
HAL Id: hal-00969478
https://hal.inria.fr/hal-00969478

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Partial Replay for MPSoC Debugging
Kiril Georgiev, Vania Marangozova-Martin

To cite this version:
Kiril Georgiev, Vania Marangozova-Martin. Deterministic Partial Replay for MPSoC Debugging.
[Research Report] RR-8515, INRIA. 2014, pp.30. �hal-00969478�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49657953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00969478
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
5

1
5

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8515
March 2014

Project-Team MESCAL

Deterministic Partial

Replay for

MPSoC Debugging

Kiril Georgiev, Vania Marangozova-Martin

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Deterministic Partial Replay for

MPSoC Debugging

Kiril Georgiev∗†, Vania Marangozova-Martin‡†

Project-Team MESCAL

Research Report n° 8515 — March 2014 — ?? pages

Abstract: This work reports on a debugging methodology for MPSoC based on deterministic
record-replay. It defines a general model of MPSoC, identifies the major sources for non determin-
ism and selects a set of adapted algorithms for the record and replay of non deterministic errors.
The contribution of this work the definition of a debugging cycle targeting errors by applying tem-
poral and spatial selection criteria. is the proposal of and . The idea behind spatial and temporal
selection is to consider not the entire execution of the whole application but replay a part of the
application during a specific execution interval. The proposed mechanisms are connected to GDB
and allow a visual representation of the considered part of the trace. The approach has been
validated on two execution platforms and two multimedia applications.

Key-words: MPSoC, non determinism, deterministic record-replay, debugging, methodology

∗ kiril.georgiev.sf@gmail.com
† Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France, CNRS, LIG, F-38000 Grenoble, France
‡ vania.marangozova-martin@imag.fr

Ré-exécution déterministe partielle pour le débogage de

MPSoC

Résumé :
Ce rapport présente une méthodologie de débogage pour les systèmes MPSoC basée sur

l’enregistrement et la ré-exécution déterministe de traces d’exécution. Ce travail propose un
modèle général des systèmes MPSoC, identifie les principales sources de non-déterminisme et
propose l’application d’algorithmes adaptés pour l’enregistrement et la ré-exécution d’erreurs
non-déterministes. L’originalité du travail réside dans la définition d’un cycle de débogage per-
mettant de cibler la recherche des erreurs en appliquant des critères de sélection spatiale et
temporelle. La sélection spatiale consiste à ne considérer qu’une partie de l’application en exé-
cution. La sélection temporelle permet de ne considérer qu’un intervalle spécifique d’exécution.
Les mécanismes sont connectées à l’outil de débogage standard GDB tout en fournissant une
représentation visuelle de la portion de trace considérée. L’approche est validée sur deux types
de plateformes et avec deux applications multimédia.

Mots-clés : MPSoC, non-déterminisme, ré-exécution déterministe, débogage, méthodologie

Deterministic and Partial Replay for MPSoC Debugging 3

1 Introduction

Recent years have witnesses a tremendous development of embedded systems [?, ?, ?, ?]. They
find their place in numerous domains in our everyday life like transports, domotics and telecom-
munications. This omni-presence has called for new design methods targeting more complex
applications, more efficiency and yet shorter time to market.

Multi-Processor Systems on Chip (MPSoC) architectures have been proposed to meet these
new requirements [?, ?]. They follow the "multi-core trend" and propose an increasing number
of components allowing for bigger computational power at a lower energetic cost. The hardware
design includes general purpose processors, specialized accelerators, shared as well as distributed
memory, numerous peripherals and Network-on-Chip (NoC) interconnections [?, ?, ?, ?, ?, ?].

The increasing hardware complexity of MPSoC brings new challenges to the process of soft-
ware development and validation. Indeed, the possibility to execute multiple treatments in
parallel and to have concurrent data accesses makes software execution non deterministic. As a
consequence, software validation is faced with the problem of detecting and rooting the causes
of non deterministic errors which are hard to observe and reproduce. The problem is even more
emphasized by the important number of components (threads, tasks, processes) taking part in
an execution and their possible interactions.

In this report we describe our approach to debugging non deterministic embedded software.
Our work is at the intersection of the two classical validation techniques of interactive debugging
[ref] and execution trace analysis [ref]. We propose a record-replay mechanism [ref] in which
non deterministic errors are first captured in recorded execution traces and then tracked through
debugging a deterministic replay of the recorded traces. The main contribution of this work is a
debugging methodology allowing for zooming into suspicious software parts by applying spatial
and temporal selection criteria. The methodology is designed to be scalable, i.e. support MPSoC
with a great number of components, and efficient, i.e induce minimal execution overhead.

The proposed debugging methodology is based on the following basic bricks:

• Target Sources for Non Determinism
Modern MPSoC software include parallel, distributed and time-constrained interactions.
As a consequence, they need to face the global set of non deterministic execution situations
identified in other computation domains. Namely, MPSoC non deterministic executions
may be due to concurrent data accesses, to I/O activities, to message-oriented commu-
nication or to scheduling. Our methodology proposes a trade-off between precision and
intrusion by targeting not all but a set of non deterministic phenomena.

• Algorithms for Deterministic Record-Replay
After a study of the state of the art, we have selected a set of algorithms for record-
ing and reproducing non deterministic phenomena in MPSoC. The choice is based on the
algorithms’ performance characteristics and their compatibility with the efficiency require-
ments in MPSoC. Typically proposed in the parallel systems domain, our work explores
their applicability to MPsOC.

• General Architectural Model for MPSoC
Considering architectural trends in modern MPSoC, we abstract from heterogeneity and
propose a general model representing major architecture principles. This model allows
for defining a general software API 1 used in the definition of the deterministic partial
record-replay mechanism.

1Application Programming Interface

RR n° 8515

4 Georgiev & al.

• Software Partitioning using Spatial and Temporal Criteria
Even with the most efficient mechanisms for deterministic record replay, the number of
MPSoC interacting components makes global debugging a daunting task. To reduce the
error search space, our methodology allows for considering only a part of the MPSoC soft-
ware (spatial reduction) during a specific execution interval (temporal reduction). Spatial
reduction exploits our architectural MPSoC model, while temporal reduction is based on
the recorded traces timeline.

• Debugging Cycle with Partial Replay
Our methodology defines an iterative debugging cycle during which the developer may
replay different parts of the recorded software execution. During the replay, it is possible
to capture additional execution information to zoom in and analyze it more in detail.

The rest of the report is organized as follows. Section ?? presents the state of the art
concerning record-replay techniques. Section ?? introduces the general concepts behind our
proposal. It details the debugging cycle phases, presents the proposed MPSoC model and sketches
the used record-replay algorithms. The implementation of these features in our prototype system
ReDSoC 2 is detailed in Section ??. Section ?? describes our experiences with RedSoC debugging
on two execution platforms and two multimedia applications. Finally, Section ?? concludes and
gives future perspectives.

2 Record-Replay of Non Deterministic Phenomena

There are numerous deterministic record-replay solutions that focus and limit themselves on
different sources of non determinism. In a shared memory setting, projects reproduce scheduling
decisions only [?] or consider data races. The latter consider all shared data accesses [?, ?, ?, ?]
or the accesses to synchronization structures [?]. Alternative approaches relax the exact replay
of data accesses and focus on application outputs [?, ?]. Others eliminate non determinism by
using an adapted execution support [?]. In a distributed setting, record-replay solutions focus
on the data exchanges among nodes [?, ?, ?]. To apply to realistic embedded platforms, ReDSoC
considers all sources of non determinism and combines record-replay techniques from both shared
and distributed memory settings.

In the domain of embedded systems, record-replay mechanisms for multi-tasking embedded
systems mainly focus on the reproduction of context switches [?, ?, ?, ?]. The works investigate
the unique identification of context switches, needed for a precise replay, as well as various
algorithms for efficient computing of the system state fingerprint. This approach can be used in
hard real-time embedded systems but does not apply to multi-core concurrent executions which
are considered in ReDSoC.

Record-replay mechanisms strive for a trade-off between cost of implementation, precision and
generality. Indeed, hardware-based mechanisms [Scribe] impose minimal intrusion on the traced
system but require costly non commodity hardware. Virtual machine mechanisms [?, ?] provide
for a comparable level of detail but rarely consider multi-processor platforms. In addition, their
cost is prohibitive for embedded systems. System mechanisms [?] provide for transparent record-
replay which does not require application modification. Their are, however, tightly coupled with
the specific operating system they consider. ReDSoC is at the level of application and library
mechanisms [?, ?] which impose some modification (instrumentation, recompilation) of the target
application but provide for better portability.

2Record-Replay for Deterministic SoC Debugging

Inria

Deterministic and Partial Replay for MPSoC Debugging 5

Partial replay has been considered in parallel and distributed systems which exhibit too
much components and interactions for a total record-replay. Recent works [?, ?] on many-
core High Performance Computing (HPC) architectures reproduce selected groups of processes.
However, as their mechanisms are based on their programming models API, they cannot be
applied to embedded system environments. As for distributed systems [?, ?], existing partial
replay solutions limit themselves to considering a single node.

3 ReDSoC Overview

In this section, we present RedSoC, our prototype system for deterministic partial record-replay
of MPSoC. We first describe the proposed debugging methodology, enumerate its different steps
and explicitly point out our contributions (Section ??). Before presenting the logic for our partial
replay mechanism (Section ??), we introduce our general MPSoC model (Section ??). Section ??
gives details about the chosen record-replay algorithms.

3.1 Debugging Cycle

The proposed debugging methodology is represented in the Figure ??. It is composed of the
following steps:

• Step 1: Recording a Reference Execution Trace
During this step, the execution of the whole MPSoC software is recorded to produce refer-
ence execution traces. The data captured in these traces has been defined in close relation
with the non deterministic phenomena we have decided to target, as well as with the replay
techniques we have chosen. The design aims at recording minimal but sufficient data. It
limits the volume of recorded data to minimize the tracing overhead during execution. Yet,
the recorded data is sufficient for a deterministic replay. The choice of target non determin-
istic phenomena to debug and the identification of adapted replay algorithms represents
our first contribution.

• Step 2: Trace Analysis
The step is performed by the developer who debugs the MPSoC software. Using different
available tools but mainly his/her experience, the developer analyses the trace in in search
of abnormal behavior.

• Step 3: Error Detection
At this step, the developer decides whether a problem has been recorded and should be
investigated, in which case the cycle continues with Step 4. Otherwise, typically if a
targeted non deterministic error has not yet been recorded, the cycle may restart with
Step1.

• Step 4: Spatial and Temporal Reduction of the Search Space
During this step, the developer decides to focus on a particular part of the software execu-
tion thus reducing the search space. to do so, the developer may apply a spatial and/or a
temporal selection criteria. The definition of these criteria represents our second contribu-
tion.

• Step 5: Deterministic Replay and Recording Partial Traces
During this step, the reference trace is deterministically replayed to capture additional data
reflecting the execution of the software part, selected in Step 4.

RR n° 8515

6 Georgiev & al.

Step 1: Recording a Reference

Execu5on Trace

Step 2: Trace Analysis

Step 4: Search Space Reduc5on

Step 5: Determinis5c Replay and

Recording Par5al Traces

Step 6: Determinis5c Par5al Replay

and Debugging

Step 3: Error Detec5on

Step 7: Error Iden5fica5on

A

B

C

A C

Choice

Proposed methods

Developer ac5ons

A
Contribu5on on

determinis5c replay methods

B
Contribu5on on

search space reduc5on

C
Contribu5on on

par5al replay

Figure 1: Debugging Cycle

• Step 6: Deterministic Partial Replay and Debugging
During this step, only the selected software part is considered and the corresponding trace
deterministically replayed. The replay mechanism is connected to a debugging tool, so the
developer may debug the execution of the selected part in a standard way.

• Step 7: Error Identification
If the error source is not identified after Step 6, the developer goes back to Step 4. If the
developer want to focus on a different software part, the cycle goes through Step 5. If the
developer considers the same software part but during a different time interval, there is no
need for additional trace collection and the cycle continues directly with Step 6.

3.2 MPSoC Model

Our work is based on the generic hardware model showed in Figure ??.

The different components are include processors, memory blocs, peripherals and a communi-
cation network.

• Processors

Inria

Deterministic and Partial Replay for MPSoC Debugging 7

N1 N2 N3 N4

N5 N6 N7 N8

Periph1 Periph2

Periph3 Periph4

N
e
tw

o
rk

CPU

video

CPU

video

CPU

video

CPU

video

shared

memory

Node 5

CPU

audio

CPU

audio

shared

memory

Node 8

Figure 2: MPSoC Hardware Architecture

Processors3 are organized in a two-level hierarchy. There may be heterogenous processors
but homogenous processors form groups we call nodes. Thus there may be a node with
audio processing unit and another specialized in video decoding.

• Memory Blocs
In a node, processors have access and communicate through to a shared memory bloc.
Memory is distributed among nodes and a processor from one node cannot access the
memory of another node without passing through inter-node network connexions.

• Peripherals
Peripherals are the devices ensuring data exchange between the MPSoC and the external
environment. Peripherals may include sensors, keyboards, screens, microphones, etc. The
data they capture is communicated to the processors via the memory or the network.

• Communication Network
The network connexions organize the other components in a hierarchical way.

As for MPSoC software, our assumptions are the following. The software execution is com-
posed of a set of execution flows which is statically partitioned and scheduled on the MPSoC
nodes. The execution flows scheduled on the same node communicate using the shared memory
bloc and via synchronization. The execution flows scheduled on different nodes communicate
using message-passing through the network. Data from peripherals is acquired either by poling,
or using interruptions.

3.3 Partial Replay

to partially replay MPSoC software execution, we apply two selection criteria concerning the
software architecture (space) and the execution duration (time).

The reduction of the search space concerning the software architecture is based on our model
of execution flows deployed on MPSoC nodes. The idea is to isolate a set of nodes on which the

3We call processors all computational units including general purpose processors, cores or accelerators.

RR n° 8515

8 Georgiev & al.

Search Space

Execu,on ,me

Nodes

Debugged Space

Execu,on ,me

Nodes

Suspected

nodes

Time interval

Figure 3: Search Space Reduction

debugging can focus. The replay phase thus concerns only the execution flows running on the
identified set of nodes. We call the set of nodes to debugged, the suspected or the nodes. The
non suspected nodes are called the correct nodes.

to isolate suspected nodes from the correct nodes, the tracing phase needs to differentiate the
nodes and consider their message exchanges. Indeed, messages exchanged between correct nodes
are not to be recorded as these nodes would not participate in the replay. Messages exchanged
between suspected nodes do not need to be recorded either, as they will be executed during
replay. In the case of a message sent from a suspected node to a correct one, as the receive
operation has no relevance to the replay, the replay may skip the send operation. In the case of a
message sent by a correct node to a suspected one, the order and the content of the message need
to be traced. During replay, the trace is used to decide whether to execute a message exchange
operation and also to provide message values coming from the external/correct nodes.

The reduction of the search space concerning time is based on the time sequence of events
recorded in the trace. The developer needs to delimit the interval to consider during debugging.
This is done by choosing the interval limits which are two traced events. The choice is typically
facilitated by a visualization tools which represents the trace. During replay, reexecuted events
are compared to the chosen interval beginning. When this event is reached, a debugger is launched
and a standard debugging process may start. When the interval end is reached, the debugging
phase terminates.

3.4 Record-Replay Algorithms

In this section we briefly present our motivation and the chosen algorithms for deterministic
replay for shared data accesses, network communications, I/O operations and scheduling.

3.4.1 Deterministic Replay for Shared Data Accesses

Given that recording all accesses to shared data implies a prohibitive execution overhead [?], our
record-replay mechanisms focuses on accesses to synchronization structures. Non-synchronized
shared data accesses are considered to be errors, to be detected and corrected.

We have chosen the algorithm proposed by Levrouw et al. in [?]. The algorithm uses Lamport
clocks to identify accesses to different synchronization structures by different execution flows.
There is one scalar clock per synchronization structure (LCss) and one scalar clock per execution
flow f (LCf). When there is an access to a synchronization structure SS by an execution flow
f , both clocks LCss and LCf advance using the rule LCf = LCss = max(LCf , LCss) + 1. The

Inria

Deterministic and Partial Replay for MPSoC Debugging 9

trace of the execution flow records the identifier of the synchronization structure SS, as well as
the couple of the old and new values of the LCf clock.

During replay, the accesses to the synchronization structure SS are forced to follow the
recorded order. To this purpose, the replay mechanism considers the recorded LCf values. It
identifies the next access to the synchronization structure by deciding of the next expected value
of the clock which is the smallest one. The execution flows trying to access the structure while
not having the smallest LCf are blocked.

3.4.2 Deterministic Replay for Network Communications

Two network communication situations may be non deterministic. The first concerns the case
when multiple sources send messages to a single destination. The reception order may depend on
numerous factors like network protocols, connexion speed, routing, system load, etc. The second
situation concerns non blocking reception operations. In this case, the reception operation relies
on a verification of the data availability (probe) which is itself non deterministic.

to trace and deterministically replay network communications, we have used the solution
proposed in [?, ?]. This solution has minimal intrusion as it traces only race reception operations.

For blocking network communications, the detection of race reception primitives is based
on vector clocks. For a system of N execution flows, vector clocks have N components. For
execution flow Ei the i-th component is its scalar clock and accounts for the number of local
operations. All other components account for the operations that happened within the other
execution flows and that causally precede the current operation. Thus, if there are two receive
operations on the same execution flow, one from Ea with timestamp Va and another from Eb

with vector stamp Vb, if the a-th component of Va is bigger than the a-th component of Vb,
the operations are independent i.e race receptions. For the purposes of deterministic replay, the
receiving execution flow traces the identifier of the sending flow, as well as the number of current
receptions. During replay, if a message is received but its source does not correspond to the one
recorded, the reception is delayed.

For non blocking reception operations, there is a need to record the number of executed
probes, as well as their outcome (message available or not). For positive probes, the trace is to
contain the identifier of the source execution flow, as well as the size of the received data. During
replay, a receive operation is delayed, as long as the source identifier does not match, or the data
is not available.

3.4.3 Deterministic Replay for Scheduling Operations

The scheduling mechanism is responsible for deciding which execution flow is to be executed on
a given processor. The scheduling operation may be triggered either by a change of status of an
execution flow (terminated or blocked), or by a timing mechanism (time-sharing or priorities).
If the first case is natural to record and replay, the timing mechanism is related to interruptions.
Given the interrupt frequency and the complexity of recording the exact context for an inter-
rupt [?], however, recording interrupts with an acceptable cost in a real MPSoC environment
is still a challenge. For this reason, we have decided to leave interrupt replay aside for future
investigation.

3.4.4 Deterministic Replay for I/O Operations

Output operations have no effect on replay techniques. Input operations, however, are important,
as they influence the execution path of MPSoC software.

RR n° 8515

10 Georgiev & al.

Input operations are based either on interrupts, or on busy waiting (polling). As we decide
to limit the intrusion of our mechanism by not recording interrupts, we consider only polling
requests. We suppose that the content of the input data is recorded by specific devices and take
care of recording its size in the reference execution trace (Step 1). During replay, the trace is
read to decide that there is an input operation which is in turn acquired by executing a polling
request to the specific recording device.

4 ReDSoC Implementation

The general architecture of our prototype is represented on Figure ??.

Development pla,orm (host) MPSoC pla,orm

Linux x86

GDB

MPSoC kernel

MPSoC API

Trace VisualizaEon

 Tool

ParEal Replay Tool

Temporal

parEEoning

GDB Extension

Space/node parEEoning Trace CollecEon

Tool

DeterminisEc Replay Tool

MPSoC SoLware

Figure 4: ReDSoC Architecture

We consider a standard configuration in which part of the debugging operations are deported
on a host platform connected to the target MPSoC platform. This is necessary as in many cases
MPSoCs have limited resources and do not provide keyboard and screen peripherals.

ReDSoC is deployed both on the host machine and the target MPSoC machine. It is composed
of four tools, namely a trace visualization tool (Section ??), a partial replay tool (Section ??),
a trace collection tool (Section ??) and a deterministic replay tool (Section ??). The Trace
Collection Tool, as well as the temporal selection criteria of the Partial Replay Tool are deployed
on the host machine. The other tools are deployed on the MPSoC, each MPSoC node having its
own ReDSoC instance. The deployment on a MPSoC node is guided using a configuration file,
provided by the developer. The file indicates the node number, the debugging phase to consider
(Steps 1, 5 or 6 on Figure ??), as well as the numbers of the suspected nodes.

The host machine is supposed to run a Linux-based system and have GDB for debugging.
The MPSoC runs a MPSoC kernel characterized by a MPSoC API (Section ??).

4.1 MPSoC API

to explicitly address non deterministic behavior of MPSoC and respect the proposed MPSoC
architectural model (cf. Section ??), we have defined our own MPSoC API. Our API is inspired
by the the POSIX standard [?]. It includes basic functions for execution flow management,
synchronization, network communications and I/O. The API is listed in Figure ??.

Inria

Deterministic and Partial Replay for MPSoC Debugging 11

/* Task Management */
int taskCreate(task_t *task,void *(*funct)(void *),void *args, int node);
int taskJoin(task_t *task);

/* Synchronization */
int synCreateMutex/synDestroyMutex(mutex_t *m);
int synCreateCond/synDestroyCond(cond_t *c);
int synLock(mutex_t *m);
int synUnlock(mutex_t *m);
int synWait(cond_t *c, mutex_t *m);
int synSignal(cond_t *c);

/* Communication */
int tcpCreate(tcp_socket_t s,int p, int type);
int tcpListen(tcp_socket_t s);
tcp_socket_t tcpAccept(tcp_socket_t s);
int tcpConnect(tcp_socket_t s,node_id num,int p);
int tcpClose(tcp_socket_t s);
int tcpSend(tcp_socket_t s, char *buff, int size);
int tcpRecv(tcp_socket_t s, char *buff, int size);

/* Input/Output */
int pOpen(const char *name);
int pClose(int fd);
int pRead(int fd, void *buf, size_t count);
int pWrite(int fd, void *buf, size_t count);

Figure 5: MPSoC API

• Task Management
As in many embedded system kernels [?, ?], in our model, an MPSoC software is exe-
cuted by several execution flows, called tasks. Our API provides two functions. The first
(taskCreate) is used for task creation function, the parameters being the function to ex-
ecute, the arguments for that function and the node on which to launch the task. The
second function (taskJoin) allows a function to wait for the termination of another task.

• Synchronization
Synchronization functions are applied to tasks executing on the same node. They man-
age standard mutex and condition synchronization structures with their respective inter-
faces. The synchronization structures may be created (synCreate functions) and destroyed
(synDestroy functions). Mutexes are manipulated using the synLock/synUnlock interface,
while conditions are used with synWait/synSignal.

• Communication
Communication functions provide for message passing using sockets [?]. In our model,
a communication link is established between two tasks running on two different nodes.
The communication protocol is TCP [?]. The connection establishment is done via the
tcpConnect , tcpListen and tcpAccept functions. It is closed using tcpClose. The
message sending and receiving functions are respectively tcpSend and tcpRecv. The choice
between blocking or non blocking communication is done at the socket creating with the
tcpCreate function.

• Input/Output
I/O functions follow the UNIX logic. They provide for reading of (pRead) or non-blocking
writing (pWrite) to peripherals. Peripherals are addressed using the identifier returned by
the pOpen function.

RR n° 8515

12 Georgiev & al.

4.2 Trace Collection Tool

Our trace collection tool is deployed on each node of the MPSoC platform. As its purpose is to
intercept the calls to the defined MPSoC API, it provides a simple interface of four functions
(cf. Figure ??).

int getNodeId();
int getTaskId();
unsigned int getTimestamp();
int trace(int type, char *traceData, int size, vect_t Vector);

Figure 6: Tracing API

The first three functions return respectively the identifier of the current node, the identifier
of the current task and the node timestamp. The timestamp information is used to the visual
representation of the collected traces using the trace visualization tool.

The trace function writes an entry in the trace. The type parameter is used to distinguish
between the different types of entries corresponding to the different non deterministic situations
traced. The buffer traceData contains the data of size size to record. The Vector parameter
gives a mask indicating what is the structure of the trace entry. At most, the entry contains five
fields including a timestamp, a node identifier, a task identifier, an entry type and the actual
data.

4.3 Deterministic Replay Tool

The tool for deterministic replay implements the algorithms presented in Section ??. In the
following, we give the implementation details about the three target non-deterministic situations.
Shared data accesses are managed through tracking the synchronization operations of our MPSoC
API. Network communications are targeted using our message-based communication. Finally,
I/O are addresses by the MPSoC file-oriented I/O operations .

4.3.1 Synchronization

In the case of synchronization, our tool records and replays the accesses to the shared syn-
chronization structures, namely the mutexes and the conditions. In the following, we focus on
mutexes, as the treatment for conditions is the same.

The access to mutexes and the output of the synLock function is non deterministic as the
access to critical sections depends on the system scheduling which we cannot control. As a
consequence, our tool records and reproduces the access order to the critical section. To do so,
the synLock function is encapsulated in a RRsynLock function, as showed in Figure ??.

During the record phase, the mutex is taken and the access order is recorded using
TraceMechanism function. The TraceMechanism creates an entry indicating that its type is
related to synchronization and containing the couple of old and new Lamport clock values. Dur-
ing the replay phase, the task is blocked until it is its turn according to the recorded trace. This
behavior is implemented in the WaitSynchVar function, given in Figure ??.

A task gains access to a mutex using the lowestSliceCounterValue function. The function
verifies if the task counter (SliceCounter[eFlowID]) is the smallest among all recorded values
contained in the shared array SliceCounter. When the access is replayed, the data structures
for tracking the access order are updated in the NextSliceCounterValue function.

Inria

Deterministic and Partial Replay for MPSoC Debugging 13

RRsynLock(mutex_t *m){
...

if RecordPhase() {
synLock(m);
TraceMechanism(m);

} else
WaitSynchVar();
synLock(m);
NextSliceCounterValue();

...
}

Figure 7: Interception of the synLock() function

void WaitSynchVar() {
...

while (!lowestSliceCounterValue()) {
blockedTasks++;
synCondition(&waitCond,&waitSynchVar);

}
for (i=0;i<blockedTasks;i++)

synSignal(&waitCond);
}

...
}

Figure 8: Respecting the recorded synchronization access order

//(firstTracedLC,lastTracedLC) is the current traced couple of Lamport clocks

void NextSliceCounterValue() {
...

if (SliceCounter[eFlowID] == firstTracedLC) {
SliceCounter[eFlowID] = lastTracedLC;
GetCoupleFromTrace(&firstTracedLC,&lastTracedLC);

}
else

SliceCounter[eFlowID]++;
}

...
}

Figure 9: Updating synchronization replay structures

RR n° 8515

14 Georgiev & al.

4.3.2 Message Passing Communication

Non deterministic situations concerning multiple sends to a single destination, are reflected
by the communication protocol implemented using tcpConnect and tcpAccept functions. In-
deed, tcpAccept creates the communication link (the socket) with the first task which executes
tcpConnect with the needed arguments. To reproduce deterministically these situations, we
record the (source, destination) couples by intercepting tcpConnect and tcpAccept and execut-
ing respectively the RRtcpConnect (Figure ??) and RRtcpAccept (Figure ??)functions.

1 int RRtcpConnect(tcp_socket_t s,node_id num,int p) {
2
3 ret = tcpConnect(s,num,p);
4 MessageProduction(num,buffer,&size);
5 tcpSend(s,buffer,size);
6 return ret;
7 }

Figure 10: Deterministic Replay for tcpConnect

The role of the RRtcpConnect is to send the node identifier to the destination node to allow
the tracing of the established communication couple (sending node, receiving node). To do so,
the function sends an additional message (MessageProduction and tcpSend, lines 4 and 5)
containing the node identifier.

1 int RRtcpAccept(int s) {
2 ...
3 if RecordPhase() {
4 ret = tcpAccept(s);
5 tcpRecv(s,buffer,size);
6 generateTcpAcceptTraceData(traceData,buffer);
7 trace(TcpAcceptTraceType,traceData,tcpAcceptVector);
8 } else if (!SearchTcpSocket(sock,&ret)) {
9 ret = tcpAccept(sock);
10 tcpRecv(sock,buffer,size);
11 while (!compare(getExpectedNodeid(),getRecvNodeid(buffer))) {
12 AddSocket(getRecvNodeid(buffer),sock,ret,getSocketsArray());
13 ret = tcpAccept(sock);
14 tcpRecv(sock,buffer,size);
15 }
16 }
17 return ret;
18 }

Figure 11: Deterministic Replay for tcpAccept

In a symmetric way, during the record phase, the tcpAccept function, received the
sending node identifier, established the connection link and generates the trace entry
(generateTcpAcceptTraceData and trace calls on lines 6 and 7) containing the couple of iden-
tifiers of the two communicating nodes. For the replay phase, the function manages a buffer of
created sockets with the corresponding (sender, receiver) couples. When a connection demand ar-
rives, the function checks whether the socket is already created and available (SearchTcpSocket)
and returns it. Otherwise, it creates the socket. If the socket identified by a couple (sender, re-
ceiver) does not conform to the trace recordings (line 11), the socket is stored in the sockets
array via (AddSocket).

For non blocking receptions, the trace records the identifier of the receiving task, the number
of calls to tcpRecv receiving the same size of data, as well as the size itself. The replay executes

Inria

Deterministic and Partial Replay for MPSoC Debugging 15

a loop waiting for the data to be available.

4.3.3 I/O

Input functions are executed using the pRead function. The record phase registers the identifier
of the task calling this function, as well the number of calls and the data size. The logic is
identical to the records of non blocking tcpRecv calls. During replay, the pOpen function call is
not executed as the input data is recorded and available in a separate trace.

4.4 Partial Replay Tool

to apply the space reduction criterium based on isolating suspected nodes, our partial replay tool
needs to monitor and record all communications between normal and suspected nodes. These
communications are based on the network communication primitives of our MPSoC API, namely
tcpConnect,tcpAccept, tcpSend and tcpRecv. In the following, we explain the treatments for
tcpConnect and tcpRecv, the treatments for tcpAccept and tcpSend being identical.

During the establishment of a connection with a suspected node using tcpAccept, the tool
verifies if the sender node is a correct one (cf. Figure ??). If this is the case, the trace mechanism
records the node identifier and the respective socket. It also records a counter (CFC) which is
used to track the order of the communication functions on the suspected node.

1 int PartialRecordTcpConnect(tcp_socket_t s, node_id *num, int retTcpConnect) {

2 MessageProduction(num,buffers,&size);
3 tcpRecv(s,bufferr,size);
4 tcpSend(s,buffers,size);
5 if (CorrectNode(bufferr)) {
6 RegisterNodeSocket(bufferr,s);
7 GeneratePartialTcpConnectTraceData(traceData,CFC,retTcpConnect);
8 trace(PartialTcpConnectTraceType,traceData,tcpConnectVector);
9 }
10 CFC++;
11}

Figure 12: Tracing tcpConnect()

During communication, the function tcpRecv is encapsulated in PartialRecordtcpRecv. If
the reception is on a socket which indicates a connection to a normal node, the operation is
traced to record the return value, the received data and the communication operation number.

int PartialRecordTcpRecv(tcp_socket_t s, int retTcpRecv, char *buffer) {

if (registredSocket(s)) {
GeneratePartialTcpRecvTraceData(traceData,CFC,retTcpRecv,buffer);
trace(PartialTcpRecvTraceType,traceData,tcpRecvVector);

}
CFC++;

}

Figure 13: Tracing tcpRecv()

During replay, each communication operation is intercepted to decide whether a normal node
takes part in it or not. If yes, the operation is replayed by directly reading the needed values from

RR n° 8515

16 Georgiev & al.

the recorded trace. If the communication is between suspected nodes, the operation is normally
executed.

to apply the time reduction criterium, we have implemented an extension for GDB and
introduced a new type of breakpoint. We use replay breakpoints corresponding to the limits of
the time interval that has been selected for debugging. Each replay breakpoint corresponds to
an event recorded in the trace and is identified by a triple containing a node identifier, a task
identifier and a timestamp.

During replay, each call to the MPSoC API is followed by a call to the gdbNotify function.
This function is in charge of comparing the current API call to the limits of the selected time
interval. If it does not correspond to any of them, the execution is pursued. If the call corresponds
to the start of the time interval, the execution is suspended and the debugging starts. When
the end of the time interval is reached, the debugging stops and the developer may choose a
new time interval. If it is after the previous time interval, the execution continues. If not, it is
launched from the beginning.

4.5 Trace Visualization Tool

We have adapted the KPTrace Viewer of STMicroelectronics [?] to represent our recorded traces.
The viewer allows for representation of an event, characterized by a time, a timestamp, a process
identifier and a number of arguments.

to visualize our traces, we have first provided for a tool formatting our traces according to
the Pajé [?, ?] format. Second, we have modified the KPTrace viewer to allow Pajé format
visualization.

Pajé considers a trace as a sequence of events. It is a self-defining format as it allows for
definition of the event types and establishment of a type hierarchy. It introduces the concepts of
container, state, event, variable and link.

• Container : A container represents an entity with dynamic behavior. It may represent,
for example, a processor, a network kink or a thread. It may reference other containers to
establish an hierarchy.

In our tool, the root container is the MPSoC software. This container has child containers
representing the nodes of the system. The third level of the hierarchy are the task containers
which are referenced by the node containers.

• State : A state is a duration with explicit start and ending. A state models the fact that
a container has the same state during an interval of time. The definition of the semantics
of a state is left to the developer.

In our tool, we do not use states.

• Event : Un event is a punctual phenomenon that happens at a given time (timestamp).

In our tool, events represent the input operations, as well as message receptions.

• Variable : A variable follows the evolution of numerical values. It may represent the value
of a measured parameter or contain a calculated value.

In our tool, variables are not used.

• Link : A link represent an interaction between two containers, characterized with a start
and an end timestamps. It is typically used for modeling communications.

Inria

Deterministic and Partial Replay for MPSoC Debugging 17

In our tool, links represent causal relations. On one hand, they are used to show the
successive accesses of tasks to shared synchronization structures. On the other hand, they
show the establishment of network connection by relating the calls to tcpConnect and
tcpAccept.

An example of visualization is shown on Figure ??. The x dimension gives the time pro-
gression. The y dimension represent containers, in this case tasks. The links, represented using
arrows, show three successive accesses of the tasks T0, T2 and T1 to a shared synchronization
structure. The flags show peripheral operations, their color being specific for each peripheral
device.

Figure 14: A fragment of trace visualization

5 Validation

We have validated our approach in two settings: the debugging of a real-time application on an
MPSoC platform (Section ??) and the debugging of a video-decoding application on a NUMA
platform (Section ??).

5.1 Debugging a Tetris Application on an MPSoC Platform

For this use case, we have used a Stagecoach expansion board having two OveroFE COM nodes
(computer-on-module) [?]. Each node has an ARM Cortex-A8 600Mhz processor with 256MB
of DDR RAM, 256MB of NAND flash memory and a microSD port. The two nodes occupy the
first and the third slot of the board. They are connected through a 100Mb/s Ethernet link and
have distinct IP addresses. The RJ45 slot of the board is used to connect to an external network
card which gives IP access to both nodes.

We have implemented our MPSoC API using the POSIX and the libc interfaces. We have
installed the platform from scratch by creating a bootable MicroSD with the needed Linux
distribution. The system image includes the 2.6 Linux kernel, libc6, a file system and the ssh

service. To deploy the platform, we have used the cross-compiler provided in the Sourcery
Codebench [?] to create a x86 executable. The executable contains the MPSoC application, the
ReDSoC tools, as well as a GDB server.

The debugged MPSoC application is the Tetris game for two players (cf. Figure ??). The
application’s size is about 0,7MB and contains about 15000 lines of code. It is executed by two
tasks run respectively on the two MPSoC nodes.

Both players see both Tetris boards. When a player succeeds in making disappear multiple
lines, the other player’s game becomes harder. The player whose board fills first loses the game.

The Tetris pieces movements are controlled through the keyboard and also using the clock
frequency. The keyboard is scanned for player commands, while the clock frequency is used to
advance the pieces downwards.

RR n° 8515

18 Georgiev & al.

&

1 euro cent

USB

RJ45 connector

Figure 15: Stagecoach board with two Overo FE COM nodes

Figure 16: Two Player Tetris.

Inria

Deterministic and Partial Replay for MPSoC Debugging 19

In our use case, we needed to debug the application as, from time to time, one of the Tetris
instances crashed and as a consequence the other player won. Following our debug cycle, we
reexecuted several times the Tetris application to obtain a reference trace containing the error
(cf. Figure ??).

I/O clock I/O keyboard Msg Communication

Task 0
Node 0

Task 0
Node 1

Figure 17: Visualization of the Tetris Reference Trace

As, in our case, the node to fail is node 1, we suspect this node and choose it as a target
for the partial replay. To select the time interval for debugging, we focus and zoom the end
of its trace (cf. Figure ??). We select the small end time interval containing three operations
reading the system clock, four keyboard inputs and one message reception. As each event can
be examined, we can see that the first event is a GetTimerOp operation, executed by task T0 at
time 19′244′641µs. The last event is a NetRecvOp executed by T0 at time 19′244′728µs. These
two events are defined as the two replay breakpoints for the debugging session.

I/O clock I/O keyboard Msg Communication

Task 0
Node 1

Time interval

Figure 18: Time Interval Selection

ReDSoC needs to first deterministically replay the whole application to gather additional
traces about the communications of node 1 with node 2. Once these traces are generated,
ReDSoC may start the deterministic replay of node 1 and debug it during the selected time

RR n° 8515

20 Georgiev & al.

interval. Indeed, when the replay reaches the first replay breakpoint, ReDSoC starts a standard
debugging session (cf. Figure ??).

Reaching the first replay breakpoint,
start of the selected time interval

Interaction between the GDB server, executed
on the MPSoC and our GDB extension, executed on the host

Deterministic replay

MPSoC software function calls

Figure 19: Partial Debugging of the MPSoC Tetris Application

The figure contains a screen capture of the debugging session when the first replay breakpoint
is reached. The first line’s information states clearly the number of the entry in the trace (202459),
the type of the entry (IO), the node identifier (Node1) and the task identifier (Task0).

The bt GDB command given on the fourth line gives the function call stack. We ob-
serve the interaction between the GDB server and our GDB extension implemented in the
rdb_notify_event function. The additional parameter information for rdb_notify_syscall

confirms that the replay considers an IO operation of the task with tid=0 on node node=1. Up
the call stack, we see the replay function for IO operations (replayIOsize) and the MPSoC
function calls.

When the debugging session reaches the last message reception operation, it is possible to
investigate the received value. It appears that it is not correct and contains zero. This value is
used in a division operation and the division by zero makes the node 1 to crash.

to understand why the value is incorrect, we choose to suspect the other node, node 0. When
we focus on the end of its trace, we observe a non regular behavior. Partially replaying node 0
and debugging it during a time interval at the end of its execution, makes us discover that there
are many keyboard input operations resulting form a continuous pressing of a keyboard key. The
input data being saved in a memory buffer, an error in the buffer management makes it overflow
and results in sending an incorrect value.

5.2 Debugging a Video Decoding Application on a NUMA Platform

to validate the scalability of our approach and given the unavailability of a large scale MPSoC
platform at the time of the experience, we have developed the use case on a NUMA platform.
The considered MPSoC software is the FFMPEG video decoder [?, ?].

Inria

Deterministic and Partial Replay for MPSoC Debugging 21

I/O clock I/O keyboard Msg Communication

Task 0
Node 0

Figure 20: Considering a Different Node and a Different Time Interval

The NUMA architecture used in our experiments has four nodes, each having eight dual core
2.2 GHz AMD Opteron processors and 32GB of main memory. The architecture is shown on
Figure ??.

Node 0 Node 1

Node 2 Node

network

M

e

m

M
e
m

M
e
m

M

e

m

Peripherals

Figure 21: NUMA Architecture

We have used the NUMA resources to represent the MPSoC architectural elements in the
following manner:

• MPSoC Nodes. MPSoC nodes and cores are mapped to the NUMA nodes and processors
respectively. To do so, we represent the hardware and the software of an MPSoC node
by a Linux process. However, the Linux process does not occupy all the resources of the
corresponding NUMA node. Part of these resources are reserved for the debugging needs
(cf. Figure ??).

RR n° 8515

22 Georgiev & al.

• The memory of an MPSoC node is the memory of the corresponding NUMA node. As the
NUMA memory is shared by all NUMA processors, to conform to MPSoC constraints, we
use the libnuma library to delimit the accessed memory region. Moreover, MPSoC nodes
are configured to use small memory partitions (4GB) i.e they do not use the total available
NUMA memory (32GB).

• MPSoC Peripherals. We use the NUMA peripherals as MPSoC peripherals. However,
in NUMA machines all nodes can access the peripherals. To be more realistic, we have
confined the peripheral access to a single MPSoC (respectively NUMA) node.

• MPSoC Trace Port. To trace the operations on an MPSoC node with ReDSoC, we need
access to a trace port. To implement this feature, we have chosen to use a distinct memory
partition for trace recording (4GB).

Software File System

Processors Memory

NUMA node

Figure 22: MPSoC Node

In the final experimental setup (Figure ??), one node is considered to be the master one,
and as such can access the file system, as well as the peripherals. The master node is also
responsible for communicating input peripheral data to the other nodes. It occupies four of the
NUMA processors, the other four being reserved for GDB. The other three nodes are MPSoC
slave nodes.

The implementation of our MPSoC API uses the Linux2.6 interface, as well as the libSDL [?]
and libc libraries. The task management and synchronization functions are based on the POSIX
interface and use the system call sched_setaffinity. The I/O functions encapsulate the ac-
cesses to the file system, the screen, the keyboard, the audio card and the system clock. The
file system is accessed using the libc functions. The audio and video peripherals are accessed
through libSDL calls. Finally, the system clock is accessed using a dedicated Linux register. The
network communication primitives are based on the inter-process socket-based communication
of Linux.

From the FFMPEG suite, we have used the FFPLAY [?] and FFSERVER [?] components.
FFSERVER is a video server, receiving video flows through different protocols (e.g. RTP [?] or

Inria

Deterministic and Partial Replay for MPSoC Debugging 23

Software
Software

Software Software

File System

Node 0 Node 1

Node 2 Node 3

Peripherals

Figure 23: MPSoC Architecture

RTSP [?]) and creating multiple output flows having different formats (H.264, DIVX, MPEG-4,
etc). FFPLAY is a video decoder, receiving and synchronizing audio and video frames. Us-
ing these components, we have created a video mosaic application (cf. Figure ??). We have
reengineered the code to redirect all Linux function calls to calls to our MPSoC API.

The video mosaic application exhibited a non deterministic bug. During some executions, one
or more videos were not visible. By tracing one of these executions, we captured the situation
showed on Figure ??. The trace of Node0 (FFSERVER) shows the non blocking receptions of
messages coming from FFPLAY components. The other three traces (FFPLAY components)
show, in the beginning of their execution, receptions of messages from FFSERVER, followed by
synchronization operations related to the work with memory buffers containing the audio/video
data. We can clearly see that at one point, Task2 on Node2 blocks and causes the blocking of
Task0 and Task1.

Having selected this node as the suspected one, as well as the short time interval directly
preceding the blocking, the debugging session proved rather straightforward. By tracking the
accesses to synchronization structures, we observed that a condition variable is never signaled.
During a second replay, we established the connection between this variable and the memory
allocation for video frames. During a third replay, we discovered that the developer has forgotten
to notify the frame memory allocation.

5.3 Performances

to evaluate the performances of our implementation, we have considered three criteria, namely the
intrusion during normal execution, the trace volume and the execution speed during debugging.

to evaluate the intrusion of ReDSoC during the recording phase, we have considered both the

RR n° 8515

24 Georgiev & al.

Figure 24: Video Mosaic Application

Synchronization Clock I/O

Blocking

Communication

Figure 25: Visualization of Captured Traces.

Inria

Deterministic and Partial Replay for MPSoC Debugging 25

Software Native Reference Overhead(%) Trace Number of
Time(s) Time(s) Volume(KB) Entries

MJPEG
Node0 139 144 3,59 2298 45471
Tetris
Node0 62 62 < 1 333 887
Node1 60 60 < 1 201 530
Video Mosaic
FFSERVER node 31 31 < 1 500 1345

Table 1: Intrusion Measures

embedded and the NUMA platforms and have used the following measures:

• Native Execution Time: The native execution time reflects the execution duration of the
software without ReDSoC. The measure is obtained as a mean value of thirty executions.

• Reference Execution Time: The reference execution time is the mean execution time of the
same software with the same inputs but running under the control of ReDSoC. This execu-
tion is logically slower due to the interception of function calls and the tracing mechanism.

• Overhead : Using the two previous measures, the overhead gives the execution slowdown as
a percentage.

The considered applications include a simple MJPEG decoder, the Tetris application and the
video mosaic application. The results are given in Table ??.

In all use cases, the intrusion is very low and does not cause video glitch visible to the eye.
In the case of the Tetris application, for example, this is explained by the fact that the time
spent for moving the pieces is much smaller that the time in between moves. As a consequence,
tracing happens during this inactivity time and does not perturb the application. In the case
of the video mosaic application, the tracing situation is similar: the application behavior is very
regular and the tracing operations happen in between image decoding operations.

A first observation is that, obviously, this low intrusion cannot be generalized for all cases.
However, this experiment confirms the utility to have a resource provisioning (here the man-
agement of time constraints) for the tracing operations. Indeed, in most MPSoC platforms, the
architecture includes hardware tracing ports to not perturb normal execution. It is interesting
to apply this approach to tracing of the upper software layers.

As non deterministic behavior cannot be easily reproduced and captured, another observation
is that there is no general prediction about the number of executions a developer needs to run
to obtain the reference trace.

Considering the trace volumes, as we focus on a restrained type of events to record, in all
cases the number of entries is rather small. In the MJPEG case, for example, due to the more
intensive use of synchronization, the number of entries is more important, which explains the
perceivable execution time overhead. The trace data volume is minimal, as we do not record the
full data characterizing an event but only the information needed for deterministic replay.

to start the debugging session itself, the actual ReDSoC solution forces the developer to wait
for the deterministic replay to happen and reach the selected time interval. In the worst cases,
if the selected debugging region is at the end of the execution, the developer needs to wait for
two replays, corresponding to the deterministic and partial trace recordings respectively. In the
case of the Tetris application, for example, if the execution time of Node0 is 61s, the waiting

RR n° 8515

26 Georgiev & al.

time for the developer to be able to debug Node0 is about 161s. An interesting approach to
investigate to accelerate the process is to consider the creation of application snapshots allowing
the deterministic replay to start in the middle of an application execution.

6 Conclusion and Perspectives

In this paper we argue that with the increasing scale and complexity of embedded systems,
classic debugging techniques cannot be applied "as is". Non deterministic systems with numerous
components need our debugging methodology which applies space and time reduction criteria to
the error search space. For human comprehension, debugging should indeed be able to focus on
a specific part of the target software and consider a limited time interval. We have shown the
usefulness of this approach in our experiences with two multimedia applications on two different
platforms. The debugging experiences have proven successful and our system has performed with
minimal intrusion.

The selection of the suspected software parts and the time interval to debug is a delicate issue
which for now relies on the developer experience. It would be highly beneficial and interesting
to couple the proposed debugging methodology with techniques able to automatically delimit
"problem zones".

Intrusion is a major issue in record-replay systems and the usual answer is to provide ad-hoc
solutions for minimizing the execution overhead. However, modeling and formally estimating
the cost of a given tracing/replaying technique will allow for cost predictions and will greatly
facilitate the choice between different solutions. This would also be the basis for provisioning
hardware resources for record/replay in embedded systems.

ReDSoC uses trace visualization which greatly facilitates the debugging task of the developer.
Our belief is that a visual support, representing the execution history of a target system, with
the possibility of going back and examining past events beyond the current call stack, becomes
a necessary feature for future development environments.

Our proposal is independent from execution platforms as it is based on a general model for
MPSoC and an MPSoC API. However, task-based programming models are not the only ones
used in the embedded system domain. We think that the future of debugging techniques is to
consider higher levels of the application stack and namely the used programming models. The
developer needs to be able to work in a top-down approach, starting by the human-comprehensive
application entities and interactions before going down to operating system details. Some works
exist in the domain of interactive debugging [?] but the approach should be also investigated for
post-mortem analysis.

Acknowledgment

This work has been done in a collaboration with the IDTEC department of STMicroelectronics,
Crolles, France.

Inria

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

