched simultaneously.

We also plan to model the variant in which the minimum visiting time can be different among the pages.

Finally, we believe that the connected version of the game is particularly interesting since it is closer to

the more realistic online version of the prefetching problem. In an online version, the observer has no global

knowledge of the graph but discovers progressively the neighbors of the vertices he marks. We will further

investigate this variant.

Acknowledgement

We would like to thank the anonymous reviewers for the thorough reading of the paper and helpful com-

ments.

References

[AF84] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics,

8:1–12, 1984.

[Als04] B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche, pages 5–37,

2004.

[And86] T. Andreae. On a pursuit game played on graphs for which a minor is excluded. J. Comb.

Theory, Ser. B, 41(1):37–47, 1986.

[BCP10] A. Bonato, E. Chiniforooshan, and P. Pralat. Cops and robbers from a distance. Theor. Comput.

Sci., 411(43):3834–3844, 2010.

[CCNV11] J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès. Cop and robber games when the robber can

hide and ride. SIAM J. Discr. Math., 25(1):333–359, 2011.

[FGG+10] F. V. Fomin, S. Gaspers, P. A. Golovach, D. Kratsch, and S. Saurabh. Parameterized algorithm

for eternal vertex cover. Inf. Proc. Lett., 110(16):702–706, 2010.

[FGH+08] F. V. Fomin, P. A. Golovach, A. Hall, M. Mihalák, E. Vicari, and P. Widmayer. How to guard

a graph? In 19th International Symposium on Algorithms and Computation (ISAAC), volume

5369 of LNCS, pages 318–329. Springer, 2008.

[FGK+10] F. V. Fomin, P. A. Golovach, J. Kratochvı́l, N. Nisse, and K. Suchan. Pursuing a fast robber on

a graph. Theor. Comput. Sci., 411(7-9):1167–1181, 2010.

23

[FGL09] F. V. Fomin, P. A. Golovach, and D. Lokshtanov. Guard games on graphs: Keep the intruder

out! In 7th International Workshop on Approximation and Online Algorithms (WAOA), volume

5893 of LNCS, pages 147–158. Springer, 2009.

[FGL10] F. V. Fomin, P. A. Golovach, and D. Lokshtanov. Cops and robber game without recharging. In

12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 6139 of

Lecture Notes in Computer Science, pages 273–284, Bergen, Norway, June 2010. Springer.

[Fra87] P. Frankl. Cops and robbers in graphs with large girth and cayley graphs. Discrete Applied

Mathematics, 17:301–305, 1987.

[FT08] F.V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph searching.

Theor. Comput. Sci., 399(3):236–245, 2008.

[GCD02] R. Grigoras, V. Charvillat, and M. Douze. Optimizing hypervideo navigation using a Markov

decision process approach. In ACM Multimedia, pages 39–48, 2002.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[GK08] J. L. Goldwasser and W. Klostermeyer. Tight bounds for eternal dominating sets in graphs.

Discrete Mathematics, 308(12):2589–2593, 2008.

[GR95] A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theor. Comput.

Sci., 143(1):93–112, 1995.

[Inc99] Zona Research Inc. The economic impacts of unacceptable web-site download speeds. White

paper, Redwood City, CA, April 1999. www.webperf.net/info/wp_downloadspeed.pdf.

[JG97] D. Joseph and D. Grunwald. Prefetching using Markov predictors. In ISCA, pages 252–263,

1997.

[Meh11] A. Mehrabian. Lower bounds for the cop number when the robber is fast. Combinatorics,

Probability & Computing, 20(4):617–621, 2011.

[MJM10] O. Morad and A. Jean-Marie. Optimisation en temps-réel du téléchargement de vidéos. In Proc.

of 11th Congress of the French Operations Research Soc., 2010.

[NW83] R. J. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete Mathematics,

43:235–239, 1983.

[phd] http://www.phdcomics.com/comics/archive.php?comicid=1456.

[Qui83] A. Quilliot. Problèmes de jeux, de point fixe, de connectivité et de représentation sur des

graphes, des ensembles ordonnés et des hypergraphes. Thèse de doctorat d’état, Université

de Paris VI, France, 1983.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., 4(2):177–192, 1970.

[Sch01] B. S. W. Schröder. The copnumber of a graph is bounded by ⌊3
2
genus(g)⌋+ 3. Categorical

perspectives (Kent, OH, 1998), Trends in Maths., pages 243–263, 2001.

24

