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Abstract. The standard SPARQL query language is currently defined for querying RDF graphs without RDFS semantics. Several

extensions of SPARQL to RDFS semantics have been proposed. In this paper, we discuss extensions of SPARQL that use regular

expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. In particular, we present

and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL

queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding frag-

ment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL,

being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.

Keywords: semantic web, query language, RDF, RDFS, SPARQL, regular expression, constrained regular expression,

nSPARQL, CPSPARQL, cpSPARQL

1. Introduction

RDF (Resource Description Framework [21]) is a

knowledge representation language dedicated to the

description of documents and more generally of re-

sources within the semantic web.

SPARQL [30] is the standard language for querying

RDF data. It has been well-designed for that purpose,

but very often, RDF data is expressed in the framework

of a schema or an ontology in RDF Schema or OWL.

RDF Schema (or RDFS) [10] together with OWL [22]

are two ontology languages recommended by the W3C

for defining the vocabulary used in RDF graphs. Re-

cently, [15] presented extensions of the SPARQL 1.1

entailment regimes to incorporate RDFS and OWL se-

mantics. Extending SPARQL for dealing with this kind

of data is thus a major issue. We consider here the case

of RDF Schema (RDFS) or rather a large fragment of

RDF Schema [24].

Two main approaches can be developed for answer-

ing a SPARQL query Q modulo an RDF schema S

*Corresponding author.

against an RDF graph G, i.e., evaluating the queries

by interpreting the queried graph and the query un-

der the RDFS semantics: the eager approach trans-

forms the data so that the evaluation of the SPARQL

query Q against the transformed RDF graph τ(G) re-

turns the answer, while the lazy approach transforms

the query so that the transformed query τ(Q) against

the RDF graph G returns the answers. The approaches

are not exclusive, as shown by [26], though no hybrid

approach has been developed so far for SPARQL.

There already have been proposals along the sec-

ond approach. For instance, [28] provides a query

language, called nSPARQL, allowing for navigating

graphs in the style of XPath. Then queries are rewrit-

ten so that query evaluation navigates the data graph

for taking the RDF Schema into account. Other at-

tempts, such as SPARQ2L [6] and SPARQLeR [20]

are not known to address queries with respect to RDF

Schema. SPARQL-DL [31] addresses OWL but is re-

stricted with respect to SPARQL.

An independently developed extension of SPARQL,

called PSPARQL is proposed in [5], which adds path

expressions to SPARQL. It is shown in [4] that an-

swering SPARQL queries modulo RDF Schema could

Authors’ copy
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be achieved by transforming them into PSPARQL

queries. PSPARQL fully preserves SPARQL, i.e., any

SPARQL query is a valid PSPARQL query. The time

complexity of PSPARQL (i.e., the complexity of eval-

uating a PSPARQL query against an RDF graph) is the

same as that of SPARQL [2]. Nonetheless, the trans-

formation cannot be generally applied to PSPARQL

and thus it is not generally sufficient for answering

PSPARQL queries modulo RDFS [4].

To overcome this limitation, an extension of PSPARQL

called CPSPARQL is proposed in [3,4], that uses con-

strained regular expressions instead of regular expres-

sions.

In this paper, we show that cpSPARQL, a restric-

tion of CPSPARQL, can express all nSPARQL queries

with the same complexity. The advantage of using

CPSPARQL is that, contrary to nSPARQL, it is a strict

extension of SPARQL and cpSPARQL graph patterns

are a strict extension of SPARQL graph patterns as

well as a strict extension of PSPARQL graph pat-

terns. Hence, using a proper extension of SPARQL like

CPSPARQL is preferable to a restricted path-based

languages. In particular, this allows for implementing

the SPARQL RDFS entailment regime.

In order to compare cpSPARQL and nSPARQL, we

adopt in this paper a notation similar to nSPARQL, i.e.,

adding XPath axes, which is slightly different from the

original CPSPARQL syntax presented in [3,4]. After

presenting the syntax and semantics of both nSPARQL

and CPSPARQL, we show that:

– CPSPARQL can answer full SPARQL queries

modulo RDFS (Section 4.3);

– We offer an efficient algorithm for answering

cpSPARQL queries (Section 5);

– cpSPARQL has the same complexity as nSPARQL

(Section 5);

– Any nSPARQL triple pattern can be expressed

as a cpSPARQL triple pattern, but not vice versa

(Section 6).

Paper Outline. The remainder of the paper is or-

ganized as follows. In Section 2, we introduce RDF

and the SPARQL language. Section 3 is dedicated

to the presentation of the nSPARQL query language.

The CPSPARQL and cpSPARQL languages are pre-

sented in detail with their main results in Section 4

and we show how to use them for answering SPARQL

and CPSPARQL queries modulo RDF Schemas. The

complexity results are presented in Section 5. In Sec-

tion 6, we compare the expressiveness of cpSPARQL

and nSPARQL. We discuss more precisely other re-

lated work in Section 8. Finally, we conclude in Sec-

tion 9.

2. Preliminaries

In this section, we present RDF as well as its recom-

mended query language SPARQL.

2.1. RDF

We introduce below the syntax and the semantics

of (simple semantics as introduced in [18]) of the lan-

guage.

2.1.1. RDF syntax

RDF graphs are constructed over the set of URI ref-

erences (or urirefs), blanks, and literals [12]. To sim-

plify notations, and without loss of generality, we do

not distinguish here between simple and typed literals.

Terminology. An RDF terminology, noted T , is the

union of 3 pairwise disjoint infinite sets of terms: the

set U of urirefs, the set L of literals and the set B of

variables. The vocabulary V denotes the set of names,

i.e., V = U ∪ L. We use the following notations for

the elements of these sets: a variable will be prefixed

by ? (like ?x1), a literal will be expressed between

quotation marks (like "27"), remaining elements will

be urirefs (like price).

Basically, an RDF graph is a set of triples of the

form 〈subject, predicate, object〉 whose domain is

defined in the following definition. We generalize RDF

graphs by allowing variables (blanks) in predicate po-

sition.

Definition 1 (RDF graph, GRDF graph). An RDF

triple is an element of U × U × U . An RDF graph is

a set of RDF triples. A GRDF graph (for generalized

RDF) is a set of triples of (U ∪ B)× (U ∪ B)× T .

In this definition we do not consider blank nodes

in RDF because the official specification of SPARQL

treats blank nodes in RDF graphs simply as constants

(as if they were URIs) without considering their exis-

tential semantics. However, if the existential semantics

of blank nodes is considered when querying RDF, the

results of this paper may indirectly apply by using the

graph homomorphism technique [9].

If G is an RDF graph, we use voc(G) to denote the

set of terms appearing in at least one triple of G.
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Fig. 1. An RDF graph (G) with its schema (M ) representing infor-

mation about transportation means between several cities.

Example 1 (RDF Graph). RDF can be used for repre-
senting information about cities, transportation means
between cities, and relationships between the trans-
portation means. The following triples are part of the
RDF graph of Figure 1:

Grenoble TGV Paris .

Paris plane Amman .

TGV subPropertyOf transport .

...

For instance, a triple 〈Paris, plane, Amman〉 means

that there exists a transportation mean plane from

Paris to Amman.

2.1.2. RDF semantics

The formal semantics of RDF expresses the condi-

tions under which an RDF graph describes a partic-

ular world, i.e., an interpretation is a model for the

graph [18]. We define in the following simple seman-

tics without considering RDFS semantics.

Definition 2 (Mapping). Let V1 ⊆ T , and V2 ⊆ T be

two sets of terms. A map from V1 to V2 is a function

µ : V1 → V2 such that ∀x ∈ (V1 ∩ V), µ(x) = x.

In the following definition, we provide a character-

ization of the entailment of RDF graphs (respectively,

GRDF graphs) in terms of subset for the case of graphs

without variables (respectively, in terms of homomor-

phism when the graphs have variables).

Definition 3 (RDF, GRDF entailment). An RDF

graph G RDF-entails an RDF graph P (denoted by

G |=rdf P ) iff ∀〈s, p, o〉 ∈ P , then 〈s, p, o〉 ∈ G.

An RDF graph G RDF-entails a GRDF graph P
(denoted by G |=rdf P ) if there exists a mapping

µ : T (P ) → T (G) such that iff ∀〈s, p, o〉 ∈ P , then

〈µ(s), µ(p), µ(o)〉 ∈ G.

2.2. SPARQL

We define in the following subsections the syntax

and the semantics of SPARQL.

2.2.1. SPARQL syntax

The basic building blocks of SPARQL queries are

graph patterns which are shared by all SPARQL query

forms. Informally, a graph pattern can be a triple pat-

tern, i.e., a GRDF triple, a basic graph pattern, i.e., a set

of triple patterns such as a GRDF graph in SPARQL

(AND), the union of graph patterns (UNION), an op-

tional graph pattern (OPT), or a constraint (FILTER)

(cf. [30] for more details).

Definition 4 (SPARQL graph pattern). A SPARQL

graph pattern is defined inductively in the following

way:

– every GRDF graph is a SPARQL graph pattern;

– if P , P ′ are SPARQL graph patterns and K
is a SPARQL constraint, then (P AND P ′), (P
UNION P ′), (P OPT P ′), and (P FILTER K)

are SPARQL graph patterns.

A SPARQL constraintK is a boolean expression in-

volving terms from (V ∪ B), e.g., a numeric test. We

do not specify these expressions further.

A SPARQL SELECT query is of the form SELECT
~B FROM u WHERE P where u is the URI of an RDF

graph G, P is a SPARQL graph pattern and ~B is a

tuple of variables appearing in P . Intuitively, such a

query asks for the assignments of the variables in ~B
such that, under these assignments, P is entailed by the

graph identified by u.

Example 2 (Query). The following query searches in
the RDF graph of Figure 1 if there exists a direct plane
between a city in France and a city in Jordan:

SELECT ?city1 ?city2

FROM ...

WHERE

?city1 plane ?city2 .

?city1 cityIn France .

?city2 cityIn Jordan .

2.2.2. SPARQL semantics

In the following, we characterize query answering

with SPARQL as done in [27]. The approach relies

upon the correspondence between maps from RDF

graph of the query graph patterns to the RDF knowl-

edge base and GRDF entailment.

Operations on mappings. If µ is a map, then the do-

main of µ, denoted by dom(µ), is the subset of T on

which µ is defined. The restriction of µ to a set of terms
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X is defined by µ|X = {〈x, y〉 ∈ µ| x ∈ X} and

the completion of µ to a set of terms X is defined by

µ|X = µ ∪ {〈x, null〉| x ∈ X and x /∈ dom(µ)}1.

If P is a graph pattern, then we use B(P ) to denote

the set of variables occurring in P and µ(P ) to de-

note the graph pattern obtained by the substitution of

µ(b) to each variable b ∈ B(P ). Two mappings µ1 and

µ2 are compatible when ∀x ∈ dom(µ1) ∩ dom(µ2),
µ1(x) = µ2(x). Otherwise, they are said to be in-

compatible and this is denoted by µ1⊥µ2. If µ1 and

µ2 are two compatible mappings, then we denote by

µ = µ1 ⊕ µ2 : T1 ∪ T2 → T the mapping defined by:

∀x ∈ T1, µ(x) = µ1(x) and ∀x ∈ T2, µ(x) = µ2(x).
The join and difference of two sets of mappings Ω1 and

Ω2 are defined as follows [27]:

– (join) Ω1 ⋊⋉ Ω2 = {µ1 ⊕ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2

are compatible};
– (difference) Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1

and µ2 are not compatible}.

The answers to a basic graph pattern query are those

mappings which warrant the entailment of the graph

pattern by the queried graph. In the case of SPARQL,

this entailment relation is GRDF entailment. Answers

to compound graph patterns are obtained through the

operations on mappings.

Definition 5 (Answers to compound graph patterns).

Let |=rdf be the RDF entailment relation on basic

graph patterns, P , P ′ be SPARQL graph patterns, K
be a SPARQL constraint, andG be an RDF graph. The

set S(P,G) of answers to P inG is defined inductively

in the following way:

S(P,G) = {µ|B(P )| G |=rdf µ(P )}

if P is a basic graph pattern

S((P AND P ′), G) = S(P,G) ⋊⋉ S(P ′, G)

S(P UNION P ′, G) = S(P,G) ∪ S(P ′, G)

S(P OPT P ′, G) = (S(P,G) ⋊⋉ S(P ′, G))

∪ (S(P,G) \ S(P ′, G))

S(P FILTERK,G) = {µ ∈ S(P,G) | µ(K) = ⊤}

Note that the operator |=rdf is used to denote the

RDF entailment relation on basic graph patterns and

we will use simply |= when it is clear from the con-

1The null symbol is used for denoting the NULL values intro-

duced by the OPTIONAL clause.

text. Moreover, the conditions K are interpreted as

boolean functions from the terms they involve. Hence,

µ(K) = ⊤means that this function is evaluated to true

once the variables in K are substituted by µ. If not all

variables ofK are bound, then µ(K) 6= ⊤. One partic-

ular operator that can be used in SPARQL filter condi-

tions is "bound(?x)". This operator returns true if the

variable ?x is bound and in this case µ(K) is not true

whenever a variable is not bound.

As usual for this kind of query language, an an-

swer to a query is an assignment of the distinguished

variables (those variables in the SELECT part of the

query). Such an assignment is a mapping from vari-

ables in the query to nodes of the graph. The defined

answers may assign only one part of the variables,

those sufficient to prove entailment. The answers are

these assignments extended to all distinguished vari-

ables.

Definition 6 (Answers to a SPARQL query). Let

SELECT ~B FROM u WHERE P be a SPARQL query,

G be the RDF graph identified by the URI u, and

S(P,G) be the set of answers to P in G, then the an-

swers A( ~B,G, P ) to the query are the restriction and

completion to ~B of answers to P in G, i.e.,

A( ~B,G, P ) = {µ|
~B
~B
; µ ∈ S(P,G)}.

3. nSPARQL

nSPARQL is a query language that uses nested reg-

ular expressions in predicate position of graph patterns

for navigating the RDF graph [28].

3.1. nSPARQL syntax

Definition 7 (Regular expression). A regular expres-

sion is an expression built from the following gram-

mar:

exp ::= axis | axis::a | exp | exp/exp | exp|exp | exp∗

with a ∈ U and axis ∈{self, next, next−1, edge,

edge−1, node, node−1 }.

Regarding the precedence among the regular expres-

sion operators, it is as follows: *, /, then |. Parentheses

may be used for breaking precedence rules.

The model underlying nSPARQL is that of XPath

which navigates within XML structures. Hence, the

axis denotes the type of node object which is selected

at each step, respectively, the current node (self or
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self
−1), the nodes reachable through an outbound

triple (next), the nodes that can reach the current

node through an incident triple (next−1), the proper-

ties of outbound triples (edge), the properties of inci-

dent triples (edge−1), the object of a predicate (node)

and the predicate of an object (node−1). This is illus-

trated by Figure 2.

subject objet
predicate

self

next

next
−1

edge

edge
−1

node

node
−1 self

−1

Fig. 2. nSPARQL axes.

Definition 8 (Nested regular expression). A nested

regular expression is an expression built from the fol-

lowing grammar (with a ∈ U):

exp ::= axis | axis::a | axis::[exp] | exp | exp/exp |
exp|exp | exp∗

Contrary to simple regular expressions, nested reg-

ular expressions may constrain nodes to satisfy addi-

tional secondary paths.

Nested regular expressions are used in triple patterns

in predicate position, to define nSPARQL triple pat-

terns.

Definition 9 (nSPARQL triple pattern). An nSPARQL

triple pattern is a triple 〈s, p, o〉 such that s ∈ T , o ∈ T
and p is a nested regular expression.

Example 3 (nSPARQL triple pattern). Assume that

one wants to retrieve the pairs of cities such that there

is a way of traveling by any transportation mean. The

following nSPARQL pattern expresses this query:

P = 〈?city1, (next :: [(next :: sp)∗/self ::
transport])+, ?city2〉

This pattern expresses a sequence of predicates

reaching the "transport" predicate through "subprop-

erty" (sp) predicates.

nSPARQL is designed as a navigational language, i.e.,

its main purpose is to find nodes linked by a particular

path.

It is also possible to create a query language from

nSPARQL triple patterns by simply replacing SPARQL

patterns by nSPARQL patterns. Indeed, from nSPARQL

triple patterns it is possible to define nSPARQL graph

patterns in the usual way.

Definition 10 (nSPARQL graph pattern). An nSPARQL

graph pattern is defined inductively by:

– every nSPARQL triple pattern is an nSPARQL

graph pattern;

– if P1 and P2 are two nSPARQL graph patterns

and K is a SPARQL constraint, then (P1 AND

P2), (P1 UNION P2), (P1 OPT P2), and (P1

FILTERK) are nSPARQL graph patterns.

However, for time complexity reasons the design-

ers of the nSPARQL language choose to define a more

restricted language than SPARQL [29]. Contrary to

SPARQL queries, nSPARQL queries are reduced to

nSPARQL graph patterns, constructed from nSPARQL

triple patterns, plus SPARQL operators AND, UNION,

FILTER, and OPT. They do not allow for the projec-

tion operator SELECT. This prevents, when checking

answers, that uncontrolled variables have to be evalu-

ated.

3.2. nSPARQL semantics

In order to define the semantics of nSPARQL, we

need to know the semantics of nested regular expres-

sions [28].

Definition 11 (Nested path interpretation [28]). Given

a nested path p and an RDF graph G, the interpreta-
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tion of p in G (denoted [[p]]G) is defined by:

[[self ]]G = {〈x, x〉|x ∈ voc(G)}

[[self :: a]]G = {〈a, a〉}

[[next]]G = {〈x, y〉|∃z; 〈x, z, y〉 ∈ G}

[[next :: a]]G = {〈x, y〉|〈x, a, y〉 ∈ G}

[[edge]]G = {〈x, y〉|∃z; 〈x, y, z〉 ∈ G}

[[edge :: a]]G = {〈x, y〉|〈x, y, a〉 ∈ G}

[[node]]G = {〈x, y〉|∃z; 〈z, x, y〉 ∈ G}

[[node :: a]]G = {〈x, y〉|〈a, x, y〉 ∈ G}
[[

axis−1
]]

G
= {〈x, y〉|〈y, x〉 ∈ [[axis]]G}

[[

axis−1 :: a
]]

G
= {〈y, x〉|〈x, y〉 ∈ [[axis :: a]]G}

[[exp1|exp1]]G = [[exp1]]G ∪ [[exp2]]G

[[exp1/exp2]]G = {〈x, y〉|∃z; 〈x, z〉 ∈ [[exp1]]G

∧ 〈z, y〉 ∈ [[exp2]]G}

[[exp∗]]G = [[self ]]G ∪ [[exp]]G ∪ [[exp/exp]]G

∪ [[exp/exp/exp]]G ∪ . . .

[[self :: [exp]]]G = {〈x, x〉|x ∈ voc(G)

∧ ∃z; 〈x, z〉 ∈ [[exp]]G}

[[next :: [exp]]]G = {〈x, y〉|∃z, w; 〈x, z, y〉 ∈ G

∧ 〈z, w〉 ∈ [[exp]]G}

[[edge :: [exp]]]G = {〈x, y〉|∃z, w; 〈x, y, z〉 ∈ G

∧ 〈z, w〉 ∈ [[exp]]G}

[[node :: [exp]]]G = {〈x, y〉|∃z, w; 〈z, x, y〉 ∈ G

∧ 〈z, w〉 ∈ [[exp]]G}
[[

axis−1 :: [exp]
]]

G
={〈x, y〉|〈y, x〉∈ [[axis :: [exp]]]G}

The evaluation of a nested regular expressionR over

an RDF graph G is defined as a binary relation [[R]]G,

by a pair of nodes 〈a, b〉 such that a is reachable from

b in G by following a path that conforms to R. In the

following, we use the positive closure of a path expres-

sion R denoted by R+ and defined as R+ = R/R∗.

Definition 12. The evaluation of a nSPARQL triple

pattern t = 〈X , R,Y〉 over an RDF graph G is:

[[t]]G = {µ| dom(µ) = {X ,Y} ∩ B

and 〈µ(X ), µ(Y)〉 ∈ [[R]]G}

Answers to nSPARQL queries follow the same def-

inition as for SPARQL but this time the answers are

constructed from mappings satisfying nSPARQL triple

patterns.

Definition 13 (Answers to an nSPARQL basic graph

pattern). LetP be a basic nSPARQL graph pattern and

G be an RDF graph, then the set of answers to P over

G is:

A(G,P )={µ| 〈µ(X ), µ(Y)〉∈ [[R]]G , ∀〈X , R,Y〉∈P}

The evaluation of such basic graph patterns is mea-

sured with the usual evaluation problem:

Problem: Regular expression evaluation

Input: An RDF graph G, a regular expression R, and

a pair 〈a, b〉
Question: Does 〈a, b〉 ∈ [[R]]G?

We will use this same problem with different type of

regular expressions. This problem is solved efficiently

through an effective procedure provided in [29].

Theorem 1 (Complexity of nSPARQL evaluation

[29]). The evaluation problem for a nested regular ex-

pressionR over an RDF graphG can be solved in time

O(|G|.|R|).

3.3. Querying RDFS with nSPARQL

[24] has introduced the reflexive relaxed seman-

tics for RDFS in which rdfs:subPropertyOf and

rdfs:subClassOf of do not have to be reflexive.

The reflexive relaxed semantics does not change much

RDFS. Indeed, from the standard (reflexive) seman-

tics, we can deduce that any class (respectively, prop-

erty) is a subclass (respectively, subproperty) of itself.

The reflexivity requirement only entails reflectivity as-

sertions which do not interact with other triples unless

constraints are added to the rdfs:subPropertyOf

or rdfs:subClassOf properties. Therefore, it is

assumed that elements of RDFS vocabulary appear

only as predicate.

However, when issuing queries involving these re-

lations, e.g., with a graph pattern like 〈?x sp ?y〉, all

properties in the graph will be answers. Since this
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Subproperty (sp) Subclass (sc) Typing (dom, range

〈A,sp,B〉 〈B,sp, C〉

〈A,sp, C〉

〈A,sc,B〉 〈B,sc, C〉

〈A,sc, C〉

〈A,dom,B〉 〈X ,A,Y〉

〈X ,type,B〉
〈A,sp,B〉 〈X ,A,Y〉

〈X ,B,Y〉

〈A,sc,B〉 〈X ,type,A〉

〈X ,type,B〉

〈A,range,B〉 〈X ,A,Y〉

〈Y,type,B〉
Table 1

RDFS inference rules

would clutter results, we assume, as done in [24], that

queries use the reflexive relaxed semantics. It is easy

to recover the standard semantics by providing the ad-

ditional triples when sp or sc are queried.

In the following, we use the closure graph of an RDF

graph G, denoted by closure(G), which is defined by

the graph obtained by saturating G with all triples that

can be deduced using rules of Table 1 [24].

Definition 14. The evaluation of an nSPARQL triple

pattern t = 〈X , R,Y〉 over an RDF graph G modulo

RDFS is defined as the following set of mappings:

[[t]]
rdfs
G = {µ|dom(µ) = {X ,Y} ∩ B

∧ 〈µ(X ), µ(Y)〉 ∈ [[R]]closure(G)}

Definition 15 (Answers to an nSPARQL basic graph

pattern modulo RDFS). Let P be a basic nSPARQL

graph pattern and G be an RDF graph, then the set of

answers to P over G modulo RDFS is:

Ao(G,P ) = {µ | µ ∈ [[t]]
rdfs
G , ∀t ∈ P}

As presented in [28], nSPARQL can evaluate queries

with regard to RDFS by transforming queries using

the transformation function φ defined in the following

rules [24]:

φ(sc) = (next::sc)+

φ(sp) = (next::sp)+

φ(dom) = next::dom

φ(range) = next::range

φ(type) = next::type/next::sc*

|edge/next::sp*/next::dom/next::sc*

|node−1/next::sp*/next::range

/next::sc*

φ(p) = next[(next::sp)*/self::p]

(p 6∈ {sp, sc, type, dom, range})

Example 4 (nSPARQL evaluation modulo RDFS).

The following nSPARQL graph pattern could be used

as a query to retrieve the set of pairs of cities connected

by a sequence of transportation means such that one

city is from France and the other city is from Jordan:

{〈?city1, (next ::transport)
+, ?city2〉,

〈?city1, next ::cityIn, France〉,

〈?city2, next ::cityIn, Jordan〉}

When evaluating this graph pattern against the RDF

graph of Figure 1 and considering the RDFS seman-

tics, it returns the empty set since there is no explicit

property "transport" between the two queried cities.

However, it should return the following set of pairs:

{〈?city1 ← Paris, ?city2 ← Amman〉, 〈?city1 ←
Grenoble, ?city2 ← Amman〉}

To answer the above graph pattern considering

RDFS semantics, it could be transformed to the follow-

ing nSPARQL graph pattern:

{〈?city1, (next ::[(next :: sp)
∗/self :: transport])+

, ?city2〉,

〈?city1, next ::cityIn, France〉,

〈?city2, next ::cityIn, Jordan〉}

This encoding is correct and complete with regard

to RDFS entailment.

Theorem 2 (Completeness of φ [28]). Let 〈X , p,Y〉
be a SPARQL triple pattern with X ,Y ∈ (U ∪ B) and

p ∈ U , then for any RDF graph G:

[[〈X , p,Y〉]]rdfsG = [[〈X , φ(p),Y〉]]G

4. CPSPARQL and cpSPARQL: syntax and

semantics

CPSPARQL has been defined for addressing two

main issues. The first one comes from the need to ex-

tend PSPARQL and thus to allow for expressing con-
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straints on nodes of traversed paths; while the other

comes from the need to answer PSPARQL queries

modulo RDFS so that the transformation rules could

be applied to PSPARQL queries [2].

In addition to CPSPARQL, we present cpSPARQL,

a language using CPSPARQL graph patterns in the

same way as nSPARQL does.

4.1. CPSPARQL syntax

The notation that we use in this paper for the syntax

of CPSPARQL is slightly different from the one de-

fined in the original proposal [2]. The original one uses

edge and node constraints to express constraints on

predicates (or edges) and nodes of RDF graphs, re-

spectively. In this paper, as done for nSPARQL, we

adopt the axes borrowed from XPath, with which the

reader may be more familiar. This will also allow us to

better compare cpSPARQL and nSPARQL. Addition-

ally, in the original proposal, the ALL and EXISTS

keywords were used to allow expressing constraints on

all traversed nodes or to check the existence of a node

in the traversed path that satisfies the given constraint.

We do not use these keywords in the fragment pre-

sented below since they do not add expressiveness with

respect to the RDFS semantics, i.e., the fragment still

captures the RDFS semantics.

Constraints act as filters for paths that must be tra-

versed by constrained regular expressions and select

those whose nodes satisfy encountered constraint.

Definition 16 (Constrained regular expression). A

constrained regular expression is an expression built

from the following grammar:

exp ::= axis | axis::a | axis::[x : ψ] | axis::]x : ψ[
| exp | exp/exp | exp|exp | exp∗

with ψ being a set of triples belonging to (U∪B∪{x}×
exp×T ∪{x})UNION {FILTER−expressions}
over B ∪ {x}. ψ is called a CPRDF-constraint and x
its head variable.

Constrained regular expressions require the item in

one axis to satisfy a particular constraint, i.e., to satisfy

a particular graph pattern (here an RDF graph) or fil-

ter. We introduce the closed square brackets and open

square brackets notation for distinguishing between

constraints which export their variable (it may be as-

signed by the mapping) and constraints which do not

export it (the variable is only notational). This is equiv-

alent to the initial CPSPARQL formulation, in which

the variable was always exported, since CPSPARQL

can ignore such variables through projection.

In the following, we have used B(R) to denote the

set of variables occurring as the head variable of an

open bracket constraint in R.

Constraint nesting is allowed because constrained

regular expressions may be used in the graph pattern

of another constrained regular expression as in the fol-

lowing example.

Example 5 (Constrained regular expression). The fol-

lowing constrained regular expression could be used

to find nodes connected by transportation means that

are not buses:

(next :: [?p : {〈?p, (next :: sp)∗, transport〉

FILTER(?p! = bus)}])+

In contrast to nested regular expressions, con-

strained regular expressions can apply constrains (such

as SPARQL constraints) in addition to simple nested

path constraints.

Constrained regular expressions are used in triple

patterns, in predicate position, to define CPSPARQL.

Definition 17 (CPSPARQL triple pattern). A CPSPARQL

triple pattern is a triple 〈s, p, o〉 such that s ∈ T , o ∈ T
and p is a constrained regular expression.

Definition 18 (CPSPARQL graph pattern). A CPSPARQL

graph pattern is defined inductively by:

– every CPSPARQL triple pattern is a CPSPARQL

graph pattern;

– if P1 and P2 are two CPSPARQL graph pat-

terns and K is a SPARQL constraint, then (P1

AND P2), (P1 UNION P2), (P1 OPT P2), and (P1

FILTERK) are CPSPARQL graph patterns.

Example 6 (CPSPARQL graph pattern). The follow-

ing CPSPARQL graph pattern could be used to retrieve

the set of pairs of cities connected by a sequence of

transportation means (which are not buses) such that

one city in France and the other one in Jordan:

{〈?city1, (next :: [?p :{〈?p, (next :: sp)
∗, transport〉

FILTER(?p!=bus)}])+, ?city2〉

〈?city1, next :: cityIn, France〉

〈?city2, next :: cityIn, Jordan〉}

If open square brackets were used, this graph pat-

tern would, in addition, bind the ?p variable to a

matching value, i.e., the transportation means used.
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By restricting CPRDF constraints, it is possible to

define a far less expressive language. cpSPARQL is

such a language: instead of general GRDF graphs as

constraints, it only allows at most one triple (with a

cpSPARQL regular expression as predicate)

Definition 19 (cpSPARQL regular expression). A

cpSPARQL regular expression is an expression built

from the following grammar:

exp ::= axis | axis::a | axis::]?x : TRUE[

| axis::[?x : {〈?x, exp, v〉}{FILTER(?x)}]

| exp | exp/exp | exp|exp | exp∗

such that v is either a distinct variable ?y or a con-

stant (an element of U ∪ L) and FILTER(?x) is the

usual SPARQL filter condition containing at most the

variable ?x and v if v is a variable.

The first specific form, with open square brackets,

has been preserved so that cpSPARQL triples cover

SPARQL basic graph patterns, i.e., allow for variables

in predicate position. In the other specific forms, a

cpSPARQL constraint is either a cpSPARQL regular

expression containing ?x as the only variable and/or

a SPARQL FILTER constraint. Hence, such a regular

expression may have several constraints, but each con-

traint can only expose one variable and it cannot refer

to variables defined elsewhere.

Deciding if a CPSPARQL triple is a cpSPARQL

triple can be performed in linear time in the size of the

regular expression used.

Example 7 (cpSPARQL triple patterns). The query

of Example 3 could be expressed by the following

cpSPARQL pattern:

〈?city1,

(next :: [?p : {〈?p, (next :: sp)∗, transport〉}])+,

?city2〉

The constraintψ=?p :{〈?p, (next ::sp)∗, transport〉}
is used to restrict the properties (in this pattern the

constraint is applied to properties since the axis next

is used) to be only a transportation mean.

Example 5 provides another cpSPARQL regular ex-

pression. By contrast, CPSPARQL graph patterns al-

low for queries like:

next :: [?p; {〈?p, (next :: sp)∗, ?z〉,

〈?q, (next :: sp)∗, ?z〉,

〈?p, owl : inverseOf, ?q〉,

F ILTER(regex(?z, iata.org))}]

which is not a cpSPARQL regular expression since it

uses more than two variables.

It is possible to develop languages based on cpSPARQL

regular expressions following what is done with con-

strained regular expressions.

4.2. CPSPARQL semantics

Intuitively, a constrained regular expression next::[ψ]
(where ψ =?p : {〈?p, sp∗, transport〉}) is equivalent

to next::p if p satisfies the constraint ψ, i.e., p should

be a sub-property of transport (when p is substituted

to the variable ?p).

Definition 20 (Satisfied constraint in an RDF graph).

Let G be an RDF graph, s and o be two nodes of G
and ψ = x : C be a constraint, then s and o satisfies

ψ in G (denoted 〈s, o〉 ∈ [[ψ]]G) if one of the following

conditions is satisfied:

1. C is a triple pattern C = 〈X , R,Y〉, and

〈X x
s ,Y

y
o 〉 ∈ [[Rx

s ]]G, where Kz
r means that r is

substituted to the variable z if K = z or K con-

tains the variable z. If z is a constant then z = r.

2. C is a SPARQL filter constraint and Cx,y
s,o = ⊤,

where Cx,y
s,o = ⊤ means that the constraint ob-

tained by the substitution of s to each occurrence

of the variable x and o to each occurrence of the

variable y in C is evaluated to true2.

3. C = P FILTER K, then 1 and 2 should be

satisfied

As for nested regular expressions, the evaluation of

a constrained regular expression R over an RDF graph

G is defined as a binary relation [[R]]G, by a pair of

nodes 〈a, b〉 such that a is reachable from b in G by

following a path that conforms to R. The following

definition extends Definition 11 to take into account

the semantics of terms with constraints.

2Except for the case of bound (see Definition 5 and the discussion

after it.)
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Definition 21 (Constrained path interpretation). Given

a constrained regular expression P and an RDF graph

G. If P is unconstrained then the interpretation of P

in G (denoted [[P ]]G) is as in Definition 11; otherwise

the interpretation of P in G is defined as:

[[self :: [ψ]]]G = {〈x, x〉| ∃z;x ∈ voc(G)∧

〈x, z〉 ∈ [[ψ]]G}

[[next :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈x, z, y〉 ∈ G∧

〈z, w〉 ∈ [[ψ]]G}

[[edge :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈x, y, z〉 ∈ G∧

〈z, w〉 ∈ [[ψ]]G}

[[node :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈z, x, y〉 ∈ G∧

〈z, w〉 ∈ [[ψ]]G}
[[

axis−1 :: [ψ]
]]

G
= {〈x, y〉| 〈y, x〉 ∈ [[axis :: [ψ]]]G}

Definition 22 (Answer to a CPSPARQL triple pat-

tern). The evaluation of a CPSPARQL triple pattern

t = 〈X , R,Y〉 over an RDF graph G is defined as the

following set of mappings:

[[t]]G = {µ | dom(µ) = {X ,Y} ∩ B ∪ B(R) and

〈µ(X ), µ(Y)〉 ∈ [[µ(R)]]G} such that µ(R) is the con-

strained regular expression obtained by substituting

the variable ?x appearing in a constraint with open

brackets in R by µ(?x).

This semantics also applies to cpSPARQL graph

patterns.

4.3. Querying RDFS with CPSPARQL

Like for nSPARQL, constraints allow for encoding

RDF Schemas within queries.

Definition 23 (RDFS triple pattern expansion). Given

an RDF triple t, the RDFS expansion of t, denoted by

τ(t), is defined as:

τ(〈s, sc, o〉) =〈s, next::sc+, o〉

τ(〈s, sp, o〉) =〈s, next::sp+, o〉

τ(〈s, dom, o〉) =〈s, next::dom, o〉

τ(〈s, range, o〉) =〈s, next::range, o〉

τ(〈s, type, o〉) =〈s, next::type/next::sc∗|

edge/(next::sp)∗/next::dom/(next::sc)∗|

node
−1/(next::sp)∗/next::range/(next::sc)∗, o〉

τ(〈s, p, o〉) =〈s, (next::[?x : {〈?x, (next::sp)∗,

p〉}]), o〉,

p 6∈ {sp, sc, type, dom, range}

The RDFS expansion of an RDF triple is a cpSPARQL

triple.

The extra variable "?x" introduced in the last item of

the transformation, is only used inside the constraint of

the constrained regular expression and so it is not con-

sidered to be in dom(µ), i.e., only variables occurring

as a subject or an object in a CPSPARQL triple pattern

are considered in mappings (see Definition 22). There-

fore, the SELECT operator (projection) is not needed

in cpSPARQL to restrict the results of the transformed

triple as in the case of PSPARQL [5], as illustrated in

the following example.

Example 8 (SPARQL query transformation). Con-
sider the following SPARQL query that searches pairs
of nodes connected with a property p

SELECT ?X ?Y

WHERE ?X p ?Y .

It is possible to answer this query modulo RDFS by
transforming this query into the following PSPARQL
query:

SELECT ?X ?Y

WHERE ?X ?P ?Y . ?P sp* p .

The evaluation of the above PSPARQL query is the

mapping {?X ← a, ?P ← b, ?Y ← c}. So, to actually

obtain the desired result, a projection (SELECT) oper-

ator must be performed since the extra variable ?P is

used in the transformation. It is argued in [29] that in-

cluding the SELECT (projection) operator to the con-

junctive fragment of PSPARQL makes the evaluation

problem NP-hard.

On the other hand, the query could be answered by

transforming it, with the τ function of Definition 26, to

the following cpSPARQL query (in which there is no

need for the projection operator):
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(?X, (next::[?x: ?x, (next::sp)*, p ]), ?Y)

Since the variable ?x is used inside the constraint,

the answer to this query will be {?X ← a, ?Y ← b}
(see Definition 24).

This has the important consequence that any nSPARQL

graph pattern can be translated in a cpSPARQL graph

pattern with similar structure and no additional vari-

able. Hence, no additional projection operation (SE-

LECT) is required for answering nSPARQL queries in

cpSPARQL.

The proof of the following Theorem follows from

the results in [28] except the last step since all other

transformation steps are the same as the ones presented

in [28].

Theorem 3. Let 〈X , p,Y〉 be a SPARQL triple pattern

with X ,Y ∈ (U ∪ B) and p ∈ U , then [[〈X , p,Y〉]]rdfsG

= [[〈X , τ(p),Y〉]]G for any RDF graph G.

Proof. We need to prove only the last step since all

other transformation steps are the same as the ones

in [28]. That is 〈µ(X ), µ(Y)〉 ∈ [[〈X , p,Y〉]]rdfsG iff

〈µ(X ), µ(Y)〉 ∈ [[〈X , τ(p),Y〉]]G.

– (⇒) Suppose that 〈µ(X ), µ(Y)〉 ∈ [[〈X , p,Y〉]]rdfsG .

In this case, there exists p1 such that (p1 sp p2
sp . . . sp pn = p) and 〈µ(X ), p1, µ(Y)〉 ∈ G

as well as 〈µ(X ), next::p1, µ(Y)〉 ∈ G. Let

us consider now the transformed triple τ(t) =

〈X , (next::ψ),Y〉 (where ψ = [?p : {〈?p,
(next::sp)∗, p〉}]). The mappings for the vari-

able ?p will be {〈?p, pi〉 | i = 1, . . . , n} (since

[[ψ]]G = {〈pi, p〉 | i = 1, . . . , n}). Now accord-

ing to Definitions 21 and 22, 〈µ(X ), µ(Y)〉 ∈
[[〈X , (next::ψ),Y〉]]G iff 〈µ(X ), µ(Y)〉 ∈ G and

p1 ∈ [[ψ]]G, and this condition holds.

– (⇐) We have to prove that if 〈µ(X ), µ(Y)〉 ∈
[[〈X , (next::[ψ]),Y〉]]G (with ψ =?p : {〈?p,

(next::sp)∗, p〉}), then 〈µ(X ), µ(Y)〉∈ [[〈X , p,Y〉]]rdfsG .

Suppose that 〈µ(X ), µ(Y)〉 ∈ [[〈X , (next::ψ),Y〉]]G.

In this case, there exists p1 such that 〈µ(X ),
next::p1, µ(Y)〉 ∈ G and p1 ∈ [[ψ]]G, that is,

〈p1,next::sp, p2〉, . . ., 〈pn−1,next::sp, pn =

p〉 ∈ G. Therefore, 〈µ(X ), µ(Y)〉 ∈ [[〈X , p,Y〉]]rdfsG

since 〈p1, (next::sp)
∗, p〉 and 〈µ(X ), next::p1,

µ(Y)〉 ∈ G.

5. Complexity of evaluating cpSPARQL

The complexity of cpSPARQL is given with respect

to the following problem:

Problem: cpSPARQL evaluation

Input: An RDF graphG, a cpSPARQL regular expres-

sion R, and a pair 〈a, b〉
Question: Does 〈a, b〉 ∈ [[R]]G?

We follow [28] to store an RDF graph as an ad-

jacency list: every u ∈ voc(G) is associated with a

list of pairs α(u). For instance, if 〈s, p, o〉 ∈ G, then

〈next::p, o〉 ∈ α(s) and 〈edge−1::o, s〉 ∈ α(p). Also,

〈self::u, u〉 ∈ α(u), for u ∈ voc(G). The set of

terms of a constrained regular expression R, denoted

by T (R), is constructed as follows:

T (R) ={R}if R is either axis, axis::a, or axis::ψ

T (R1/R2) =T (R1|R2) = T (R1) ∪ T (R2)

T (R∗

1) =T (R1)

Let AR = (Q, T (R), s0, F, δ) be the ǫ − NFA
of R constructed in the usual way using the terms

T (R), where δ : Q × (T (R) ∪ {epsilon}) → 2Q

be its transition function. In the evaluation algorithm,

we use the product automaton G × AR (in which

δ′ : 〈voc(G)×Q〉×(T (R)∪{epsilon})→ 2voc(G)×Q

is its transition function). We construct G×AR as fol-

lows:

– 〈u, q〉 ∈ voc(G) × Q, for every u ∈ voc(G) and

q ∈ Q;

– 〈v, q〉 ∈ δ′(〈u, p〉, s) iff q ∈ δ(p, s); and one of

the following conditions satisfied:

∗ s = axis and there exists a s.t. 〈axis::a, v〉 ∈
α(u)

∗ s = axis::a and 〈axis::a, v〉 ∈ α(u)
∗ s = axis::ψ and there exists b s.t. 〈axis::b, v〉 ∈
α(u) and b ∈ [[ψ]]G

Algorithm 2 (Eval) solves the evaluation problem

for a constrained regular expression R over an RDF

graph G. This algorithm is almost the same as the one

in [29] which solves the evaluation problem for nested

regular expressions R over an RDF graph G. The Eval

algorithm calls the Algorithm 1 (LABEL), which is an

adaptation of the LABEL algorithm of [29] in which

we modify only the first two steps. These two steps are

based on the transformation rules from nSPARQL ex-

pressions to cpSPARQL expressions (i.e., the equiva-

lences between them).
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The algorithm as the same O(|G|.|R|) time com-

plexity as usual regular expressions [33,23] and nested

regular expressions [29] evaluation.

Algorithm 1 LABEL(G, exp):

1. for each axis :: [ψ] ∈ D0(exp) do

2. call Label(G, exp’) //where exp′ =
exp1/self :: p if ψ =?x :<?x, exp1, p >; exp′ =
exp1/self :: p if ψ =?x :<?x, exp1, ?y >
3. construct Aexp, and assume that q0 is its initial

state and F is its set of final states

4. construct G×Aexp

5. for each state (u, q0) that is connected to a state

(v, qf ) in G×Aexp, with qf ∈ F do

6. label(u) := label(u) ∪ exp

Algorithm 2 Eval(G,R, 〈a, b〉)

Data: An RDF graph G, a constrained regular ex-

pression R, and a pair 〈a, b〉.
Result: YES if 〈a, b〉 ∈ [[R]]G; otherwise NO.

for each u ∈ voc(G) do

label(u) := ∅
LABEL (G,R)

construct AR (assume q0 : initial state and F : set

of final states)

construct the product automaton G×AR

if a state 〈b, qf 〉 with qf ∈ F , is reachable from

〈a, q0〉 in G×AR then

return YES;

else

return NO;

end if

Theorem 4 (Complexity of cpSPARQL evaluation).

Eval solves the evaluation problem for constrained

regular expression in time O(|G|.|R|).

Proof. Let R be the a constrained regular expression,

G be an RDF graph, 〈a, b〉 be a pair of nodes, AR be

the automaton recognizing the language of R.

Constructing the automaton of R can be done in

NLOGSPACE as in the usual automata [33,23] (with the

alphabet described in the text above). For simplicity

and without loss of generality, we use the next axis

to illustrate the construction of the product automa-

ton. This is because the axis determines the node to be

checked (subject, predicate or object) and thus does not

affect the construction. The construction of the product

automaton is done as follows:

– If R = axis ::]?x : TRUE[ then checking

whether the pair 〈a, b〉 is in [[R]]G can be done

in O(|G|) since it is sufficient to substitute each

node n to ?x and check whether 〈a, n, b〉 is in G
(according to the axis).

– Otherwise, call the Eval algorithm (where D0 is

defined as done in [29]). Note that if 〈si, next ::
[FILTER(?x)], sj〉 ∈ AR and 〈ni, next ::
p, nj〉 ∈ G, then add 〈sj , nj〉 to the product au-

tomaton if p satisfies the SPARQL filter constraint

by substituting only the node p to the variable ?x.

Checking if a node n satisfies a SPARQL filter

constraint can be done in O(1).
Additionally, if 〈?x, next ::p, ?y〉.F ILTER(?x, ?y)
∈ AR and 〈ni, next :: p, nj〉 ∈ G, then add

〈sj , nj〉 to the product automaton if 〈ni, next ::
p, nj〉 ∈ G and the SPARQL filter constraint is

satisfied by substituting the node ni to the vari-

able ?x and nj to the variable ?y.

So, constructing the product automaton (G × AR)

can be done in time O(|G|.|R|). Hence, checking if

the pair 〈a, b〉 ∈ [[R]]G is equivalent to checking if the

language accepted by (G × AR) is not empty, which

can be done in O(|G|.|R|).

6. On the expressiveness of cpSPARQL and

nSPARQL

In this section, we compare the expressiveness of

cpSPARQL with nSPARQL. We identify several asser-

tions which together show that cpSPARQL is strictly

more expressive than nSPARQL and that even if

nSPARQL were added projection, it would remain

strictly less expressive than CPSPARQL.

Nested regular expressions (nSPARQL) cannot ex-

press all (SPARQL) triple patterns

Although it is explained in [28,29] that SPARQL

triple patterns can be encoded by nested regular ex-

pressions, triple patterns with three variables (subject,

predicate, object) could not be expressed by nested

regular expressions since variables are not allowed in

nested regular expressions. The reader may wonder

whether this is useful or not. The following query is a

useful example:

SELECT *

WHERE ?s foaf:name "Faisal". ?s ?p ?o .
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That could be used to retrieve all RDF data about

a person named "Faisal". However, cpSPARQL triple

patterns are proper extension of SPARQL triple pat-

terns and thus the above query could be expressed by

the following query:

SELECT *

WHERE ?s next::foaf:name "Faisal".

?s next::]?p:TRUE[ ?o .

nSPARQL without SELECT cannot express all

CPSPARQL

We show in the following that some queries, which

can be expressed by CPSPARQL, can only be ex-

pressed in nSPARQL with the projection (the SELECT

operator):

Assume that one wants to retrieve pairs of distinct

nodes having a common ancestor. Then the following

nSPARQL pattern can express this query:

{〈?person1,(next::ascendant)+/

(next−1
::ascendant)+, ?person2〉,

F ILTER(!(?person1 =?person2))}

The same query with the restriction that the name of

the common ancestor should contain a given family

name, for instance "alkhateeb", requires the use of ex-

tra variable to pose the constraint:

{〈?person1, (next::ascendant)+, ?ancestor〉,

〈?person2, (next::ascendant)+, ?ancestor〉,

F ILTER(!(?person1 =?person2)

&&(regex(?ancestor, ”̂alkhateeb”))}

Notice that the evaluation of this graph pattern is

the mapping {?person1 ← p1, ?ancestor ← p3,
?person2 ← p2}. Therefore, to obtain the desired re-

sult, the projection operator must be performed:

µ?person1,?person2(

{〈?person1, (next::ascendant)+, ?ancestor〉,

〈?person2, (next::ascendant)+, ?ancestor〉,

F ILTER(!(?person1 =?person2)

&&(regex(?ancestor, ”̂alkhateeb”))})

So, the above query cannot be expressed in nSPARQL

without the use of SELECT, which is not allowed in

nSPARQL [29]. Besides, any SPARQL query that uses

SELECT over a set of variables such that there exists

at least one existential variable, i.e., a variable not in

the SELECT, used in a FILTER constraint cannot be

expressed by nSPARQL graph patterns.

However, the following CPSPARQL graph pattern

could be used to express the above query:

{〈?person1, (next::ascendant)+

/self::[?ancestor :

FILTER(regex(?ancestor, ”̂alkhateeb”

))]

/(next−1
::ascendant)+, ?person2〉,

F ILTER(!(?person1 =?person2))}

nSPARQL cannot express all cpSPARQL, even

with SELECT

In the following discussion, we show that there

exists a cpSPARQL regular expression that cannot

be expressed in a nested regular expression as well

as some natural and useful queries that can be ex-

pressed in CPSPARQL patterns cannot be expressed in

nSPARQL patterns even with the SELECT operator.

If one wants to restrict the query of Example 3 such

that every stop is a city in the same country (for exam-

ple, France), then the following nested regular expres-

sion expresses this query:

〈?city1, (next :: [(next :: sp)
∗ /self :: transport]

/self :: [next :: cityIn/self :: France])+, ?city2〉
This query also could be expressed in the following

constrained regular expressions:

〈?city1, (next :: [ψ1]/self :: [ψ2])
+, ?city2〉,

where:

ψ1 =?x : {〈?x, (next :: sp)∗, transport〉}, and

ψ2 =?x : {〈?x, next :: cityIn, France〉}
If one wants that each stop satisfies a specific con-

straint, e.g., cities with a population size larger than

20, 000 inhabitants, and each transportation mean be-

longs to Air France, i.e., its URI is in the airfrance do-

main name. Then this query is expressed by the fol-

lowing constrained regular expression:

P = 〈?city1, (next :: [ψ1]/self :: [ψ2])
+, ?city2〉,

where:

ψ1 =?x : {〈?x, (next :: sp)∗, transport〉. F ILTER
(regex(?x, ”www.AirFrance.fr/”))}, and

ψ2 =?x : {〈?x, next :: size, ?size〉. F ILTER
(?size > 20, 000)}

However, this query cannot be expressed by a nested

regular expression, since it is not possible to apply
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constraints, such as SPARQL constraints, to the nodes

traversed or expressed by nested regular expressions.

Only navigational constraints can be expressed.

In this case, the variables ?x and ?size are not ex-

ported. Hence, the above query can be expressed by

a cpSPARQL regular expression without requiring the

SELECT operation. This cannot be expressed by a

nested regular expression.

Theorem 5. Not all constrained regular expression R
can be expressed as a nested regular expression R′

such that [[R]]G = [[R′]]G, for every RDF graph G.

Proof. Consider, without loss of generality, RDF graphs

containing a predicate s whose range is the set of in-

tegers. If one wants to select nodes which have a s-
transition whose value is over 3, this could be ex-

pressed by the following constrained regular expres-

sion:

R=self :: [?s :{〈?n, next ::s, ?s〉.F ILTER(?s> 3)}]

Consider a graph G with two triples 〈u, s, 2〉 and

〈v, s, 4〉. The evaluation of R will return [[R]]G =
{〈v, v〉}.

A nSPARQL nested regular expression R′ corre-

sponding to R, should be able to select the pair 〈v, v〉
as an answer. However, the two subgraphs made of the

triples in G are isomorphic with respect to their struc-

ture. Hence, any nSPARQL nested regular expression

retrieving one of them (a node which is the source of a

s-edge) will retrieve both of them.

Even assuming that literals are followed and may

be constrained by value, which is not the case in the

current definition of nSPARQL, it would be necessary

to enumerate the s-values larger than 3 (say 4, 5 . . . ) to

design an expression such as:

R′ = self :: [next :: s/self :: (4|5| . . .)]

However, there is an infinite number of such values

and for the queries to be strictly equivalent, i.e., to pro-

vide the same answers for any graph, it is necessary to

cover them all. Indeed, if one value is missing, then it

is possible to create a graph G for which the answers

to R and R′ do not coincide.

It is thus not possible to express a query equivalent

to R in nSPARQL.

The type of counter-examples exhibited by the proof

of Theorem 5 may seem caricatural. However, they il-

lustrate the capability to apply (non navigational) con-

straints to values which nSPARQL lacks. Beside such

a minimal example set forth for proving the theorem

the same capability is used in more elaborate path

queries seen in examples of previous sections (select-

ing path with intermediate nodes or intermediate pred-

icates satisfying some constraints).

This capability to express constraints on values in

path expressions, available in XPath as well, is invalu-

able for selecting exactly those paths that are useful in-

stead of being constrained to resort to a posteriori se-

lection. This provides interesting computational prop-

erties discussed in Section 7.

The following is another counter-example that could

not be expressed as a nested regular expression.

Example 9. Consider the following RDF graph repre-

senting flights belonging to different airline companies

and other transportation means between cities:

{〈city1, airfrance : flight1, city2〉

{〈city2, airfrance : flight2, city3〉

...

{〈cityi, anothercomapny : flight1, cityj〉

Suppose that one wants to search pairs of cities con-

nected by a sequence of flights belonging to airfrance

company. Since there is no way to select (constrain) the

transportation means in nested regular expressions,

the only way the user can express such query is to list

all flights belonging to airfrance company as follows:

(airfrance : flight1|...|airfrance : flightn)
+

However, this requires the user to know in advance

these flights. Hence, independent of the RDF graph,

the exact meaning of the above query cannot be ex-

pressed by nested regular expressions.

cpSPARQL can express all nSPARQL

On the other hand, any nested regular expression R
could be translated to a constrained regular expression

R1 = trans(R) as follows:
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1. if R is either axis or axis::a, then trans(R) =
R;

2. if R = R1/R2, then trans(R) = trans(R1)/
trans(R2);

3. if R = R1|R2, then trans(R) = trans(R1)|
trans(R2);

4. if R = (R1)
∗, then trans(R) = (trans(R1))

∗;

5. if R = exp1 :: [exp2], then trans(R) = exp1 ::
[ψ], where:

– ψ =?x : {〈?x, trans(exp3), p〉}, if exp2 =
exp3/self :: p

– ψ =?x : {〈?x, trans(exp2), ?y〉}, otherwise.

In the last clause of this transformation, when the

nested regular expression R = exp1 :: [exp2], it is re-

quired to check the existence of two pairs of nodes that

satisfies the sub-expression exp2 (see Definition 21).

Similarly, in cpSPARQL it is necessary to express this

nested regular expression as a triple in which the con-

straint is satisfied by the existence of a pair of nodes

that replaces the variables ?x and ?y.

This transformation process is illustrated by the fol-

lowing example.

Example 10 (From nSPARQL to cpSPARQL). Con-

sider the following nested regular expression:

R1 = (next :: [(next :: sp)∗/self :: transport])+

according to the transformation rules above, the con-

strained regular expression equivalent to this expres-

sion R2

= trans(R1)

= trans((next :: [(next ::sp)∗/self :: transport])+)

= (trans(next :: [(next ::sp)∗/self :: transport]))+

= next :: [?x :{〈?x, trans((next ::sp)∗), transport〉}]

= next :: [?x :{〈?x, (trans(next ::sp))∗, transport〉}]

= next :: [?x :{〈?x, (next ::sp)∗, transport〉}]

by successively using rules 4, 5, 4, 1, and 5.

Theorem 6. Any nested regular expression R can

be transformed into a constrained regular expression

trans(R) such that [[R]]G = [[trans(R)]]G, for every

RDF graph G.

Proof. We give in the following the induction proof

outline based on the structure of nSPARQL.

– ifR is either axis or axis::a, then trans(R) = R
and thus [[R]]G = [[trans(R)]]G.

– Now assume that [[R1]]G = [[trans(R1)]]G and

[[R2]]G = [[trans(R2)]]G, then [[R1|R2]]G =
[[trans(R1)]]G∪ [[trans(R2)]]G = [[trans(R1)|
trans(R2)]]G = [[trans(R1|R2)]]G (based the

definition of regular languages). The same case

holds for the concatenation [[R1/R2]]G and the

closure (R1)
∗.

– If R = R1 :: [R2], then trans(R) = R1 :: [ψ],
where ψ =?x : {〈?x, trans(R2), ?y〉}. Based

on Definition 11, [[R1 :: [R2]]]G = {〈x, y〉 |∃z, w
∧〈z, w〉 ∈ [[R2]]G}. If 〈z, w〉 ∈ [[R2]]G, then

〈z, w〉 ∈ [[trans(R2)]]G by substituting z and w
to the variables ?x and ?y, respectively (Defini-

tions 20 and 21).

7. Implementation

CPSPARQL has been implemented in order to eval-

uate its feasibility3. cpSPARQL does not exist as an

independent language but is covered by CPSPARQL.

This implementation has not been particularly op-

timized. It passes the W3C compliance tests for

SPARQL 1.0 (but 5 tests involving the non imple-

mented DESCRIBE clause).

Experiments have been carried out for evaluating the

behavior of the system and test its ability to correctly

answer SPARQL, PSPARQL, and CPSPARQL queries

in reasonable time (against different RDF graph sizes

from 5, 10, . . . , up to 100,000 triples in memory

graphs). In particular, it showed the capability at stake

here: answering SPARQL queries with the RDFS se-

mantics.

The implementation also has been tested thoroughly

in [7] and the results show that PSPARQL had better

performances than other implementations of SPARQL

with paths4.

It has not been possible to us to compare the per-

formance of our CPSPARQL implementation with

other proposals. However, the experimentation has al-

lowed to make interesting observations. Contrary to

3The prototype is available at http://exmo.inria.fr/

software/psparql/.
4The queries and the RDF data that are used for the experimental

results can be found in

http://www.dcc.uchile.cl/~jperez/papers/

www2012/
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CPSPARQL, nSPARQL is not implemented at the mo-

ment, so we must leave the experimental comparison

for future work.

In particular, the CPSPARQL prototype shows that

queries with constraints are answered faster than the

same queries without constraints. Indeed, CPRDF con-

straints allow for selecting path expressions with nodes

satisfying constraints while matching (on the fly in-

stead of filtering them a posteriori). The implemented

prototype follows this natural strategy, thus reducing

the search space. This strategy promises to be always

more efficient than a strategy which applies constraints

a posteriori. More details are available in [2].

8. Related work

The closest work to ours, nSPARQL, has been pre-

sented and compared in detail in Section 3 [28]. How-

ever, there are other work which may be considered

relevant.

RQL [19] attempts to combine the relational algebra

with some special class hierarchies. It supports a form

of transitive expressions over RDFS transitive prop-

erties, i.e., subPropertyOf and subClassOf, for navi-

gating through class and property hierarchies. Versa

[25], RxPath [32] are all path-based query languages

for RDF that are well suited for graph traversal. SPAR-

QLeR [20] extends SPARQL by allowing query graph

patterns involving path variables. Each path variable

is used to capture simple, i.e., acyclic, paths in RDF

graphs, and is matched against any arbitrary compo-

sition of RDF triples between given two nodes. This

extension offers functionalities like testing the length

of paths and testing if a given node is in the found

paths. SPARQ2L [6] also allows using path variables

in graph patterns. However, these languages have not

been shown to evaluate queries with respect to RDF

Schema and their evaluation procedure has not been

proved complete to our knowledge. Moreover, answer-

ing path queries to capture acyclic (simple) paths is

NP-complete [23] (see also [7]).

Path queries (queries with regular expressions) can

be translated into recursive Datalog programs over a

ternary relation triple 〈node, predicate, node〉, which

encodes the graph [1]. This could provide a way to

evaluate path queries with Datalog. However, such

translations may yield to a Datalog program whose

evaluation does not terminate. On the other hand, sev-

eral techniques can be used to optimize path queries

and provide good results in comparison with optimized

Datalog programs as shown in [14]. Recently, [11] ex-

tended Datalog in order to cope with querying modulo

ontologies. Ontologies are in DL-Lite and, in partic-

ular DL-LiteR which contains the fragment of RDFS

considered here. However, this work only considers

conjunctive queries which is not sufficient for evaluat-

ing SPARQL queries which contains constructs such

as UNION, OPT and constraints (FILTER) which are

not found in Datalog. [8] studied from a computational

complexity the same fragments with queries contain-

ing UNION in addition. However, given that this frag-

ment is larger than the simple path queries considered

in nSPARQL and cpSPARQL, the complexity is far

higher (coNP).

Standardization efforts have defined the notion

of inference regime under definition by the W3C

SPARQL working group [16,15]. This notion is rel-

evant to query evaluation modulo RDFS that is ex-

hibited by CPSPARQL and is obviously less relevant

to cpSPARQL and nSPARQL. One main difference

is that we have departed from the strict definition of

“matching graph patterns” with the use of path for ex-

ploring the graph, and specifically the graph entailed

by RDFS. This avoids the use of RDF graph closure

on which strict matching is applied. CPSPARQL and

nSPARQL use query rewriting for answering queries

modulo RDFS, but, unlike DL-Lite rewriting strate-

gies, the query is rewritten by preserving their structure

instead of producing unions of conjunctive queries.

[13] studied the static analysis of PSPARQL query

containment: determining whether, for any graph, the

answers to a query are contained in those of an-

other query. This is achieved by encoding RDF graphs

as transition systems and PSPARQL queries as µ-

calculus formulas and then reducing the containment

problem to testing satisfiability in the logic.

The language RPL extends nested regular expres-

sions [34] to allow boolean node tests. However, using

variables in nested regular expressions of nSPARQL

requires extending its syntax and semantics. Hence,

comparison between variables and values as well as

triple patterns with variables in subject, predicate and

object are not allowed (see examples in Section 6).

9. Conclusion

The SPARQL query language has proved to be

very successful in offering access to triple stores over

SPARQL endpoints all over the web. It is a critical ele-

ment of the semantic web infrastructure. However, by
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SPARQL PSPARQL CPSPARQL

SPARQL gp PSPARQL gp CPSPARQL gpcpSPARQL

nSPARQL gp =

nSPARQL

is extended by

uses

Fig. 3. Query languages and their graph patterns

limiting it to querying RDF graphs, little consideration

has been made of the semantic aspect of RDF. In par-

ticular, querying RDF graphs modulo RDF Schemas

or OWL ontologies is a most needed feature.

One possible approach for querying an RDFS graph

G in a sound and complete way is by computing the

closure graph of G, i.e., the graph obtained by saturat-

ing G with all informations that can be deduced using

a set of predefined rules called RDFS rules, then eval-

uating the query Q over the closure graph. However,

this approach takes time proportional to |Q| × |G|2 in

the worst case [24].

The query language nSPARQL [28] used nested

regular expressions for querying RDF graphs con-

sidering RDFS semantics without the need to com-

pute the closure graph. In this paper, we have shown

that CPSPARQL [3,4] can also be used for evaluating

SPARQL queries modulo RDF Schema [2].

More precisely, we showed that cpSPARQL, the

fragment of CPSPARQL which is sufficient for cap-

turing RDFS semantics, admits an efficient evalu-

ation algorithm while the whole CPSPARQL lan-

guage is in theory as efficient as SPARQL is. More-

over, we compared cpSPARQL with nSPARQL and

showed that cpSPARQL is strictly more expressive

than nSPARQL. PSPARQL defined in [5] and its

extension CPSPARQL adopts a semantics based on

checking the existence of paths (without counting

them). As shown in [7], the semantics of SPARQL

1.1 specification (as of November 2011) [17], and in

particular property paths, leads to intractability of the

specification.

Figure 3 shows the position of the various lan-

guages. nSPARQL and cpSPARQL are good naviga-

tional languages for RDF(S). However, cpSPARQL

is an extension of SPARQL graph patterns, while

nSPARQL does not contain all SPARQL graph pat-

terns. Moreover, using such a path language within

the SPARQL structure allows for properly extending

SPARQL. Some features (such as filtering nodes inside

expressions) are very simple to add to the syntax and

semantics of nested regular expressions.

In order to ease the comparison, we defined cpSPARQL

as very close to nSPARQL. However, it is likely that

more expressive fragments of CPSPARQL graph pat-

terns keeping the same complexity may be found. In

particular, we did not kept the capability to express

the constraints existentially or universally. This may

be useful, for instance, to filter families all children of

which are over 18 or families one children of which is

over 18.
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