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Abstract: We consider open Jackson networks with losses with mixed finite and infinite queues
and analyze the efficiency of sampling from their exact stationary distribution. We show that
perfect sampling is possible, although the underlying Markov chain may have an infinite state
space. The main idea is to use a Jackson network with infinite buffers (that has a product form
stationary distribution) to bound the number of initial conditions to be considered in the coupling
from the past scheme. We also provide bounds on the sampling time of this new perfect sampling
algorithm for acyclic or hyper-stable networks. These bounds show that the new algorithm is
considerably more efficient than existing perfect samplers even in the case where all queues are
finite. We illustrate this efficiency through numerical experiments. We also extend our approach
to non-monotone networks such as queuing networks with negative customers.
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Simulation parfaite de réseaux de Jackson
Résumé : On considère les réseaux de Jackson avec perte comportant des files finies et
infinies, et l’on s’intéresse à l’efficacité des techniques d’échantillonnage de leur distribution
stationnaire exacte. Nous démontrons que la simulation parfaite est possible même si la chaîne
de Markov sous-jacente a un espace d’états potentiellement infini. L’idée principale est d’utiliser
un réseau de Jackson aux files infinies (qui admet une distribution de forme-produit) pour borner
les conditions initiales à considérer dans l’algorithme de simulation parfaite. Nous donnons
également des bornes sur le temps d’échantillonnage de ce nouvel algorithme dans le cas des
réseaux acycliques, ainsi que pour des réseaux hyperstables. Ces bornes prouvent que le nouvel
algorithme est considérablement plus efficace que les échantillonneurs parfaits acuels, même dans
le cas où toutes les files sont finies. Nous illustrons cette efficacité par des expériences numériques.
Enfin, nous généralisons notre approche au cas des réseaux non-monotones comme les réseaux
aux clients négatifs.

Mots-clés : Simulation parfaite, réseaux de Jackson, chaînes de Markov, processus bornant
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1 Introduction
The stationary behavior of queuing networks can only be obtained quite efficiently under specific
assumptions that yield the so called product-form property; e.g., [Kelly, 1979]. This property
means that the stationary probability distribution of these networks can be decomposed, up to
a normalizing constant, in the product of the marginal distributions of each network node (or
queue). In several cases, product-form queuing networks are restrictive because they often assume
that nodes have infinite buffer sizes or that the behavior of a network node does not depend on
the state of other nodes; e.g., [Jackson, 1963]. In the context of Internet networks, blocking and
rejection mechanisms arise due to finite-buffer constraints and state-dependent routing. While it
is possible to obtain the stationary distribution of non-product-form queuing networks through
the solution of a set of linear equations, i.e., the global-balance equations [Bolch et al., 2005], the
huge size of their state space makes this approach of practical interest only for small networks.
In this setting, simulation is a useful approach to obtain robust measures and insights on the
stationary performance.

At the cost of a slightly higher computational complexity than Monte Carlo simulation, the
exact stationary distribution can be sampled in finite time using a technique called coupling
from the past (see the seminal work by Propp and Wilson [Propp and Wilson, 1996]). Unlike
Monte Carlo simulation, this powerful technique produces independent samples of ergodic finite
Markov chains exactly distributed according to their stationary distribution. For this reason, this
technique is also known as perfect sampling algorithm (PSA) and will be denoted by PSA in the
remainder of the paper.

This technique has been used to design simulation algorithms for queuing networks with
finite capacity buffers and rather general routing policies [Vincent, 2005]. The main assumption
needed to make these algorithms work is that the state space is finite (or equivalently that the
buffer capacities are all finite).

Contributions

In this paper we present a new perfect simulation algorithm for queuing networks, that can
handle finite and infinite buffers at the same time, with rejection of jobs arriving at a saturated
queue (Sec. 3). The proposed sampling algorithm works as follows.

1. First, we sample the stationary behavior of the same network but with infinite buffers:

• if this infinite-capacity network is stable, we solve the linear traffic equation and
sample the steady-state using product-form property.

• If the bounding network is unstable, we incidentally provide an algorithm (Algorithm
4 in Appendix A) for solving the traffic equations with cubic complexity in the number
of queues O(M3), whereas classical algorithms typically need O(M4) [Goodman and
Massey, 1984]. Then we can sample the asymptotic behavior by setting the state +∞
in the unstable queues and using the product-form property on the stable sub-network.

2. This infinite-capacity network is a bounding process of the original queuing network.

3. We reverse in time the trajectory of the bounding network.

4. With a careful coupling of events (provided in Sec. 2.2), the obtained state can be used
as a maximum starting point of the forward trajectory of the original network (up to its
capacity) in the perfect sampling algorithm.
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We also derive a bound on its sampling time complexity and show that it does not depend
on the size of the state space, when the network is acyclic, or under a hyperstability condition
(Sec. 4).

We then conduct numerical experiments to validate the approach, compare its efficiency to
classical perfect sampling, and assess the tightness of our theoretical complexity bound (Sec. 6).
Additionally, we extend our approach (Sec. 7) to networks with negative customers. While the
treatment of negative customers in a network has an interest per se, this part also shows that the
idea to use a dominating reversed chain can be used for non-monotone chains by combining the
dominating reversed chain technique with the construction of envelope (or sandwich) processes.

Related work.

As mentioned before, the original perfect sampling algorithm has been adapted for the simulation
of monotone queuing networks in [Vincent, 2005]. The complexity of this algorithm has been
analyzed in [Dopper et al., 2006] for acyclic networks, while cyclic networks have been studied
in [Anselmi and Gaujal, 2011,Anselmi and Gaujal, 2013].

A series of papers propose new perfect sampling algorithms, introducing several ideas such as
envelopes (or sandwich process), as in [Gaujal et al., 2008,Kendall and Møller, 2000,Pin et al.,
2011], splitting [Busic et al., 2008] and skipping [Busic et al., 2012b] that improve the runtime of
perfect sampling for non-monotone queuing networks. However, in all cases, it is essential that
the underlying Markov chain has a finite state space.

In [Kendall, 2005], the concept of dominating process is introduced, associated with coupling
from the past (DomCFTP). When a monotone Markov chain (finite or infinite) admits a domi-
nating chain whose stationary distribution can be sampled easily, then one can first sample the
dominating chain, then simulate it backward in time, using this reversed dominating chain as
the starting point for the forward simulation of the original chain.

Our paper is based on this idea. We show that this construction is possible for sampling the
stationary distribution of Jackson networks with finite and infinite queues. The main difficulty
of this construction is to find a coupling between the original chain and the reversed dominating
chain. This difficulty comes from the following fact. To simulate any Markov chain Xn, one
needs to construct a deterministic function φ such that Xn = φ(Xn−1, un), where un forms an
iid sequence of uniform random variables. Coupling the reversed dominating chain with the
original one corresponds to finding a function φ for the original chain and a function β for the
reversed dominating chain such that φ ◦ β(x, u) = x. But this implies that functions φ and β
are invertible on their first coordinate, for all random u. Should such a coupling be possible,
it would prevent the original chain to ever reach coalescence (iterating a bijective φ will never
decrease the number of trajectories).

Here, we show that in spite of the impossibility to couple the direct original chain and the
reversed dominating chain, the construction proposed by Kendall can still be made effective for
the particular case of Jackson networks. This is done by modifying the value on u according
to the value of the dominating chain. Such a modification can introduce a simulation biais in
general, but we prove that this is not the case here.

This paper is an extended version of a conference paper [Busic et al., 2012a] where the
construction of the coupled backward bounding process for queuing networks was introduced.
While the existence of the coupling between the forward and the backward processes was proved
in our preliminary work [Busic et al., 2012a], here, we explicitely construct the coupling between
the two backward processes Y (−t) and Y∞(−t) as well as the coupling between the backward
and the forward processes, Y∞(−t) and X(1)(t). As a result, our main algorithm is now effective
and ready for straightforward implementation. This explicit construction is also used in the
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Figure 1: An open Jackson network whose input/output flows are seen as inputs/outputs from/to
an additional queue with an infinite backlog.

proofs of Theorems 1 and 2. In this paper, we also provide a derivation of the complexity of
the new Perfect Sampling Algorithm based on a Bounding Process (PSA-BP) in two cases: for
stable acyclic networks and hyper-stable networks, given in Theorems 2 and 3 that was not
present in [Busic et al., 2012a]. We also present new experiments in Section 6, showing the
effect of the load in the performance of the prefect sampling algorithm as well as the tightness
of the theoretical complexity bounds. Finally, the treatment of negative customers (that make
the chain non-monotone), is also new.

2 Queuing network model
We consider an open Jackson queuing network (JQN) J with M queues. The vector C =
(C1, . . . , CM ) denotes the buffer size of each queue. Note that for any i, Ci ∈ N ∪∞, i.e. the
buffer capacities can either be finite or infinite. When a queue is full, all arriving jobs at this
queue are lost (no blocking). For 1 6 i 6 M , we denote by ei the vector in ZM with all the
components equal to 0, except for component i that is equal to 1.

To unify the notations, in particular with respect to the exogenous/ endogenous flows of
packets, we use a modeling trick: The outside world is seen as one additional queue (numbered
0) with an infinite capacity C0 =∞, containing an infinite number of jobs initially: X0(0) = +∞.

Therefore, the input stream in the network with rate λ0 can be seen as coming from queue 0

whose service rate is µ0
def
= λ0. Figure 1 illustrates this construction.

The probability that a job joins queue i, upon arrival to the network, is p0i. In queue i
(i > 0), each job requires some processing for an exponentially distributed amount of time with
mean service rate µi. The service discipline of each queue i is work-conserving. Upon completion
of service at queue i, a job is sent to queue j with probability pij , and it is accepted if queue j
has an available slot (i.e., if it is non-saturated), otherwise the job is lost. The probability
that a job leaves the network after service at i is pi0. We make the assumption that the matrix
P = (pij)i,j∈{0,...,M} is irreducible. With the trick about Queue 0 representing the outside world,
this is a compact way to state the classical assumptions that all queues always get new jobs and

RR n° 8332



Perfect Sampling of Jackson Queueing Networks 6

that all jobs eventually leave the network.
Under the foregoing assumptions, the vector of the queue occupancies forms a continuous-

time Markov chain. The state space is S def
= {x ∈ ZM : 0 ≤ xi ≤ Ci,∀i}. The notation

X(t) = (X1(t), . . . , XM (t)) refers to the corresponding uniformized Markov chain in discrete
time (t ∈ N).

Our main notation is summarized in Table 1.

2.1 Discrete-event definition of JQN
The JQN J with M queues described above can be seen as a discrete-event system with a single
type of events, namely {rij , i, j ∈ {0, 1, . . . ,M}} corresponding to the service of one job in
queue i that then joins queue j. The dummy queue 0 corresponds to the outside world: an
event of type r0j is an exogenous arrival in queue j and an event of type ri0 corresponds to the
departure of a job from queue i. If queue i is empty then event rij has no effect on the system.
Similarly, if queue j is full (i.e. if Xj(t) = Cj) then event rij only affects queue i. The set of all
events is denoted by R.

The rate of event rij is γij and it is independent of M and C, for any i, j. Using the previous
description of a JQN, for all i, j ∈ {0, 1, . . . ,M}, γij = µipij . The total event rate Γ

def
=
∑M
i,j=0 γij

is finite (we set arbitrarily γ00 = 0).
The continuous-time Markov chain described above can be transformed into a discrete-time

Markov chain {X(t)}t∈N with the same stationary distribution using uniformization by constant
Γ. Using the foregoing assumption that the routing matrix P is irreducible, this discrete chain is
irreducible and aperiodic. The evolution of the Markov chain X(t) can be written under the form
X(t + 1) = φ(X(t), rt+1) where rt+1 is the t + 1-st event, distributed according to probabilities
aij = γij/Γ, 1 6 i, j 6M .

The state changes according to events that correspond to the routing of one packet from
queue i to queue j, as defined previously.

The forward transition function of the chain φ : S ×R → S is defined as follows:

φ(x, rij) = x + (ej1{xj<Cj} − ei)1xi>0

where ei is the unit vector in direction i (e0 is the zero vector) and 1P equals 1 if proposition P
is true and 0 otherwise.

This transition function can be extended to any finite sequence (r1, r2, . . . , rk) ∈ Rk, k ∈ N,
by defining φ : S × [0, 1]k → S recursively:

φ(x, r1, r2, . . . , rk)
def
= φ(φ(x, r1), r2, . . . , rk).

2.2 Network with infinite buffers
Starting from J , we construct a new network J∞ that is identical to J except for the buffer
sizes: in J∞ all queues have infinite capacities. The state space of this new network will be
denoted by S∞ def

= {x ∈ ZM : xi ≥ 0,∀i}.
For clarity, we first assume in this section that each queue of the infinite JQN is stable,

i.e., the total arrival rate at queue i λi, determined the traffic equation λj =
∑M
i=0 λipij for

1 6 i 6 M , satisfies λi < µi for 1 6 i 6 M . We will relax this stability assumption in section
3.2.

The corresponding discrete-time Markov chain is denoted {X∞(t)}t∈N. The evolution of the
Markov chain X∞(t) can be written in discrete time using the same events as for the finite case,

RR n° 8332
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Glossary
JQN Jackson queuing network
PSA Perfect sampling algorithm [Propp and Wilson, 1996]

PSA-BP Perfect sampling with bounding process (proposed algorithm)

Mathematical conventions
ei Unit vector: with zero coordinates except the i-th one that is equal to 1.
1A Indicator function: 1 if proposition A is true, 0 otherwise
x ∧ y componentwise minimum between vectors x and y
x ∨ y componentwise maximum between vectors x and y
� componentwise partial order

System parameters
M Number of queues
Ci Capacity of queue i (Ci ∈ N ∪ {+∞})
C Vector of queue capacities
λ0 Total exogenous job arrival rate (also µ0 = λ0).
p0i Prob. that exogenous jobs arrive in queue i
pij Routing probability from queue i to j
pi0 Prob. that after service completion at queue i a job leaves the system
µi Service rate of queue i

Algorithm and proof notation
Original Reversed
network network
J K Original/reversed Jackson Network (finite and infinite queues)
J∞ K∞ Bounding infinite-queue JQN (resp. reversed)
pij qij Routing prob. from queue i to j in J (resp. K). qij = pjiλj/λi
λi Total arrival rate in queue i (λi =

∑M
j=0 λjpji).

R Set of all possible events
rij Event “job leaving queue i and joining queue j”
γij Rate of event rij (γij = µipij)
Γ Total event rate (Γ def

=
∑
ij γij)

aij bij Prob. of event rij in the original/reversed chain:
aij =

γij
Γ

, bij = qij
µi
Γ
.

Aij Bij Interval of [0,1] with length aij (resp. bij)
vt wt Coupled sequences of events for the original / reversed chains
S State space of the original and reversed CTMC
S∞ State space of the infinite-queue original and reversed CTMC
X(t) Y (t) Uniformized, discrete-time (reversed) Markov chain
X∞(t) Y∞(t) Uniformized bounding DTMC for J∞ (resp. K∞)
X

(1)
t (·) Upper trajectory starting at time −t

X
(2)
t (·) Lower trajectory starting at time −t

φ(x, r) β(x, r) Transition function for J (resp. K) in state x under event r
φ∞(x, r) β∞(x, r) Transition function for J∞ (resp. K∞)

Table 1: Main notation and glossary

RR n° 8332
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under the form X∞(t+ 1) = φ∞(X∞(t), rt+1) where the function φ∞ is defined by:

φ∞(x, rij) = x + (ej − ei)1xi>0

The functions φ∞ and φ are related in the following way.

φ(x, r) = φ∞(x, r) ∧C for all event r. (1)

where the notation x ∧ y (resp. x ∨ y) denotes the componentwise minimum (resp. maximum)
of x and y.

As before, φ∞ : S∞ ×Rk → S∞ is defined recursively:

φ∞(x, r1, r2, . . . , rk)
def
= φ∞(φ∞(x, r1), r2, . . . , rk).

Let us we consider the usual product partial order of states: for x,y ∈ S∞,

x � y iff xi 6 yi, 1 6 i 6M.

Using this order, the new chain is a bounding process1 of the original chain in the following sense:
IfX(0) � X∞(0), then for all k and all sequence of events r1, . . . , rk, thenX(k) = φ(X(0), r1, r2, . . . , rk) �

φ∞(X(0), r1, r2, . . . , rk) = X∞(k).
This results from the following properties:

Lemma 1. For any r ∈ R, and any x ∈ S, functions φ and φ∞ satisfy:

φ(x, r) � φ∞(x, r).

Proof. This follows directly from the fact that for any r, and any x ∈ S, φ(x, r) = φ∞(x, r) ∧
C.

To establish the comparison between the two chains, we also use the fact that φ∞ is monotone
in x. We show similarly that the original system φ is also monotone, for later use.

Lemma 2. (monotony) For any r ∈ R, and any x,y ∈ S∞,

x � y ⇒ φ∞(x, r) � φ∞(y, r) and φ(x, r) � φ(y, r).

Proof. Let r = rij ∈ R and x � y. Clearly, if xi > 0 or if yi = 0 then 1xi>0 = 1yi>0, in which
case we have φ∞(x, rij)− φ∞(y, rij) = y − x � 0. Now if xi = 0 and yi > 0 then :

φ∞(y, r)− φ∞(x, r) = y − x + ej − ei

To prove positivity we only need to check the i-th coordinate: yi − xi − 1 > 0 by hypothesis. So
φ∞ is monotonic.

From (1), φ is the minimum of a monotonic function and a constant, so it is monotonic
too.

Combining the two lemmas, we get the sample path comparison of the two systems:

Proposition 1. For any (r−t+1, . . . , r0) ∈ [0, 1]t, and any x ∈ S, y ∈ S∞,

x � y ⇒ φ(x, r−t+1, . . . , r0) � φ∞(y, r−t+1, . . . , r0).

1Bounding processes are called dominating processes in [Kendall, 2005]

RR n° 8332
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Proof. By induction on t. For t = 1, and any x � y, using first Lemma 1 and then Lemma 2,
we have φ(x, r0) � φ∞(x, r0) � φ∞(y, r0).

Assume now the induction statement is valid for t − 1. Let x � y, and denote x′ =
φ(x, r−t+1), and y′ = φ∞(y, r−t+1). Using Lemmas 1 and 2, x′ = φ(x, r−t+1) � φ∞(x, r−t+1) �
φ∞(y, r−t+1) = y′. Now φ(x, r−t+1, . . . , r0) = φ(x′, r−t+2, . . . , r0) and φ∞(y, r−t+1, . . . , r0) =
φ∞(y′, r−t+2, . . . , r0), so

φ(x, r−t+1, . . . , r0) � φ∞(y′, r−t+2, . . . , r0)

by induction hypothesis.

The new Markov chain {X∞(t)}t∈N has three interesting properties:

1. A consequence of Proposition 1 is that the process {X∞(t)}t∈N is a bounding process of
the original process {X(t)}t∈N;

2. Under the stability assumption, {X∞(t)}t∈N has a unique stationary distribution with the
product form property:

π∞(x1, . . . , xM ) =

M∏
i=1

(1− ρi)ρxi
i , (2)

where ρi
def
= λi

µi
is the ratio of the total arrival rate in queue i, λi over the service rate µi.

The arrival rate in queue i satisfies the routing balance equations:

λi =

M∑
j=0

pjiλj , for all i. (3)

3. The time-reversed chain {Y∞(t)}t∈N of the Markov chain {X∞(t)}t∈N can be easily con-
structed.

Reversed chain.

The reversed chain {Y∞(t)}t∈N can also be modeled as a Jackson network K∞ with M queues
with service rate µi in queue i, whose routing probabilities qij

def
= pji.λj/λi, the probability that

a customer leaves the system at queue i is qi0
def
= p0i.λ0/λi, and the exogenous arrival rate in

queue j is pj0λj [Chen and Yao, 2001, Th. 2.11, p. 31].
Therefore, the set of events that modify the state are the same as in the direct chain. It is the

set of routing events from one queue to another. However these events will not have the same
probability as for the direct chain. For example in the Jackson network given in Figure 1, the
event r2,5 has a positive probability for the direct chain and a probability zero for the reversed
chain. The probability of event rij in the reversed chain is denoted by bij = qijµi/Γ.

Similarly to the forward construction of the Markov chain, the backward transition function
β∞ : S∞ ×R → S∞ is defined as follows:

β∞(y, rij) = y + (ej − ei)1yi>0 for all i, j.

Remark 1. β∞ has the same mathematical expression as function φ∞, because both transition
functions are defined over events rather than random innovations. The dynamics of the forward
and backward Jackson networks differ through the event probabilities.

RR n° 8332
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Coupling the direct and the reversed chains.

The reversed chain can be coupled with the forward chain using an event correspondence. To
guarantee the fact that events will be drawn with the correct probabilities in the reversed as well
as in the direct way, this coupling will depend on the trajectory of a stationary reversed chain.

Let Y∞(0) be a sample of the infinite reversed chain, generated according to its product form
stationary distribution π∞. Given an infinite sequence of i.i.d. uniformly distributed random
variables in [0, 1] U−1, U−2, · · · , we construct an infinite sequence of events w−1, w−2, · · · for the
reversed chain as follows:

The probability of event rij in the reversed Jackson network K∞ is bij . The corresponding
intervals Bij (of size bij) are ordered to cover [0, 1] using the alpha-numerical order (see Fig. 2):

B0,1, B0,2, . . . B0,M , B1,0, B1,1, . . . , . . . , BM,M .

Now, if U−t ∈ Bij , then w−t = rij .
At this point, we can construct a trajectory of the reversed chain starting from Y∞(0) and

using this sequence of events: for all t > 0, Y∞(−t) = β∞(Y∞(−t+ 1), w−t).
As for the direct chain, the coupled event sequence v−1, . . . , v−t, . . . is built as follows:
For the direct chain, the event rij has probability aij . We also order the intervals Aij of size

aij in alpha-numerical order:

A0,1, A0,2, . . . A0,M , A1,0, A1,1, . . . , . . . , AM,M .

• If Y∞(−t) 6= Y∞(−t + 1) then v−t is set to v−t = (w−t)
−1 (the inverse of routing event

rij is the routing in the other direction: (rij)
−1 = rj,i).

• If Y∞(−t) = Y∞(−t + 1) then w−t must be of the form w−t = ri0j , where queue i0 is
empty under the state Y∞(−t + 1). This means that the random variable U−t has fallen
in the interval Bi0,j .

The traffic equation (3) for the Markov chain implies that

∀i,
∑
j

aij =
∑
j

bij . (4)

This means that the corresponding intervals in [0, 1] coincide for all i: ∪jAij = ∪jBij , so
that U−t also belongs to an interval of type Ai0,k for the same empty queue i0 and some
k. Then, the direct event v−t is set to ri0k.

U−t

w−t = r21

v−t = r20 if Y ∞(−t) = Y ∞(−t + 1)
v−t = r12 otherwise

1

A21A20

B20B12

A12A10

B02B01

A02

0

B21

Figure 2: Event probability intervals of the reversed and direct networks for a 3-queue example
network.
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This coupling between the direct and the reversed chain ensures the following properties:

Property 1. The trajectory of the reversed chain from time 0 to time −t, starting in Y∞(0)
and the trajectory of the direct chain from time −t to time 0, starting in Y∞(−t), coincide:

∀t′ ∈ {0, 1, . . . , t} X∞(−t′) = φ∞(Y∞(−t), v−t, . . . v−t′+1) = Y∞(−t′). (5)

Property 2. For any t, the probability P(v−t = rij) = aij and v−t+1 is independent of v−t.

Indeed,

P(v−t = rij |v−t−1) = P(v−t = rij |v−t−1 ∧ Y∞(−t) = Y∞(−t+ 1))

+P(v−t = rij |v−t−1 ∧ Y∞(−t) 6= Y∞(−t+ 1))

= P(w−t = rji|v−t−1 ∧ Y∞(−t) 6= Y∞(−t+ 1))

+P(v−t = rij |v−t−1 ∧ Y∞(−t) = Y∞(−t+ 1))

= bjiρj + aij(1− ρi)
= (µjqjiρj + µipij(1− ρi))/Γ

= (µjpij
λi
λj
ρj + µipij(1− ρi))/Γ

= µipij/Γ

= aij .

Actually, it is even possible to simplify the coupling between the two chains because if queue
i0 is empty, it does not matter which second queue is chosen for the routing event: both ri0j and
ri0k have a null effect on the state.

Proposition 2. Here is a simplified coupling that generates the same trajectories as the previous
coupling:
If Y∞(−t) 6= Y∞(−t+ 1) then v−t = (w−t)

−1

If Y∞(−t) = Y∞(−t+ 1) then v−t = w−t.

3 Perfect Sampling Algorithm with a Bounding Process
We first show Kendall’s idea can be made effective with the above coupling to achieve efficient
perfect simulation when the JQN J is is bounded by a stable infinite-queue JQN J∞. Then in
section 3.2 we relax this assumption and provide an effective algorithm for any stable JQN.

3.1 When the infinite-queue network J∞ is stable
The chain Y∞(−t) can be used to obtain a bound for the initial condition of the original chain
X(t), as shown in Algorithm 1. Let us describe how this algorithm works. First, generate at time
0 a stationary sample Y∞(0) of the infinite system according to the product form distribution
π∞.

Starting from Y∞(0), construct a backward trajectory up to time −t, using the β∞ function
described above and the sequence of events (w−u)u∈N: Y∞(−u) = β∞(Y∞(−u+ 1), w−t).

At time −t, start two forward simulations of the original network J using the sequence of
events v−t, constructed using the previous coupling given in Proposition 2, and starting from
states X(2)(−t) = 0 and X(1)(−t) = Y∞(−t) ∧C. If the trajectories do not coalesce at time 0
(i.e. X(2)(0) and X(1)(0) are not equal), then double the length of the simulation time to 2t. As
shown in the proof below, this does not introduce a bias in the output sample.
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Algorithm 1: PSA with a Bounding Process (PSA-BP)
Data:
(1) An infinite i.i.d. sequence {U−n}n∈N with U−n uniformly distributed in [0, 1] with the
associated sequence of events {w−n}n∈N : w−n = rij if U−n ∈ Bij .
(2) A state Y∞ generated according to the distribution π∞.
Result: A state sampled from the stationary distribution of J
begin

t := 1;
repeat

for k = bt/2c to t− 1 do
Y∞ := β∞(Y∞, w−k);

v−k =

{
(w−k)−1 if Y∞ has changed
w−k otherwise.

X(1) := Y∞ ∧C; X(2) := 0;
for i = t− 1 downto 0 do

X(1) := φ(X(1), v−i);
X(2) := φ(X(2), v−i);

t := 2t;
until X(1) = X(2) ;
return X(1);

end

Theorem 1. The Algorithm PSA-BP terminates with probability 1. The output of Algorithm
PSA-BP is a state whose distribution is the stationary distribution of network J .

Proof. We first prove that the Algorithm PSA-BP terminates with probability 1. The random
variable Y∞(−t) is distributed according to the stationary distribution π∞. Thus, the stability
assumption for chain {Y∞(u)}u∈N implies that we have P(Y∞(−t) = 0) > 0 (the zero state is
to be understood componentwise). In that case, since X(1)(·) and X(2)(·) are both bounded by
{Y∞(u)}u∈N, we have that X(1)(−t) = X(2)(−t), so we also have X(1)(0) = X(2)(0) and the
algorithm terminates. By the Borel-Cantelli lemma, this happens almost surely in finite time so
Algorithm PSA-BP terminates with probability 1.

Now, let us show that the output of Algorithm PSA-BP is a state whose distribution is the
stationary distribution of network J .

Let us consider the Markov chain {Y∞(u)}u∈N, the reversed chain of {X∞(u)}u∈N, and
{Y (u)}u∈N, the reversed chain of {X(u)}u∈N, with initial conditions Y∞(0) and Y (0) respec-
tively, distributed according to the stationary distributions π∞ (resp. π).

Since X∞(·) is a bounding process of X(·), the reversed process Y∞(·) is also a bounding
process of the reversed process Y (·). Now Strassen’s theorem and the Markovian property of the
reversed processes imply that there exists:

• A joint distribution ν of Y∞(0) and Y (0), with marginals π∞ and π, and such that Y (0) �
Y∞(0) a.s.,

• and a backward transition function β : S ×R → S for the chain Y (·) is defined by:

β(y, rij) = y + (ej − ei)1yi>0 ∧C.
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The backward function is such that for any x � y and any (w−1, . . . , w−t) ∈ Rt,

β(x, w−1, w−2, . . . , w−t) � β∞(y, w−1, w−2, . . . , w−t). (6)

In the proposed PSA-BP Algorithm, the variable Y∞(0) is generated according to the sta-
tionary distribution of X∞(·). We define Y (0) such that (Y (0), Y∞(0)) are distributed according
to ν. We do not need to actually construct Y (0). We only need to assess its existence. By defi-
nition, Y (0) has the stationary distribution of K. Now, for any deterministic time t, let us define
Y (−t) = β(Y (0), w−1, w−2, . . . , w−t), using the backward transition function β of the chain Y (t)
(see the blue dotted line in Figure 3), so that it also has the stationary distribution of K. By
definition of β, from relation (6) one has Y (−t) � Y∞(−t) for all t.

Now, let us define the direct processes {X(1)(−t;u)}u>−t, {X(−t;u)}u>−t and {X(2)(−t;u)}u>−t.
The three processes start at time −t with respective initial values

X(1)(−t;−t) = Y∞(−t) ∧C,

X(−t;−t) = Y (−t),
X(2)(−t;−t) = 0.

For any time −u such that −t 6 −u 6 0,

X(1)(−t;−u) = φ(X(1)(−t;−t), v−t, . . . , v−u+1);

X(−t;−u) = φ(X(−t;−t), v−t, . . . , v−u+1);

X(2)(−t;−u) = φ(X(2)(−t;−t), v−t, . . . , v−u+1);

where the sequence of events (v−t, . . . , v−u+1) is defined as in Proposition 2.
By construction, X(−t;−u) has the stationary distribution of J , for any t and any u 6 t.
Also, at the starting time in the past (i.e. at time −t), one has

X(1)(−t;−t) � X(−t;−t) � X(2)(−t;−t).

Moving forward in time, the monotony of the chain implies that at time 0,

X(1)(−t; 0) � X(−t; 0) � X(2)(−t; 0).

Therefore, if X(1)(−t; 0) and X(2)(−t; 0) coalesce, they are also equal to X(−t; 0). This con-
struction is illustrated in Figure 3.

Now, let us show that this common value does not depend on t: We will prove that if
X(1)(−t; 0) = X(2)(−t; 0) = X(−t; 0), then for any s > t, then

X(1)(−s; 0) = X(2)(−s; 0) = X(−s; 0) = X(−t; 0).

On one hand, X(2)(−s;−t) � 0 = X(2)(−t;−t). On the other hand, Y∞(−s) � X(1)(−s;−s).
By monotonicity and using the coupling events, at time −t, Y∞(−t) � X(1)(−s;−t). This
implies X(1)(−t;−t) = Y∞(−t) ∧ C � X(1)(−s;−t). Therefore, at time −t, the trajectories
starting further in the past at time −s are sandwiched by those starting at time −t. This
imposes coalescence for all the trajectories, starting at time −s at the same point, at time 0, by
monotonicity. The common value at coalescence is denoted Z in the rest of the proof.

We will show that P(Z = x) = πx, the stationary probability of state x for the chainX(t). The
proof is similar to the classical proof of the perfect sampling algorithm (see for example [Propp
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0

X(2)(−t;−t)

−t

X(1)(−t; 0) = X(2)(−t; 0)

Y ∞(0)

Y (0)

C

X(−t;−t) = Y (−t)

X(1)(−t;−t) = Y ∞(−t)

Figure 3: Illustration of the proof. The variable Y (−t) has the stationary distribution of X(t)
and is below Y∞(−t). For clarity, the forward trajectory X(−t; ·) starting from Y (−t) is not
displayed. This trajectory would not exactly follow back the blue dotted trajectory of Y (−t),
unlike the upper coupled trajectories Y∞ and X(1)(−t; ·). The forward trajectory X(−t; ·) will
remain between the two extremas X(1)(−t; ·) and X(2)(−t; ·) and therefore end up in stationary
state X(1)(−t; 0) instead of state Y (0).

and Wilson, 1996]). Let 0 < ε < 1. Since coalescence occurs in finite time almost surely,
there exists Tε such that P(no coalescence at time −Tε) < ε. Since coalescence implies that
X(−Tε; 0) = Z, we get

P(Z 6= X(−Tε; 0)) 6 P(no coalescence at − Tε) < ε.

On the other hand, the construction of X(−Tε; 0) makes sure that it has the stationary
distribution π. Therefore,

P(Z = x)− πx = P(Z = x)− P(X(−Tε; 0) = x)

6 P(Z = x, X(−Tε; 0) 6= x)

6 P(Z 6= X(−Tε; 0)) < ε.

Similarly,

πx − P(Z = x) = P(X(Tε; 0) = x)− P(Z = x)

6 P(Z 6= x, X(−Tε; 0) = x)

6 P(X(−Tε; 0) 6= Z) < ε.

This is true for all ε so that P(Z = x) = πx.

3.2 When the infinite JQN is unstable
The Jackson network J admits a steady-state distribution (otherwise, perfect sampling does not
make any sense) However, this may not be the case for J∞: replacing bounded queues by infinite
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queues may result in an unstable infinite-queue JQN, for which no stationary distribution exists.
In the previous sections, we have assumed that J∞ is also stable. Here, we show that one can
still construct an adequate bounding process for Algorithm 1 when J∞ is not stable. Intuitively,
the key idea is to determine the set G of queues that are unstable in J∞ and to replace them
with exogenous sources of packets (a.k.a. queue 0), with rate µi, i ∈ G. Then we still have a
stable infinite-queue JQN J stab which can easily be sampled and reversed in time, only with a
smaller number of queues. The state of the finite queues can then be bounded by their capacity
Ci in the forward step of the algorithm. This trick will only additionally require to determine
the set G.

Let us consider the JQN J∞. The traffic equations (for the stable as well as the unstable
case) are: {

∀i 6= 0, λi =
∑M
j=1 pji(λj ∧ µj)

λ0 = µ0
(7)

where λi denotes the total incoming traffic rate in queue i. The set G of unstable queues is
the set of queues such that λi = µi. Solving the traffic equations was first done in [Goodman
and Massey, 1984], where a proof of the uniqueness of the solution is provided along with an
algorithm in O(M4) to compute it. In appendix A we provide an alternative (shorter) proof of
the existence and uniqueness (Theorem 5), and we show how it can be computed with complexity
O(M3) using Algorithm 4 and Proposition 3.

Now, the unique asymptotic distribution in the Jackson network J∞ is still product form,
and the marginal probabilities are given by:

• P(Xi = x) = (1− ρi)ρxi if i is stable,

• P(Xi =∞) = 1, if i is unstable.

It can be sampled in the same way as in the stable case.
The construction of the reversed Markov chain is also similar to the stable case, by extending

the function β∞ to take into account infinite values: an arrival or a departure in an unstable
queue (with an infinite number of packets) will not change its size: ∞+ 1 =∞− 1 =∞.

Therefore, Algorithm PSA-BP can also deal with unstable queues in J∞ without any mod-
ification, once the unstable queues have been identified and their distribution in J∞ correctly
sampled, and once arithmetic operations have been overloaded to work with ∞ values.

Remark 2. In the case where all queues have finite capacities and are unstable in J∞, Algorithm
PSA-BP degenerates to a classical PSA, since the starting points of the forward simulation will
be (0, 0, . . . , 0) and (C1, C2, . . . , CM ). Indeed, in that case, the bounding process Y∞ is trivial,
and has all its coordinates equal to ∞.

One way to avoid this situation, is to change the variables to be sampled. Instead of sampling
Xi the number of packets in the queue i, it is better to sample the variables Xi

def
= Ci − Xi,

the number of empty slots in queue i. Doing so, the network J where all queues are unstable
is transformed into a Jackson network J where all queues are stable, for which the bounding
process will not be trivial and will improve the simulation time.

In general (some queues are stable and some others are unstable), one can simulate either
J or J . The choice can be based on the asymptotic complexity of the algorithm PSA-BP, given
below, that depends almost exclusively on the asymptotic distribution of J∞ (resp. J∞).

4 Complexity analysis
The simulation time of PSA-BP can be decomposed into three steps:
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1. The generation of a sample Y∞(0) with the stationary distribution of the bounding process.
Since this distribution is product form and since for each queue the geometric law can be
easily sampled in constant time, the time complexity of this first step is O(M).

2. To obtain random events from the innovation sequence {U−n}n∈N, we use the Walker’s
alias method [Walker, 1977] (for sampling discrete random variables in O(1) time). The
construction of alias table is linear in number of events, so this pre-treatment can be done
in O(M2) time. Given the events rij , the values of φ(x, r) and β∞(x, r) can be computed
in O(1) time.

3. The construction of the backward trajectory of Y∞ and the forward trajectories ofX(1) and
X(2) have the same expected duration, smaller than 10Eτ(X(2), X(1)), where τ(X(2), X(1))
is the coalescence time of two trajectories of the Markov chain X(t), starting in X(1) and
X(2) respectively, under the same sequence of events. The multiplication factor 10 comes
from a simple calculation: 3 trajectories, each with length at most double the coalescence
time (worst case), and two of them (for X(1) and X(2)) requiring a computation time equal
to 2τ to compute a τ -long trajectory (1 + 2 + 4 + . . .+ τ/2 + τ ≈ 2τ steps).

Therefore, the complexity essentially depends linearly on the coalescence time τ(X(2), X(1)).

4.1 The acyclic case
In the following, we will show that in the acyclic case, the coalescence time can be bounded by
a quadratic function of the expected size of the queues in the stationary regime. Simulations
(see Section 6) suggest that this bound is tight and holds for all stable networks, including cyclic
ones.

Theorem 2. If J is acyclic and stable, then the expected coalescence time of algorithm PSA-BP,
τPSA-BP satisfies

E[τPSA-BP] 6
M∑
i=1

Γ

λi
(E[Y∞i ])2, (8)

where µi is the service rate in queue i, λi is the input rate in queue i, E[Y∞i ] = λi

µi−λi
is

the expected stationary size of queue i of the infinite system J∞, and Γ is the uniformization
constant, Γ =

∑
i(µi + λi).

Remark 3. The expected coalescence time grows as the square root of the sizes of the queues
when the load increases, since the multiplicative coefficients Γ

λi
remain bounded when the load

goes to 1.

The proof is carried in several steps.

Lemma 3. Let T (s) be the expected time needed to empty a stable queue in discrete time with
arrival (resp. service) probability λ

λ+µ (resp. µ
λ+µ), starting with s customers. Then T (s) =

sλ+µ
µ−λ .

Proof. (of the lemma). This can be considered as a classical result, the proof is given nevertheless.
T (s) satisfies the following one-step recurrence: T (s) = 1 + λ

λ+µT (s+ 1) + µ
λ+µT (s− 1), whose

solution is of the form T (s) = C1

(
µ
λ

)s
+ C2s. The constants C2 and C1 are functions of T (0)

and T (1). By definition, T (0) = 0 and T (1) is such that C1 = 0 (otherwise the queue cannot be
stable). This implies T (1) = λ+µ

µ−λ . and T (s) = sλ+µ
µ−λ .
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Another proof: The quantity T (x) satisfies the recurrence: T (x) = BP + T (x − 1), where
BP is the expected busy period of the slotted queue, known to be equal to λ+µ

µ−λ . The fact that
T (0) = 0 implies that T (x) = xλ+µ

µ−λ .

Let us consider the reversed network K∞. Since J is stable and acyclic, K∞ is also stable
and acyclic. The queues are ordered according to the topological order induced by the network
K∞. In each queue i of K∞, the service rate is µi and the input rate is λi, defined by the linear
system λi =

∑
j λjqj,i under its stationary regime.

The stability of K∞ can be translated as for all i, λi < µi. Now, for any initial state x in
K∞, let us define the time h(x) as follows: h(x) is the first instant when the following sequence
of events have occurred, in that order: Queue 1 hits 0 then Queue 2 hits 0 then ... then Queue
M hits 0. The stability of K∞ implies that h(x) is finite, with a finite expectation, for all x.

Lemma 4. The expectation E[h(Y∞(0))], where Y∞(0) has the stationary distribution of K∞,
is linear:

E[h(Y∞(0))] =
∑
i

Γ

µi − λi
E[Y∞i (0)].

Proof. (of the lemma).
The proof holds by induction on the number of queues. The caseM = 1 follows directly from

Lemma 3:
E[h(Y∞(0))] = E[T (Y∞(0))] =

λ+ µ

µ− λ
E[Y∞(0)]

and Γ = λ+ µ.
Let us consider an acyclic network with M queues and let us cut the last queue (Queue M).

The time h(Y∞(0)) is equal to the time when the firstM−1 queues reach 0 plus the time for the
last queue to become empty from that point on. By Burke’s Theorem, when the initial state S is
stationary, then the state of queueM at any time is independent of the state of the other queues.
Therefore, at hitting times of the other queues, the state of queue M is distributed according to
the stationary distribution, and the input process in queue M is Poisson with rate λM .

Let us call YM the state of QueueM just after the firstM −1st queues have emptied (in that
order). Its distribution is P(YM = i|YM−1 = 0) = P(YM = i), by independence of the queues
under the stationary regime, so that its distribution is stationary. From that point on, Queue
M evolves as an independent queue with arrival rate λM and service rate µM . Using Lemma 3
the expected time to hit 0 for this last queue, under uniformization Γ, from that time on is:

Γ

µM − λM
E[Y∞M (0)].

As for the M − 1 first queues, the induction assumption says that the expected time for all
queues to hit 0 is

M−1∑
i=1

Γ

µi − λi
E[Y∞i (0)].

Adding both quantities gives E[h(Y∞(0))] =
∑M
i=1

Γ
µi−λi

E[Y∞i (0)].

We are now ready for the proof of Theorem 2.
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Proof. (of Theorem 2).
Let us consider the state reached by the reversed network, starting in state Y∞(0), at time

−h(Y∞(0)), namely Y∞(−h(Y∞(0))) (for simplicity, we will denote this hitting time by h∗ def
=

h(Y∞(0))).
Now, let us consider the initial network J starting at time −h∗ in state Y∞(−h∗) ∧ C.

Because of the coupling between the reversed and direct sequences of events, the trajectory
X(1)(−h∗;−t) remains below (componentwise) the reversed trajectory, Y∞(−t) for any t. This
means that the following sequence of events must occur in the trajectory X(1)(−h∗;−t):
queue M hits 0, then queue M − 1 hits 0, . . . , queue 1 hits 0.

Let us now consider the direct trajectory starting in 0 at time −h∗, namely X(2)(−h∗;−t).
By monotonicity, for all t, X(2)(−h∗;−t) � X(1)(−h∗;−t). Therefore, when queue M hits 0 in
X(1)(−h∗;−t), then queue M also hits 0 in X(2)(−h∗;−t) at the same instant. This means that
the state of queueM is the same on both trajectories. By acyclicity, from that point on, theM -th
coordinate of X(2)(−h∗;−t) and X(1)(−h∗;−t) will remain equal. When queueM −1 hits 0, the
same phenomenon will happen: The M − 1-st coordinate of X(2)(−h∗;−t) and X(1)(−h∗;−t)
will remain equal from that point on, and so forth. This implies that the two trajectories must
coalesce before time 0.

This means that the forward coalescence time τ(X(2), X(1)) is smaller than h∗ = h(Y∞(0)).
Using Lemma 4, if Y∞(0) is stationary, then the expected coalescence time Eτ(X(2), X(1)) sat-
isfies the required inequality:

E[τPSA-BP] 6 E[h(Y∞(0))] =

M∑
i=1

Γ

µi − λi
E[Y∞i (0)] =

M∑
i=1

Γ

λi

(
E[Y∞i (0)]

)2
.

This concludes the proof.

4.2 The hyperstable case
In this section, we consider the case where the network has an arbitrary topology (that may
contain cycles) but where all queues are hyperstable (to be defined later).

In this case we also obtain a bound on the expected coupling time. This new bound is cubic in
the average queue size (instead of quadratic in the acyclic case). Notice that this bound remains
logarithmic with respect to the size of the state space. This shows that the algorithm PSA-BP
remains very efficient even for cyclic networks.

Let τPSA-BP be the coalescence time of algorithm PSA-BP. It is a finite random variable with
finite expectation when the network is stable.

On the other hand, let us define τf (x,y) the meeting time of two trajectories of the Jackson
network J , starting in states x and y respectively. This is also a finite random variable with
finite expectation when the network is stable.

The next lemma is a quite general result, not based on hyper stability.

Lemma 5. Under the foregoing assumptions, if J is stable, then τf (0, Y∞(0) ∧C) and τPSA-BP

have the same distribution.
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Proof. Let T be a fixed duration. Using the notations introduced in the proof of Theorem 1,

P(τPSA-BP < T ) = P(X(1)(−T ; 0) = X(2)(−T ; 0)) (9)
= P(φ(0, v−T+1, . . . , v0) = φ(Y∞(−T ) ∧C, v−T+1, . . . , v0)) (10)
= P(φ(0, v−T+1, . . . , v0) = φ(Y∞(0) ∧C, v−T+1, . . . , v0)) (11)
= P(φ(0, u1, . . . , uT ) = φ(Y∞(0) ∧C, u1, . . . , uT )) (12)
= P(τf (0, Y∞(0) ∧C) < T ), (13)

where u1, . . . , uT is a sequence of iid events such that for all t, P(ut = rij) = aij . Equation
(11) comes from the fact that for any T , Y∞(T ) is stationary, Equation (12) is true because the
sequences u1, . . . , uT and v−T+1, . . . v0 have the same distribution by Property 2 and the last
equation (13) follows from the definition of τf .

Now, let us now consider the hyper-stable case.

Definition 1. A queue j ≥ 1 in a Jackson network J is hyper-stable if
∑M
i=0 γij < µj. The

network is hyper-stable if all queues j ≥ 1 are hyper-stable. Note that hyper-stability implies
stability since λj 6

∑M
i=0 γij , ∀j ≥ 1.

Theorem 3. If J is hyper-stable then the expected coalescence time of algorithm PSA-BP sat-
isfies EτPSA-BP 6 cMΓ maxi

(
EY∞i
λi

)
(
∑M
j=1 EY∞j )2, where c is a constant (that only depends on

the routing probabilities (pij)) and EY∞j is the expected stationary size of queue j of the infinite
system J∞ (EY∞i = λi

µi−λi
).

Proof. Using Lemma 5, we will consider τf (0, Y∞(0) ∧ C) instead of τPSA-BP since they have
the same distribution. Now, in [Anselmi and Gaujal, 2013], it was proved (proof of Theorem
2 in [Anselmi and Gaujal, 2013]) that for hyperstable Jackson networks with M queues, there
exists a constant c such that for all i and for any state y,

Eτf (0,y + ei)− Eτf (0,y) 6 cMΓ max
i

(
EY∞i
λi

) M∑
j=1

λj
µj − λj

.

By iterating this inequality and conditioning on the value of Y∞(0), one gets

E[τf (0, Y∞(0))|Y∞(0)] 6 cMΓ max
i

(
EY∞i
λi

) M∑
j=1

λj
µj − λj

∑
i

Y∞i (0).

Finally,

E[τf (0, Y∞(0) ∧C)] 6 E[τf (0, Y∞(0))]

= E
[
E[τf (0, Y∞(0)]|Y∞(0)]

]

6 McΓ max
i

(
EY∞i
λi

) M∑
j=1

λj
µj − λj

∑
i

EY∞i (0)

= McΓ max
i

(
EY∞i
λi

) M∑
j=1

EY∞i

2

.
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5 Comparison with the classical perfect sampler
As discussed earlier, our new algorithm allows for perfect sampling of Jackson networks with
finite and infinite buffers. This was not possible with the classical perfect sampling algorithms
that requires a finite state space. As such, our algorithm broadens the scope of perfect sampling
techniques. In addition, this new approach also provides time improvements in the case where
all buffers are finite, because the time complexity of the new approach is essentially independent
of the capacities. In that case, it reduces the sampling time by a factor corresponding to the
ratio between the maximum capacity of the buffers over the expected size of the queues under
the stationary law of the bounding process, at least in the acyclic case (the comparison in the
cyclic case is not as striking because of the squared term but behaves essentially in the same
way).

Let us first recall the classical perfect sampler for monotone finite Markov chains derived
from Jackson queuing networks.

Algorithm 2: Coupling from the past (PSA) [Propp and Wilson, 1996]
Data: An infinite i.i.d. sequence {U−n}n∈N with U−k uniformly distributed in [0, 1]

(with the associated sequence of events {u−n}n∈N).
Result: A state sampled from the stationary distribution of the JQN
begin

t := 1;
repeat

Z(1) := C; Z(2) := 0;
for i = t− 1 downto 0 do

Z(1) := φ(Z(1), u−i);
Z(2) := φ(Z(2), u−i);

t := 2t;
until Z(1) = Z(2) ;
return Z(1);

end

It is well known that Algorithm 2 outputs samples of the stationary distribution of the
network as long as all buffers are finite. Otherwise, if X(1) has at least one infinite coordinate,
the algorithm does not converge.

Also note that, in the general case (acyclic or cyclic), the coalescence time of PSA-BP is
always stochastically smaller than the coalescence time of PSA since the extreme starting point
X(1)(−t) = Y∞(−t) ∧ C of the former is always smaller than the starting time of the latter,
Z(1)(−t) = C.

Finally, the time complexity in the case where J is acyclic with finite queues has been studied
in [Dopper et al., 2006]. The expected coalescence time to get one sample τPSA is shown to satisfy

E[τPSA] 6
M∑
i=1

Γ

µi + λi
(C2

i + Ci).

It is also easy to find a lower bound on the expected coalescence time:

E[τPSA] >
M∑
i=1

Γ

µi + λi
Ci.
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Indeed, one needs at least Ci departures in queues i for coalescence and the average time between
two events in queue i is Γ

µi+λi
.

As shown in Theorem 2, the expected coalescence time of our new sampler is upper bounded:

E[τPSA-BP] 6
M∑
i=1

Γ

λi
E[Y∞i ]2

(where EY∞i is the expected stationary size of queue i in the infinite system J∞). This may
result in a considerable improvement over the classical algorithm.

Indeed, the upper and lower bounds above induce the following comparison between the
coalescence time of the two algorithms:

E[τPSA − τPSA-BP] > max

(
0,

M∑
i=1

Γ

(
Ci

λi + µi
− E[Y∞i ]2

λi

))
.

If the arrival rate is 0.8 in every queue with service rate 1, (this is a typical situation), then
E[Y∞i ] 6 4, and each term in the difference is larger than Ci/2 − 20 which can be very large
when the buffer size of the order of 100, 1000 or more.

In the next section, we show on a numerical example that the PSA-BP algorithm 1 drastically
outperforms the classical PSA Algorithm 2.

6 Numerical experiments
We have implemented algorithms 1 and 2 (PSA-BP and PSA) in C, in order to:

• demonstrate the feasibility of our approach,

• quantify the actual CPU time speedup of our approach over classic PSA,

• and estimate the tightness of the complexity bounds derived in section 4.

Experimental setup

We tested both simulation algorithms over a circular queuing network displayed in Figure 4 : the
M queues form a cycle, with the same service time in each queue, µi = µ, the same exogenous
arrival rate in each queue (λ) and the same probability of leaving the system at each queue:
pi0 = p. In that case, the infinite-queue system is stable if and only if λ/p < µ. To be consistent
with the notation in Table 1, we have λ0 = M × λ.

...1− p1− p 1− p

1− p

µµ µ

p ppλ λ λ

Figure 4: Circular network J used in the numerical experiments.

We have run both simulators for various queue capacities Ci = C for 1 6 i 6 M ranging
from 1 to 600, and various traffic loads ρi = ρ ranging from 0.6 to .99.
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Our experiments were carried out on a standard laptop computer2. All results are given with
95 % confidence intervals computed with 300 experiments per setting.

6.1 Sampling time improvement over classic PSA
The complexity analysis in Section 4 shows that the coalescence time of PSA-BP is always
smaller, however we first wanted to verify that

• the practical sampling time (CPU time) is well predicted by the coalescence time,

• the CPU time is significantly better (the overhead due to the construction of the bounding
process remains negligible).

To this end we measured the running time of both algorithms (PSA-BP and classic PSA) for
the same circular network, over a wide range of queue capacities.

Figure 5 presents the CPU time 3 needed per run for both PSA and PSA-BP algorithms,
under average (Fig. 5(a)) and high loads (Fig. 5(b)). The capacity C of the queues ranges from
1 to 600. These capacity choices are to be compared to the expected stationary queue size of the
bounding infinite-queue network, which is ρ

1−ρ , i.e. 4 jobs (resp. 49 jobs) for a 80% load (resp.
98%).
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Figure 5: Comparative sampling time (CPU time consumption per sample) of Bounding-Process
PSA and Classic PSA. Circular networks with M=3 queues, µ = 1, pi0 = 0.5. The capacity C of
each queue varies from 1 to 600. 95% confidence intervals with 300 samples per setting.

We observe that the simulation time of the classical perfect sampling algorithm grows some-
what linearly with the capacity of the buffers, as does the coalescence time (not displayed here
to avoid redundancy). The succession of plateaus and steep slopes (staircase shape) comes from

2Intel Core 2 Duo CPU U9400 1.40GHz, Cache 3072KB with 4.8GB RAM. Only one core is used for each
sample.

3CPU time used by the process computing one sample, measured with the
CLOCK_PROCESS_CPUTIME_ID of the time.h library.

RR n° 8332



Perfect Sampling of Jackson Queueing Networks 23

the doubling period trick of the perfect simulation algorithm: the coalescence time of Algorithm
2 is the smallest power of 2 larger than the actual coalescence time of the trajectory. This
linear increase behavior, while the state space grows with CM , is consistent with the findings
in [Anselmi and Gaujal, 2011].

As for the proposed algorithm 1, Figure 5 perfectly illustrates the fact that the CPU sampling
time remains bounded when the state space increases, as shown for the expected coalescence time
by Theorem 2 in the acyclic case.

The performance gap with the classical algorithm becomes significant as soon as the capacity
becomes larger than a few times the bounding expected stationary queue size (C > 10 for Figure
5(a), C > 200 for Figure 5(b)). Indeed, when C is small, the bounding infinite-queue process is
too large and algorithm PSA-BP roughly amounts to classic PSA, except for the computation
of the bounding trajectory. Even in this unfavorable case, we do not observe any significant
overhead effect.

6.2 Complexity bound
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Figure 6: Asymptotic behavior of (the square root of) the coalescence time (number of steps) of
our PSA-BP algorithm as the expected queue size grows (increasing with load ρ). Notice that
due to the doubling period artefact, the observed number of steps is at most twice the actual
coalescence time of the simulated trajectories. Circular networks with M=3 queues, capacity
C = 500, µ = 1, pi0 = 0.5.

In Theorems 2 and 3, upper bounds on the coalescence time are given in the acyclic and
hyper-stable cases, that are respectively quadratic and cubic in the expected size of the queues
for the bounding network J∞.

On the other hand, it is rather straightforward to show that for any stable network J , the
coalescence time is lower bounded by a sub-linear combination of the expected sizes of the queues
in the network:

E[τPSA-BP] >
M∑
i=1

Γ

µi + λi
E[Y∞i ∧ Ci].
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Indeed, the coalescence time in the network has the same distribution as the forward coa-
lescence time τf (0,Y∞ ∧C) (see Lemma 5). One needs at least Y∞i ∧ Ci departures in queue
i for coalescence and the average time between two events in queue i is Γ

µi+λi
. Therefore in

expectation,

E[τf (0,Y∞ ∧C)] >
M∑
i=1

Γ

µi + λi
E[Y∞i ∧ Ci].

To test if the actual coalescence time behaves like the lower bound (linear) or the upper
bound (quadratic or cubic), or does not comply with any of them in the cyclic non-hyperstable
case, we have run several experiments by letting the load grow from 50 % to 98 % and we
measured the coalescence time versus the average size of the queues in the circular network of
Figure 4. The results are given in Figure 6. The behavior of the square root of the coalescence
time follows almost perfectly the average size of the queues, up to a multiplicative constant. This
shows a quadratic behavior of the coalescence time, even though the network is not acyclic (nor
hyperstable). We conjecture that the bound given in Theorem 2 is actually true for any stable
network and that it is tight.

7 Extension to non-monotone networks
The perfect sampling technique presented here can be extended to non-monotone chains that
admit a monotone bounding chain, by combining Algorithm 1 with the envelope technique pre-
sented in [Busic et al., 2012b].

We illustrate this extension on the case of a network with negative customers [Gelenbe, 1991].
Let N be a network with finite and infinite buffer capacities and positive and negative customers:
the arrival of a negative customer in a buffer decreases the buffer size by one (unless the buffer
is empty), instead of increasing it by one for regular (positive) customers.

Denote by p+
ij (resp. p−ij) the probability that after a service in queue i the customer goes

to queue j as a positive (resp. negative) customer. The discrete-event representation for this
system can be obtained from the one for JQN, by dividing each event rij (i, j ∈ {0, 1, . . . ,M})
into two new events, denoted by r+

ij and r
−
ij of rates γ

+
ij := µp+

ij and γ
−
ij := µp−ij . The total event

rate is Γ
def
=
∑M
i,j=0(γ+

ij + γ−ij ).
We assume here that the matrix P+ = {p+

ij}i,j∈{0,1,...,M} is irreducible. Furthermore, we
assume positive stability, i.e.

λi < µi, 1 6 i 6M, (14)

where λi satisfy the equation λj =
∑M
i=0 λip

+
ij .

As before, we consider a discrete-time Markov chain {Z(t)}t∈N, after uniformization with
constant Γ. Using the assumption that the routing matrix P+ is irreducible, this discrete chain
is irreducible and aperiodic. and its evolution is given by: Z(t+1) = ψ(Z(t), vt+1) where (vt)t>0

are events (routing positive or negative customers, i.e. r+
ij or r−ij , 0 6 i, j 6 M . The forward

transition function of the chain ψ : S ×R → S is defined as follows:

• ψ(x, r+
ij) = ((x− ei) ∨ 0 + ej1x−ei>0) ∧C;

• ψ(x, r−ij) = (x− ei − ej1x−ei>0) ∨ 0;

• ψ(x, r+
0j) = (x + ej) ∧C;

• ψ(x, r−0j) = (x− ej) ∨ 0;
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• ψ(x, r+
i0) = (x− ei) ∨ 0.

• ψ(x, r−i0) = (x− ei) ∨ 0.

Events r−ij are not monotone for 1 6 i, j 6 M . To see this, consider the states x1 = ej and
x2 = ei + ej . The inequality x1 ≺ x2 holds. By definition, ψ(x1, r

−
ij) = ej and ψ(x2, r

−
ij) = 0, so

ψ(x2, r
−
ij) ≺ ψ(x1, r

−
ij).

It is nevertheless possible to construct a new network J∞ with infinite buffers in all queues
and where negative customers are replaced by departures (events r−ij are replaced by events r+

i0).
Network J∞ corresponds to a classical Jackson network with routing probabilities pij := p+

ij ,
for 0 6 i 6 M and 1 6 j 6 M , and pi,0 := p+

i,0 +
∑M
j=0 p

−
ij . The state of J∞ is a Markov chain

whose forward transition function is denoted φ∞. Under assumption (14), network J∞ is stable.
The network J∞ is also clearly monotone and with the coupling of negative customer routing
with departures, it is an upper bound of N , so Proposition 1 remains valid.

This allows us to construct a perfect sampler of network N using the envelope technique
presented in [Busic et al., 2012b] for the forward part, and the product form network J∞, with
stationary measure π∞, for the backward part. This perfect sampler is given in Algorithm 3,
and the events for both the reversed network and the forward one are coupled using the following
construction, similar to the coupling described in Proposition 2.

The reversed chain of network J∞ has the same routing events r+
ij , but different probabilities,

whose corresponding intervals are denoted Bij , as in Section 2.2.
Let Y∞(0) by a stationary sample of the infinite reversed system (with no negative customers),

generated according to the product form distribution π∞. Given an infinite sequence of i.i.d.
uniformly distributed random variables in [0, 1], U−1, U−2, · · · , we construct an infinite sequence
of events w−1, w−2, · · · of events for the reversed chain as follows. The intervals Bij are ordered
to cover [0, 1] using the alpha-numerical order:

B0,1, B0,2, . . . B0,M , B1,0, B1,1, . . . , . . . , BM,M .

Now, if U−t ∈ Bij , then w−t = r+
ij .

Then, we construct a trajectory of the reversed chain starting from Y∞(0) and using the
sequence of events: for all t > 0, Y∞(−t) = φ∞(Y∞(−t+ 1), w−t).

Now, the coupled event sequence for the direct chain v−1, . . . , v−t, . . . is built as described by
the following coupling procedure (C2):

1. If Y∞(−t) 6= Y∞(−t+ 1) then

• if w−t = r+
0,i then v−t = r+

i,0 with probability
p+i,0

p+i,0+
∑M

j=0 p
−
ij

and v−t = r−ij with proba-

bility
p−ij

p+i,0+
∑M

j=0 p
−
ij

.

• if w−t = r+
ij (i 6= 0) then v−t = r+

j,i

2. If Y∞(−t) = Y∞(−t+ 1) then event w−t must be of the form w−t = r+
ij with i 6= 0.

• if w−t = r+
i,0 then v−t = r+

i,0 with probability
p+i,0

p+i,0+
∑M

j=0 p
−
ij

and v−t = r−ij with proba-

bility
p−ij

p+i,0+
∑M

j=0 p
−
ij

.

• if w−t = r+
ij (j 6= 0) then v−t = r+

ij
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Using this coupling, the following properties hold

Property 3.
∀t > t′ > 0, ψ∞(Y∞(−t), v−t, . . . v−t′+1) � Y∞(−t′). (15)

In other words, the trajectory of the direct chain for network N from time −t to time 0,
starting in Y∞(−t) remains below the trajectory of the reversed chain from time 0 to time −t,
starting in Y∞(0).

Property 4. For all x, t, s, the trajectories ψ(x,v−t, . . .v−s+1) are “correct” in the sense that
if ut are i.i.d. events with P(ut = r

+/−
ij ) = a

+/−
ij , then ψ(x,v−t, . . .v−t′+1) and ψ(x,u1, . . .us)

have the same distribution.

The proofs of the two properties are similar to the case without negative customers.

Algorithm 3: Envelope PSA with a Bounding Process (EPSA-BP)
Data:
(1) An infinite i.i.d. sequence {U−n}n∈N with U−k uniformly distributed in [0, 1] (together
with the sequence of backward events {w−n}n∈N).
(2) A state Y∞ generated according to the distribution π∞.
Result: A state sampled from the stationary distribution of N
begin

t := 1;
repeat

for k = bt/2c to t− 1 do
Y∞ := φ∞(Y∞, w−k);
Compute the event v−k using the coupling procedure (C2);

Z(1) := Y∞ ∧C; Z(2) := 0;
for i = t− 1 downto 0 do

Z(1) := supx∈[Z(1),Z(2)] ψ(x, v−i);
Z(2) := infx∈[Z(1),Z(2)] ψ(x, v−i);

t := 2t;
until Z(1) = Z(2) ;
return Z(1);

end

Theorem 4. Algorithm EPSA-BP terminates with probability 1, and the output of EPSA-BP is
a state with the stationary distribution of network N .

Proof. The following theorem can be proved in a similar way as Theorem 1. The only difference
of the proof is in the forward part that uses the envelope technique in [Busic et al., 2012b] and
the fact that the bounding chain also bounds the upper envelope of the original chain: For any t,
any sequence (u−t, . . . , u−1) ∈ [0, 1]t, and any x ∈ S, y ∈ S∞, the backward bounding trajectory
remains above the upper forward envelope.

x � y ⇒ ψ(x, v−t, . . . , v−1) � φ∞(y, w−1, . . . , w−t)

⇒ sup
{z|z6x}

(ψ(z, v−t, . . . , v−1)) � φ∞(y, w−1, . . . , w−t).

RR n° 8332



Perfect Sampling of Jackson Queueing Networks 27

As for termination, in general, the envelopes do not necessarily meet (Z(1) = Z(2)) so the
algorithm may not terminate with probability 1. In our case however, envelopes will meet with
probability one for network N as soon as it is stable. This follows easily from the stability
assumption (14).

We illustrated the extension to non-monotone networks on a concrete example of negative
customers. In general, this extension will be valid for any Markov chain Z(t+ 1) = ψ(Z(t), Rt+1)
under the following assumptions:

• It is possible to find a bounding process Y (t + 1) = ζ(Y (t), Rt+1) such that for any t, any
sequence (r−t+1, . . . , r0) ∈ [0, 1]t, and any x ∈ S, y ∈ S ′,

x � y ⇒ ψ(x, r−t+1, . . . , r0) � ζ(y, r−t+1, . . . , r0),

where S and S ′ denote the state spaces of the original and bounding process respectively.

• It is easy to compute the backward transition function (β∞ in the algorithm) for the
bounding process and the initial sample distributed according to its stationary distribution.
This second condition can be relaxed: we only need to be able to sample from an upper
bound of this distribution.

• The envelopes for the original process couple and are easy to compute. For negative cus-
tomer events r−ij , 1 6 i, j 6M , we have:

sup
x∈[y,z]

ψ(x, r−ij) =

 z− ei − ej , yi > 0, zj > 0,
z− ei, yi = 0, zi > 0,
z, zi = 0,

and

inf
x∈[y,z]

ψ(x, r−ij) =


y − ei − ej , yi > 0, yj > 0,
y − ei, yi > 0, yj = 0,
y − ej , yi = 0, zi > 0, yj > 0,
y, zi = 0.

Again, the coupling time is bounded by Equation (8) and does not depend on the capacities
of the queues, unlike in classical perfect samplers.

8 Conclusion
In this paper we have presented a new perfect sampling algorithm for Jackson queuing networks
with finite and infinite capacities in queues. A complexity analysis of the algorithm shows that
its expected sampling time does not depend on the capacities. This is a remarkable improvement
over classical perfect samplers whose sampling time increases at least linearly in the capacities,
or fails when some capacities are infinite. Actually our approach is quite general and should
be usable for any Markov chain for which a bounding process with a computable stationary
distribution can be constructed and coupled with the original chain. In particular we have
shown how it applies in the case of queuing networks with negative clients.
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A Appendix: Solution of the traffic equations
Let us consider the traffic equations for a general Jackson network:{

∀i 6= 0, λi =
∑M
j=1 pji(λj ∧ µj)

λ0 = µ0
(16)

Theorem 5. The system (16) admits exactly one solution.

Proof. Let h be the function h(x) := x′, x′i =
∑
j∈J

pji(xj ∧ µj). P only has non negative coeffi-

cients, so h is clearly monotone on RJ .
We know that P is stochastic, so we have

h(x)i =
∑
j∈J

pji(xj ∧ µj) ≤
∑
j∈J

pji max(µ) ≤ max(µ)⇒ h(x) ≤ maxµ for x ∈ RJ , i,

setting an upper bound the image of h. We can also notice that for all input, the output
coefficients are positive linear combinations of the input coefficients and of positive values (µ):
if the input is component wise non negative, then so is the output.

Hence the restriction of h to the complete lattice [0,maxµ]J is a monotone function to the
same lattice. We can apply the Knaster-Tarski theorem: its fix points form a non empty lattice.

The minimum x−, maximum x+ of this lattice, and their difference δ
def
= x+ − x−, verify:

δi =
∑

j∈J ,x+
j ≤µj

pjiδj +
∑

j∈J ,x−j <µj<x
+
j

pji(µj − x−j ) ≤
∑
j∈J

δjpji, for all i 6= 0.

As for queue 0, δ0 = x+
0 −x

−
0 = µ0−µ0 = 0. Since P is stochastic regular, its maximum eigenvalue

is 1 and the corresponding eigenspace is of dimension one, generated by an eigenvector without
null coordinates.

So δ can only be the vector 0 meaning that the lattice is reduced to a singleton.
Hence the solution of the semi linear system exists and is unique.

A.1 Computation
One could iterate the function h until reaching the fixed point, but this method would not give
any guarantee on the number of iterations. Instead, we propose to work on a pair (L,x), where
L is a set of queues and x is the solution of the following system, both system and solution will
be updated together with the modification of L.{

x0 = µ0

xi =
∑
j∈L

µjpji +
∑
j /∈L

(xj ∧ µj)pji for i 6= 0 (17)

Starting with L equal to the set of all queues: L = J , we repeat the following procedure as
long as possible.

• Compute the vector x, solution of (17).

• Find one queue i∗ in L such that i∗ ∈ L, xi∗ ≤ µi∗ .

• set the new set L = L\{i∗}

RR n° 8332



Perfect Sampling of Jackson Queueing Networks 29

Lemma 6. The solutions x of the successive systems form a non-increasing sequence and are
expressible as linear combinations of µ|L.

Proof. This proof is in two parts: we first prove that the solutions x form a non-increasing
sequence.

Consider the family of functions hL similar to the function h from the proof of Lemma 5 :

hL(x)
def
=
∑
j 6∈L

pji(xj ∧ µj) +
∑
j∈L

pjiµj .

Every function of this family is monotone and admits only one fixed point on the lattice [0,maxµ]J

for exactly the same reason as in the proof of theorem 5.
We also have immediately (using ∀a, b, (a ∧ b) ≤ a)

∀L,L′, L ⊂ L′ ⇒ hL � hL′

Using the characterization of the minimum fixed point as the lower bound of the set where the
output is lower or equal to the input, we obtain:

∀L,L′, L ⊂ L′ ⇒ ∀x, hL � hL′ ⇒ hL(FP(h′L)) ≤ FP(h′L)⇒ FP(hL) ≤ FP(hL′)

Since the sequence L is decreasing, the fixed points x of hL form a non increasing sequence.
As a corollary, for any integer n and for any i ∈ J \Ln, let n0 be the step when i was chosen.

We have xni ≤ xn0
i ≤ µi. Every term (xi ∧ µi), i /∈ Ln in the system generated by Ln takes the

value xi. Therefore, the system is equivalent to the new system:{
∀i 6= 0, xi =

∑
j∈L

µjpji +
∑
j /∈L

xjpji

x0 = µ0

(18)

We denote by S(L,µ) this new system, by xn the solution of S(L = Ln,µ) and by in, the
element chosen before the (n+ 1)th step.
Using the sequence (Ln)n , we build a sequence of matrices (D(n))n∈N such that for all index n,
for all vector of real µ, x is solution of S(Ln,µ) if and only if x = µD(n) with the additional
property of partial sub-stochasticity :

Dn is Ln-sub-stochastic if ∀n, ∀i ∈ J ,
∑
j∈Ln

dnij ≤ 1

We take D(0) = P ; indeed, the solution x of S(L0 = J ,µ) verifies x = µP , and P is stochastic.
Computation ofD(n+1) fromD(n): We want to use the vector (µ1, . . . , µin−1, xin , µin+1, . . . , µN )

where coordinate in in µ is replaced by the variable xin .
We obtain a new system of variables x and m and equations :{

x solution of S(Ln,m)
m = (µ1, . . . , µin−1, xin , µin+1, . . . , µN )

With an immediate substitution on m, we can see that this system is exactly S(Ln+1,µ). By
definition of Dn, this system is also equivalent to{

x = mD(n)

m = (µ1, . . . , µin−1, xin , µin+1, . . . , µN )
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in which we can operate the same substitution, therefore the solution xn+1 of S(Ln+1,µ) is also
a solution of S(Ln,m), so that it must satisfy xn+1 = (µ1, . . . , µin−1, x

n+1
in

, µin+1, . . . , µN )Dn.
We notice that xn+1

in
is the only variable appearing on right side of this system, and satisfies:

xn+1
in

=
∑

j∈J\{in}

dnjinµj + dnininx
n+1
in

Hence4

xn+1
in

=
∑

j∈J\{in}

dnjin
1− dninin

µj .

Now, we substitute in every equation of the system the variable xn+1
in

by this combination.
We obtain exactly the system S(Ln+1,µ) under the form of a linear combination xn+1 = µDn+1.

To summarize, we obtain Dn+1 from Dn by applying the following successive elementary
operations:

dn+1
jin

:=
dnjin

1−dninin

for all j 6= in

dn+1
ij = dnij +

dniind
n
inj

1−dinin
= dnij + dn+1

iin
dninj for all i, j 6= in

dn+1
inj

:= 0 for all j

(19)

At last, let us show that Dn+1 is L-sub-stochastic:
Consider row i 6= in (the ithn row is null), Using the previous result and the fact that D(n) is
Ln-sub-stochastic: ∑

j∈Ln+1

dn+1
ij =

∑
j∈Ln

dnij + dniin(
∑
j∈Ln

dn+1
inj
− 1) ≤

∑
j∈Ln

dnij ≤ 1

Also, by using (19) and the fact that all coefficient of dnij are nonnegative, all coefficients dn+1
ij

are clearly nonnegative as well. Therefore, D(n+1) is Ln+1-sub-stochastic.

Lemma 7. The generated sequence stops after at most |J | steps and can only end on a solution
of the traffic equations.

Proof. At each step, the size of L decreases by one. This size begins at |J | and cannot be
negative. Hence the sequence cannot have more than |J | steps.

An ending is a state where every element of L satisfies: xend
i > µi for i ∈ L (stopping

condition) and xend
i ≤ µi for i ∈ J \L (part of recurrence property).

Hence the min operator ∧ in (7) gives µi on exactly the set L. Using function h defined in
the proof of theorem 5 (on page 28), we have

∀i ∈ J , h(xend)i =
∑
j∈L

pjiµi +
∑
j /∈L

pjix
end
i = xend

i

by definition of xend as the solution of exactly this system. Since xend is a fixed point of h, it is
also the only solution of the system (7).

4We could prove that if the initial network was well formed, no diagonal coefficient can become 1. Instead,
we can show that even this case is not problematic. Let us suppose that dinin = 1. We know that Dn is sub
stochastic, so every other coefficient in the line is null, so the incorrect value is not used.
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Algorithm 4: solving the system
Data: P a stochastic matrix, µ a real vector
Result: λin the solution of the system, G the set of unstable queues
begin

D ← P ;
∀i 6= 0, xi ←

∑
j∈J

µjpji and x0 ← µ0 ;

L ← J − {0} ;
while {i ∈ L, xi ≤ µi} 6= ∅ do

choose i∗ ∈ {i ∈ L, xi ≤ µi} ;
k ← 1

1−di∗i∗
;

∀i ∈ J , j ∈ L, dij ← dij + k · dii∗ · di∗j ;
L ← L\i∗;
∀i ∈ L, xi ←

∑
j∈L

µjdji ;

∀i ∈ J − {0}, xi ←
∑
j∈L

µjdji ;

return (x,L)
end

Remark 4. We don’t need to implement the instruction {∀j ∈ J , dji∗ ← 0} since the coefficients
in column outside L will never be accessed again.

Proposition 3 (complexity). Algorithm 4 computes the solution of the traffic equations in
O(M3) operations.

Proof. There will be at most M executions of the loop.
Cost of the different operations :

1. initialization: The first step is a product of a matrix and a vector: O(M2)

2. choice of in: At most |L| tests are done in one set: O(M).

3. update of D: At each step less thanM2 coefficients are updated, and each update consists
in a constant number of operations.

4. update of L: With a direct pointer, this operation is done in constant time.

5. computation of x It is a matrix-vector product : done in O(M2)

Finally, the algorithm is made of at most M repetitions of this O(M2) loop, so its execution is
in O(M3).

References
Anselmi, J. and Gaujal, B. (2011). On the efficiency of perfect simulation in monotone queueing

networks. In IFIP Performance: 29th International Symposium on Computer Performance,
Modeling, Measurements and Evaluation, Amsterdam. ACM Performance Evaluation Re-
view.

Anselmi, J. and Gaujal, B. (2013). Efficiency of simulation in monotone hyper-stable queueing
networks. Queuing Systems, Theory and Applications.

RR n° 8332



Perfect Sampling of Jackson Queueing Networks 32

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. (2005). Queueing Networks and Markov
Chains. Wiley-Interscience.

Busic, A., Gaujal, B., and Perronnin, F. (2012a). Perfect Sampling of Networks with Finite and
Infinite Capacity Queues. In Al-Begain, K., Fiems, D., and Vincent, J.-M., editors, 19th
International Conference on Analytical and Stochastic Modelling Techniques and Applica-
tions (ASMTA) 2012, volume 7314 of Lecture Notes in Computer Science, pages 136–149,
Grenoble, France. Springer.

Busic, A., Gaujal, B., and Pin, F. (2012b). Perfect sampling of Markov chains with piecewise
homogeneous events. Performance Evaluation, 69(6):247 – 266.

Busic, A., Gaujal, B., and Vincent, J.-M. (2008). Perfect simulation and non-monotone Marko-
vian systems. In 3rd International Conference Valuetools’08, Athens, Greece. ICST.

Chen, H. and Yao, D. D. (2001). Fundamentals of Queueing Networks. Springer-Verlag.

Dopper, J., Gaujal, B., and Vincent, J.-M. (2006). Bounds for the coupling time in queueing
networks perfect simulation. In Celebration of the 100th anniversary of Markov, pages
117–136.

Gaujal, B., Perronnin, F., and Bertin, R. (2008). Perfect simulation of a class of stochastic
hybrid systems with an application to peer to peer systems. Journal of Discrete Event
Dynamic Systems, 18(2):211–240. Special Issue on Hybrid Systems.

Gelenbe, E. (1991). Product-form queueing networks with negative and positive customers.
Journal of Applied Probability, 28(3):pp. 656–663.

Goodman, J. B. and Massey, W. A. (1984). The non-ergodic jackson network. Journal of
Applied Probability, 21(4):860–869.

Jackson, J. R. (1963). Job shop-like queueing systems. Management Sci., 10,131.

Kelly, F. (1979). Reversibility and Stochastic Networks. John Wiley & Sons Ltd.

Kendall, W. S. (2005). Notes on perfect simulation. Dept. of statistics, University of Warwick.

Kendall, W. S. and Møller, J. (2000). Perfect simulation using dominating processes on ordered
spaces, with application to locally stable point processes. Advances in Applied Probability,
32(3):844–865.

Pin, F., Busic, A., and Gaujal, B. (2011). Acceleration of perfect sampling for skipping events.
In Valuetools, Paris.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics. Rand. Struct. Alg., 9(1-2):223–252.

Vincent, J.-M. (2005). Perfect simulation of monotone systems for rare event probability es-
timation. In WSC ’05: Proceedings of the 37th conference on Winter simulation, pages
528–537. Winter Simulation Conference.

Walker, A. J. (1977). An efficient method for generating discrete random variables with general
distributions. ACM Trans. Math. Softw., 3:253–256.

RR n° 8332



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


