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I. Introduction

In diffusion MRI (dMRI), Spherical Deconvolution (SD) is a
category of methods which estimate the fiber Orientation Distribution
Function (fODF). Existing SD methods, including the widely used
Constrained SD [1], normally have two common limitations: 1)
the non-negativity constraint of the fODFs is not satisfied in the
continuous sphere; 2) many spurious peaks are detected, especially
in the regions with low anisotropy; In [2], we proposed a novel
SD method, called Non-Negative SD (NNSD), to avoid these two
limitations. NNSD guarantees the non-negativity constraint of fODFs
in the continuous sphere S2, and it is robust to the false positive
peaks. In this abstract, we propose Non-Local NNSD (NLNNSD)
which considers non-local spatial information and Rician noise in
NNSD, and apply it to the testing data in ISBI contest.

II. Method
We represent the square root of fODF Φ(u) as a lin-
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α(u)du is the integral constant of three SHs which
can be calculated from the Wigner 3-j symbol. Then based on the
closed form of spherical convolution using SH basis, for a given
axisymmetric fiber response function along z-axis H(qu|(0, 0, 1)) =∑L

l=0 hl(q)Y0
l (u), the convolved diffusion signal is
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where for any fixed vector q = qu, K(u) is a square matrix with
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NNSD [2] is to estimate c by minimizing

J(c) =
1
2

N∑
i=1

(
cT K(qu)c − Ei

)2
+

1
2
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where Λ is a diagonal matrix with elements Λlm = λNNS Dl2(l + 1)2

for the Laplace-Beltrami regularization. The constraint ‖c‖ = 1 is
because of

∫
S2 Φ(u)du = 1. In this abstract, we propose Non-local

NNSD (NLNNSD) which considers the non-local spatial information
and Rician noise. Non-local mean has been used in image denoise [3],
[4] and regularization [5]. The cost function in NLNNSD is

J({cx}) =
1
2

V∑
x=1

N∑
i=1

(
(cx)T K(qu)cx − NLM(Ex

i )
)2

+
1
2

(cx)T Λcx +
1
2
λNLM‖cx −NLM(cx)‖2

(3)

where cx and Ex
i are the coefficient vector and diffusion

signal at voxel x, V is the number of voxels, NLM(cx) =

arg minc
∑

y∈V wyd(c, cy)2 is the non-local Riemannian mean of cx [6],

NLM(Ex
i ) =

√∑
y∈V py(E

y
i )2 − 2σ2 is the non-local mean of Ex

i

considering Rician noise with standard deviation of σ. wy is the non-
local weights determined by the distance of coefficient vectors, i.e.

wy = 1
Zy

exp(−
∑

j∈Nx ,k∈Ny Ga‖c j−ck‖2

2h2 ), where c j and ck are the coefficient
vectors respectively in the neighborhood Nx of x and the neighbor-
hood Ny of y, Ga is the Gaussian weighting with standard deviation
of a, and Zy is the normalization factor. py is the non-local weight
determined by the distance of {Ex

i } with another set of {a, h}.
To minimize Eq. (3) with the constraint ‖c‖ = 1, we first set λNLM =

0, and perform a Riemannian gradient descent on the sphere ‖c‖ =
1 [6] to minimize J(cx) individually for each voxel x.
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)
, Expc(v) = c cos ‖v‖ +

v
‖v‖
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The isotropic fODF with c = (1, 0, . . . , 0)T is chosen as the
initialization. Then the non-local Riemannian mean is performed
to calculate NLM(cx) at each voxel. Then the Riemannian gradient
descent is performed again with λNLM and the estimated non-local
mean NLM(cx) in Eq. (3). Note that this procedure can be iteratively
performed to update NLM(cx) and cx, however in practice we found
the result with just one iteration is enough.

III. ISBI HARDI Reconstruction Challenge

In the ISBI reconstruction challenge, the testing data was generated
based on Numerical Fibre Generation toolbox [7]. we test the pro-
posed NLNNSD in the data with three kind of sampling schemes: 1)
single shell DTI scheme with 32 directions, b = 1200s/mm2; 2) single
shell HARDI scheme with 64 directions, b = 3000s/mm2; 3) multiple
shell DSI-like scheme with 514 directions, b ∈ (0, 4000]s/mm2. For
all night datasets (three schemes with three SNR 10, 20, 30), we
fixed L = 8, λNNS D = 0, λNLM = 1, and used the tensor fiber response
function with FA of 0.8, mean diffusivity of 0.8. In the non-local
mean of cx and Ex

i , we uses a 11 × 11 × 11 search window, and a
3 × 3 × 3 patch to define the weights, where the parameters a and
h were tuned respectively for {cx} and {Ex

i } to obtain visually good
results for each dataset.
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