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Abstract

This work focuses on the identification of heterogeneous linear elastic moduli in the context of
frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or
fluid pressure measurement data. The approach postulates the inverse problem as an optimiza-
tion problem where the solution is obtained by minimizing a modified error in constitutive equation
(MECE) functional. The latter measures the discrepancy in the constitutive equations that con-
nect kinematically admissible strains and dynamically admissible stresses, while incorporating the
measurement data as additional quadratic error terms.

We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized
solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2)
an error-balance approach that selects the weight parameter as the minimizer of another functional
involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology
can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements
taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to
produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy
principle is shown to produce nearly optimal solutions, while the error-balance approach, although
not optimal, remains effective and does not need a priori information on the noise level.

Keywords: Parameter estimation; acoustic-structure interaction; error in constitutive equation;
inverse problem

1 Introduction

The noninvasive characterization of material properties in a physical system is of great importance in a
variety of science and engineering fields. Along these lines, considerable research efforts have been made
to formulate and solve inverse problems in which experimental measurements of the mechanical response
of a system are used to infer its defining material parameters. Such parameter estimation problems are
prevalent in areas like damage detection in structures, geotechnical exploration, biomechanical imaging,
etc. [1–4]. In this work, we narrow our focus on the problem of elasticity imaging in systems that involve
coupled acoustic-structure interaction (ASI).

While an inverse problem of this nature could arise in many scenarios, from oceanic oil discovery to
the nondestructive evaluation of marine structures, we are motivated mainly by applications in medical
imaging. Here, the modeling of interaction between an acoustic fluid and biomechanical structure is
necessary for imaging areas like the heart wall, arteries, and bladder that have direct contact with blood
and other bodily fluid. Since elastic properties are known to be an indicator for distinguishing diseased
from healthy human tissue [5–8], elasticity imaging has become an essential tool in detecting the onset
and monitoring of the progression of a number of diseases. Depending on the imaging modality used,
either the response of the tissue itself [9, 10] or the acoustic emission in the surrounding fluid [11, 12]
under a prescribed excitation can be used as data for the inverse identification of the tissue’s elastic
parameters.

Despite its importance in medical imaging and other applications, there exist relatively few computa-
tional approaches for parameter estimation in systems with ASI. In [13], an approach was developed to
inversely estimate the viscoelastic properties of a submerged solid using pressure data from the steady-
state dynamic response of the system. Since solving the inverse problem requires many costly evaluations
of a forward ASI finite element solver, this work was extended in [14] to use reduced-order modeling with
proper orthogonal decomposition for the forward problem to reduce computation time. The estimation
of material parameters in submerged, orthotropic elastic cylinders was performed in [15], where it was
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shown that a surface velocity measurement was sufficient to recover the orthotropic parameters, while an
acoustic pressure measurement contained only enough information to recover two of the three unknown
parameters. While the previously mentioned works operated under the assumption of homogeneous ma-
terials with geometries that were known a priori, the work in [16] sought pointwise reconstructions by
representing the spatial variation of the unknown elastic modulus using Gaussian radial basis functions.
Inclusions were properly identified within a submerged solid using both fluid pressure measurements and
surface velocity measurements on the solid.

A common theme in the above studies was the minimization of a norm (generally L2) of the error
between computed and measured system responses using non-gradient based optimization techniques to
obtain parameter estimates. In this work, as the main point of departure, we postulate the inverse
problem as the minimization of a modified error in constitutive equation (MECE) functional. The
MECE functional is a combination of the error in constitutive equation (ECE), introduced in [17] as
a measure of the discrepancy in the constitutive equations that connect kinematically admissible strains
and dynamically admissible stresses, and quadratic error terms that incorporate the measurement data.
MECE-based approaches for identification initially appeared in the context of model updating from
vibrational data [18, 19]. The underlying principle was to split the equations into a reliable set (containing,
for example, the equilibrium equations, initial conditions, and boundary conditions), to be enforced
strictly as constraints, and an unreliable set (that included measured data and the unknown constitutive
properties), contributing terms in the MECE functional to be minimized. More recent extensions of
the MECE approach to time-domain formulations [20, 21] were shown to be very robust in the presence
of high levels of noise, while also providing an inherent error estimate through the ECE. The MECE
method was extended to large scale identification problems in [22], where the authors also showed that this
approach displayed fast convergence and accuracy as compared to conventional least-squares minimization
approaches.

In this work, we extend the MECE approach for the inverse estimation of elastic material parameters
to the context of frequency-domain, coupled ASI systems. The MECE functional is modified to include
an additional error term for fluid pressure data, allowing for a general formulation where measurements of
either the displacement response in the solid or the acoustic emission in the surrounding fluid can be used
as data for the inverse problem. In doing so, the governing equations of the solid system, the acoustic fluid
system, and the coupling conditions between them are enforced as constraints, while the MECE functional
is minimized to obtain an estimate for the unknown material parameters. The weight parameter that
multiplies the misfit data term in the MECE functional in essence behaves as a regularization parameter.
Two different strategies for selecting this weight parameter are demonstrated and compared in numerical
examples: 1) the discrepancy principle of Morozov [23, 24], and 2) an error-balance approach where the
sum of the squares of the ECE and data mismatch terms that enter the definition of the MECE functional
is minimized.

The article is organized as follows. The following section formulates both the forward and inverse
problems for a coupled ASI system and then details the MECE approach for solving the inverse problem.
Section 3 then comments on some of the practical aspects of the MECE algorithm, including the two
regularization methods that are demonstrated in this work. The performance of the numerical method
is then demonstrated in Section 4 through results for the recovery of elastic parameters given noisy
measurements taken in either the solid or the fluid, on 2D and 3D examples. Concluding remarks are
given in Section 5.

2 Formulation

2.1 Forward Model

In this section, we present the governing equations for the steady-state acoustic-structure interaction
problem. We consider a linear elastic body Ωs immersed in a semi-infinite fluid domain Ωf with a
separating fluid-structure interface denoted as Γfs. In this work, we assume both small strains and
deformations in the solid domain as well as negligible flow and small pressure amplitudes in the fluid
domain. Furthermore, body forces throughout each subdomain are taken to be negligible. We consider a
constant mass density within the solid domain and a constant mass density and bulk modulus in the fluid
domain. The remaining quantities can have spatial and/or frequency dependence, which is suppressed in
our notation for simplicity.

The linear elastic solid domain Ωs undergoing time-harmonic motion is governed by (a) the balance
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equations

∇·σ = −ρsω
2u in Ωs, (1a)

σ ·ns = t on Γt, (1b)

σ ·ns = −pns + g on Γfs, (1c)

where σ is the stress tensor, ρs is the solid mass density, ω is the angular frequency, u is the displacement
field, ns is the unit normal vector pointing outward from Ωs, t and Γt ⊂ ∂Ωs are the specified traction
and its support, p is the acoustic pressure; (b) the kinematic compatibility equations

ε[u] = 1
2

(

∇u+∇uT
)

in Ωs, (2a)

u = 0 on Γu, (2b)

where ε is the linearized strain tensor and Γu = ∂Ωs \Γt is the constrained part of the boundary; (c) the
constitutive (linear elastic) equation

σ = C :ε in Ωs, (3)

where C is the heterogeneous fourth-order elasticity tensor. The boundary condition in Equation (1c)
prescribes balance between forces arising from the solid and fluid domains along the wet interface Γfs,
with g denoting a specified traction that may be present over Γfs. The latter traction would arise, for
instance, in biomedical imaging problems where the radiation force of ultrasound is used to excite part
of the wet interface [25, 26].

The governing equations for the acoustic fluid system can be written in the frequency domain as

∇2p+ k2p = 0 in Ωf, (4a)

p = 0 on Γp, (4b)

∂nfp = −f (ik + β) p on ΨR, (4c)

∂nfp = ρfω
2u·nf on Γfs (4d)

where k = ω
√

ρf/K is the wave number with ρf and K denoting the fluid mass density and bulk modulus,
respectively. The vector nf is the unit normal pointing outward from Ωf. Here, we introduce the artificial
boundary ΨR in order to truncate the semi-infinite fluid domain for computational purposes. Equation
(4c) is the non-reflecting radiation condition applied to this boundary as a first order approximation to
the Sommerfield radiation condition, where f and β are geometry-specific constants. While this simple
treatment suffices in this work, we note that more sophisticated techniques like higher order absorbing
conditions or perfectly matched layers [27] could be substituted here. Equation (4d) arises from the
continuity in displacements of fluid and solid particles normal to Γfs. This interface condition along with
Equation (1c) provide the coupling between the two sets of governing equations for the solid and fluid
systems.

Since the constitutive tensor C is the main unknown of the inverse problem, the constitutive equa-
tion (3) will (in remaining consistent with earlier works based on MECE formulations) be included in
the MECE functional to be minimized, while equations (1), (2) and (4) will be enforced exactly, in weak
form. For the latter purpose, let the spaces of trial and test solutions for displacements and acoustic
pressures, respectively, be defined as

U =
{

u| u ∈ [H1(Ωs)]
d, u = 0 on Γu

}

(5a)

P =
{

p| p ∈ H1(Ωf), p = 0 on Γp

}

(5b)

where d is the spatial dimension. Furthermore, the space of dynamically-admissible stresses in the solid
is defined by

S(u) :=
{

σ| σ ∈ Hdiv(Ωs), ∇·σ = −ρsω
2u in Ωs, σ ·ns = t on Γt

}

(6)

With these definitions, the weak formulation for equations (1) and (2a) is

B(σ,u,w) = Fs(p,w) + F(w) ∀w ∈ U (7)

having set

B(σ,u,w) := (σ, ε [w])Ωs
− ρsω

2(u,w)Ωs
, (8a)

Fs(p,w) := (pns,w)Γfs
, (8b)

F(w) := (t,w)Γt
+ (g,w)Γfs

(8c)
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and where (·, ·)Φ denotes the L2(Φ) inner product. Specifically, for two second-order tensor fields x, y,
one has

(x,y)Φ :=

∫

Φ

x : ȳ dΦ =

∫

Φ

xij ȳij dΦ (9)

where the over-bar ȳ denotes complex conjugation and the repeated indices indicate summation over the
components of x and y.

For the set of equations (4) governing the fluid system, the corresponding weak formulation is given
as

Af(p, v) = Ff(u, v) ∀v ∈ P (10)

where

Af(p, v) := (∇p,∇v)Ωf
− k2 (p, v)Ωf

+ f(ik + β) (p, v)ΨR
(11a)

Ff(u, v) := ρfω
2(u·nf, v)Γfs

(11b)

2.2 Modified error in constitutive equation approach for inverse ASI problems

The inverse problem associated with the coupled ASI forward problem consists of estimating the spatial
distribution of elastic moduli in Ωs that define the constitutive tensor C, given measured acoustic pressures
pm(x̂f), x̂f ∈ Ωm

f ⊆ Ωf and/or measured solid displacements um(x̂s), x̂s ∈ Ωm
s ⊆ Ωs, obtained at one or

more frequencies. Additionally, we assume that the properties of the fluid are known.
In this work, the inverse problem is cast as an optimization problem in which the unknown constitutive

tensor is estimated by minimizing a MECE functional. The MECE functional combines two types of error
terms: 1) an error in constitutive equation (ECE) functional [17] that measures the discrepancy in the
constitutive equations that connect kinematically admissible strains and dynamically admissible stresses,
and 2) quadratic error terms quantifying the mismatch between measurement data and computed fields
for given material parameter values. The MECE functional in the present ASI context is expressed as

Λ(u,σ, p;C) = U(u,σ;C) +
κs

2
‖u− um‖

2
L2(Ωm

s
) +

κf

2
‖p− pm‖

2
L2(Ωm

f
) (12)

where

U(u,σ;C) :=
1

2

∫

Ωs

(σ − C :ε[u]) :C−1 : (σ − C :ε[u]) dΩs (13)

is the ECE functional for linear elastic materials and κs and κf are weighting parameters for the solid
displacement and acoustic pressure data, respectively, that control the relative importance of these terms
in the inverse problem. The ECE term (13) quantifies the discrepancy between kinematically admissible
displacements and dynamically admissible stresses for a given C that bears the important properties

U(u,σ;C) ≥ 0 ∀C (14)

U(u,σ;C) = 0 ⇐⇒ σ = C :ε[u] (15)

Now, the solution of an inverse problem cast using a MECE framework for an ASI system is given by

(u⋆,σ⋆, p⋆,C⋆) = arg min
u∈U,σ∈S(u), p∈P,C∈C

Λ(u,σ, p;C), (16)

where C is the search space for the unknown constitutive tensor comprised of all fourth-order tensor
fields that are symmetric, positive definite, and bounded, while the remaining spaces U ,S,P are defined
by (5a), (5b) and (6). On noting that (16) defines a PDE-constrained optimization problem, we define a
Lagrangian functional L : U × S × P × U × P × C → R as

L(u,σ, p,w, v;C) := Λ(u,σ, p;C)− Re [B(σ,u,w)−Fs(p,w)−F(w)]− Re [Af(p, v)−Ff(u, v)] (17)

where B, Af, Fs, Ff and F were defined in Section 2.1 and Re[·] denotes the real part of a complex number.
Note that the test functions w ∈ U and v ∈ P used in the variational forms of the elastic and acoustic
systems, respectively, act as Lagrange multipliers in (17) [28]. The remainder of this section is devoted
to the derivation (and solution strategy) of the first-order optimality conditions for the minimization
problem (16).
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2.2.1 Derivation of the first-order optimality conditions

We now derive the first-order optimality conditions for the MECE inverse problem (16) by taking direc-
tional derivatives of the Lagrangian (17) with respect to u,σ, p,w, v,C and setting each to zero. The
unknown fields u,σ, p,C that satisfy these conditions will be those that minimize the MECE functional
(12) while also satisfying the forward ASI problem. We denote, for example, the directional derivative of
the Lagrangian functional L with respect to the stress field σ as L′

σ
, which is given as

〈L′
σ
, σ̂〉 =

d

dθ
[L(u,σ + θσ̂, p,w, v;C)]

∣

∣

∣

∣

θ=0

(18)

for all variations σ̂ ∈ Hdiv(Ωs). By carrying out the calculation in (18) and setting the result equal to
zero, we obtain the following expression for the stress field

〈L′
σ
, σ̂〉 = Re

(

(σ̂,C−1 :σ)Ωs
− (σ̂, ε[u])Ωs

− (σ̂, ε[w])Ωs

)

= Re
(

(σ̂,C−1 :σ − ε[u]− ε[w])Ωs

)

∀σ̂ ∈ S (19)

σ = C :ε[u+w] (20)

Proceeding in the same fashion, the partial derivatives of the Lagrangian functional with respect to
the remaining mechanical fields, the Lagrange multipliers, and the constitutive tensor are given by

〈L′
w
, ŵ〉 = Re

(

(σ, ε[ŵ])Ωs
− ω2(ρsu, ŵ)Ωs

− (t, ŵ)Γt
− (g, ŵ)Γfs

− (pns, ŵ)Γfs

)

(ŵ ∈ U)

〈L′
v, v̂〉 = Re

(

− (∇p,∇v̂)Ωf
+ k2(p, v̂)Ωf

− f(ik + β)(p, v̂)ΨR
+ ρfω

2(u·nf, v̂)Γfs

)

(v̂ ∈ P)

〈L′
u
, û〉 = Re

(

(C :ε[u]− σ, ε[û])Ωs
+ κs(u− um, û)Ωm

+ ρsω
2(w, û)Ωs

+ ρfω
2(û·nf, v)Γfs

)

(û ∈ U)

〈L′
p, p̂〉 = Re

(

− (∇p̂,∇v)Ωf
+ k2(p̂, v)Ωf

− f(ik + β)(p̂, v)ΨR
− (p̂ns,w)Γfs

+ κf(p− pm, p̂)Ωm
f

)

(p̂ ∈ P)

〈L′
C, Ĉ〉 =

(

Ĉ , ε[u]⊗ ε[ū]− (C−1 :σ)⊗ (C−1 : σ̄)
)

Ωs

(Ĉ ∈ C)

By setting these partial derivatives equal to zero, we obtain the following set of coupled variational
equations

As(u, ŵ) + (C : ε[w], ε[ŵ])Ωs
−Fs(p, ŵ)−F(ŵ) = 0 ∀ŵ ∈ U (21a)

Af(p, v̂)−Ff(u, v̂) = 0 ∀v̂ ∈ P (21b)

As(w, û)− ρfω
2(v, û·nf)Γfs

+ κs(u− um, û)Ωm
s
= 0 ∀û ∈ U (21c)

(w, p̂ns)Γfs
+Af(v, p̂) + κf(p

m − p, p̂)Ωm
f
= 0 ∀p̂ ∈ P (21d)

(

Ĉ , ε[u]⊗ ε[ū]− (C−1 :σ)⊗ (C−1 : σ̄)
)

Ωs

= 0 ∀Ĉ ∈ C (21e)

To simplify, we have used Equation (20) in Equations (21a)-(21d) and introduced the bilinear forms Af,
given by (11a), and As, defined by

As(u,w) := Bs(C :ε [u] ,u,w) = (C :ε [u] , ε [w])Ωs
− ρsω

2(u,w)Ωs
. (22)

The set of variational equations (21), along with (20), represent the first-order optimality conditions
for the MECE minimization problem (16). We would like to point that we do not substitute for σ

in Equation (21e) as this form of the equation is conveniently used in the block Gauss-Seidel strategy
explained in the next section.

2.2.2 Solution of the first-order optimality conditions

The system of equations (21) can be subdivided into (a) a set of four linear equations (21a)-(21d), and
(b) the non-linear equation (21e). Like in earlier applications of MECE to parameter identification,
e.g. [19, 22], this subdivision makes it natural to adopt an iterative alternating strategy of block Gauss-
Seidel type whereby each solution iteration for (21) consists in (i) solving the set of linear equations (21a)-
(21d) for the mechanical fields and Lagrange multipliers, with C kept fixed, and (ii) updating C via
equation (21e) with mechanical fields and multipliers fixed. Here, this method will be seen to entail
solving a 4 × 4 complex symmetric block linear system followed (when considering isotropic materials)
by simple and explicit update formulas for the elastic moduli, similar to those used in [22].
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Step (i): field and multiplier update The finite element method [29] is used to discretize and
transform the coupled weak formulation (21a)-(21d) into a linear system of equations. Using standard
Voigt notation, the displacement fields, pressure field, and corresponding test functions are replaced with
the following discrete approximations

uh = [Ns] {u} , ûh = [Ns] {û} , ε[uh] = [Bs] {u} ,

wh = [Ns] {w} , ŵh = [Ns] {ŵ} , ε[wh] = [Bs] {w} ,

ph = [Nf] {p} , p̂h = [Nf] {p̂} , ∇ph = [Bf] {p} ,

vh = [Nf] {v} , v̂h = [Nf] {v̂} , ∇vh = [Bf] {v} ,

where [Ns(f)] and [Bs(f)] represent matrices of finite element shape functions and their derivatives with
respect to spatial coordinates, respectively, for the solid (fluid) system. The terms, {·}, represent vectors
of nodal quantities in the finite element mesh. Inserting these approximations into the variational problem
(21a)-(21d) and simplifying, we arrive at the following 4× 4 block system of equations:











[Hs] − [S]
T

[Ks] [0]

−ρfω
2 [S] [Hf] [0] [0]

−κs [Qs] [0] [Hs] −ρfω
2 [S]

T

[0] −κf [Qf] − [S] [Hf]]





























{u}

{p}

{w}

{v}



















=



















{Ps}

{0}

−κs{Rs}

−κf{Rf}



















(23)

where the sub-matrices and vectors in the system are defined as

[Hs] = [Ks]− ω2 [Ms] , [Hf] = [Kf] + iω [Cf]− ω2 [Mf]

[Ks] =
∑

elements

∫

Ωe
s

[Bs]
T
[C] [Bs] dΩ, [Kf] =

∑

elements

∫

Ωe
f

[Bf]
T
[Bf] dΩ

[Ms] =
∑

elements

∫

Ωe
s

ρs [Ns]
T
[Ns] dΩ, [Mf] =

∑

elements

∫

Ωe
f

ρf
K

[Nf]
T
[Nf] dΩ

[Qs] =
∑

elements

∫

Ωe
s

[Ns]
T
[Ns] dΩ, [Qf] =

∑

elements

∫

Ωe
f

[Nf]
T
[Nf] dΩ

[S] =
∑

elements

∫

Γe
fs

[Nf]
T
nT

f [Ns] dS, [Cf] = (iω)−1
∑

elements

∫

∂Ψe
R

f (ik + β) [Nf]
T [Nf]dS

{Rs} =
∑

elements

∫

Ωe
s

[Ns]
T
umdΩs, {Rf} =

∑

elements

∫

Ωe
f

[Nf]
T
pmdΩs

{Ps} =
∑

elements

∫

Γe
t

[Ns]
T
t dS +

∑

elements

∫

Γe
fs

[Ns]
T
g dS

where [C] is the linear elastic constitutive matrix in Voigt notation. Here, the expressions for [Qs], [Qf], {Rs},
and {Rs} assume that the full fields are available for the measurement data um and pm. In the case
where only sparse data is available, the matrices [Qs] and [Qf] are replaced with diagonal Boolean matrices
whose non-zero entries correspond to degrees of freedom that have been measured. Likewise, the vectors
{Rs} and {Rs} are modified to contain the measurement values at those degrees of freedom and zeros
elsewhere. It is noted that the equations in (23) can easily be rearranged to yield a complex symmetric
matrix, but the system remains indefinite. In this study, we employ the parallel, direct linear solver
PARDISO [30, 31] which provides efficient solutions to such systems.

Step (ii): constitutive update This step consists in solving equation (21e) for C, with u,w, p, v set
to the solution of step (i). As shown in [22], this reduces to explicit update formulas when considering
isotropic linear elastic materials, for which the elasticity tensor can be expressed in terms of the bulk
modulus B and the shear modulus G as

C =

(

B −
2

3

)

(I ⊗ I) + 2GI (24)

(with I and I denoting the second and fourth order identity tensor, respectively).
The update formulae for B and G are obtained by first decoupling the stress and strain tensors into

deviatoric and volumetric components

σ = σd + qI, ε[u] = εd[u] +
1

3
euI
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where σd and εd are the deviatoric stress and strain tensors, respectively, q = 1
3 tr(σ) is the mean stress

and eu = tr(ε[u]) is the volumetric strain. Then, using (24) in (21e), yields

Ĝ

(

2(εd[u], εd[u])−
(σd,σd)

2G2

)

+ B̂

(

(eu, eu)−
(q, q)

B2

)

= 0 ∀B̂, Ĝ (25)

From which, given u,w at iteration n, we obtain at iteration n+ 1

Bn+1 =
(q, q)1/2

(eu, eu)1/2
= Bn (eu + ew, eu + ew)

1/2

(eu, eu)1/2
(26a)

Gn+1 =
(σd,σd)

1/2

(εd[u], εd[u])1/2
= Gn (εd[u+w], εd[u+w])1/2

(εd[u], εd[u])1/2
(26b)

where the second equality results from the dependence of σ on both u and w as in Equation (20).
The domain of definition for the inner products appearing in (26) can be interpreted, depending on
the problem at hand, as finite elements, points, or, in general, parts of the body over which material
properties remain constant. The latter is useful, for example, in inverse problems involving homogeneous
materials with known geometries where one seeks only the elastic parameters defining each region.

In summary, the MECE inverse problem for ASI in Eq. (16) is solved by first forming the Lagrangian
functional in (17). Then, by taking directional derivatives of the Lagrangian with respect to the unknown
mechanical fields, the Lagrange multipliers, and the constitutive tensor, we arrive at the coupled set
of equations in (20) and (21), representing the first-order optimality conditions. A block Gauss-Seidel
solution strategy is adopted to solve this set of equations by alternating between the solution of Equations
(21a) - (21d) with the current value of C and then Equation (21e) with the updated values of u, p, w, v,
and σ. We reiterate that in practice, one iteration of this Gauss-Seidel algorithm amounts to solving the
block system in (23), evaluating the stress field using (20), and then updating the elastic moduli using
(26).

Remark 1 The MECE minimization strategy is easily adaptable to situations where measurement data
is acquired at multiple frequencies by defining the MECE functional as

Λ̄(u1, . . . ,uN ,σ1, . . . ,σN , p1, . . . , pN ,C) =

N
∑

i=1

Λi(ui,σi, pi;C) (27)

where data is obtained at the frequencies {ωi}
N
i=1 and Λi depends on ωi through the data at that frequency.

A MECE iteration hence consists of solving equations (21a)–(21d) for each frequency (with Λ = Λi,
yielding fields ui,wi, pi, vi), followed by a constitutive update where (for the isotropic case) the right-
hand sides in (26) are summed over the relevant frequencies.

Remark 2 The block Gauss-Seidel strategy described above can be instead interpreted as an alternating
minimization method [22], since steps (i) and (ii) are the stationarity equations for the partial minimiza-
tion of the MECE functional with moduli C fixed (to the previous iterate) and with fields u,w, p, v fixed
(to their latest value), respectively.

Remark 3 Methods based on Newton or quasi-newton approaches [32] may also be used to solve the
MECE optimization problem (16). These approaches have received little or no attention in the current
literature related to ECE-type methods and present an interesting future direction to investigate.

3 Weighting parameter selection and regularization in MECE

In this section, we discuss the role and adjustment of the weighting parameters, κs and κf, in the MECE
functional (12). These parameters, which define the balance between minimizing the ECE (13) and
matching the experimental data, are of great importance in the quality of the reconstruction of C. In
that respect, the MECE functional (12) is analogous to a regularized cost functional [23, 33], with
regularization provided by the ECE term. In this analogy, κs and κf act as reciprocals of regularization
parameters in the usual sense.

We now introduce some additional notation to facilitate the discussion to follow. First, to ensure
consistent units (i.e. energy) and proper scaling among the components of the MECE functional (12),
the coefficients κs and κf are recast in the following form, as proposed in [22]:

κs = αsAs, κf = αfAf, with As :=
U(C0)

‖um‖2L2(Ωm
s
)

, Af :=
U(C0)

‖pm‖2L2(Ωm
f
)

(28)
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where U(C0) is the strain energy in the solid system of the solution of the forward problem (1)–(4) with
the initial guess C = C0 and αs, αf are non-dimensional weighting parameters. Moreover, let uα,σα, pα
and Cα denote the fields and elastic moduli obtained upon convergence of the minimization problem (16)
for given α := {αs αf}. The converged values of the ECE, displacement misfit and pressure misfit
components of the MECE functional (12) are, respectively,

U(α) := U(uα,σα,Cα), Ds(α) := 1
2As‖uα−um‖2L2(Ωm

s
), Df(α) := 1

2Af‖pα− pm‖2L2(Ωm
f
), (29)

(with As, Af as defined in (28)) so that the converged MECE value Λ(α) is given by

Λ(α) = U(α) + αsDs(α) + αfDf(α) (30)

Adjusting the MECE weighting coefficients is now a matter of finding an effective strategy for setting the
parameters α. As the parameters in α increase, Ds(α) and Df(α) decrease. That is, greater emphasis is
put on reducing the L2 data discrepancies and the measured data is approximated more closely. However,
the measurement noise is also emphasized as these parameters increase. Alternatively, decreasing α yields
reconstructions that better reduce the ECE, i.e. emphasize the satisfaction of the constitutive relation (3),
while eventually losing important information contained in the measured data. Since α ultimately decides
the tradeoff between over-smoothing a solution and over-fitting noisy input data, selecting appropriate
values is akin to regularization with the MECE algorithm. We present two strategies for the selection of
α. The first is based on the discrepancy principle of Morozov [23, 24], a well-established approach, which
assumes the level of noise in the data to be known a priori. In the second approach, applicable to cases
with unknown noise, α is selected by minimizing an error-balance function that we propose on the basis
of heuristic considerations

Adjustment method 1: Morozov discrepancy principle. This approach, which assumes that
the level of noise δ in the measurement data is known, exploits the discrepancy principle of Morozov
[23, 24]. Here, the parameters in α are chosen to be the smallest positive numbers such that the final
discrepancy between the computed and measured system response is at the level of the noise. This
amounts (considering displacement data for definiteness) to choosing α such that

‖uα − um‖L2(Ωm
s
)

‖um‖L2(Ωm
s
)

= cδ, (31)

where c is a constant (taken as c = 1 in this work). This strategy is implemented by solving the inverse
problem for increasing values of α (starting from a very low value) until condition (31) is met within a
chosen tolerance.

Adjustment method 2: error balance. For the situation when the noise level δ on the data is
unknown, we now propose an approach for weighting parameter selection that is based on an error-
balance between the terms in the converged MECE functional (30). The underlying, heuristic, idea is to
adjust α so as to strike a balance between the minimization of the different components of the MECE
functional, hoping to achieve a satisfactory tradeoff between over-smoothing the solution (over-emphasis
on ECE minimization) and over-fitting the data (over-emphasis on data discrepancy minimization). In
practice, we propose to choose α so as to minimize the following error-balance function J (α):

J (α) := U2(α) +D2
s (α) +D2

f (α) (32)

Without loss of generality and for the sake of simplicity, we will limit the focus of this work to cases in
which either pressure or displacements are measured, but not both. Hence, α will be treated as scalar-
valued henceforth. Herein, we adopt a simple approach to approximate that value of α. The optimization
problem (16) is solved for multiple values of α in a predetermined range, yielding corresponding values
for U(α), Ds(α), Df(α). The optimal value of J (α) is then obtained by solving a one-dimensional min-
imization problem. Although this approach seems very computationally expensive, in practice solutions
for different values of α are independent and can be obtained simultaneously through parallel solutions
of optimization problems (16). An adaptive approach for determining more efficiently an optimal value
of α is highly desirable and will be pursued in future work.
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4 Numerical results

In this section, we apply the MECE algorithm to estimate unknown material properties in ASI systems for
three different examples. We consider nearly-incompressible materials assuming a known bulk modulus
equal to that of the surrounding fluid medium and seek to recover an unknown shear modulus field
throughout the solid domain. The mean-dilatation approach [34] is used to handle near-incompressibility.
We examine the case where the full displacement field is measured as well as the case where displacement
data is only available in one direction. We also test the performance of the algorithm in recovering
elastic parameters given pressure measurements in the fluid domain. In all examples, we add random
noise to the inverse problem data to simulate the measurement errors that are inherent in practice.
Denoting the synthetic (computed and interpolated) displacement at a node i as ûi, the corresponding
noisy measurement um

i is given as
um
i = ûi(1 + δri), (33)

where ri is a normal random variable with zero mean and unit variance and the parameter δ is a prescribed
relative noise level. In our examples, we use δ = 0.01, 0.03, and 0.05.

In Example 1, we consider a two-dimensional problem where the shear modulus field is estimated
using incomplete and noisy displacement data in the solid domain. Example 2 is another two-dimensional
problem in which the shear modulus of three different materials with geometries that are known a priori
are recovered using sparse pressure measurements from sensors within the fluid domain. In Example 3,
we image a shear modulus field in a three-dimensional acoustic-structure system using a full displacement
field.

Remark 4 The frequencies in the examples presented herein were chosen so as to maintain a low shear
wavenumber in the solid. This choice was made without loss of generality and in the interest of avoiding
excessively fine meshes. Notice that because of the large differences in the bulk and shear moduli, the
wavelengths in the fluid are very large as compared to the solid domain. This fact is not a problem when
pressure is used to identify shear moduli as long as the pressure field remains sensitive to changes in the
material.

4.1 Example 1: 2D imaging with displacement data

We consider a two-dimensional acoustic-structure system in which a square solid domain under plane
strain conditions is submerged in an infinite fluid medium. We seek to use the noisy and incomplete (i.e.
one-directional) displacement response of the solid under an applied traction to recover the unknown
shear modulus field. We study the quality of the reconstruction for varying levels of data noise and
illustrate the performance of both the discrepancy principle and the error-balance technique for choosing
the weight αs.

A sketch of the problem domain for this example can be seen in Figure 1(a). The fluid medium has
been truncated using a circle of radius R = 0.1m on which the non-reflecting radiation condition (4c) has
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Figure 1: Diagrams of the problem domains in (a) Example 1 and (b) Example 2.
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been specified. The solid domain is a square with sides of length L = 0.1m containing a centered, circular
inclusion with radius r = 0.02m. A uniform traction g = −gey, with g = 103 N/m, was applied in the y-
direction along the top surface of the solid. As was mentioned in Section 2.1, this type of traction may be
generated, for instance, through the radiation force of ultrasound. The coupling conditions (1c) and (4d)
are present along the solid-fluid interface. The mass density and bulk modulus are assumed to be constant
and the same for both the fluid and solid domains: ρf = ρs = 1000 kg/m3 and K = B = 2.2× 109 Pa. We
consider an inclusion shear modulus (Gi) that is four times stiffer than that of the background material
(Gb): Gi = 4Gb = 6.0× 104 Pa.

The displacement data used for the inverse problem is generated artificially by solving the coupled ASI
problem (Equations (1) to (4)) with the true shear moduli on an unstructured finite element mesh with
70, 000 nodes. For the solution of the inverse problem with MECE, however, a coarser mesh with 12, 000
nodes is used, where the solid domain is a uniform 58× 58 grid (i.e. the geometry of the inclusion is not
explicity meshed). Both meshes are made of four-node, bilinear elements. The displacement within the
solid domain is interpolated from the finer mesh to the coarser mesh, which avoids committing the “inverse
crime” and deliberately introduces a modeling error. Only those displacements in the y-direction are then
kept as data to recover the shear modulus. The data is collected for two frequencies (f = 40.0, 50.0Hz),
and thus the whole input data for the problem consists of 6, 738 displacement measurements.

Remark 5 The reconstruction of elastic moduli using full or one-directional interior data, such as the
ones presented in the examples herein, is relevant to many important practical areas. For instance,
reconstruction of moduli from interior data is the main focus of the active research area of elasticity
imaging (see e.g. [35, 36] and references therein).

4.1.1 Shear reconstructions using the discrepancy principle

The inverse problem (16) is first solved using the discrepancy principle of Morozov, i.e. selecting αs such
that equation (31) is approximately satisfied for c = 1 when the MECE algorithm has converged (note
that for this example αf = 0). We note that in this study, the algorithm is deemed to have converged
when the relative change in the functional (12) between two successive iterations is below 1%. The latter
criterion was confirmed to be adequate for the examples presented herein as it was verified (from extensive
numerical testing) that the relative change in mechanical fields and moduli was negligible for this level of
change in the functional. For the following results, an initial guess of G0 = Gb = 1.5× 104 Pa is used for
the shear modulus throughout the entire solid domain. The effect of measurement error on the recovered
shear modulus is studied by considering solutions to the inverse problem in the presence of three different
levels of noise (1%, 3%, and 5%).

The selected value of αs for each noise level considered is given in Table 1, together with the final value
of the relative discrepancy between the measured and computed displacements (left hand side of (31))
when the algorithm converged and the number of MECE iterations until convergence. As expected, the
selected value of αs increases as the noise level δ decreases. This is due to the fact that higher weight
(larger αs) is needed on the discrepancy term of the MECE functional (12) for the minimization to reach
lower thresholds in the discrepancy equation (31). Note also that the higher value of αs for the case of 1%
caused faster convergence (5 iterations versus 21 for 3% and 5% noise), an observation that is consistent
with earlier work [22].

The shear modulus field estimates for each noise level, with αs obtained using the discrepancy principle,
are displayed in Figure 2. Figure 2(a) shows the solutions for each noise level plotted across line AB of
Figure 1(a) compared with the reference solution. Figures 2(b,c,d) show the two-dimensional recovered
shear modulus field for 1%, 3%, and 5% noise levels, respectively. It can be seen that the level of
accuracy for the case of 3% and 5% noise is comparable, while the solution for 1% noise is more accurate,
as expected. Indeed, Figure 2(a) shows that the true magnitude of the inclusion shear modulus is

Noise αs Relative discrepancy Iterations
1% 8000 1.00e-2 5
3% 40 3.04e-2 21
5% 1.5 5.06e-2 21

Table 1: The value of MECE weight αs selected for each noise level using the discrepancy principle (31)
along with the final value of the relative discrepancy (l.h.s. of (31)) and the number of iterations it took
for the MECE algorithm to converge
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Figure 2: Shear reconstruction, MECE weight αs selected using the discrepancy principle. (a) The
solution for each noise level, plotted along line segment AB of Fig. 1(a). (b) Recovered shear field for 1%
noise. (c) 3% noise. (d) 5% noise. Units: Pa, m

slightly overestimated for the higher noise levels. Additionally, the two-dimensional plots show that
the boundary of the inclusion is more distinctly identified for 1% noise than for the higher noise levels.
Generally speaking, however, the solutions for each case provide satisfactory estimates of the background
and inclusion shear modulus and accurately resolve the boundary between the materials.

4.1.2 Shear reconstructions using error balance

We now demonstrate the use of the error balance approach for selecting αs. For comparison purposes,
the problem setup described in Section 4.1 remains unchanged. To carry out the approach, the inverse
problem (16) is solved for weighting coefficients sampling the range 0.1 ≤ αs ≤ 100, and postprocessing
is done to find the value of αs that minimizes the error balance function J (αs) defined by (32). The
resulting plot of J versus αs, displayed in Figure 3 for the different noise levels, shows that the method
selects αs to be 5, 10, and 10 for 1%, 3%, and 5% noise, respectively.

The corresponding shear field reconstructions for each noise level using the error balance approach
are shown in Figure 4. As in the previous section, the solutions are compared with the reference along
line AB in Figure 4(a), while Figures 4(b,c,d) show the two-dimensional estimated shear modulus fields
for 1%, 3%, and 5% noise levels, respectively. Again, the relative accuracy of the recovered fields are
satisfactory for each noise level in terms of the estimated magnitudes for each material as well as the
resolution of the boundary between them. The line plots in Figure 4(a) show that the higher noise levels
tend to overestimate the inclusion shear modulus more so than the case of 1% noise. However, it can be
seen in this plot, as well as in Figures 4(b,c,d), that the inclusion geometry is more accurately identified
for 3% and 5% noise than for 1% noise. The latter observation seems to be a reflection of the error-balance
approach producing a weight parameter value that is too small for the lowest noise level case, further
emphasizing the non-optimal nature of the approach.
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Figure 3: The error-balance function J (Eq. (32)) versus αs, with minimum values denoted with an ”×”.
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Figure 4: Shear reconstruction, MECE weight αs selected using error balance. (a) The solution for each
noise level, plotted along line segment AB of Fig. 1(a). (b) Recovered shear field for 1% noise. (c) 3%
noise. (d) 5% noise. Units: Pa, m

4.1.3 Comparison of discrepancy principle and error balance solutions

The relative performance of using the discrepancy principle versus the error balance approach for selecting
the weighting coefficient is now discussed. To facilitate a comparison of the accuracy between the two
methods, the solution error is computed for a wide range of αs values for each noise level. The error
metric used is a relative ℓ2 norm over the elements in the solid domain, given as

ÊG(αs) =

∑NE
i=1

∣

∣

∣
G

(i)
true −G

(i)
est(αs)

∣

∣

∣

2

∑NE
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∣

∣

∣
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(i)
true

∣
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∣

2 (34)
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Figure 5: The shear reconstruction error (34) versus αs for different noise levels in Example 1. The
circle and triangle markers denote the values of αs selected using the discrepancy principle and the error
balance technique, respectively

where NE is the number of elements in the solid domain and G
(i)
true is simply 1.5 × 104 Pa or 6.0 ×

104 Pa depending on whether the centroid of element i falls within the background or inclusion material,
respectively.

Figure 5 shows ÊG(αs) plotted against αs for each noise level. In addition, the values for αs selected
using the discrepancy principle are indicated by circle markers, while those selected using the error balance
approach are marked by triangles. For each noise level, it can be seen that the discrepancy principle
produces a value of αs that is closer to the optimal value α⋆

s (such that ÊG(α
⋆
s ) is the lowest possible

solution error for a given data set) than the error balance approach . Indeed, using the discrepancy
principle leads to values of αs that are very close to optimal for 3% and 5% noise, and although it is
farther off for 1% noise, the resulting error ÊG is still close to its optimal value ÊG(α

⋆
s ). On the other

hand, the error balance method yields choices of αs that are also near optimal for 3% and 5% noise
but significantly far from the optimal value for 1% noise. Furthermore, the error balance selection of αs

appears to be relatively insensitive to the noise level, which is a drawback of the approach.
The results from this example suggest that using the discrepancy principle to select the MECE

weighting coefficient outperforms the error balance approach. The solutions for all noise levels using each
method appear to be satisfactory in Figures 2 and 4, but the rigorous error comparison in Figure 5 shows
that, in terms of accuracy, the discrepancy principle outperforms the error-balance approach. Perhaps
more significant than the difference in accuracy is the trending behavior of each method for varying noise
levels. The discrepancy principle yields values of αs that increase consistently with decreasing noise,
following the same expected trend as the optimal value α⋆

s . The error balance approach shows little
variance for different noise levels and follows the opposite trend, selecting a slightly smaller weighting
coefficient for 1% noise. Of course, employing the discrepancy principle in practice requires a priori
knowledge of the noise level, while the error balance approach does not. Hence, we reiterate that the
main appeal of the latter method is its generality and argue that in the absence of information about
noise level, it represents a viable approach for selecting the weighting parameter.

4.2 Example 2: 2D modulus estimation with pressure data

We again consider a two-dimensional acoustic-structure system that consists of a square solid domain
under the plane strain assumption submerged in an infinite fluid medium, see Figure 1(b). In this
case, however, we use sparse and noisy measurements of the acoustic pressure in the fluid to estimate the
elastic properties of the solid. The latter is made of two inclusions of different size and material embedded
in the background matrix and thus involves three homogeneous materials whose spatial distribution is
assumed to be known. Taking the center of the square as the origin, material two is centered at (-
0.025m,-0.025m) with radius r2 = 0.015m and material three is centered at (0.02m,0.02m) with radius
r3 = 0.02m (Fig. 1(b)).

The boundary conditions and dimensions of the solid and fluid domains, as well as the material
properties of the fluid and the bulk modulus of the solid, are as in Example 1, while the shear modulus
values are: G1 = 1.5 × 104 Pa, G2 = 3.0 × 104 Pa, and G3 = 6.0 × 104 Pa. The acoustic pressure is
measured at thirty-two sensors spaced evenly on a ring in the fluid domain. The system is excited at a

13



10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

α

Ē
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Figure 6: The relative error (35) in the estimated shear moduli versus αf for different noise levels in
Example 2. The circle and triangle markers denote the values of αf selected using the discrepancy
principle and the error balance technique, respectively.

frequency of 40.0Hz.
The inverse problem reduces to estimating the values G1, G2, G3 of the shear moduli in the background

and inclusions. The relevant MECE weight αf is selected using both the discrepancy principle and the
error balance approach. The pressure data for the inverse problem is generated by solving the forward
problem with true moduli values, storing the pressure values at sensor locations, and adding artificial
noise according to (33) with um replaced by pm. The forward problem is solved on a finite element mesh
with 54, 000 nodes while a coarser mesh with 17, 000 nodes is used for the inverse problem. In this case,
the inclusions are meshed in the grid used for the inversion since a known spatial distribution of moduli
is assumed.

The unknown moduli ~G = [G1 G2 G3]
T are estimated using a uniform initial guess G0 = 1.5× 104 Pa

with pressure data polluted with 1%, 3%, and 5% noise. The relative solution accuracy is defined as

ĒG(αf) =
‖~Gtrue − ~Gest(αf)‖

‖~Gtrue‖
, (35)

The value of ĒG(αf) is plotted versus αf for each noise level in Figure 6, with the values of αf selected
using the discrepancy principle (1.5, 0.2, and 0.1 for 1%, 3%, and 5% noise, respectively) and the error
balance approach (2.5 for each noise level), respectively, indicated by circles and triangles. Selecting αf

using the discrepancy principle produces significantly more accurate solutions for 3% and 5% noise levels
while the error balance solution is slightly more accurate for 1% noise. As in Example 1, αf increases
as the noise level δ decreases when selected using the discrepancy principle, but is insensitive to δ when
selected using error balance. Reconstruction errors ĒG(αf) increase with δ for both weight adjustment
methods, as expected. The overall identification accuracy is nevertheless satisfactory for all considered
cases, with all relative errors on individual moduli found to be below 10% and most of them well below
5%. We mention in passing that we also studied the effect of different initial guesses of shear moduli on
the accuracy of the resulting reconstructions for the current example. We found that the behavior of the
proposed algorithm was insensitive to the initial guess (at least for the current example). Furthermore,
the results reported above for the error balance and discrepancy principle approaches remained the same.

We note that the pointwise reconstruction of the shear modulus field without assuming known geom-
etry a priori may not be feasible with the current problem setup. This is because having pressure data is
akin to having only surface displacement measurements, and therefore less information is available about
the unknown shear moduli than when interior solid data is available. A pointwise reconstruction of the
shear field might be feasible using pressure data collected for a range of frequencies and different loading
configurations; e.g. when using approaches similar to those found in seismic imaging. However, this is
beyond the scope of this work.

4.3 Example 3: 3D imaging with displacement data

The MECE algorithm is now applied to a larger scale, three-dimensional, inverse problem. Data consisting
of the full displacement field in all directions is used to recover an unknown shear modulus in a solid cube
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Figure 7: A clip plane contour plot of the recovered shear modulus in Example 3 for 3% noisy data.
Units: Pa

with sides of length L = 0.1m and a centered spherical inclusion of radius r = 0.02m. The infinite fluid
domain is truncated by a sphere with radius R = 0.1m where the non-reflecting boundary condition (4c)
is applied. The solid is excited with a uniform traction g = −gey, with g = 104 N/m2 on the top surface
at a frequency f = 50.0Hz. The material properties in the fluid and solid are as in Example 1.

The displacement data used for the inverse problem is generated artificially by solving the coupled
ASI problem (1)–(4) with the true shear moduli on a mesh with 43, 000. A coarser mesh with 27, 000
nodes (13, 000 nodes in the solid) is then used for the inverse problem. Quadratic (10-node) tetahedral
elements were used in both meshes. The inverse problem was solved for noise levels of 1%, 3%, and
5% with an initial guess equal to the background shear modulus. In this example, only the discrepancy
principle was used to select αs, which yielded values of 50.0, 3.0, and 1.25 for 1%, 3%, and 5% noise,
respectively.

Figure 7 shows the reconstructed shear modulus on its horizontal plane of symmetry, for the case of
3% noise. The inclusion is easily distinguished from the background matrix, with the estimated values
of the shear modulus in each region in good agreement with their true couinterparts (Gi = 6.0× 104 Pa,
Gb = 1.5 × 104 Pa). A threshold plot shown in Figure. 8, in which all elements whose shear modulus is
outside of the range 4.5× 104 Pa ≤ G ≤ 7.0× 104 Pa are removed from view, gives a better sense of the
reconstruction quality. The region occupied by the remaining thresholded elements is seen to coincide

Figure 8: A threshold plot of the recovered shear modulus in Example 3 for 3% noisy data. The mesh
outline of the true inclusion is shown for comparison. Units: Pa.
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Figure 9: Comparison of the reconstructed shear moduli for different noise levels in Example 3 against
the true shear modulus. Units: Pa, m

well with the true inclusion, whose meshed shape is shown for comparison.
Finally, a comparison of the estimated shear modulus distribution for different noise levels is shown

in Figure 9. The solutions are plotted across the x-axis through the center of the solid domain and
compared with the reference solution. As expected, the reconstruction accuracy somewhat declines, and
the discontinuity between the two materials becomes in particular less well resolved, as the noise level
is increased. The solution for each noise level nevertheless clearly identifies the embedded inclusion and
provides satisfactory estimates of the shear moduli. Moreover, a low number of iterations of the MECE
algorithm was found sufficient to achieve convergence to the solution of the optimality system for all
values of αs. For instance, the solutions for 1%, 3%, and 5% noise were obtained in 11, 19, and 17
iterations, respectively.

5 Conclusions

In this study, we proposed a framework for the inverse identification of material properties in frequency-
domain, coupled acoustic-structure interaction (ASI) systems using a modified error in constitutive equa-
tions (MECE) approach. Our formulation allows for both measurements of displacements in the solid
and the acoustic pressure in the neighboring fluid to estimate the linear elastic parameters that define
the solid. Furthermore, we demonstrated two different methods to select the MECE weighting coeffi-
cient: (i) the discrepancy principle of Morozov and (ii) an error-balance approach. The latter, which did
not produce optimal results and was outperformed by the former from an accuracy standpoint, has the
advantage of remaining effective (for practical purposes) even when the level of noise on the input data is
unknown a priori. Overall, the numerical results in this paper showed the effectiveness of each approach
in generating satisfactory reconstructions in the presence of noisy and incomplete data.
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