
HAL Id: hal-00969182
https://hal.archives-ouvertes.fr/hal-00969182

Submitted on 2 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of coding in the choice between routing and
coding for wireless unicast

Ramakrishna Gummadi, Laurent Massoulié, Ramavarapu Sreenivas

To cite this version:
Ramakrishna Gummadi, Laurent Massoulié, Ramavarapu Sreenivas. The role of coding in the choice
between routing and coding for wireless unicast. Physical Communication, Elsevier, 2013, 6, pp.88-99.
�10.1016/j.phycom.2012.05.004�. �hal-00969182�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49658231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00969182
https://hal.archives-ouvertes.fr


The role of coding in the choice between routing and

coding for wireless unicast

Ramakrishna Gummadia, Laurent Massoulieb, Ramavarapu Sreenivasc

aDepartment of Management Science and Engineering, Stanford University, USA
bTechnicolor Paris Research Labs, Paris, France

cDepartment of Industrial and Systems Engineering, University of Illinois at Urbana

Champaign, USA

Abstract

We consider the benefits of coding in wireless networks, specifically its role in
exploiting the local broadcast property of the wireless medium. We first argue
that for unicast, the throughput achieved with network coding is the same
as that achieved without any coding. This argument highlights the role of a
general max-flow min-cut duality and is more explicit than previous proofs.
The maximum throughput can be achieved in multiple ways without any
coding, for example, using backpressure routing, or using some centralized
flow scheduler that is aware of the network topology. However, all such
schemes, in order to take advantage of the local broadcast property, require
dynamic routing decisions for choosing the next hop for each packet from
among the nodes where it is successfully received. This choice seems to
depend critically on feedback signaling information like queue lengths, or
ARQ. In contrast, note that the use of network coding can achieve the same
without such feedback, in exchange for decoding overhead.

A key issue to be resolved in making a comparison between routing and
coding would be how critical feedback signaling is, for the throughput of rout-
ing policies. With this motivation, we first explore how feedback at a given
node affects its throughput, with arbitrary rates of its one hop neighbors to
the destination. Static routing policies which are essentially feedback inde-
pendent, are considered. An explicit characterization of the optimal policies
under such a feedback constraint is obtained, which turns out to be a natural
generalization of both flooding and traditional routing (which does not ex-
ploit local broadcast, because the next hop is fixed prior to the transmission).
When losses at the receivers are independent (still allowing for dependencies
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on transmissions by two different nodes, to model interference), the reduction
in capacity due to constraining the feedback is limited to a constant fraction
(e−1 = 37%) of the coding capacity, and gets arbitrarily close to optimal
as the unconstrained capacity goes to zero. We also extend this analysis
to a layered multihop network and also compare the throughput of flooding
to backpressure via simulations for a layered network assuming independent
losses. Finally, if there are dependencies in the losses seen by receivers from
a single broadcast, the reduction could be arbitrarily bad, even with just two
hops.

Keywords: Erasures, Feedback, Network Coding, Routing, Capacity

1. Introduction

We consider wireless erasure networks, where local broadcast influences
the role of coding beyond that of merely dealing with lossy transmissions,
namely erasures. We show that feedback signaling is a critical factor that
defines the role of coding in this situation, in the sense that it is one way
to avoid the extensive feedback signaling that is necessary for routing poli-
cies. To characterize this more precisely, we consider a formal notion of
restricted feedback signaling and derive the throughput of routing policies
with restricted feedback on a two-hop network. This allows us to obtain a
lower bound on the throughput when the losses are independent, and also
to show that it is possible to have arbitrary degradation of throughput with
dependent losses.

Local broadcast refers to the property of wireless systems where a single
transmission can potentially address a group of clients. Although this is
implicit for any wireless transmission, abstractions like the protocol model
assume a graph based model in which local broadcast is essentially treated
as interference (e.g. [1, 2, 3, 4] and many others). In reality, local broadcast
represents a diversity gain associated with the channel that could be exploited
by either a well-adapted routing scheme or by network coding. In general,
coding in the network has two distinct roles in the absence of this local
broadcast feature. The first arises from the fact that even without any losses,
information flow is fundamentally different from commodity flow, an aspect
that points to the field of network coding [5], starting with the pioneering
work of [6]. In wireline settings, network coding addresses strictly more
general settings than that of a unicast transmission. On the other hand,
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forward error correction (FEC) addresses another aspect that stems from
lossy transmissions. The role of coding in the context of wireless broadcast
is something that needs to be distinguished from the previous two concerns,
which are relatively better understood. Notably, in this context, the actual
performance of optimal coding schemes is better articulated than are the
limits of routing policies, both with and without restrictions on feedback
signaling. This creates an avenue to discuss the role of coding by way of a
better understanding about the limits of optimal routing schemes and then
contrast it with optimal coding schemes.

In this paper, we consider the role of coding, specifically in exploiting
the local broadcast property of the wireless medium. We first argue that for
unicast, the throughput achieved with network coding is the same as that
achieved without any coding. This argument highlights the role of a general
max-flow min-cut duality and is more explicit than previous published proofs
of this fact. The maximum throughput can be achieved in multiple ways
without any coding, for example, using backpressure routing, or using some
centralized flow scheduler that is aware of the network topology. However, all
such schemes, in order to utilize the local broadcast property, require dynamic
routing decisions for choosing the next hop for each packet from among the
nodes where it is successfully received. This choice seems to depend critically
on feedback signaling information like queue lengths, or ARQ. In contrast,
the use of network coding can achieve the same without such feedback, in
exchange for decoding overhead.

A key task in comparing routing and coding is to assess the importance
of feedback signaling to the throughput of routing policies. With this moti-
vation, we explore how feedback at a given node affects its throughput, for
an arbitrary vector of given rates of its one hop neighbors to the destina-
tion. Static routing policies which are essentially feedback independent, are
considered. An explicit characterization of the optimal policies under such a
feedback constraint is obtained, which can be interpreted as a natural gen-
eralization of both flooding and traditional routing (which does not exploit
local broadcast, because the next hop is fixed prior to the transmission).
When losses at the receivers are independent (still allowing for dependencies
on transmissions by two different nodes, to model interference), the reduction
in capacity due to constraining the feedback is limited to a constant fraction
(e−1 = 37%) of the coding capacity, and gets arbitrarily close to optimal
as the capacity itself is low. This result is also extended to a more general
version on feed-forward networks without any assigned rates of the one hop
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neighbors to the destination. However, if there are dependencies in the losses
seen by receivers from a single broadcast, the reduction could be arbitrarily
bad, even with just two hops.

Network coding was originally introduced in [6] as a general framework
to achieve the optimal multicast rate from a data source to a set of receivers
in wired networks. In contrast to “store-and-forward,” also called “routing”
operation, network coding performs recombinations of data packets at net-
work nodes, while the former operation never alters original packets. Since
then, many other applications of network coding have been identified. In
particular, at a practical level, it has been considered in the context of wire-
less networks [7] for unicast communications, where such a wireless setting
was identified as an especially good candidate for network coding because of
the local broadcast property. The wireless scenario of [7] features lossy trans-
missions as well as local broadcast, although it is not specific to the erasure
channel. The experimental evaluations of [7] show benefits of network coding
over routing policies in terms of the transmission rates achieved. However,
Smith and Hassibi [8] prove that in any erasure network, there exists a policy
that can achieve capacity with no coding. This raises the question: Are there
any benefits of network coding over routing in wireless unicast communica-
tions? If so, where do they stem from, and how large can they be?

In a nutshell, we show that the benefits of coding over routing depend
on the extent of available feedback signaling and characterize the relation.
Our first contribution is a simpler argument, using linear programming (LP)
duality, that the maximum routing throughput in the case of wireless uni-
cast is the same as the rate achieved with coding. Using this, it is shown
that backpressure routing achieves not only the optimal throughput among
routing policies, but also more generally across policies that involve cod-
ing. However, backpressure policy performs a very dynamic routing of each
packet through the network, and requires exchanging queue lengths from
all neighbors at every step. This motivates an investigation into the funda-
mental limits of static routing policies which do not need extensive feedback
signaling. We study this tradeoff and quantify the limits imposed by an
appropriately defined notion of restricted feedback.

Consider the following extreme case to motivate the analysis (see Figure
1): There are m distributed agents with each agent holding a copy of a
set of m distinct packets (which they all received from the source). With
full coordination, they can schedule all the m packets in one transmission
each by avoiding duplication. However, if we restrict their choice to be
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made in a distributed manner without coordination, the total number of
distinct packets covered by a random choice at each relay approaches 1−(1−
1/m)m → 1 − e−1, thus leading to only 63% throughput. 100% throughput
could be achieved by either (i) making coordinated choices among relay nodes
through conferencing among all the relays, or (ii) letting each node send an
independent random linear combination of all m packets. In other words,
network coding seems to be essentially solving a distributed synchronization
problem without the need for any feedback signaling.

P(S,i) P(i,D)

S D

m relays

Figure 1: The relay network example.

The above synchronization constraint is modeled as the feedback indepen-
dent routing (FIR) restriction (see Definition 6): informally, this says that
the decision of whether a node chooses to forward a packet should not depend
on erasures at other nodes. In all examples of policies that achieve the capac-
ity without any coding, this information is implicitly utilized based on the
feedback signaling. Under the FIR restriction, we show that the optimal poli-
cies are characterized as tagging policies where each packet being broadcast
is assigned multiple next hops. Tagging policies can be considered a general-
ization of both flooding (where every broadcast packet is routed by everyone
that receives it), and traditional routing (where each packet is routed only
by a specific receiver chosen prior to the broadcast). When transmissions are
subject to mutually independent losses1 at the receivers (but still possibly

1i.e., the random variables representing the losses events are mutually independent
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allowing for dependences of losses for packets transmitted by two different
nodes), even when restricted to feedback independent routing, it is possible
to achieve at least 63% of the capacity. In fact, as the capacity, C∗ → 0, the
throughput achieved becomes 100% of C∗ in the limit. For a general feed-
forward network with h+1 hops in which all nodes are restricted to operate
under a similar routing constraint, we show under a similar independence
condition for link losses (but allowing dependence across different broad-
casts) that the reduction in throughput is lower bounded as fh(C∗), where
f(x) = 1− e−x. Thus, for a limited number of hops, and when the capacity
is low to begin with, one can achieve close to optimal throughput without
actually making dynamic routing choices. One might imagine that depen-
dencies in link losses supply implicit information about other link losses,
and therefore allow better throughput compared to independent losses. But
this is not true, as we show a counterexample with dependent link losses for
which static feedback independent routing capacity is arbitrarily bounded
away from the network coding capacity even for a 2-hop network. One of the
implications in this conclusion is that, when feedback is constrained, coding
in the network could be unavoidable to achieve non-vanishing throughput.

2. Related Work

The merits of routing versus coding have been extensively studied in the
context of wireless, both theoretically and by experiments. The following
two lines of work deal with the ways in which local broadcast can be ex-
ploited: (i) By using coding: This has been investigated in [9, 10, 7]. The
advantage of using network coding to exploit local broadcast is the lack of a
need for sophisticated coordination and/or routing choices among the nodes.
The price to pay for this is the decoding complexity. (ii) By making dy-
namic routing/flooding choices along with rich feedback signaling: This was
the path taken in [11, 8, 12]. The maximum throughput in an information
theoretic sense for the wireless erasure network (WEN) model was studied
in [10] and was shown to be equal to the appropriate hypergraph min cut,
denoted C∗. In [8], for the unicast wireless setting, a flooding based policy
with network wide instantaneous broadcast of the identity of each packet
received at the destination was shown to achieve C∗. Using this, [8] makes
an important observation that coding is in fact not necessary for achieving
a throughput equal to the capacity in wireless unicast settings. The model
used by Smith and Hassibi differs slightly from ours, in the sense that they
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consider a continuous time data arrival model, but it is not surprising that
the same result holds for the discrete arrival model. As one of our contri-
butions, we provide a more fundamental reason based on max flow min cut
equivalence. In [12], backpressure routing (requiring rich feedback signaling
to perform routing) was shown to be an optimal routing plus scheduling pol-
icy in a much more general context taking into account interference effects.
In general (i.e. for multicast), [13] proposes the use of feedback together with
network coding for online decoding. In our work, since we consider a single
unicast flow throughout, our results are relevant only to intra-session coding.
In contrast, when using network coding across multiple parallel flows as in
[14], the situation corresponds to inter-session coding.

3. The Wireless Erasure Network Model

Let G = (V,E) be a directed graph. Let N (i) = {j ∈ V : (i, j) ∈
E}. We consider a wireless network that operates on this graph over time
t ∈ {0, 1, 2, . . .}. For each t, a node can “broadcast” to its neighbors. The
network is subject to probabilistic constraints on the successes of these broad-
casts. Specifically, at any given time, t, for each i ∈ V, Z ⊆ N(i), let χ(i, Z, t)
denote a {0, 1} random variable that represents the following:

χ(i, Z, t) =











1 , if broadcast from node i at time t is successful to Z,

and fails to N (i)\Z
0 , otherwise

The random variables χ can be arbitrarily correlated across the argument
i, which allows for modeling arbitrary interference constraints, but we will
assume that they are independent across t. For example, this could model
the situation in the random access scheduling, where at each time slot, there
is a probability that a given node actually transmits, with the transmission
being successful if and only if no other node in its interference radius is
simultaneously active. Note that, for Z, we have:

∑

Z⊆N (i) χ(i, Z, t) = 1 ∀i, t.
We define: c(i, Z) = E[χ(i, Z, t)] ∀t. Thus, we are given a network topology
along with c(i, Z) as the capacities. Our analysis will be impervious to the
correlations across i, so we will not explicitly specify them. An interesting
special case of the above model is to have link (i, j) successful with probability
p(i, j), with losses from i to each of the neighbors in N (i) being independent.
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We then have:
c(i, Z) =

∏

j∈Z
p(i, j)

∏

j∈N (i)\Z
(1− p(i, j))

We consider a single unicast flow. However, the insights obtained are also
general enough for multiple competing flows, with each flow assigned a fixed
fraction of the link capacities and a comparison with intra-session network
coding in such a scenario. Thus, without loss of generality we assume a
source, S, and destination, D. The source has an infinite set of packets
indexed over the integers, intended for replication at D. For any v ∈ V , let
αv(t) denote the number of distinct packets that were replicated at node v
till time slot t.

Definition 1 (Routing policy, P). A routing policy P decides for each node
i ∈ V , and time t ∈ {0, 1, . . .}, a packet to be transmitted from among the
αi(t− 1) choices in its possession.

Definition 2 (Capacity). The throughput of a policy P is defined as:

C(P) = lim inf
t≥0

E[αD(t)]

t

The capacity is the highest possible throughput C , supP C(P).

4. A Max Flow Characterization

A key observation is that any policy which uniquely routes each packet
without keeping multiple copies can be represented by a valid flow on the
throughput constrained graph. In the linear program defined below, each
feasible solution represents a policy that routes a fraction proportional to
r(i, j, Z) of successful broadcasts from i to Z uniquely to j ∈ Z. The term
∑

{Z∈N (i):j∈Z} r(i, j, Z) represents the net flow from i to j. The optimum

value of the linear program (LP) then represents the throughput achieved.

Definition 3 (F, the maxim flow value). Let P denote the set of all S −D
paths in G. We define the F for a given broadcast capacitated graph as the
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optimum value of the following LP:

F = max
∑

p∈P
xp (1)

Subject to: xp ≥ 0 ∀ p ∈ P

r(i, j, Z) ≥ 0 ∀ {(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)}
∑

{p∈P :(i,j)∈p}
xp −

∑

{Z∈N (i):j∈Z}
r(i, j, Z) ≤ 0 ∀(i, j) ∈ E

∑

j∈Z
r(i, j, Z) ≤ c(i, Z) ∀ {(i, Z) : Z ⊆ N (i)}

Let x∗p, r
∗(i, j, Z) denote the optimum solution to the above LP. It is

straightforward to show that this capacity can be achieved by the following
policy:

Definition 4 (Pfs, the flow splitting policy). Any packet transmitted by node
i, and received by the set Z ⊆ N (i) of its neighbors is “routed” uniquely to

j ∈ N (i) with probability r∗(i,j,Z)∑
k∈Z

r∗(i,k,Z)
(thus ensuring that at most one copy

of each distinct packet is being transmitted at any point).

We now consider the min cut appropriate for the model by considering
the probability that at least one of the nodes across the cut receives a trans-
mission.

Definition 5 (Minimum cut, C∗). A Cut is a disjoint partition of V into A
and Ā with S ∈ A and D ∈ Ā. The capacity of the cut is then:

C(A) =
∑

i∈A,Z⊆N (i),Z∩Ā 6=φ

c(i, Z)

The minimum cut is: C∗ = minAC(A).

It is easy to argue that C∗ is an upper bound on the throughput for
any scheme even with coding, and was in fact shown to be equal to the
information theoretic capacity of the WEN in [10]. Thus, C ≤ C∗, where we
remind that C stands for the routing capacity and C∗ stands for the min cut,
which is equal to the capacity with coding, namely the information theoretic
capacity. Based on a duality argument analogous to the classical max flow
min cut theorem, the following can be shown:
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Theorem 1. F = C∗ = C

Proof. Consider the dual program for the LP at Equation (1) with dual
variables b(i, Z) for each i ∈ V, Z ⊆ N (i) and y(i, j) for each (i, j) ∈ E. We
have:

DUAL∗ = min
∑

i∈V,Z⊆N (i)

c(i, Z)b(i, Z) (2)

Such that:
∑

{(i,j)∈p}
y(i, j) ≥ 1 ∀ p ∈ P (3)

− y(i, j) + b(i, Z) ≥ 0 ∀{(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)}
y(i, j) ≥ 0 ∀(i, j) ∈ E

b(i, Z) ≥ 0 ∀(i, Z) : i ∈ V, Z ⊆ N (i) (4)

Consider the mincut as written in Equation (5), and let A∗, Ā∗ denote this
cut. Let y∗(i, j) = 1 if i ∈ A∗, j ∈ Ā∗ and 0 otherwise. Similarly, let
b∗(i, Z) = 1 if i ∈ A,Z ∩ Ā∗ 6= φ and 0 otherwise. Then, it can be ver-
ified that this defines a feasible solution to the dual LP above, and that
∑

i∈V,Z⊆N (i) c(i, Z)b
∗(i, Z) = C∗. Thus,

C∗ ≥ DUAL∗ (5)

Now consider an integral constrained version of the above dual:

DUAL∗ = min
∑

i∈V,Z⊆N (i)

c(i, Z)b(i, Z) (6)

Such that:
∑

{(i,j)∈p}
y(i, j) ≥ 1 ∀p ∈ P (7)

− y(i, j) + b(i, Z) ≥ 0 ∀{(i, j, Z) : (i, j) ∈ E, j ∈ Z ⊆ N (i)} (8)

y(i, j) ∈ {0, 1} ∀(i, j) ∈ E

b(i, Z) ∈ {0, 1} ∀(i, Z) : i ∈ V, Z ⊆ N (i) (9)

Let y∗, b∗ define the optimal solution to the above integral constrained LP.
Then, defineA∗ = {i ∈ V : ∃ a path, p, from S to i such that

∑

{(i,j)∈p} y∗(i, j) =
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0}. Then, D /∈ A∗ due to Equation (7), and thus A∗ defines an (S,D) cut.
Furthermore, from Equations (8) and (6), we get C(A∗) = DUAL∗. This
implies that

C∗ ≤ DUAL∗ (10)

To summarize, we so far have:

F = DUAL∗ ≤ C ≤ C∗ ≤ DUAL∗ (11)

If we are able to argue that the constrained LP indeed achieves the optimum
(the details of this are given in Lemma 2), we would then have DUAL∗ =
DUAL∗, implying that all quantities in Equation (11) are the same.

Lemma 2. DUAL∗ = DUAL∗

Proof. We use an analogous argument employed in showing the correspond-
ing statement for the classical max flow min cut theorem. The argument
considers a probability distribution on the set of all possible cuts and argues
that the expected value of C∗ thus obtained is no more than DUAL∗, which
in turn implies that DUAL∗ ≤ DUAL∗, thus completing the proof. Consider
the dual LP in Equation (2), and let y∗(i, j), b∗(i, Z) denote the optimal so-
lution which achieves DUAL∗. Consider a graph with edge lengths given by
y∗(i, j) and let d(i) , length of the shortest path from S, with edge lengths
given by y∗(i, j). Let λ ∈ (0, 1) be chosen uniformly and define:

A∗ = {i ∈ V : d(i) ≤ λ}

This defines a cut with probability 1, since d(S) ≥ 1 from Equation (3).
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Then:

E[C(A∗)] = E[
∑

i∈A∗,Z⊆N (i),Z∩Ā∗ 6=φ

c(i, Z)]

= E[
∑

i∈V,Z⊆N (i)

c(i, Z)✶{i ∈ A∗, Z ⊆ N (i), Z ∩ Ā∗ 6= φ}]

=
∑

i∈V,Z⊆N (i)

c(i, Z)P
(

i ∈ A∗, j ∈ Ā∗ for some j ∈ Z
)

=
∑

i∈V,Z⊆N (i)

c(i, Z)P (d(i) ≤ λ, d(j) > λ for some j ∈ Z)

=
∑

i∈V,Z⊆N (i)

c(i, Z)(max
j∈Z

d(j)− d(i))+ (∵ λ is uniform)

≤
∑

i∈V,Z⊆N (i)

c(i, Z)(max
j∈Z

y∗(i, j)) ( traingle inequality )

≤
∑

i∈V,Z⊆N (i)

c(i, Z)b∗(i, Z) ( from Equation (4)) = DUAL∗

Thus, coding in the network is not necessary to achieve the optimal
throughput in unicast, assuming unconstrained feedback signaling. This fact
was also argued by [8] in a closely related continuous time data arrival model
(and conjectured and verified by simulation for the discrete time model that
we consider). This was accomplished by considering a policy which involves
flooding the network with each packet until at least one copy reaches the
destination and subsequently using a network wide feedback signal to delete
these copies every time the destination receives a new packet. It was shown
that such a policy stabilizes the network for all rates below the C∗ using Lya-
punov stability argument. Lemma 3 shows that a distributed backpressure
scheme which routes each packet to the least loaded neighbor (thus, avoid-
ing multiple copies) also achieves the information theoretic min cut capacity,
C∗. This is also suggested by Theorem 1 in conjunction with Neely’s result of
optimality of backpressure routing schemes in a context that involves power
control and with a different interference model [12].

Lemma 3. Consider a Markov chain defined on the network as follows:
Each node has a queue of packets. New packets arrive to the queue at the
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source according to a Bernoulli process of rate λ. For any t, i, Z such that
χ(i, Z, t) = 1, the backpressure policy routes a packet from node i to a node
j such that queue size difference is maximized (subject to being positive). If
λ < C∗, the Markov chain thus obtained is stable (positive recurrent).

Proof. The proof follows along the lines of [15] using a quadratic Lyapunov
function and Foster’s condition to show that the Markov chain is positive re-
current. Packets are injected at the source node according to a Bernoulli i.i.d.
process with mean λ < C∗. We shall use the potential, V (t) =

∑n
i=1 q

2
i (t),

where i represents an index over the n nodes in the network and qi(t) rep-
resents the number of packets that are held at node i. Let {Ft}t≥0 be a
filtration adapted to the queue length process. By Foster’s theorem (see [15]
and the references therein), a sufficient condition for stability is to show that
that the Lyapunov drift E[V (t+ 1)− V (t)/Ft] < 0 when V (t) is sufficiently
large. Let q(t) denote the n dimensional row vector with qi(t) being the ith

element. Let R be the adjacency matrix of dimension n×L (where L = |E|,
the number of links) for the given graph (i.e., the (i, l)th element, r(i, l) is
1(−1) iff the link l starts(ends) at i, and 0 otherwise). Let E(t) denote the
L dimensional indicator vector denoting the subset of links on which packets
were routed by the backpressure policy, and let A(t) denote the arrival pro-
cess indicator vector, i.e. the element of A(t) corresponding to the source
is the Bernoulli random variable with mean λ and all other elements are 0.
Then, the queue lengths evolve according to q(t+ 1) = q(t) +R E + A(t).
Thus (with . denoting the usual dot product of vectors):

V (t+ 1)− V (t) = q(t+ 1).q(t+ 1)− q(t).q(t)

= (R E(t) +A(t)).(2q(t) +RE(t) +A(t))

≤ (n+ 1)2 + 2(q(t).RE(t) + q(t).A(t))

Since the first term above is constant over time, showing that the sec-
ond term has a large negative drift for large queue lengths is sufficient (since
large potential implies large queue length under connectivity assumptions
on the graph). Let W(t) denote the L dimensional vector where the lth ele-
ment denotes the queue length difference for the lth link. Then, q(t).RE(t) =
−W(t).E(t). Hence, we only need to argue that E[−W(t).E(t)+q(t).A(t)/Ft]
has a negative drift. E[q(t).A(t)/Ft] = q(t).A where A is a vector where the
element corresponding to the source is λ and all other elements 0. Since λ <
C∗, it follows from the max flow interpretation of Theorem 1 that there exist
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variables r∗(i, j, Z) satisfying the constraints of the linear program given by
Equation (1), and an ǫ > 0 such that q(t).A ≤ (1−ǫ)W(t).f∗, where the com-
ponent of f∗ corresponding to link l = (i, j) is f ∗

l =
∑

{Z∈N (i):j∈Z} r
∗(i, j, Z).

Let e∗(t) denote the indicator vector of dimension L, for the routing selected
by the flow splitting policy, Pfs given in Definition 4. Then, W(t).f∗ =
E[W(t).e∗(t)/Ft]. Thus,

E[−W(t).E(t) + q(t).A(t)/Ft] = E[−W(t).E(t) + (1− ǫ)W(t).e∗(t)/Ft]

= E[−W(t).E(t) +W(t).e∗(t)/Ft+/Ft]− ǫE[W(t).e∗(t)/Ft]

Here, Ft+ denotes the sigma algebra that contains information about the
successes on links at time t in addition to the queue length process until time
t, and thus, Ft ⊆ Ft+ ⊆ Ft+1. The first term is non-positive because the
backpressure policy minimizes W(t).E(t) among all possible options con-
ditioned on the information available on the link successes and the queue
lengths (which is what conditioning on Ft+ denotes). The second term takes
arbitrarily large negative values for large V (t) for any fixed ǫ > 0, and thus,
we have the required negative drift.

5. Formalizing a Notion of Restricted Feedback

While we have so far discussed schemes that can achieve the unicast
capacity in a wireless network without the need for coding, employing coding
in the network can achieve the capacity without using feedback. This calls for
an understanding of the inherent limits to the achievable throughput when
we restrict the exploitation of feedback in the choice of routing policies. The
decision of whether to forward a packet further at a given node should ideally
be made without considering the erasure events on other links (this is not the
case with any of the routing schemes we have discussed so far which achieve
the maximum throughput). In this context, we first fix the vector of rates
that the one hop neighbors can support to the destination simultaneously
and study how feedback constrained routing affects the overall throughput
from the source. The most obvious visualization of this is a network in which
the source and destination are assisted by relays which do not communicate
within themselves (Figure 1).

Let c(Z) = E[χ(S, Z, t)] for Z ⊆ [m]. Let p(S, i) =
∑

Z⊆[m]:i∈Z c(Z)
denote the probability that the a packet transmitted from S is received at i
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successfully. We shall let p(i, D) denote the long-term throughput that relay
i can support to the sink D. Given a generalized routing/flooding policy, we
shall use the {0, 1} random variables, ri(p), r

∗
i (p) which denote the following

events:

1. {ri(p) = 1} ⇐⇒ Packet transmitted in time slot p from the source
(which shall henceforth be referred to as packet p) was received suc-
cessfully by relay i. We assume that the source attempts broadcast of
distinct packets at each time slot without any loss of generality (e.g.,
by employing appropriate source coding, or because it has an unlimited
stream of useful packets).

2. {r∗i (p) = 1} ⇐⇒ Packet p is routed to D via relay i. Note that: (1)
{r∗i (p) = 1} ⇒ {ri(p) = 1}. (2) It is possible that r∗i (p) = 1 for multiple
i.

We will now explicitly describe what we mean by feedback independent
routing.

Definition 6 (Feedback independent routing (FIR)). ∀p ∈ {0, 1, . . .}, ∀A,B ⊆
[m] such that A ∩ B = φ, the given routing policy satisfies the FIR restric-
tion if, conditioned on {ri(p) = 1 ∀ i ∈ A}, the following two collections of
random variables: {r∗i (p)}i∈A and {ri(p)}i∈B, are mutually independent.

This condition is essentially equivalent to assuming a lack of feedback
to the broadcasting node. Technically, lack of feedback is sufficient but not
entirely necessary to satisfy this. While this distinction is subtle, it might
be noted that one does not violate FIR by using rudimentary feedback for
purposes other than routing. Nevertheless, source coding is a convenient
way to completely eliminate feedback. As for the first hop nodes, we merely
consider them as black-boxes that support some arbitrary vector of simulta-
neous rates to the destination. For a 2-hop relay network, these simultaneous
rates could be achieved by employing any capacity achieving scheme for a
single erasure channel, i.e. either by (1) feedback to the relays, or (2) forward
erasure coding (FEC) at each relay.2

2The key aspect that distinguishes such FEC from network coding is that in the case
of FEC, the destination has to be able to decode the data being encoded by each relay
independently from the transmissions received from that specific relay alone, whereas with
network codes, the relay only needs to collect the packets from all relays and jointly decode
them.
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We have so far discussed three policies which achieve capacity without any
coding: (1) the flow splitting policy Pfs in Definition 4, (2) the backpressure
policy in Lemma 3 and (3) the policy of [8]; but they all involve a heavy
interaction between feedback and routing, and hence fail to satisfy the given
constraint.

6. Capacity under Feedback Independent Routing Constraint

Definition 7. The capacity with feedback independent routing, CR is de-
fined as the maximum throughput as in Definition 2, restricted to policies P
satisfying Definition 6.

For FIR, one extreme is to tag each packet with a single relay (this is how
routing is done in practice in the 802.11 protocol). This could be suboptimal
because it does not exploit the local broadcast advantage. The other extreme
is to flood every packet to all relays. This could be suboptimal when the
relays do not have enough capacity to forward all packets they received to
the destination. They will then have to make distributed decisions on which
packets to forward from among the received packets, leading to redundant
transmissions and a hence a decreased throughput. As we will show, when
we restrict to FIR, the maximum throughput is achieved within a subclass
of policies that we shall call the tagging policies. A tagging policy assigns
to each packet a subset of relays, Z ⊆ [m], which is independent of any
feedback. We represent the fraction of packets that are tagged with Z as
t(Z). A relay i that receives a packet successfully routes the packet without
dropping it if and only if i ∈ Z. These packets are retransmitted until the
destination receives them. The capacity of such policies can be expressed
via the linear program below, where each feasible solution corresponds to a
specific tagging policy. The last constraint in the LP states that the arrival
rate of packets to any relay’s queue has to be less than its forwarding capacity
to the destination.

Definition 8 (Tag capacity, CT ). CT is defined as the optimum value of the
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following LP with variables t(Z) ≥ 0 where Z ⊆ [m].

CT = max
∑

Z,Z′⊆[m]:Z∩Z′ 6=φ

t(Z)c(Z ′) (12)

Subject to:
∑

Z⊆[m]

t(Z) ≤ 1; (13)

p(S, i)





∑

Z⊆[m]:i∈Z
t(Z)



 < p(i, D) ∀i ∈ [m] (14)

All packets that reach a relay successfully and have the relay in the tag
will eventually reach D because of the constraint in Equation (14) (which
implies that the queue of packets at each relay is stable). Since the tags are
chosen independent of the losses, the probability that a packet is successfully
transmitted to some relay which is also included in its tag is

∑

Z∩Z′ 6=φ t(Z)c(Z
′),

which can be readily shown to be equal to the throughput of the policy as
per Definition 2.

Lemma 4. CR ≥ CT

Lemma 4 holds due to the fact that any feasible solution to the LP gives
us a tagging scheme whose throughput is equal to the value of the LP.

7. Optimality of Tagging Policies under FIR

Remarkably, these policies will now also be shown to be optimal in general
under the FIR constraint, thus giving us an explicit characterization of CR

in the form of Theorem 5.

Theorem 5. CR ≤ CT , implying CT = CR

Proof of Theorem 5. We look at any policy that satisfies FIR and show that
it is possible to define appropriate variables that define a feasible solution to
the LP in Definition 8, and for which the throughput is upperbounded by
the objective function.

Consider any arbitrary policy. We will show that the expected number
of distinct packets that reach the destination in k time slots cannot be more
than kCT as long as FIR in Definition 6 is satisfied, thus implying that the
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CR is at most CT . Define:

t(Z) =
1

k

k
∑

p=1

P

(

r∗i (p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]\Z
ri(p) = 1 ∀ p ∈ [m]

)

(15)

where we use the standard convention of writing P (A∩B)
P (B)

as P (A
B
) for an

event B with positive probability. It is easily verified that t(Z) ≥ 0 and
∑

Z⊆[m] t(Z) = 1. We will now verify that the third constraint (Equation

(14)) holds for any i ∈ [m].

kp(i, D) ≥ E[
k
∑

p=1

✶{r∗i (p) = 1}]

=
k
∑

p=1

P (ri(p) = 1)P

(

r∗i (p) = 1

ri(p) = 1

)

= p(S, i)
k
∑

p=1

P

(

r∗i (p) = 1

ri(p) = 1

)

= p(S, i)
k
∑

p=1

P

(

r∗i (p) = 1

rj(p) = 1 ∀j ∈ [m]

)

(using def.6)

= p(S, i)
k
∑

p=1

∑

Z∋i
P

(

r∗j (p) = 1 ∀ j ∈ Z and 0 ∀j ∈ [m]\Z
rj(p) = 1 ∀j ∈ [m]

)

= kp(S, i)
∑

Z∋i
t(Z) (by definition of t(Z) in Equation (15))

We now calculate the number of distinct packets replicated at D in k time
slots.

E[αD(k)] =
k
∑

p=1

P ({
⋃

i∈[m]

{r∗i (p) = 1}})

=
k
∑

p=1

∑

Z⊆[m]

P
(

ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]\Z
)

×
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P
( r∗i (p) = 1 for some i ∈ [m]

ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]\Z
)

=
k
∑

p=1

∑

Z⊆[m]

c(Z)P

(

r∗i (p) = 1 for some i ∈ Z

ri(p) = 1 ∀ i ∈ Z and 0 ∀i ∈ [m]\Z

)

(∵ ∀i ∈ [m]\Z, {ri(p) = 0} ⇒ {r∗i (p) = 0})

=
k
∑

p=1

∑

Z⊆[m]

c(Z)P

(

r∗i (p) = 1 for some i ∈ Z

ri(p) = 1 ∀ i ∈ [m]

)

(using FIR Definition 6)

=
k
∑

p=1

∑

Z

c(Z)
∑

Z′∩Z 6=φ

P

(

r∗i (p) = 1 ∀i ∈ Z ′ and 0 else

ri(p) = 1 ∀ i ∈ [m]

)

= k
∑

Z⊆[m]

c(Z)
∑

Z′⊆[m]:Z′∩Z 6=φ

t(Z)

= k
∑

Z,Z′⊆[m]:Z∩Z′ 6=φ

t(Z)c(Z ′)

In general, it is not obvious if CR is strictly less than the general min cut,
C∗. Indeed, in many cases, these two quantities match, implying that in such
cases, not only do we not need any coding, but the capacity can be achieved
by optimized tagging schemes that satisfy FIR. For example, consider a net-
work with two relays with success probabilities p(S, 1), p(S, 2), p(1, D), p(2, D)
where link losses for the same transmission are independent.

Example 1. If p(S, 1), p(S, 2), p(1, D), p(2, D) are all 1/2, we have: C({1}) =
C({2}) = C({1, 2}) = 1/4. From Figure 2(a), C∗ = 3/4 and from the LP
(Equation (12)), we can calculate that CR = 3/4. In fact, a flooding policy
achieves this rate of 3/4. So there is no reduction in the capacity under FIR.

Example 2. Consider an example where the cuts are more finely balanced:
p(S, 1), p(S, 2) = 1/2; and p(1, D), p(2, D) = 3/8. Again, C∗ = 3/4, as
explained in Figure 2(b). Set t({1}) = x, t({2}) = y, t({1, 2}) = z. Then:
CR = Max (1

2
x+ 1

2
y+ 3

4
z) Subject to: x, y, z ≥ 0, x+y+z ≤ 1, x+z ≤

3/4, y + z ≤ 3/4. The optimal value can be verified to be 5/8 < 3/4 = C∗.
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(a) Example 1
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(b) Example 2

Figure 2: Examples.
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This optimum throughput of 5/8 under FIR is achieved by routing 25% of the
packets exclusively to relay 1, 25% exclusively to relay 2 and the remaining
50% of the packets to both the relays.

8. Quantifying the Loss of Throughput under FIR

In this section, we will use the theory from previous sections to obtain
results on the throughput attainable under FIR. We will first consider the
case where the link losses from a given transmitter seen at its various receivers
are independent. Note that this involves no assumptions on interference
between two different transmissions. As a critical tool, we will use a flooding
policy, which is defined below.

Definition 9 (Flooding policy, PF ). Each relay blindly chooses each re-
ceived packet from the source to be forwarded to the destination with prob-
ability min(1, p(i, D)/p(S, i)). In other words, the relay effectively makes a
uniformly random selection of a p(i, D)/p(S, i) fraction of its received packets
to be forwarded to the destination whenever p(i, D) ≤ p(S, i).

We named the above policy as flooding in a general sense, because every
packet that is successfully received is considered for being forwarded at any
relay. It is possible that the total number of received packets at each relay
could be more than the rate it can support to the destination, in which case
PF essentially makes a random selection of packets corresponding the max-
imum throughput it can support. The throughput of PF can be calculated
by evaluating the probability that a packet transmitted by the source in any
given time slot reaches the destination along at least one of the m relays.
Since these events are independent under our current hypothesis, we have
Lemma 6, which is obtained from calculating the probability that any given
packet reaches the destination via at least one of the relays.

Lemma 6.

C(PF ) = 1−
∏

i∈[m]

(1−min(p(S, i), p(i, D)))

9. A Lower Bound for Independent Erasures

Using this flooding policy, we now prove a lower bound on CR for a net-
work with arbitrary fixed rates from the first hop forward. This argument
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explicitly bounds the loss of throughput because of the redundant transmis-
sions arising out of making distributed decisions at each of the relay nodes
with arbitrary min cuts when we have independence among link successes.
The bound we provide also implies that when the capacity is low, the flooding
is almost optimal for independent losses to the first hops. We will provide
the proof on a 2-hop network for easier visualization, but the same claim
holds for any fixed rates from the first hop to the destination.

Theorem 7. Consider the relay network of Figure 3 with independent losses
from the source to the relays.

CR ≥ 1− e−C∗

It follows from this bound that, as C∗ → 0, CR/C
∗ → 1

Proof. The argument is based on comparing the throughput of the flooding
policy C(PF ) with C

∗, since PF is a policy that satisfies FIR. We will show
that C(PF ) ≥ 1− e−C∗

, which in turn implies the theorem since PF clearly
satisfies FIR (Definition 6).

Recall that:

C(PF ) = 1−
∏

i∈[m]

(1−min(p(S, i), p(i, D)))

Applying the definition of the mincut (see Figure 3 for illustration), C∗, to
the network under consideration, we see that

C∗ = min
A⊆[m]



1−
∏

i∈[m]/A

(1− p(S, i)) +
∑

i∈A
p(i, D)





Let A∗ be the arg min over A ⊆ [m] for the above equation, so that:

C∗ = 1−
∏

i∈[m]/A∗

(1− p(S, i)) +
∑

i∈A∗

p(i, D) (16)

Consider any i ∈ A∗. By definition of A∗, we have:

1−
∏

j∈[m]/A∗

(1− p(S, j)) +
∑

j∈A∗

p(j,D)
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P(S,i) P(i,D)

S D

A*

Figure 3: Illustration of a min cut and the set defining A∗ for this min cut.

≤ 1− (1− p(S, i))
∏

j∈[m]/A∗

(1− p(S, j)) +
∑

j∈A∗

p(j,D)− p(i, D)

which implies:

p(i, D) ≤ p(S, i)
∏

j∈[m]/A∗

(1− p(S, j)) ≤ p(S, i) (17)

Thus:

C(PF ) = 1−
∏

i∈[m]

(1−min(p(S, i), p(i, D)))

≥ 1−
∏

i∈A∗

(1−min(p(S, i), p(i, D))

= 1−
∏

i∈A∗

(1− p(i, D))

(∵ p(i, D) ≤ p(S, i) ∀ i ∈ A∗ from Equation (17))

≥ 1−
∏

i∈A∗

e−p(i,D) (∵ 1− x ≤ e−x ∀ x ≥ 0)

= 1− e−
∑

i∈A∗ p(i,D)

≥ 1− e−C∗

(∵
∑

i∈A∗

p(i, D) ≤ C∗ from Equation (16))

23



10. Extension to Layered Multi-hop Networks with independent

losses

The prior analysis characterizes the degradation through the effects of
feedback at a single node, given the rates achievable from the subsequent
hops in any general network. In this section, we build upon this argument
to obtain a bound for arbitrary feed-forward networks where every node is
restricted to static routing and without any assumption of achievable rates
from the one hop neighbors. Further, we also simulate both flooding and
backpressure policies for a layered network with ten hops and plot the results
obtained.

Source Destination

Figure 4: An illustration of the layered feedforward networks being
considered

As illustrated in Figure 4, the feedforward networks have nodes that are
divided into layers where broadcasts from any node in layer i are heard only
by nodes in layer i+ 1.

Theorem 8. For a general feed-forward network with h+ 1 hops, subject to
feedback independent routing, the capacity is at least fh(C∗) where f(x) =
1− e−x and C∗ is the min cut capacity.

Proof. The argument builds on the analysis in Theorem 7. First, we note
that feed-forward networks can be reduced to general layered networks where
only nodes at subsequent levels are connected, by introducing dummy nodes
with unit capacity links. For such a layered network, we will adopt the
convention that the sink is at level 0, and the source is at level h+1. We will
define (i, j) to be the node indexed j at level i. In this notation, the source
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is assumed to be (h + 1, 0), and the sink is (0, 0). Given any policy, P , we
define P(i, j) as the rate at which distinct packets are streaming to the sink
through (i, j) . For example, P(h+ 1, 0) is the throughput of the policy.

Consider ψ, the flooding policy satisfying FIR, and compare it with the
splitting policy, Pfs in Definition 4: A node b queues the packets that it
receives from node a in proportion to the rate r∗(a, b)

.
=
∑

Z⊆N (a) r
∗(a, b, Z)

with r∗ as in Definition 4. Note that this is a static calculation and involves no
feedback unlike Pfs or the backpressure policy, which requires queue length
information to decide every routing step. For such a policy, we make the
following claim, which can be shown using induction on i.

Claim 1. ψ(i, j) ≥ f i−1(Pfs(i, j))

The claim follows easily for i = 1. Assume that it holds for some i.
We will look at a node (i + 1, j) which is connected to (i, j1), . . . , (i, jk).
Consider two different 2-hop networks both with (i + 1, j) as the source
and (i, j1), . . . , (i, jk) as relays with the same link characteristics as the feed-
forward network for the first hop. To describe the second hop capacities,
we will use the assumption that both Pfs and ψ choose the same fraction
of the incoming capacities from various nodes for the forward throughput.
Let αt be the fraction of incoming rate that is chosen by node (i, jt) for the
throughput from (i+1, j). For the second hop, the first and second networks
have capacities (α1ψ(i, j1), . . . , αkψ(i, jk)) and (α1Pfs(i, j1), . . . , αkPfs(i, jk))
respectively. Let C∗

1 , C
∗
2 be the respective C∗’s. Now, we can use Theo-

rem 7 to argue that ψ(i + 1, j) ≥ f(C∗
1). Using the induction hypothe-

sis, we know that αtψ(i, jt) ≥ αtf
i−1(Pfs(i, jk)). It can be shown under

this condition (using Lemma 9) that C∗
1 ≥ f i−1(C∗

2), which implies that
ψ(i + 1, j) ≥ f(f i−1(C∗

2)) = f i(C∗
2) ≥ f i(Pfs(i, j)), thus completing the

induction hypothesis.

Lemma 9. Following the notation used in Section 5, consider a two-hop relay
network with parameters c(Z) for the first hop and ri : i ∈ [m] as the rates
for the second hop. Let the min cut of this network be C∗

1 . Replace the second
hop rates by αig(ri/αi) where g(x) = fn(x) for some n with f(x) = 1− e−x.
The new min cut C∗

2 ≥ g(C∗
1).

Proof. First note that for each α > 0, for the given g, we have αig(ri/α) ≥
g(ri), which can again be shown using induction on the exponent of f corre-
sponding to the given g. Therefore, it is sufficient to show that the network
with second hop capacities, g(ri), has a mincut, C ≥ g(C∗

1). Let A
∗ be the set
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defining the min cut for the network defining C∗
1 in the same sense as it was

used in proof of Theorem 7. It can further be shown that g(x1 + . . .+ xn) ≤
g(x1)+. . . g(xn) by using induction on the exponent of f in the representation
of g. Using this fact (and denoting Θ = 1−∏i∈[m]/A∗(1− p(S, i)) for conve-

nience below), we then have: C ≥ Θ +
∑

i∈A∗ g(ri) ≥ g(Θ) +
∑

i∈A∗ g(ri) ≥
g(Θ +

∑

i∈A∗ ri) = g(C∗
1)

10.1. Simulation Results

In this section, we ran a simulation of the flooding policy and the back-
pressure policy on a layered network with ten layers in total. At each layer,
there are ten individual nodes. When a node in layer i broadcasts, each of
the nodes in layer i + 1 receives the packet with an acceptance probability
p, and these events are assumed to be independent across the nodes. In the
case of a flooding policy, every successfully received packet is accepted into
the queue of any node, without regard to whether a duplicate of the same
packet exists elsewhere in the network. In contrast, the backpressure policy
ensures that at most one copy of any given packet is present somewhere in
the network, by exchanging queue length information to elect the node with
the smallest queue as the unique forwarding node for any given packet after
its broadcast event. For convenience, we simulate a network with an iden-
tical acceptance probability at all links and plot the ratio of the resultant
throughput of the flooding scheme with the throughput of the backpressure
policy, as a function of the acceptance probability p. From the plot, it is seen
that this ratio converges to one as the p → 0. While this simulation is spe-
cific to the network in question, the theory implies that a similar qualitative
relation is expected to hold irrespective of the number of nodes in each layer
and variable acceptance probabilities, subject to the constraint that all loss
events are independent. In the next section, we study the effects of relaxing
the independence constraint. Remarkably as we will see in Section 11, even
in a two hop network, the ratio of throughput under feedback constraints
to that of the unconstrained capacity could be arbitrarily bad, unlike the
independent losses case.

A notable observation from the above plot is that the performance of a
flooding based policy approaches that of the backpressure throughput (which
is equal to the min cut capacity) as the link success probability goes to zero.
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Figure 5: The ratio of flooding to backpressure throughputs on a layered
network example with 10 layers, each with 10 nodes as a function of the
link success probability, which is set to be identical across all node pairs.
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11. Dependent Losses

From the previous section, one wonders if we are always assured of a con-
stant factor reduction capacity in general, without either feedback or net-
work coding on at least bounded diameter networks. Naively speaking, this
seems plausible because correlations in the losses can only supply the relays
with implicit information that might help them synchronize their routing
more efficiently while satisfying FIR. This intuition is flawed, as the follow-
ing counterexample shows that CR → 0 even though the capacity C∗ = 1.
This counterexample can be practically motivated as an extreme case of a
situation where most of the time (with probability p to be explicated later)
the broadcast channel is bad enough to be actually useful to a very small set
of relays but occasionally experiences high strength, in which case most of
the relays receive the broadcast. We make use of the characterization of CR

from Theorem 5 in showing this fact.

Definition 10 (Network, N of size m). Let ǫ > 0 = 1√
m
. When the source

broadcasts, with probability ǫ, all relays receive the packet and with probability
1− ǫ, exactly one of the relays receives the packet.

c(Z) =











1−ǫ
m

if |Z| = 1

ǫ if Z = [m]

0 otherwise

and for the relay to destination, we have:

p(i, D) = 1/m ∀ i ∈ [m]

Theorem 10. For the network N , C∗ = 1, but limm→∞CR = 0

Proof. By computing the mincut, we have C∗ = 1. We shall now derive an
upper bound on the CR which tends to 0 as m→ ∞ using Theorem 5. This
implies the claim because of Theorem 5. Since c(Z) depends only on |Z|,
and the LP 12 is symmetric over i, one can set without loss of generality,
t(Z) = φ(|Z|). This implies:

28



∑

Z,Z′⊆[m]:Z∩Z′ 6=φ

t(Z)c(Z ′) =
m
∑

k=1

(

m

k

)

φ(k)
(

∑

Z′:Z′∩[k] 6=φ

c(Z ′)
)

=
m
∑

k=1

φ(k)

(

m

k

)

(

ǫ+ (1− ǫ)
k

m

)

Therefore, the constraint in Equation (13) becomes:

m
∑

k=1

(

m

k

)

φ(k) ≤ 1 (18)

As for the constraint in Equation (14), we have:

p(S, i) =
∑

Z⊆[m]:i∈Z
c(Z) =

1− ǫ

m
+ ǫ

∑

Z⊆[m]:i∈Z
t(Z) =

m
∑

k=1

(

m− 1

k − 1

)

φ(k) =
1

m

m
∑

k=1

(

m

k

)

kφ(k)

Thus the second constraint becomes:

m
∑

k=1

(

m

k

)

kφ(k) ≤ m

1− ǫ+mǫ
(19)
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Thus,

CT =
m
∑

k=1

φ(k)

(

m

k

)

(ǫ+ (1− ǫ)
k

m
)

= ǫ

(

m
∑

k=1

(

m

k

)

φ(k)

)

+
1− ǫ

m

(

m
∑

k=1

(

m

k

)

kφ(k)

)

≤ ǫ+
1− ǫ

1− ǫ+mǫ
( from Equations (18), (19))

= o(1/
√
m) ( since ǫ =

1√
m
)

12. Conclusion

While network coding is necessary to achieve the maximum throughput
for multicast connections, this is not the case with wireless unicast. Rather,
network coding is a convenient way to solve the distributed routing prob-
lem without having to depend on feedback signaling to make complicated
routing choices for achieving the maximum throughput. In this context, we
analyzed a relay network and quantitatively characterized the limitations of
‘static’ routing policies that operate in a feedback independent manner. Our
characterization allows for explicitly identifying situations when there is no
loss of throughput by restricting to such simple routing policies. Further, we
show that the reduction in the throughput is controlled when the link losses
for a given transmission are independent, and could even be minimal when
the capacity is low, on a general feed-forward network. At worst, this is 63%
and gets progressively close to 100%, as the capacity itself goes to 0. Thus, in
such a situation, network coding delivers no benefit over simpler blind rout-
ing policies in the limit of unreliable communication. Nevertheless, highly
correlated losses could lead to an unbounded loss even on a 2-hop network.
In such a situation, network coding might be unavoidable if we need to be
conservative with the feedback.
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