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Abstract. Purpose: The purpose of this paper is to investigate the road freight haulage activ-
ity. Using the physical and data flow information from a freight forwarder, we intend to model
the flow of inbound and outbound goods in a freight transport hub.
Approach: This paper presents the operation of a road haulage group. To deliver goods within
two days to any location in France, a haulage contractor needs to be part of a network. This
network handles the processing of both physical goods and data. We will also explore the ways
in which goods and data flows are connected. We then build a first model based on Ordinary
Differential Equations which decrypt the flow of goods inside the hub and which is consistent
with available data. This first model is designed to work at a fine-scale level. A second model,
which aggregates factors of the fine-scale model, is also built. Tests are carried out to show the
accuracy of the models. Finally, an explanation on how to use the models for industrial process
optimizing is given.

1. Introduction

This paper is part of a research program whose target is to build a model describing the work-
ings of a fresh and frozen product transportation network.This program is funded in part by the
French group STEF-TFE1. This group is the European leader in temperature-controlled-logistics
solutions. In 2009, the company’s European logistic network included 215 temperature-controlled
sites and a fleet of 2,500 vehicles, transporting 30,000 tons of goods daily on over 80,000 waybills
throughout Europe.
In 2010, the transport branch of the group began a rigorous development process of a hub sim-
ulation system. The goal of such a system is to visualize how goods are moving in a hub under
several business parameters. The target is to make it easier to fix some of those parameters
used for controlling complex warehouses. Using the resulting system, we can simulate alternative
cross-docking user stories, workforce inventory, goods dispatching rules and transport plans.

The nodes of the supply chain network are the hubs where merchandise is brought in, of-
floaded, handled, and loaded in trucks. These last 3 actions make up the cross-docking. The
role of cross-docking is to move goods just-in-time, from the receiving dock to the shipping
dock without creating stock, [1]. Goods are regrouped, on the hub, consignments are shipped
by several senders and are intended for several customers. The hubs are connected by the com-
ings and goings of trucks. Since the goal is to reduce the resources needed to carry goods, the
transport domain is being organized into freight forwarder networks. These networks consist in
several haulage contractors pooling their resources and working together to satisfy the customers’
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requirements. The strength of a freight forwarder network resides in the players’ ability to co-
ordinate their strengths in the user’s service and then realizing the “Strategic Management of
Supply and Logistics”, [4].
The creation of freight forwarding networks makes it possible to offer users nationwide delivery
in less than 48 hours. Such a network requires strict piloting through a set of procedures and
software for the management of data flow, physical streams and interfaces between the various
players. This set of tools is known as Supply Chain Management (SCM). To achieve control of
the flows (both goods and data), the process must be industrialized: the transport plans opti-
mized and the flows placed in synergy through computerized data processing. The SCM tools
have considerably helped carriers to improve their productivity. The carrier’s key tool is TMS
(Transport Management System) [10]. It makes it possible to schedule and optimize routes, carry
out day-to-day operations, dialogue with users and, through the reporting function, to analyze
the carrier’s capacities.
To be manageable, the physical flow of goods must be accompanied by a flow of data. Every
package, every transfer or handling operation is recorded in databases. TMS uses the sum of
this data to make information both reliable and relevant for operation and decision management
[18, 21].

Research has been done to reduce transport costs. Efforts have brought out algorithm opti-
mizing transport plans (see [5, 17, 14, 12]) and based on these algorithms, software has been
developed (see [23, 11]). Methods and algorithms have been set out to model and to optimize
the route of goods within the hub, using operational research tools like graph theory and high
dimension optimization algorithms (see [20, 3, 22, 15, 24, 13]). Yet, no system offers the possibil-
ity to simulate hub working in usual layout or modifications of hub characteristics or rare events
impacting the hub, incorporating factors concerning workforce and material used. No system of-
fers the possibility to optimize hub working, incorporating those factors either. In the same way,
very poor possibilities are offered to simulate or optimize how hubs interact with the network
they are part of. These seem to be the two topics in which improvement can be made to bring
about new productivity gains.

The goal of this paper is to contribute to the understanding of the internal working of hubs,
building a model and using it. We model it at a fine-scale and at a larger scale.
The paper is organized as follows. In section 2, we build a hub model using ODE (Ordinary
Differential Equations) type tools. We first formalize hub workings. Secondly, we build a fine-
scale model and then, aggregating parts of it, we obtain a model, which is valid at a larger
scale. In section 3, we build an implementation of the fine-scale models and we simulate the
working of a simplified hub. This shows that the model fits hub qualitative functioning well.
Then, the aggregated model is also implemented. Tests show a good accuracy with fine scale
results. Finally, we simulate an almost realistic hub using the fine-scale model. In the “conclusion
and perspective” section, we give a list of projects we plan to reach. In particular, we develop the
ones concerning the way to use the fine-scale and aggregated models for optimization of business
process purposes and for the building of a hub network.

2. Modelling of the flows transiting through the hub

This section is devoted to model building.

2.1. The Hub

We begin by formalizing hub and hub network workings. Let us look at an example used by [4].
According to Fig. 1, suppliers F1, F2, etc. can each provide a different product. At the other end
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of the line, customers C1, C2, etc. can all want various quantities of each product. For instance,
customer C1 can want 2 units of product F1, 3 units of F2, 5 units of F4, while customer C2 can
want 5 units of F1, 2 units of F2 1 unit of F4 and 3 units of F5. The use of the hub enables the
contractor to reduce the number of trips from 5× 5 to 5+ 5 (Fig.1). Besides, thanks to the hub,
the contractor can offer new services, such as the processing of orders from various suppliers.
Though it is not the hub’s primary vocation, it can be used as a temporary storage area to offer
customers extra services, such as more fluid shipping and distribution.
A hub’s size varies with the importance of the flow to be accommodated. The overall surface,

Figure 1. The economical effect of a middleman [4].

including hub, office space and access, and parking area covers an average of 1 ha. On both sides
of the hub are a series of loading bays, used to load and unload trailers. A good organization of
the hub is of primary importance to optimize the flows. The greatest challenges are managing
available space, deadlines, quality of delivery, and safety. The hub includes several areas (Fig.2).
The “Load” and “Unload” areas face each other along the outer walls. Between them is a traffic
area in which the packages are stacked on pallets and moved with forklifts and various handling
apparatus. When a truck arrives, the driver hands his paperwork in to the operations depart-
ment. This service assigns him an unloading bay on the “In Area” side. If the bay is already in
use, the driver parks in a waiting zone. The data capturing of the transport documents is trans-
mitted to the hub, generating the printing of labels. These labels show the consignment’s origin,
destination, quantity, nature, and especially the entry and exit bays it will use - and, if relevant,
the “transit area” in which it is to be placed. This means that upon receipt of a consignment, an
employee checks the provenance and quantity of the unloaded goods and labels them. Referring
to these labels, the handlers know what route the consignment must take through the hub, and
its movements are limited and controlled. In the background, the TMS regroups the packages
according to their destination. If the packages do not require any sorting, they are directly taken
to an area facing their loading bay. This is cross-docking. This process increases the available
storage space and makes it possible, at any time, to know where the goods are, thus limiting
losses. If the unloaded goods need to be sorted before departure, they are taken to the sorting zone
or “Residence Area”. The dispatching operations must not slow down the traffic of other packages.

To conform to the customer’s required deadline, the absolute must is to have the truck de-
part on time. The schedule defined by operations assigns arrival and departure times for each
route. If these times are disregarded, the whole day’s organization suffers. This is why the trucks
leave on time even when they are not fully loaded. When everything is going as planned, the
loading or unloading of a truck takes about 20 minutes.
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Figure 2. Flow of goods within a hub. “Cross-docking” on the left and with
“Residence Area” on the right.

The hub’s productivity is calculated on a ton-per-hour index. This index, with the addition
of business forecasts in tons and number of waybills, makes it possible to schedule the hub’s
human resources for each day of the week, [9, 7].

The position is a business vocabulary to describe the digital information to track the goods
from its sender to its final destination. One position matches with one waybill. It displays data
on:

• the prime contractor, who pays for transportation,

• the sender, who ships the consignment,

• the loading point: the actual place where the goods are to be collected, for example the
manufacturer’s warehouse,

• the final receiver of the goods, for example the retailer,

• the unloading point: the actual place where the goods are to be unloaded, for example a
retailer’s dispatching base,

• the refrigeration status: fresh foods, frozen foods, non-refrigerated goods,

• the nature of the goods, for example cold meats or dairy products, etc.

• miscellaneous data: delivery constraints, description of packaging, etc.

This description done, a model of hub functioning taking the above explanation into account
must be set out.
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2.2. Modelling procedure

We chose to follow a modelling protocol which yields models involving ODE (Ordinary Differential
Equations) for several reasons. The first one is the ability of this kind of tool to model transfer
of quantity with a rigorous mathematical approach. The second one is that the resulting models
are flexible and well adapted to data at disposal. The third one is the fact that ODE framework
offers a wide range of efficient tools for mathematical analysis. We do not tackle this topic in
the present paper, but we plan to do it in forthcoming ones. The fourth one is that the resulting
models can be tested via ODE based software programs. The fifth one is that it generates
continuous-in-time models that can be discretized, using numerical analysis methods, at any
time step, if discrete-in-time models are needed. Here is a nice advantage of our approach over
direct discrete-in-time modelling: once a discrete-in-time model is gotten from the continuous-
in-time model, if another instantiation of the discrete-in-time model is needed with another time
step, the modelling protocol does not have to be done again, only the discretization. The last
reason we evoke is that optimization tools based on ODE are numerous and efficient; and we
plan to use the models to optimize hub working in future works. In particular, we plan to tackle
questions linked to workforce optimization, workforce allocation optimization and hub operating
process optimization.

In a first step, we consider that the hub may be well described by a multi-compartment model
between which mass of goods is transferred. Considering a given position (see definition on page
4), we assume that the transfer of mass of goods of this position is well quantified by transfer
functions involved in an Ordinary Differential Equation system [16, 2]. This system makes up
what we call the fine-scale model working at the position scale. Then going over the position
quantities involved in the fine-scale model, and making assumptions to deduce average transfer
functions, we set out what we call the aggregated model.

2.3. Fine-scale model

We model hub activity by a five compartment model and four transfer functions. Schematically, a
hub is made of five areas (Fig.3). The first one, we call “In Area”, or “In” in short, is not physically
located. It takes into account that when a lorry arrives at a given hub, several tasks need to be
done between registration and unloading (platform reaching, trailer opening, unloading). Goods
are unloaded on an “Unload Area” or “Ulo”. After unloading, goods are handled. They may be
taken into a “Reserve” or to a “Storage Area” if they are scheduled to remain at the hub for a
long period of time. We call the set of both areas “Residence Area” or “Res”. After residing in
the “Residence Area”, goods are brought to a “Load Area” or “Loa” in short, before going outside
which is modelled by an “Out Area” or “Out” in short.
The velocity at which goods are transferred between areas depends on good packaging and on the
workforce allocated to this task. Moreover, the following important facts also need to be taken
into account. First, the above schematic description does not fit all the situations. For instance,

In Ulo Res Loa Out

✲ ✲ ✲ ✲ ✲ ✲

ΦIn ψIn ψUlo ψRes ψLoa ΦOut

Figure 3. The five compartments and their transfer functions.
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goods may be directly transferred from the “Unload Area” to the “Load Area”. Secondly, in big
hubs, specific personnel is allocated to unloading goods, while others are allocated to handling
goods within the hub, and others to loading. On the other hand, in smaller hubs, the same
personnel may be allocated to any task when necessity arises.
The model we create takes all of the previous facts into account. Moreover, it has to be valid at
a time scale of several minutes. Indeed, the applications for which we want to use it need models
responding with a relaxation time ∆t ranging from a minimum relaxation time ∆tmin which is
about 15 min to a maximum relaxation time ∆tmax which is about 3 hours. Hence, we build an
ordinary differential equation model. If needed for applications, from this ordinary differential
equation model, discrete models may be deduced by approximation methods.
For A ∈ {In, Ulo,Res, Loa,Out}, p being in the set Pos of positions and t ∈ R, we define

SA,(p)(t) as the mass of goods belonging to position p at time t in area A. Strictly speaking,

taking into account the time scale considerations SA,(p)(t) is the mean value of this mass of
goods over an interval with length the relaxation time ∆t and centred in t.
We also define ΦIn,(p)(t) which is the mass flow of goods of position p entering “In Area” at time
t. Its precise definition consists in saying that, once the relaxation time ∆t, ∆tmin ≤ ∆t ≤ ∆tmax

is defined, the mass entering “In Area” between t and t+∆t is

∫ t+∆t

t
ΦIn,(p)(s)ds. (2.1)

Similarly, we define ΦOut,(p)(t) as the flow of mass of goods of position p leaving “Out Area” at

time t. Considering quantities SA(t) =
∑

p∈Pos

SA,(p)(t) as the total mass of goods being in area

A at time t, we may define flow of mass between areas using a transfer function. We consider
transfer function ψIn,(p)(t) which is the mass flow of goods of position p going from “In Area”

to “Unload Area” at time t. We also define ψUlo,(p)(t) as the transfer function from “Residence

Area” to “Load Area” and ψLoa,(p)(t) as the transfer function from “Load Area” to “Out Area”.
It is reasonable to consider that

{

ψIn,(p)(t) = ψ̃In(Π(p, t), SUlo(t), nIn,(p)(t))χ(SIn,(p)(t)),
where χ(S) = 1 if S > 0 and 0 if S ≤ 0.

(2.2)

Equation (2.2) means that ψIn,(p)(t) is a function of the position. The way that ψ̃In depends on
p has to take into account the packaging features of the goods of position p and possibly other
information concerning p. Then Π(p, t) stands for a list of information concerning p at time t. ψ̃In

is also a function of SUlo. This allows one to take into account that SUlo may be overloaded. ψ̃In

also depends on the number of employees nIn,(p)(t) allocated to the transfer task. χ(SIn,(p)(t))
says that when no more goods of position p are present in “In Area” then the transfer stops. In
the same way, we also consider

ψUlo,(p)(t) = ψ̃Ulo(Π(p, t), SRes(t), nUlo(t))χ(SUlo,(p)(t)), (2.3)

ψRes,(p)(t) = ψ̃Res(Π(p, t), ν, SLoa(t), nRes(t))χ(SRes,(p)(t)), (2.4)

ψLoa,(p)(t) = ψ̃Loa(Π(p, t), SOut(t), nLoa(t))χ(SLoa,(p)(t)). (2.5)



TRANSPORT HUB FLOW MODELLING

Having those quantities and transfer functions, we can write the ordinary differential equation
system modelling the transfer of mass of goods of position p within the hub.

dSIn,(p)

dt
= ΦIn,(p) − ψIn,(p), (2.6)

dSUlo,(p)

dt
= ψIn,(p) − ψUlo,(p), (2.7)

dSRes,(p)

dt
= ψUlo,(p) − ψRes,(p), (2.8)

dSLoa,(p)

dt
= ψRes,(p) − ψLoa,(p), (2.9)

dSOut,(p)

dt
= ψLoa,(p) − ΦOut,(p), (2.10)

translating that in each area, good mass variation is the result of an in-flow and an out-flow.

Once this model is set out, we have to show that it is well adapted to the working of big hubs by
fixing functions ψ̃A and ΦA. We also have to show that it is flexible enough to take into account
smaller hubs. For this, we present what we call “area overlapping” and adapted workforces nA(t).
The information package Π(p, t) is the following

Π(p, t) = (p,m(p), Np(p, t), TIn(p), TOut(p), Pub(p)). (2.11)

Where m(p) is the mass of goods constituting position p and Np(p, t) its pallet number. We
consider that this pallet number depends on time t to be able to take into account repackaging
that may be applied to positions within the hub. TIn(p) is the time at which the truck containing
position p is ready to be unloaded and TOut(p) is the time at which position p has to leave the
hub. Pub(p) is the list of positions which are in the same truck as p and that have to be unloaded
before p. In big hubs, the following form may be chosen for ψIn:

ψ̃In(Π(p, t), SUlo(t), nIn,(p)(t)) =
1

τ In
m(p)

Np(p, t)
nIn,(p)(t)χ(SUlo

max − SUlo(t)). (2.12)

In this equation, τ In stands for the time needed to transfer a pallet from “In Area” to “Unload

Area” and SUlo
max for a maximal capacity. Hence, since m(p)

Np(p,t)
is the mean mass per pallet, expres-

sion (2.12) says that the mass per pallet from “In Area” to “Unload Area” is in direct proportion
to the mass of each pallet and to the workforce allocated to unload position p, and that it is in
inverse proportion to the time needed to unload one pallet. Factor χ(SUlo

max − SUlo) makes the
mass flow stop when SUlo

max is reached. Notice that SUlo
max may be set to +∞ if this threshold effect

is not necessary.
Workforce nIn,(p)(t) allocated to unload position p may be defined as a proportion, linked with
the mass fraction of position p in the total mass to unloaded modulated by a priority index, of
the total workforce nIn(t) allocated to unloaded task by the following formula:

nIn,(p)(t) =

∫ t

t−∆t
γ(p, s)SIn,(p)(s)ds

∫ t

t−∆t

∑

p′∈Pos

γ(p′, s)SIn,(p′)(s)ds

nIn(t). (2.13)

Taking time average in this formula permits to allocate a large workforce to a large mass, but
only in mean. The time interval length ∆t, on which the values are averaged, is the relaxation
time defined in page 6.
In (2.13), γ(p, t) ∈ [0,+∞] is the priority index. The very target of this priority index is to
enforce the workforce allocated to a position with a high value of priority index so that it is
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processed faster. The question of the definition of γ(p, t) is important. A simple choice consists
in setting

γ(p, t) = γ(p) =
γ̃

TOut(p)− TIn(p)
, for any t ∈ [TIn(p), TOut(p)]

and for a given constant γ̃,
(2.14)

which allocates a high value to priority index to positions that are planned to pass quickly
through the hub. A second reasonable definition consists in setting a time dependent function

γ(p, t) = min(γ̃1 +
γ̃2

TOut(p)− t
; γ̃3), for any t ∈ [TIn(p), TOut(p)] (2.15)

for three given constants γ̃1, γ̃2 and γ̃3. This choice causes an enforcement of the priority index
when time increases.

Remark - It may be noticed that in a framework of hub operating process optimization, γ(p, t)
may be considered as an unknown function that has to be set via an optimization under con-
straint process.

Before defining the other functions ψ̃A for A ∈ {Ulo,Res, Loa}, a notation generalization needs
to be set: τUlo stands for the time needed to transfer a pallet from “Unload Area” to “Residence
Area”, τRes stands for the time needed to transfer a pallet from “Residence Area” to “Load Area”
and τLoa stands for the time needed to transfer a pallet from “Load Area” to “Out Area”. SA

max

is the maximal capacity of area A and nA(t) and nA,(p)(t), linked by

nA,(p)(t) =

∫ t

t−∆t
γ(p, s)SA,(p)(s)ds

∫ t

t−∆t

∑

p′∈Pos

γ(p′, s)SA,(p′)(s)ds

nA(t), (2.16)

are the workforces allocated to area A and the workforce allocated to position p in area A.
Then, the following forms may be chosen for ψ̃Ulo and ψ̃Loa:

ψ̃Ulo(Π(p, t), SRes(t), nUlo,(p)(t)) =
1

τUlo

m(p)

Np(p, t)
nUlo,(p)(t)χ(SRes

max − SRes(t)), (2.17)

ψ̃Loa(Π(p, t), SOut(t), nLoa,(p)(t)) =
1

τLoa
m(p)

Np(p, t)
nLoa,(p)(t)χ(SOut

max − SOut(t)). (2.18)

Function ψ̃Res,(p) depends on a supplementary variable ν which is the time at which the transfer
of goods of position p, from “Residence Area” to “Load Area”, has to begin. This variable helps
take into account that goods may be scheduled to remain a long period of time within a given
hub. The definition of ψ̃Res,(p) is then:






ψ̃Res,(p)(Π(p, t), ν(p), SLoa(t), nRes,(p)(t)) = 1
τRes

m(p)
Np(p,t)

nRes,(p)(t)χ(SLoa
max − SLoa(t))

if t ≥ ν(p),
= 0 otherwise.

(2.19)

For the definition of γ(p, t) which is needed in nRes,(p) computation, if before arriving in “Resi-
dence Area”, it was defined by (2.14), then it is necessary to set its value to

γ(p, t) =
γ̃

TOut(p)− ν(p)
for any t ∈ [ν(p), Tout(p)]. (2.20)

On the other hand, if before arriving in “Residence Area”, it was defined by (2.15) this definition
may be kept.
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Concerning ν(p) several choices may be carried out. The simplest one consists in setting

ν(p) = TOut(p)− ν̃, (2.21)

for constant ν̃ which is an estimated time for a given position to go from “Residence Area” to
“Out Area”. Of course, constant ν̃(Π(p, t)) may depend on Π(p, t) with the idea that the more
pallets p has, the longer ν̃(Π(p, t)) has to be. ν(p) may also consist in an unknown that has to
be set by an optimization process.

Considering ΦIn,(p) and ΦOut,(p), denoted by δ[t=T ] the Dirac mass at time T and by δ̃ε,T (t)
its regularization with temporal expansion ε:































δ̃ε,T (t) = 0 if t < T − ε,

=
t− T + ε

ε2
if T − ε ≤ t < T ,

=
−t+ T + ε

ε2
if T ≤ t < T + ε,

= 0 if t ≥ T + ε,

(2.22)

we may set

ΦOut,(p) = m(p)δ[t=TOut(p)], (2.23)

which says that the total mass of position p is transferred out of “Out Area” at time TOut(p), or

ΦOut,(p) = m(p)δ
∆t
4
,TOut(p)(t), (2.24)

which is a regularization of (2.23) with temporal expansion ε = ∆t/4, where ∆t is the relaxation
time defined on page 6.
Concerning ΦIn,(p), we introduce a time T̃ (p) needed for unloading positions in Pub(p) before
reaching p in the truck, and then we define

ΦIn,(p) = m(p)δ[t=TIn(p)+T̃ (p)], (2.25)

or

ΦIn,(p) = m(p)δ̃
∆tmin

4
,TIn(p)+T̃ (p)(t). (2.26)

In those definitions, T̃ (p) may be chosen as

T̃ (p) = τ In
∑

p′∈Pub(p)

Np(p
′, TIn(p)). (2.27)

It may also be set via an optimization process that we will see below.

The model we have just built is well adapted to big hubs. For smaller hubs, or for hubs which
do not work exactly as described above, modifications and simplifications of the model may be
done in order to adapt it. Some of those modifications will now be explained.

First, the workforce may not be allocated by area, but by area group. In this situation, A stands
for the area group. For instance, A may be {In, Ulo} or {Res, Loa} or {In, Ulo,Res, Loa}. Then,
for a given A which is in group A, the following formula

nA,(p)(t) =

∫ t

t−∆tmin

γ(p, s)SA,(p)(s)ds

∫ t

t−∆tmin

∑

p′∈Pos

∑

A′∈A

γ(p′, s)SA′,(p′)(s)ds

nA(t), (2.28)

where nA(t) stands for the workforce allocated to group A a time t, is used in place of (2.16).
It is possible to mix formula (2.16) and one of the (2.28) types in the following way: For given
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times, (2.16) is chosen and for other times (2.28) is chosen.
If in a given hub the “Residence Area” does not exist or if a given position is scheduled to
be directly transferred from “Unload Area” to “Load Area”, then we can use the model above,
introducing what we call “area overlapping”. This “area overlapping” simply consists in replacing
equations (2.8) by:

SRes,(p)(t) = SUlo,(p)(t), for any time t. (2.29)

Notice that it is possible to overlap more than two areas and that this “area overlapping” is
compatible with any workforce distribution of type (2.28) or (2.16).

2.4. Aggregated Models

We will now build an aggregated model which is valid regarding flows more macroscopically
and at a larger time scale. (Typically, the minimum time step of a discrete time model deduced
from the aggregated model is about 4∆tmin ≃ 1h). The aggregated model involves less variables
and data and is easier to implement. Hence, having it at hand may be important, for instance,
for the first operational implementations and for network modelling. The main characteristic of
this model is that it is not as precise as the fine-scale one defined by equations (2.1)-(2.27). In
particular, it aggregates flows from every position.

We first consider that function ΦIn(t) gives the flow entering “In Area” at time t and ΦOut(t)
gives the flow leaving “Out Area” at time t. Then the quantities involved are:

SA(t) =
∑

p∈Pos

SA,(p)(t) for A ∈ {In, Ulo,Res, Loa,Out}, (2.30)

where the sum may be reduced to p ∈ Pos such that TIn(p) ≤ t ≤ TOut(p).

We deduce the aggregated model from equation (2.1)-(2.27). In equation (2.12),(2.17),(2.18),
and (2.19) we find factors:

1

τA
m(p)

Np(p, t)
for A{In, Ulo,Res, Loa,Out}. (2.31)

Those factors may be averaged from history or using data or running simulation using the fine-
scale model in order to deduce averaged coefficients

ωA for A{In, Ulo,Res, Loa,Out}. (2.32)

Then, we define transfer function ψIn(t) which is the mass flow of goods going from “In Area”
to “Unload Area” at time t by

ψIn(t) = ψ̄In(SUlo(t), nIn(t))χ(SIn(t)), (2.33)

with ψ̄In defined by

ψ̄In(SUlo, nIn) = ωInnInχ(SUlo
max − SUlo). (2.34)

In a similar way, we define

ψUlo(t) = ψ̄Ulo(SRes(t), nUlo(t))χ(SUlo(t)), (2.35)

ψLoa(t) = ψ̄Loa(SOut(t), nLoa(t))χ(SLoa(t)), (2.36)

where

ψ̄Ulo(SRes, nUlo) = ωUlonUloχ(SRes
max − SRes), (2.37)

ψ̄Loa(SOut, nLoa) = ωLoanLoaχ(SOut
max − SOut). (2.38)
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Concerning transfer function ψRes(t), which is the mass flow of goods from “Residence Area” to
“Load Area”, we consider that the fact that goods may remain a long time in “Residence Area”
can be described by a known function SRes

Rem which gives, at any time, the mass of goods which
is scheduled to remain in “Residence Area”. Then setting

ψ̄Res(SLoa, nRes) = ωResnResχ(SLoa
max − SLoa), (2.39)

ψRes(t) is defined by

ψRes(t) = ψ̄Res(SLoa(t), nRes(t))χ(SRes(t)− SRes
Rem(t)). (2.40)

The ordinary differential equation system finally reads

dSIn

dt
= ΦIn − ψIn, (2.41)

dSUlo

dt
= ψIn − ψUlo, (2.42)

dSRes

dt
= ψUlo − ψRes, (2.43)

dSLoa

dt
= ψRes − ψLoa, (2.44)

dSOut

dt
= ψLoa − ΦOut. (2.45)

Model (2.30)-(2.45) is built to be conform to the functioning of big hubs. Nonetheless, for smaller
hubs “area overlapping” in the same spirit of the process described by, (2.29) may be done.

3. Validation tests

The model described in section 2.3 and 2.4 was programmed in environment R[19]. The numer-
ical method used for computations is the Runge-Kutta 4 methods, [6]. The following sections
shows that the models are applicable in real situations. At first, basic user stories are applied to
highlight, under different parameters, the flow generated by two positions. Simulations are done
with booth models. At the end of the section, a stronger user story simulates a more realistic
situation with thirty waybills spread over 30 hours of cross-docking.

3.1. Fine-scale model results

To show the model’s performances, we simulated the activity of a hub from a simple example.
We had two positions come within the space of an hour. They stayed at the hub for ten hours.
We wanted to observe how their mass filled the different hub areas during these ten hours.
To do so, the above-described model requires set parameters for positions, available workforce at
the hub, and the size of the hub. Four user stories will help us understand how a model behaves
according to the varied parameters. The first user story sets the parameters as indicated in the
following tables. Two positions of 5 tons and 20 pallets each come into the hub, respectively at
1:00 and 2:00. They are programmed to leave at 11:00 and 12:00. Their parameters to determine
the priority index with formula (2.14) are the same. The positions can be unloaded at the same
time. The different hub areas are large enough to store the total mass of both positions. The
amount of manpower is equally divided between each position. The transfer time of a pallet from
one area to another is estimated at one minute. To estimate the position transfer time from
the “Residence Area” to the “Out Area”, we ran the model once to see the time necessary for
unloading. This amount of time is allotted to parameter ν.

Figure 4 shows the results obtained by running the model with the above parameters.
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Position number:
p

Mass in
tons: m(p)

Number of
pallets: Np

Positions
ahead:
Pub(p)

Unloading
date: TIn(p)

Outbound
date:
TOut(p)

1 5 20 Null 1 10
2 5 20 Null 2 11

Table 1. Position parameters.

Position p transfer time
between “Residence
Area” and “Out Area”:
ν

Parameter 1 of
the priority index:
γ1

Parameter 2 of
the priority index:
γ2

Parameter 3 of
the priority index:
γ3

8 1 1 5
8 1 1 5

Table 2. Position parameters, continued.

Max. weight in
“In Area”, in
tons: SIn

max

Max. weight in
“Unload Area”,
in tons: SUlo

max

Max. weight
in “Residence
Area”, in tons:
SRes
max

Max. weight in
“Load Area”, in
tons: SLoa

max

Max. weight in
“Out Area”, in
tons: SOut

max

20 20 20 20 20
Table 3. Hub parameters.

Transfer time for
a pallet from the
“In Area” to the
“Unload Area” in
fractions of hours:
τ In

Transfer time for
a package from
the “Unload Area”
to the “Residence
Area” in fraction
of hours: τUlo

Transfer time for
a package from
the “Residence
Area” to the
“Load Area” in
fraction of hours:
τRes

Transfer time for
a package from
the “Load Area”
to the “Out Area”
in fraction of
hours: τLoa

1/60 1/60 1/60 1/60
Table 4. Hub team parameters.

The first graph in Fig. 4 shows the evolution of the sum of mass of goods from both positions, in
each area. It also shows the evolution of the total mass stored in the hub. The second and third
graphs in Fig. 4 show the evolution of the mass in each area, for each position.
The “In” curve represents the evolution of mass of goods in the “In Area”. The “Ulo” curve repre-
sents the evolution of mass of goods in the “Unload Area”. The “Res” curve represents the mass
of goods in the “Residence area”. The “Loa” curve represents the evolution of the mass of goods
in the “Load Area”. The “Out” curve represents the evolution of mass of goods in the “Out Area”.
While the “Unload”, “Residence”, and “Load” areas are physically marked areas in the hub, the
“In” and “Out” areas represent the sum of the areas in the trailers which are docked at the hub
for unloading and loading. Indeed, a truck contains goods from a series of positions. The truck
and its trailer go to a dock to be unloaded at a specific time. After being handled and moved
from the “Unload Area” to the “Residence Area”, then from the “Residence Area” to the “Load
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Manpower avail-
able for unload-
ing: nIn

Manpower avail-
able for transfer
to the “Residence
Area”: nUlo

Manpower avail-
able for transfer
to the “Load
Area”: nRes

Manpower avail-
able for loading:
nLoa

0.1 0.1 0.1 0.1
Table 5. Hub team parameters, continued.

∆tmin

1/4
Table 6. Model parameters.

Area”, the goods from the same position are loaded in the trailer for departure at a scheduled
time. This is the date of departure or the date at which the goods leave the “Out Area”.
The “In” curve from the first graph in Fig. 4 shows that the start date for the unloading of po-
sition n°1 is 1:00. The second graph shows that the unloading continues to approximately 7:30.
This graph also shows that the transfer of position n°1 mass is slowed down from the “In Area”
to the “Unload Area”. This is simply due to the coming into the hub of the second position. The
evolution of the distribution of second position (n°2) mass throughout the hub can be seen in
the third graph in Fig. 4. The second position comes in for unloading at 2:00 and leaves the “Out
Area” at 11:00.
As previously stated, the manpower available for unloading is equal to the manpower available
for transferring goods from the “Unload Area” to the “Residence Area”. Thus, as soon as the
goods are unloaded, they are transferred to the “Residence Area”. This is why, as can be seen
in the three graphs from Fig. 4, the “Unload Area” does not keep stock. While the “In Area” is
being cleared, the “Residence” and “Out” areas are filling up (see “Res” and “Out” curves). The
“Out Area” starts filling up at 2:00 because we set parameter ν at 8:00. The “Load Area” does
not fill up. The reason for this is that the goods leaving the “Resident Area” are immediately
transferred to the “Out Area”. Position n°1 leaves, as scheduled, at 10:00 and position n°2 leaves
at 11:00. When the goods go to the “Out Area”, the “In” and “Resident” areas empty out. The
“Tot” curve shows the goods mass present in the hub at each moment.

The second user story uses the same parameters as the previous one except that the available
manpower to transfer the goods from “Unload Area” to “Resident Area” is reduced. The amount
of manpower goes from 0.1 to 0.08. Fig. 5 gives the results obtained.
As before, the “In” curve has two peaks which correspond to both positions coming into the “In
Area”. The drops in the curve between 1:00 and 2:00 and then between 2:00 and 7:00 correspond
to the unloading times of the trucks. As the team to transfer the unloaded goods from the “Un-
load Area” to the “Resident Area” is smaller than the unloading team, the goods progressively
accumulate in the “Unload Area” (see “Ulo” curve). This is also why the “Resident Area” does
not fill up as much as in the previous situation. It can also be noted that the “Res” curve starts
dropping at 3:00. This is due to the fact that the goods transferred to the “Resident Area” are
transferred to the “Load Area” right away, to be moved to the “Out Area”. There is a break in
the “Out” curve slope at 3:00, being the time at which the second positions start being loaded
into the trucks. The “Out” curves reach the level of 10 tons at 9:00. This is the sign that the
goods in both positions are loaded and ready to leave the “Out Area”. At 10:00, the “Out” curve
drops for the first time to show the departure of position n°1. Then, the curve stagnates at 5
tons at 1 hour and drops again at 11:00 to 0 ton. Position n°2 is left.
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Similarly, when the amount of available manpower decreases for loading (see parameter nLoa),
goods stock pile up in the “Load Area”, therefore causing the “Loa” curve to be positive.

A third user story sets the parameters as they were for the first simulation, considering that
the “Residence Area” is not large enough to handle more than one ton of goods (SRes

max = 1). The
results illustrated in Fig. 6 indicate that the consequence of this constraint is the stocking of
surplus goods in the “Unload Area”. Fig. 6 perfectly shows that the “Resident Area” (see “Res”
curve) starts filling up at 1:00 with the arrival of the first position. At 1:30, it reaches its max-
imum set capacity of one ton. At the same time, the “Unload Area” begins to stock pile goods.
The break in the “Ulo” curve at 2:00 indicates that the goods are coming from the first and
second positions. As expected, the “Unload Area” empties out before the “Resident Area”.

The last user story considers that six and one half hours to unload two positions of 5 tons is
long. Six and one half hours is how long the “In” curve stays positive, thus between 1:00 and
7:30. The first idea that comes to mind is to decrease the unloading time and to increase the
amount of manpower allotted to unloading. We set all of the parameters as they were in the first
user story, but we increased the value of parameter nIn from 0.1 to 0.5.
The “In” curve in Fig. 7 indicates that the positions were unloaded faster than in the first user
story. Both were unloaded in less than an hour. However, we did not increase the amount of
manpower for transferring the goods from the “Unload Area” to the “Resident Area”. This is why
it can be noted that the “Ulo” curve grows, which means that the goods stay in the “Unload
Area” longer. Again, the “Unload Area” becomes empty long before the “Resident Area”, which
indicates that the goods are constantly being moved. Furthermore, the sum of the masses in the
hub is 5 tons between 1:00 and 2:00, and between 10:00 and 11:00. It is 10 tons between 2:00
and 10:00. This curve is an indicator of the validity of the model.

These four user stories show that, for these simple cases, the model behaves in accordance with
the express hub. They also show that the model, as it was programmed, allows one to simulate
several user stories. The model shows, through irregular values (negative ones, for example) that
a given user story is not possible. For example, Fig. 8 shows the result when we use the first user
story and have the first position leave at 6:00. The model tells us, through negative values for the
“Out Area”, that this objective is not feasible with the means used. To achieve it, the capacity of
manpower allotted to this position would have to be increased throughout the various hub areas.
The distribution of weight throughout the hub can be monitored position by position, therefore
allowing us to easily detect any problems.

3.2. Results obtained for the aggregated model

Like the fine-scale model, the aggregated model was developed in an R environment. The goal
was not to program it for industrial use, but to show the credibility of the mathematical model.
We would also like to show that the response times of the aggregated model are faster than those
of the fine-scale model. To demonstrate the similarities of results obtained from both models,
we ran the aggregated model with parameters identical to the above-described stories (section
3.1), and others which are the results of the aggregation of parameters of the fine-scale model.
Finally, we superposed the curves from both models.
The aggregated model requires fewer parameters than the fine-scale model. It does not give
the details of the distribution of goods throughout the hub, position by position. To keep the
same user story as the first one given in section 3.1, the aggregated model requires the following
parameters:
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Position Number Mass in tons:
m(p)

Unloading
date: TIn(p)

Outbound
date: TOut(p)

Position p
transfer time
between “Res-
idence Area”
and “Out
Area”: ν

1 5 1 10 8
2 5 2 11 8

Table 7. Position parameters.

Max. weight in
“In Area”, in
tons: SIn

max

Max. weight in
“Unload Area”,
in tons: SUlo

max

Max. weight
in “Residence
Area”, in tons:
SRes
max

Max. weight in
“Load Area”, in
tons: SLoa

max

Max. weight in
“Out Area”, in
tons: SOut

max

20 20 20 20 20
Table 8. Hub parameters.

Mean hourly
human cost to
transfer a unity of
mass between the
“In Area” and the
“Unload Area”:
ωIn

Mean hourly
human cost to
transfer a unity of
mass between the
“Unload Area”
and the “Res-
idence Area”:
ωUlo

Mean hourly hu-
man cost to trans-
fer a unity of mass
between the “Res-
idence Area” and
the “Load Area”:
ωRes

Mean hourly hu-
man cost to trans-
fer a unity of
mass between the
“Load Area” and
the “Out Area”:
ωOut

15 15 15 15
Table 9. Hub parameters, continued.

Manpower avail-
able for unload-
ing: nIn

Manpower avail-
able for transfer
to the “Residence
Area”: nUlo

Manpower avail-
able for transfer
to the “Load
Area”: nRes

Manpower avail-
able for loading:
nLoa

0.1 0.1 0.1 0.1
Table 10. Hub team parameters.

∆tmin

1/4
Table 11. Model parameters.

Figure 9 superposes the results obtained by both models studied. It shows that the models empty
out the “In Area” at the same speed. The transfer of the goods from the “Unload Area” to the
“Resident Area” also takes place in the same way for both models. Both models start loading at
the same time. However, the fine-scale model loads the “Out Area” a little more slowly than the
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aggregated model. This is why the “Resident Area” does not fill up as much with the aggregated
model. This phenomenon could come from function nA,(p)(t) (2.16) which does not exist for the
aggregated model. As expected, the “Out Area” is cleared at 10:00 and 11:00. In reality, this is
the time at which the trucks leave.

In the same conditions, the run time of the first user story with the fine-scale model was 4:47min
while the run time of the aggregated model was 1:37min, three times less than the former.

3.3. A heavier test

In this section, we will show that the fine-scale model works in a realistic situation. Schematically,
STEF-TFE hub network working may be described in the following way (see [9]): Day begins by
“collection rounds”. After a “collection round”, truck brings goods to the receiving dock between 8
a.m. and noon. The goods are cross-docked through the hub according to their destinations and
shipped between 6 p.m. and 10 p.m. to a “consolidation round” or between 8 a.m. and noon to a
“delivery round”. After “consolidation round”, trucks bring goods to the receiving dock between
midnight and 5 a.m. The goods are cross-docked through the hub according to destination and
are shipped between 8 a.m. and 12 p.m. to a “delivery round” or between 6 p.m. and 10 p.m. to
a “consolidation round”.
“Collection round” is the action consisting in taking a vehicle to the sender’s dock to load the
goods and carry them to the receiving dock. “Consolidation round” is the transport operation
consisting in sending a consignment between two hubs. “Delivery round” is the transport from
the dispatching hub to the final receiver.

Consider that we want to simulate the flow of goods inside the hub over a 30 hour period. This
will allow us to analyze the consolidation and delivery activities. The first one is done by the day
team (from about 8 a.m. to about 6 p.m.), and the second one by the night team (from about 12
p.m. to about 8 a.m. the next day). We inject for the consolidation activity 131 tons split into
20 waybills. We also inject for the delivery activity 143 tons split into 28 waybills. We fix that
a pallet contains one ton. We set the max weight of each area to 100 tons and the manpower
available for each area to 1.2. the other hub parameters are the same as the example of section
3.1. Figure 12 shows the position parameters used to simulate the flow of goods through the hub
over a period of 30 hours. Between 6 p.m. and 12 p.m. of the first day, the activity is low. Trucks
are leaving hub. On the contrary, between 6 a.m. and 8 a.m. trucks arrive at the receiving dock
every half hour. At 6 a.m. warehousemen have to unload 28 tons (5 + 8 + 2 + 3 + 10), at 6:30
a.m. they have to unload 28 tons (5+ 15+ 2+ 3+ 3) and so on. This is well illustrated in figure
12. The goods are loaded for consolidation rounds that have to leave the hub between 6 p.m.
and 10 p.m. Every hour, trucks leave the shipping dock. The first departure is at 6 p.m. with 31
tons (3 + 10 + 15 + 3) of merchandise.
Figure 10 shows the results of the simulation. We perfectly note the two activity levels described
above. Between 6 a.m. and 8 a.m of the first day, trucks arrive from collection rounds to the re-
ceiving docks. Trucks are quickly unloaded. Goods are transferred in the “Residence Area”. They
stay there between 8 a.m. and noon. From 6 a.m. to 8 a.m., the workforce is able to transfer
goods from the “In Area” to the “Residence Area” without staying in the “Unload Area”. From
8 a.m. to 12:30 p.m., the “Residence Area” is full so that the “Unload Area” becomes stock.
Between 11:30 a.m. and 2 p.m., goods are transferred from the “Residence Area” to the “Out
Area” without staying in the “Load Area”. From 2 p.m. to 7 p.m., the “Out Area” is full so that
goods are stocked in the “Load Area”. From 7 p.m., we observe consolidation rounds departure
consequences. Between 10 p.m. and midnight, the hub is nearly empty. At midnight begins the
consolidation rounds arrivals. The “In Area” receives goods every 30 minutes. These goods are
transferred to “Residence Area” without staying in the “Unload Area”. We can see that the “Out



TRANSPORT HUB FLOW MODELLING

Area” receives goods from the truck unloading that begins. Goods are then moved from the “In
Area” to the “Out Area” almost without staying in the “Unload”, “Residence” or “Load Areas”.
Between midnight and 4 a.m. of the next day, the workforce must treat goods on the five areas,
that’s why a little stock accumulates on the “Residence Area”. From 3 a.m., the “Out Area” is
full and stock accumulates on the “Load Area”. From 8 a.m., trucks leave the shipping dock for a
delivery round. All those described facts are well in accordance with a real hub working. Yet, we
can point two inconsistencies that will need to be remedied in future works by adding constraints
in the model: The “Out Area” corresponds, in the real world, to an area located in the dock.
Goods can be transferred in the “Out Area” if trucks are present and goods leave “Out Area” as
the consequence of departure of some trucks. In real situations, trucks don’t stay at the shipping
dock five hours before they leave, as figure 10 seems to show. On another hand, at 8 a.m of the
second day, the hub cannot ship at once to 36 tons (2 + 5+ 5+ 1+ 5+ 7+ 5++2+ 4). That is
observed on the curve representing the total mass in the hub. Normally, the curve should slump
from 143 tons to 107 tons at 8 a.m. of the second day. Here, the curve slumps from 143 tons to
114 at 8 a.m. and takes half an hour for a decrease of 7 tons more. We can presume that the
workforce is not numerous enough to deal with this task.

As we wrote above, the model was programmed with software R. However, R cannot handle
a large number of positions. The above examples show the management of some positions in the
hub. To manage 2 positions, our laptop, having a 1.8GHz dual processor and 2.5 Go of RAM
required a little less than 5 minutes. Given that a transport agency manages between 1, 000 and
2, 000 positions a day, our computer, which is certainly not powerful, would need more than
three and a half days to simulate a real life user story. We believe that, to significantly increase
execution performances, one solution would be to program the mathematical model in a compiled
language such as C++.

4. Perspectives and conclusion

4.1. Perspectives

Beyond the simulations we did to validate our models, a first perspective will be to develop a
software program that can be parametrized to fit any real hub. This program will be used to
simulate hubs in their standard workings to make users understand those workings. It will also be
used to simulate effect of modifications of hub characteristics or of dysfunctions. Yet, possessing
such a tool can also bring resolution of hub operating processes via optimization using the pro-
gram. This is a long term perspective, but in order to illustrate the way we plan to explore, we
give examples of how the just built models may be used in order to translate industrial problems
linked with the working of the hub into optimization questions.

The first example consists in setting the question of determining the necessary workforce
and its division between areas in terms of a constrained minimization problem involving the
aggregated model. We consider the aggregated model (2.30)-(2.45) with known “In” and “Out”
flows ΦIn(t) and ΦOut(t). Inner flows ψIn, ψRes and ψLoa are given by (2.33)-(2.40) considering
that workforces nIn(t), nUlo(t), nRes(t) and nLoa(t) are unknown to be determined.
At a given time ti, we consider that SIn(ti), S

Res(ti), S
Loa(ti) and SOut(ti) are known and, a

final time tf being given, we want to find functions n, nIn, nRes, nLoa and nOut defined on [ti, tf ],
which are linked with:

nIn(t) + nUlo(t) + nRes(t) + nLoa(t) = n(t), ∀t ∈ [ti, tf ] , (4.1)
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and which minimizes
∫ tf

ti

n(t)ds, (4.2)

under the constraint

dSOut

dt
= ψLoa − ψOut ≥ 0. (4.3)

The second example concerns the allocation of the workforce to positions which will be seen
as an optimization process on the priority index γ(p, t) involved in equation (2.14). Here, we
consider the fine-scale model (2.1)-(2.27) for every position p that passes by the hub between

an initial time ti, where every SA,(p)(ti) are known for every concerned position and area A ∈
{In, Ulo,Res, Loa,Out} and a final time tf . We consider that nIn(t), nUlo(t), nRes(t), nLoa(t)
are given for any time t ∈ [ti, tf ]. For instance, they may have been computed by the procedure

just described. We also consider that ΦOut,(p)(t) are known for each of the considered positions,

for instance given by (2.23) or (2.24). Concerning ΦIn,(p)(t), we consider that it is given by (2.25)

in which T̃ (p) is an unknown to be determined. Concerning the inner flows, we consider that they
are given by formula (2.2)-(2.5),(2.12) and (2.17)-(2.19) where ν(p) = ν̃(Π(p, t)) are given and

nA,(p) given by (2.16), for A ∈ {In, Ulo,Res, Loa,Out} with γ(p, t) being unknown functions to
determine.
As a matter of fact, we are looking for constants T̃ (p) and function γ(p, t) such that

∑

p/SA,(p)(t)>0

nA,(p)(t) ≤ nA(t), for A ∈ {In, Ulo,Res, Loa,Out}, (4.4)

γ(p, t) = 0 for all t ∈
[

TIn(p), TIn(p) + T̃ (p)
]

, (4.5)

where,

T̃ (p) = τ In
∑

p′∈Pub(p)

Np(p
′, TIn(p))

nIn,(p′)(t)
, (4.6)

and

dSOut,(p)

dt
(t) = ψLoa,(p)(t)− ΦOut,(p)(t) ≥ 0 for any, t ∈ [ti, tf ] , (4.7)

minimizing
∫ tf

ti

∑

p/SA,(p)(t)>0
A∈{In,Ulo,Res,Loa,Out}

∣

∣

∣

∣

∣

dnA,(p)

dt
(t)

∣

∣

∣

∣

∣

dt. (4.8)

Constraint (4.4) means that the sum over all the positions between which workforce nA,(p)(t) is

distributed cannot exceed nA(t). T̃ (p) is defined as the time needed to unload all the goods in
the truck containing position p, before reaching goods belonging to p. Then (4.6) seems to be

the natural definition of T̃ (p) and (4.5) means that the priority index of given position p remains
0 until goods of p are reachable. Constraint (4.7) only means that the “Out flow” needs to be a
real “Out flow”, or in other words, that the whole of position p has to be ready to get out of the
hub at the scheduled time.
The fitness function (4.8) is set to minimize the time variation of the workforce distribution
between positions.
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The third example consists in looking at the setting of times ν̃(p) as a constrained minimization
problem. The value of ν̃(p) gives an estimation of the time needed for position p to go from
“Residence Area” to “Out Area”. We assume that the number of pallets Np(p, t) of position p
remains the same from ν(p) to Tout(p) and we consider that ν(p) is given (2.21) with ν̃(p) given
by:

ν̃(p) = ν̃(Π(p, t)) = aNp(p, Tout(p)) + b, (4.9)

for every position being in the hub between initial time ti and final time tf , for two constants
a and b to set. The minimization problem to compute a and b consists in considering model
(2.6)-(2.10) between times ti and tf with known values of SA,(p)(ti) for all positions passing by

the hub between time ti and tf and A ∈ {In,Res, Loa,Out}, and with known functions ΦIn,(p)

and ΦOut,(p) for every t ∈ [ti, tf ]. We then consider that inner flows are given by (2.17)-(2.19),
(2.23)-(2.26) and then a and b must minimize

∑

p/TIn(p)>ti and TOut(p)<tf

|ν̃(p)|, (4.10)

under the constraint a ≥ 0, b ≥ 0 and

dSOut,(p)

dt
(t) = ψLoa,(p)(t)− ΦOut,(p)(t) ≥ 0 for any t ∈ [ti, tf ] . (4.11)

In the near future, we also plan to use the hub models built here to model a hub network
working. We briefly explain now the way to do it.
The main issue is to build connexions between instantiations of model (2.1)-(2.27) or (2.30)-
(2.45). For this, we consider a network made of n hubs {h1, . . . , hn} = H and that the set H
is divided into two subsets Hmod and Hunm (Hmod

⋂

Hunm = ∅, Hmod
⋃

Hunm = H). Subset
Hmod contains hubs for which we have on our disposal an instantiation of model (2.1)-(2.27) or
(2.30)-(2.45) and Hunm contains hubs for which a model of the (2.1)-(2.27) or (2.30)-(2.45) kind
cannot be accessed. For instance, Hunm may contain hubs of subcontractors. Then, we consider
the sets Ki,j , for i = 1, . . . , n and j = 1, . . . , n including all the possible routes from hub #i to
hub #j. Notice that if hub #i is not connected with hub #j we have Ki,j = ∅. It also seems
reasonable to write Ki,j in the following way:

Ki,j = {k1i,j , k
2
i,j , . . . , k

l
i,j , . . . , k

Li,j

i,j }. (4.12)

Where kli,j stands for a possible route from hub #i to #j. To each route kli,j is attributed a time

T l
i,j which is the time required to travel kli,j .

Concerning the mass of goods flow of position p entering “In Area” of hub #i, Φ
In,(p)
i (see formula

2.1), we introduce, R
λ,(p)
i (t) which is the mass flow of good of position p coming from factory or

depot λ, B
λ,(p)
i (t) which is the mass flow directly brought by factory λ at hub #i, and F

j,(p)
i (t)

which is the mass flow of goods of position p issued from hub #j. Then we have:

Φ
In,(p)
i (t) =

∑

λ∈Λi

R
λ,(p)
i (t) +

∑

λ∈Λi

B
λ,(p)
i (t) +

n
∑

j=1

F
j,(p)
i (t), (4.13)

where Λi is the set of factories working with hub #i.
Concerning the flow of mass of goods of position p leaving “Out Area” of hub #i, we introduce

D
α,(p)
i (t) which is the flow of mass of goods leaving hub #i towards retailer α, P

α,(p)
i (t) which is

the flow of mass of goods directly brought out by retailer α at hub #i, and E
j,(p)
i (t) which is the
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flow of goods going to hub #j. We have:

Φ
Out,(p)
i (t) =

∑

α∈Ai

D
α,(p)
i (t) +

∑

α∈Ai

P
α,(p)
i (t) +

n
∑

j=1

E
j,(p)
i (t), (4.14)

where Ai is the set of retailers working with hub #i.
The way to connect every instantiation of model (2.1)-(2.27) (indexed by i = 1, . . . , n) consists in
translating that goods going out of a given hub towards a second one will later be goods coming
from the first hub to the second one. In other words:

F
j,(p)
i (t) =

Li,j
∑

l=1

a(kli,j,p)E
i,(p)
j (t− T l

i,j), (4.15)

where a(kli,j,p) stands for the proportion of mass of goods of position p going from hub #i to #j

by travel kli,j . In particular,

Li,j
∑

l=1

a(kli,j,p) = 1 for any p ∈ Pos. (4.16)

The way to connect every instantiation of model (2.30)-(2.45) indexed by i = 1, . . . , n consists
in setting:

Rλ
i (t) =

∑

p∈Pos

R
λ,(p)
i (t) , Dα

i (t) =
∑

p∈Pos

D
α,(p)
i (t),

Bλ
i (t) =

∑

p∈Pos

B
λ,(p)
i (t) , Pα

i (t) =
∑

p∈Pos

P
α,(p)
i (t),

F j
i (t) =

∑

p∈Pos

F
j,(p)
i (t) , Ej

i (t) =
∑

p∈Pos

E
j,(p)
i (t),

(4.17)

and,

ΦIn
i (t) =

∑

λ∈Λi

Rλ
i (t) +

∑

λ∈Λi

Bλ
i (t) +

n
∑

j=1

F j
i (t),

ΦOut
i (t) =

∑

α∈Ai

Dα
i (t) +

∑

α∈Ai

Pα
i (t) +

n
∑

j=1

Ej
i (t),

(4.18)

and to write,

F j
i (t) =

Li,j
∑

l=1

ā(kli,j)E
i
j(t− T l

i,j), (4.19)

where ā(kli,j), satisfying

Li,j
∑

l=1

ā(kli,j) = 1, (4.20)

are the proportions of mass of goods going from hub #i to #j via travel kli,j . ā may be deduced
by the history or from data.
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Notice that we can consider averaged versions of (4.15) and (4.19)

∫ ∆t

t
F

j,(p)
i (s)ds =

Li,j
∑

l=1

ā(kli,j)

∫ t−T l
i,j+∆t

t−T l
i,j

E
i,(p)
j (s)ds,

∫ ∆t

t
F j
i (s)ds =

Li,j
∑

l=1

ā(kli,j)

∫ t−T l
i,j+∆t

t−T l
i,j

Ei
j(s)ds.

(4.21)

4.2. Conclusion

In this paper, we respond to a request expressed by our partner specialized in logistics. This
partner wants to build a model describing the workings of a fresh and frozen product transporta-
tion network.
The first part of the research program was to predict daily inflows and outflows of goods in and
from a hub[8].
The second part of this is reported in the present paper. In it, we begun by introducing how
a national network of logistics hubs works. We explained what cross-docking is. We produced
Ordinary Differential Equation models describing hub working at the fine scale and at a coarser
one. Those models involve a large number of parameters, but protocols to set some of them are
explained. So that, actually, resulting models take into account a variable number of parameters.
We showed four different user stories that help to provide answers to business linked questions.
We showed how express other business linked questions in optimization terms involving the mod-
els.
The third part of the research program, which needs to be led from now is to simulate how hubs
interact together. Ideas to reach that goal are briefly given in the end of the present paper.
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Position
number: p

Mass in
tons: m(p)

Number of
pallets: Np

Positions
ahead:
Pub(p)

Unloading
date: TIn(p)

Outbound
date:
TOut(p)

1 5 5 Null 6 21
2 8 8 Null 6 19
3 2 2 Null 6 19
4 3 3 Null 6 18
5 10 10 Null 6 18
6 5 5 Null 6.5 20
7 15 15 Null 6.5 18
8 2 2 Null 6.5 19
9 3 3 Null 6.5 18
10 3 3 Null 6.5 19
11 4 4 Null 7 21
12 8 8 Null 7 21
13 13 13 Null 7 20
14 15 15 Null 7.5 22
15 3 3 Null 7.5 22
16 1 1 Null 7.5 22
17 4 4 Null 7.5 21
18 14 14 Null 8 19
19 7 7 Null 8 19
10 6 6 Null 8 19
11 2 2 Null 24 32
12 6 6 Null 24 35
13 10 10 Null 24 34
14 5 5 Null 24.5 33
15 5 5 Null 24.5 32
16 10 10 Null 25 33
17 3 3 Null 25 34
18 5 5 Null 25 32
19 5 5 Null 26 34
20 1 1 Null 26 32
21 2 2 Null 26 35
22 2 2 Null 26.5 34
23 5 5 Null 26.5 34
24 5 5 Null 26.5 34
25 1 1 Null 27 35
26 5 5 Null 27 32
27 7 7 Null 27 32
28 10 10 Null 27 33
29 2 2 Null 27.5 33
30 5 5 Null 27.5 32
31 5 5 Null 27.5 33
32 3 3 Null 28 33
33 5 5 Null 28 34
34 5 5 Null 28 35
35 2 2 Null 28.5 32
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36 4 4 Null 28.5 32
37 10 10 Null 28.5 35
38 13 13 Null 29 35

Table 12: Position parameters over a period of 30 hours.
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Figure 4. Goods mass distribution, coming from 2 positions, in the various hub
areas, with nRes = 0.1, followed by details for each position.
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Figure 5. Goods mass distribution, coming from 2 positions, in the various hub
areas, with nRes = 0.08.
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Figure 6. Goods mass distribution, coming from 2 positions, in the various hub
areas, with SRes

max = 1, followed by details for each position.
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Figure 7. Goods mass distribution, coming from 2 positions, in the various hub
areas, with nIn = 0.5.

Figure 8. Incoherence in goods mass distribution in the various hub areas.
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Figure 9. Superposition of the fine-scale model (D) results with those of the
aggregated model (A).

Figure 10. 30 hours goods mass distribution on different hub areas.
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