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Abstract: The purpose of this work is to obtain as much intuition as possible, through numerical
experiments in a simple case where exact solutions are explicitly available, about the particle approximation
of finite signed measures. A prototypical example of a finite signed measure is the derivative, w.r.t. a
parameter of the model, of some probability distributions related with a hidden Markov chain. This includes
prior, prediction, filtering probability distributions, etc. Two points of view are considered here, to feel the
quality of the approximation, at least in a qualitative manner :

(i) how accurate is the particle approximation of the finite signed measure, in view of an histogram
representation of the weighted particle system ?

(ii) considering the log-likelihood function and the score function, how close is the approximate expression
provided by the particle approximation to the exact expression ?

These two questions seem closely related, however the numerical experiments presented in this work show that
one of the two particle approximation schemes fails to satisfy the first criteria (quality of the approximation
of the finite signed measure), and that both schemes satisfy the second criteria (quality of the approximation
of the statistics).
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Meéthodes particulaires
pour P'estimation et la poursuite de paramétres :
Expériences numériques

Résumé : L’objectif de ce travail est de mieux comprendre 'approximation particulaire de mesures
signées finies, au travers de quelques expériences numériques menées dans un cas simple ou les solutions
exactes sont connues de maniére explicite. Un exemple typique de mesure signée finie est la dérivée, par
rapport & un parameétre du modéle, de distributions de probabilité associées & une chaine de Markov cachée.
Cela inclut la distribution a priori, le prédicteur, le filtre, etc. Deux points de vue sont considérés ici pour
évaluer la qualité de 'approximation, au moins dans un sens qualitatif :

e quelle est la précision de 'approximation particulaire de la mesure signée finie, au vu d’une représen-
tation sous forme d’histogramme du systéme de particules pondérées ?

e si on s’intéresse seulement & la fonction de log—vraisemblance ou & la fonction score, quel est 1’écart
entre I’expression fournie par ’approximation particulaire et ’expression exacte de ces quantités ?

Ces deux questions sont évidemment liées, mais les expériences numériques présentées dans ce travail mon-
trent que I'un des deux schémas d’approximation particulaire proposés ne répond pas de maniére satisfaisante
au premier critére (qualité de I’approximation de la mesure signée finie), et que les deux schémas proposés
donnent une bonne approximation pour le second critére (précison de ’approximation des statistiques).

Mots clés : surveillance, systéme mécanique, paramétre modal, maximum de vraisemblance récursif,
estimation, poursuite, filtre particulaire, filtre particulaire linéaire tangent.



Particle-based Methods for Parameter Estimation and Tracking 1

1 Introduction

The purpose of this work is to obtain as much intuition as possible, through numerical experiments in a
simple case where exact solutions are explicitly available, about the particle approximation of finite signed
measures. A prototypical example of a finite signed measure is the derivative, w.r.t. a parameter of the model,
of some probability distributions related with a hidden Markov chain. This includes prior, prediction, filtering
probability distributions, etc. Two points of view are considered here, to feel the quality of the approximation,
at least in a qualitative manner :

(i) how accurate is the particle approximation of the finite signed measure, in view of an histogram
representation of the weighted particle system ?

(ii) considering the log-likelihood function and the score function, how close is the approximate expression
provided by the particle approximation to the exact expression 7

These two questions seem closely related, however the numerical experiments presented in this work show that
one of the two particle approximation schemes fails to satisfy the first criteria (quality of the approximation
of the finite signed measure), and that both schemes satisfy the second criteria (quality of the approximation
of the statistics).

The initial motivation for this work was provided by an application to monitoring the integrity of struc-
tural and mechanical systems. Detecting and localizing damages for monitoring the integrity of structural
and mechanical systems is a topic of growing interest, due to the aging of many engineering constructions and
machines and to increased safety norms. Automatic global vibration—based monitoring techniques turn out
to be useful alternatives to visual inspections or local non destructive (e.g. ultrasonic) evaluations performed
manually.

Health monitoring techniques based on processing vibration measurements basically handle two types
of characteristics: the structural parameters (mass, stiffness, flexibility, damping) and the modal parameters
(modal frequencies, and associated damping values and mode—shapes), see [22, 9, 21]. A central question for
monitoring is to compute changes in those characteristics and to assess their significance. For the frequencies,
crucial issues are then: how to compute the changes, to assess that the changes are significant, to handle
correlations among individual changes. A related issue is how to compare the changes in the frequencies
obtained from experimental data with the sensitivity of modal parameters obtained from an analytical model.
Furthermore, it has been widely acknowledged that changes in frequencies bear useful information for damage
detection.

Our contribution in this work is to design a particle filtering method to track the modal parameters.
Particle filtering techniques are a set of powerful and versatile simulation—-based methods to perform optimal
state estimation in nonlinear non—Gaussian state—space models, and we consider here an approach combin-
ing particle filtering and gradient algorithm to perform recursive maximum likelihood parameter estimation
and tracking. In the next section, the modeling issues are introduced and some key parameterizations are
discussed. Section 3 details the particle approximation mechanisms. Section 4 is devoted to particle approx-
imation of finite signed measures, with numerical experiments. In Section 5, the particle implementation of
the recursive maximum likelihood (RML) algorithm is described.

2 Mechanical model

2.1 Dynamical model and structural parameters

It is assumed that the behavior of the mechanical system can be described by a stationary linear dynamical
system, and that, in the frequency range of interest, the input forces can be modeled as a non-stationary
white noise. This results in :
MZ(t) + CZ(t) + KZ(t) = v(t) 1)
Y(t) = LZ(t)

where ¢ denotes continuous time, M, C' and K are the mass, damping and stiffness matrices respectively,
the (high dimensional) vector Z collects the displacements of the degrees of freedom of the structure, the
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2 J. Fichou, F. Le Gland & L. Mevel

external (non measured) force v is modeled as a non—stationary white noise with time-varying covariance
matrix @, (t), measurements are collected in the (often, low dimensional) vector Y, and the matrix L indicates
which components of the state vector are actually measured, i.e. where the sensors are located.

The modes or eigenfrequencies, denoted generically by p, are solutions of :

det(* M +uC+K)=0. (2)

The frequency f and the damping coefficient d are recovered from a continuous eigenvalue p through :
f=—= and d=—R(u) . (3)

Some comments are in order on parameterizations of interest for damage detection and localization. Since
a local damage in the structure reduces the stiffness and increases the damping, many damage detection
techniques have been proposed which monitor the stiffness matrix K. Monitoring its inverse K !, namely
the flexibility matrix, has proven more tractable and computationally feasible [22, 13, 5]. In some cases, other
structural parameterizations such as volumic mass and Young elasticity modulus may be preferable [14, 22].
Also, several methods in the literature are based on a transmissibility matrix [21, 23], which involves the
processing of input—output data. However, in the case of non measured input excitation, processing output—
only data is mandatory [17, 3]. On the other hand, a reduced stiffness and an increased damping result in
decreased natural frequencies. Thus, monitoring the modal parameters is relevant.

2.2 State—space model and parameterization

Sampling model (1) at rate 1/A yields the discrete time model in state space form [12, 18] :

Xpp1 = FXp + Wy (4)
Y, = HX,

where the state and the output are :

N(H)

Y(kA), (5)
the state transition and observation matrices are :

F =exp(AA) where A

0 I
-M7'K -M~lC

and
H:(L 0). (6)

The measurement equation in (4) with H as in (6) implicitly assumes that the available sensors measure the
(relative) displacements of the degrees of freedom themselves. The nature of the sensors used only influences
the observation matrix H. In (4), the unmeasured state noise {W}, , k > 0} is assumed to be a zero—mean
Gaussian white noise, with covariance matrix :
N (k+1) A _
Qr =E[W, W;] = / exp(As) Q(s) exp(A*s)ds
kA

and

a5 = (1 a1 )

The state X and the observed output Y have dimensions 2m and r respectively, with r (often much) smaller
than 2m in practice.

Irisa



Particle-based Methods for Parameter Estimation and Tracking 3

Let A be the modes of the state transition matrix F', namely :
det (F—\I)=0. (7)
The continuous modes y in (2) can be deduced from the discrete modes A in (7) using :
exp(Ap)=A.
The frequency f and the damping coefficient d are recovered from a discrete eigenvalue A through :

Y ad A=t

S A A log [A] . (8)

f=

Because of the structure of the state in (5), the discrete modes A are pairwise complex conjugate. If F
and H are unknown matrices but we are able to track the coefficients of these two matrices, then it is easy
to obtain the frequency and the damping coefficient using (8).

Remark 2.1. If we suppose noisy measurements, the model becomes :

Xpp1 = FXp + Wy 9)
Y = HXp+ Vi

where {V}, k > 0} is an unmeasured Gaussian white noise with zero mean. It is essential to note that, with
this assumption, the measurement noise does not affect the eigenstructure of (9).

3 About particle approximation

In this section, we will first detail particle approximation of the filter and the derivative of the filter w.r.t. the
parameter of interest, following [6, 16]. Then, we will see different resampling schemes and their efficiency.

3.1 Hidden Markov model

The state sequence { X}, , k > 0} is a Markov chain taking values in the space E = RY, with transition kernel
Q(z,dz") (which is assumed time independent for simplicity), i.e.

P[Xgt1 € d2’ | Xi = 2] = Q(z,dx’) .

The kernel Q(z,dz’) could depend on a parameter, that should be either estimated, or monitored (i.e.
changes w.r.t. a nominal value should be detected), however the dependence w.r.t. the parameter is not
written explicitly, so as to avoid intricated notations. The following assumption is made

It is easy to simulate a r.v. X with probability distribution Q(z,dz’), even though
the analytical expression of the kernel Q(z,d2’) is not known, or is so complicated
that it is pratically impossible to compute such integrals as

Qota) = [ Qud)ole)  or  Quidd) = [ uld)Qade') .

The state sequence {Xj, k > 0} is not observed, but instead an observation sequence {Yj, k > 0} is
available, which has the following property : given the hidden states { X}, k > 0}, the observations {Y} , k >
0} are mutually independent, and the conditionnal probability distribution of Y} (which is assumed time
independent for simplicity) depends only on the hidden state X at the same time instant, and by definition

PlY; € dy | X = x] = g(z,y) A(dy) and U(z) = gz, Yy) .

Notice that when x varies, all the conditionnal probability distributions P[Y}, € dy | X = ] are assumed
absolutely continuous w.r.t. a nonnegative measure \(dy) which does not depend on z (with densities g(z,y)
which do depend on z).
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4 J. Fichou, F. Le Gland & L. Mevel

Example This memoryless channel assumption is satisfied for instance in the case where the hidden
state is observed in an additive white noise sequence, not necessarily Gaussian, i.e. in our model where the
observation Y}, is related to the hidden state X} by the relation

Yo =HX,+ Vg,

where {V}., k > 0} is a white noise sequence (i.e. a sequence of mutually independent r.v.’s) with probability
distribution g(v) dv (which is assumed time independent for simplicity), independent of {Xj, k& > 0}. In
this case

PYy, €dy | Xy =2] =q(ly — Hz)dy and Uy (x) =q(Yr, — Hax) .

3.2 Particle approximation of the filter

Given observations, the objective is to estimate the hidden states, and to this effect the probability distri-
butions

pr(dz) =P[Xy € dx | Yo, -+, Y] and k-1 (dr) = P[Xy € dx | Yo,--- ,Yr1],

are introduced. The evolution of the sequence {ux, k > 0} taking values in the space of probability distri-
butions on F, is very easily described by the following steps

prediction correction
Pr—1 ———— fplp—1 = Q pr—1 ———— px = Vi flgp—1 ,

where
o () = Q s (da') = / i (dr) Q(z, da) |
E

can happen to be difficult (if not just impossible) to compute, and where - denotes the projective product,
ie.

Vi (z) pepre—1 (de) .

pr(dx) = Wy - pgjp—1 (dr) = s, 1)

In view of the key assumption that it is on the other hand easy to simulate r.v.’s with probability distri-
bution Q(z,dz’), the idea is to approximate the predictor ju;—; with the empirical probability distribution
associated with an N—sample, i.e.

1N
N
Hklk—1 =~ Hijk—1 = 77 Z(s i .
N ~ Ell—1

This approximation is completely characterized by the set {§i‘k_1 ,i = 1,--- N} of particles, and the
algorithm is completely described by the mechanism which builds {§,i+1‘k ,i=1,--- N} from {§i‘k_1 , 1=
1,--+, N}. This mechanism is as follows :

(i) the correction step is applied ezactly to ,u,]c\‘f 41> Which results in

N ‘I’k(Ei\k_ﬁ(S&'k .
N N - i
pr = Vg Hrlk—1 = Z N = Zwk 55;'% L
i=1 j i=1 -
Z‘pk(%w—ﬂ
J

—

i.e. particles {&;, ,,7 =1,---,N} are now weighted, with weights {w}, 7 = 1,---, N} which are
more heavy for those particles which are more consistent with the current observation Yy,

Irisa



Particle-based Methods for Parameter Estimation and Tracking 5

(ii) instead of trying to compute Q M{CV , the following particle approximation
1N
N N N
= SN - - E 5. ,
Hit1|k (Qpy) N £ ,E;H‘k

is used, where the N—sample {§Iic+1|k ,4=1,---, N} has precisely the probability distribution @ uév, i.e.
N independent r.v.’s are simulated with common probability distribution @ uJ', which can be achieved
in the following manner : independently for any i = 1,--- | N

& ~ pd(dr) <= easy, since the probability
distribution pl is discrete,

§£+1|k ~ Q(&,dx') <= easy, by assumption.

3.3 Linear tangent kernel / extended kernel, etc.

If the transition kernel Q(z, dz") depends on a parameter, then the filter 5 depends also on the parameter,
and one would like to compute the linear tangent filter wy, i.e. the derivative of the filter puj w.r.t. the
parameter. To this end, one needs first to study the linear tangent kernel I'(x, dz’), i.e. the derivative of the
transition kernel Q(z,dz’) w.r.t. the parameter, and the following assumption is made

Assumption AC : The following probabilistic representation holds for the linear tangent kernel I'(z, dz')

Lo(o) = [ Dlaovde!) 6(o') = B[p(Xi) Sur | X =1
E
where { (X, Zg), k > 0} is a Markov chain taking values in the product space E x F', such that

P[Xpi1 € da',Epy1 €ds’ | X = 2,Z) = 5]

=P[Xy41 € d2',Ext1 €ds’ | Xy, = 2] = K(z,da’,ds’) .

The following assumption, which extends the similar assumption introduced in Section 3.1, is made

It is easy to simulate a r.v. (X,Z) with probability distribution K(z,dz’,ds’), even
though the analytical expression of the kernel K(x,dz’,ds’) is not known, or is so
complicated that it is pratically impossible to compute such integrals as

F(b(z):/E Fs’gb(x’)K(:c,dz’,ds’) or Fu(daz’):/E F,u(dx) s K(z,dz’,ds") .

Example In our model, the Markov chain {X},, k > 0} taking values in £ = R, is defined by
X1 =F X, + Wy,

where only the matrix F' depends on the parameter, and where {W}, k > 0} is a sequence of independent
r.v.’s taking values in R? with probability distribution p(w)dw (coefficients are assumed time independent
for simplicity). For any x € R?, the transition kernel Q(z, dz’) is given by

Q(z,dr') =p(a' — Fx)da' ,
and one can show directly that

F —p/ F
[(z,d2') = —p' (2’ — Fx) a—xdw' - (' — Fx) ?3—9
p

50 x Q(z,dx) .

PI n1604



6 J. Fichou, F. Le Gland & L. Mevel

It follows that

Fac)a—FacQ(x dz')

rqs(x):/EF(wadw’)qﬁ(w’) = /Eﬂﬁ(xl 6

—p oF
Elo(X — (X —FX
[p(Xnt1) ) (X1 k) o7 50

Xk|Xk—$],

i.e. Assumption AC is satisfied, with

—p/ oF
» (W) 20 Xk

Hey1 =

Notice that in the above example, the r.v. Ex4; depends only on (Xj, Wy), in which case it does not
seem necessary to simulate Ziy; in addition to Wj. This apparently very particular situation is actually
very general, as the following result shows.

Lemma 3.1. Under Assumption AC
[(z,d2") = I(z,2") Q(z,dx’) ,
with
I(z,2") = E[Ekq1 | Xk =2, X1 = 2],
for any z, 2’ € E.
Proof. For any probability distribution p on F, and any pair B, B’ of Borel subsets of E
EylEk41 1(Xk+1 €eB X, e B)] = /BXB/]E[EkH | Xk = 2, Xppi1 = 2'] p(dz) Q(z,da’)

and

E“[EkJrl l(XkJrl epB ) Xk S B E HkJrl Xk+1 eB ) | Xy = :C] [L(dl‘)

INC dx)

m\m\

hence taking B = E yields
[ ras) o = [ [ B X=X =] Qo d!) ) uldo)
and since the probability distribution p is arbitrary, it holds
I'(z,B) = // EZki1 | Xk =2, X1 = 2'] Q(z,d2’)

which proves the result. O

By definition
o) = [ o) K ds)  and Qo) = [ o) K(edl )
hence

[(z,dz") :/ s' K(x,da',ds") and Q(z,dx") :/ K(z,dx',ds") .
F F

Irisa



Particle-based Methods for Parameter Estimation and Tracking 7

On the product space E X E x F, define the projection 7y : (z,2’,s") — x on the (first) space F, the
projection m : (z,2’,s’) — ' on the (second) space E and the projection np : (x,2',s") — s’ on the
auxiliary space F. For any probability distribution p on the space F, the probability distribution p ® K is
defined on the product space E x E x F by

(p @ K)(dw,dz’,ds") = p(dx) K (z,dx’,ds") .

It follows that
Qu(dz") = / p(de) K(z,d2’,ds') = (u @ K)on (da') ,
ExXF

and
T p(dx) :/ u(dz) 8" K (z,dx’, ds")
ExXF
- / rr(2,2', ') (1 ® K)(de, o, ds') = (mp (1 ® K)) o 7 (da) |
ExXF

and if the finite signed measure w is absolutely continuous w.r.t. u, then

Quw(dr') = /E Fw(dx)K(x,dac',ds’)

d
= /E i ﬁ(m)u(dm)K(m,dm’,ds’)
X
dw / / / / dw —1 /
= (=— omo)(z, 2", s") (n® K)(dz,dx’,ds") = ((=— omp) (b ® K))on™ " (dx') ,
ExF dp dp
ie.
Qu=peK)or™! and Tp=(rp(peK))or ',
and

(wsn = Qu=((Grom) (o K)or).

Lemma 3.2. Under Assumption AC, T'y < Qu for any probability distribution u on E, with Radon—
Nikodym derivative (which depends on )

d(T" )
d(Q p)

Proof. For any Borel subset B’ of E, it holds

(xl) = Eu[En-i-l | Xnt1 = xl] .

Pu(B) = [ pldo) Mo B)

_ /Eu(das)E[:kH Xy, € ) | Xe =1

Eu[Skar 1 y= [ BB | X =o' Quidr').
o (Xeqr € B) = J,, 7
hence T" i1 is a signed measure, absolutely continuous w.r.t. @ u, with Radon—Nikodym derivative

d(T" p)
d(Q p)

(@) = Eu[Ekt1 | Xppr = 2]
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8 J. Fichou, F. Le Gland & L. Mevel

For completeness, the following elementary property is recalled

Lemma 3.3. If the finite signed measure w is absolutely continuous w.r.t. the probability distribution pu,
then Qw < Q w, with Radon-Nikodym derivative

dQuw), , dw
AQ ) (z") *Eu[dM(XIJ | X1 =2] .

Proof. For any Borel subset B’ of E, it holds

Qu(B) = [E w(dr) Q. B)

_ [E‘é_z(x)u(dx)Q(w,B’)

= EM[@(XIV) 1(Xk+1 c B/)] :/ E. [d/L (Xk) | Xit+1 —:I:]Qu(dac) ,

hence Q w is a signed measure, absolutely continuous w.r.t. @ u, with Radon—-Nikodym derivative

dQuw), , dw

O

The explicit expression of the Radon—-Nikodym derivatives will not be used in the sequel : only the
qualitative properties

Tu<Qu and (w<p = Quw<Qu),

will be used.
By definition

 Yw 7<w,\11k> Uy 1
Fi(p)w = (0 Ty (W)

is the derivative at point x4 and in the direction w, of the mapping p —— Wy - u. The following elementary
property holds

Lemma 3.4. If the finite signed measure w is absolutely continuous w.r.t. the probability distribution pu,
then Fi(p) w < ¥y, - p, with Radon—Nikodym derivative

d(Fr(p)w),  dw dw

3.4 Particle approximation of some finite signed measures

With the notations of the previous section, it easily seen that the probability distribution @ p and the finite
signed measures I' u and Q w can be put in the general form (r (1 ® K)) o #—! for some appropriate choice

w
of the weight function r, namely » = 1, r = 7 and r = = ° o respectively. The weighted particle
m

approximation of a finite signed measure of the general form r (1 ® K) is defined by

N
1 Hz
r(pK)~rSN(ueK)= ero;gz

=1

EOa ZaEZ) ’

Irisa



Particle-based Methods for Parameter Estimation and Tracking 9

where the N-sample { &), €9, 2%, i = 1,---, N} has precisely the probability distribution u ® K, i.e. one
simulate N independent r.v.’s with common probability distribution ¢ ® K, which can be achieved in the
following manner : independently for any i =1,--- , N

& ~ u(dz) and (6",5") ~ K(&, da',ds")

and the corresponding particle approximation for the marginal measure (r (K @ u)) o 7~ is defined by

N
(r(p@K))or '~ rsSN(ueK))o %ngo,gf =) ) i
=1

d
In particular for the weight functions »r =1, r = g and r = d_w o Ty, it holds
m

—_

N
Qu=peK)or! ~N Z‘Sgi ,

1

N
1 _
Pp=(rr(p@K)or ! m < 3 5 b,
and
N
dw 1 1 dw, ;
Qu= ((@OWO)(H@@K))OW N Z@(fo) 551' ;
respectively. For any test function ¢ defined on E, it holds

Bl D0 r(6,602) 0(€) — ((r (e K)o ,0)|

1

< — o) ? |r(z, 2, s")|? pldx) K(x,dx’,ds' 1/2
\/N{EXEXF|()||( )7 pldx) K( )}
1

g r(z, 2, s")|? plde) K (z,da’,ds') Y12 ||¢]| ,
\/N{ExExFl( )7 nldz) K( )1 ol

dw
and in particular for the weight functions r =1, r = 7p and r = T o T, it holds
m

sup E| - Z(b £) = (Qu )| <

?

%\H

llll=1
1 N . .
0 Bl 3126~ Mo | < = (o [ K (adal )}
and
o EIL 526 o(6) - (Quig) | < = {15 ) 172
ll¢ll=1 = A
respectively.
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10 J. Fichou, F. Le Gland & L. Mevel

3.5 Joint particle approximation of the filter and the linear tangent filter

Recall that the evolution of the sequence {uy, k > 0} taking values in the space of probability distributions
on F, is described by the following two steps

prediction correction
Pr—1 ——— k-1 = Q ph—1 ————— e = Vi flgjp—1 -

As we want to estimate H, Uy also depends on 6. If wy denotes at each time instant the linear tangent
filter, i.e. the derivative of the filter u; w.r.t. the parameter, then the evolution of the sequence {wy , k > 0}
taking values in the linear tangent space to the space of probability distributions on F, i.e. taking values in
the space of finite signed measures on E with zero total mass, is described by the following two steps, which
are linear tangent versions of the prediction step and correction step respectively

linear tangent

prediction
W—1 —— 7 Wglk—1 = ka—l + Fﬂk—l

linear tangent

correction
—— Wi = Fi(pjp—1) W1 + Gr(bgjp—1) -

where
Ll o {p —a\Pk>
o0 90 Yep 0log ¥y, Dlog ¥y,
G = — = (U, —=—ENT W
W)= Gy T e Gaun — e Ty N T

Under Assumption AC, it is easily seen by induction, and using Lemmas 3.2, 3.3 and 3.4, that at each time
instant wyp—1 < pgjk—1 and wy < k-

In view of this absolute continuity property, and of the key assumption that it is easy to simulate r.v.’s
with probability distribution K(x,dz’,ds’), the idea is to jointly approximate the predictor ju,—; and
its derivative wyp_1 w.r.t. the parameter with the empirical probability distribution and with a weighted
empirical distribution associated with the same and unique N—sample, i.e.

N N
1 1 .
~uN, == oo N
R DN . k(S D BTSN
=1 i=1

With this definition waf v K uﬁ 41> with Radon-Nikodym derivative

dwly 1
klk—1 ;
lec\\[kfl(x) = duN (:L') = N Z p;lc\kfl )
Hilk—1 i1 (@) €I, (@)
where Iﬁk_l(x) ={i=1,---,N : §i‘k_1 = z}, for any x in the support supp uﬁk_l of the discrete

probability distribution ,u,]c\‘f ,_1- Indeed

1
NkN|k—1 =N Z |II£\|]I¢—1(1')| o

xresupp ,uiv‘k71

and
1 )
N
Wlk—1 = Z [ Z P;c\kq] oz -
TEsupp ukN‘k71 ielﬁkil(z)
Notice that in most cases, the particle locations {flilk_l ,i=1,--- N} turn out to be all distinct, and the

much simpler relation

N . .
rk|k71(€llc\k71) = P2|k71 )

Irisa



Particle-based Methods for Parameter Estimation and Tracking 11

holds for any i =1,--- , N.

This approximation is completely characterized by the set {ffclkfl,pz‘kf1 ,i=1,---,N} of particles
and weights, and the algorithm is completely described by the mechanism which builds {¢} )k Pt 1k 1=
1,--+,N} from {5,@‘k_1,p§€‘k_1 ,i=1,--- N}. This mechanism is as follows :

(i) the correction step is applied ezactly to uﬁ x_1> Which results in

N N N Wk(&li\k—l)6§£|k71 N
P = Vi g1 = Z N = Zwlzc 5&@% .
i j i=1 B
> k()
j=1

as previously, and the linear tangent correction step is applied ezactly to w,i\" s_1> Which results in

)

wy = Fk(MkN|k—1)w1]c\\]k—1 +Gk(MkN|k—1)
0log ¥y, 0log ¥y,
= [lec\\]k—l — (W 'Hﬁk—h?"l]c\\]k—ﬁ] Uy 'MkN|k—1 + [T — (s “Hglk—1s TH \2 'MkN|k—1
0log Uy, Olog Uy
= [ + 20 AR IR 0 ] AR
1) instead of trying to compute , the following particle approximation
(if) i d of trying te Q py!, the following particl imati
N
)
Hit1)e = MQu) Z €k+1\k
is used as previously, instead of trying to compute
Jlog Wy, Olog Wy,
lezcv = Q((rljc\{kfl + 7)#5) <:u’l]cvarljc\|[k 1t >QM{CV
ol 00
Olog ¥y, _ Olog Wy,
= (((rRp—r + 7) om) (uy ®Q))om "t — (uy ,rilp 1 + T> Quy

the following weighted particle approximation

Olog Wy, _ Olog Wy,
(((rle—r + —g ) ° ™) SNy ®Q))om = (SN (), rilp_y + 20! SMQuy)
N N
alog Uy, 1 ; alog Uy
Z k-1 (6) + (6 — 5 Dol (6 + —— @110
i=1 j=1 k+1|k
is used, and instead of trying to compute
Upy = (e (u @ K))or™t,
the following weighted particle approximation
1N
e SN (up @ K))or ! = — = i )
(T (1 ) N £ k41 €k+1\k
is used, hence finally the weighted particle approximation
N 1o v alogllfk NN (’)log\I/k PR
Witk = 7 Z[mkq(fz@) —— (&) - Z[Tk\kq(fk) —— (&) ]+ Epia ] 5‘512 e
PI n1604 =1 j=1 i

7
Pr+1|k



12 J. Fichou, F. Le Gland & L. Mevel

where the N—sample { £}, §,i+1‘k, Ei .., i=1,---, N} has precisely the probability distribution zp ® K,
i.e. N independent r.v.’s are simulated with common probability distribution uY ® K, which can be
achieved in the following manner : independently for any i =1, --- | N

& o~ pl (de) <= easy, since the probability
distribution 1Y is discrete,

(E};Jrl‘k,E};_i_l) ~ K(&i,da',ds') <= easy, by assumption.

The proposed particle approximation of the linear tangent optimal filter is especially attractive, since it
uses the same particle system already used in the approximation of the optimal filter : only one—dimensional
weights are needed in addition. Other closely related particle approximation schemes will be presented
in Sections 4.1, 4.2, 4.3 and 4.4 on some simple models where comparison with explicit exact expressions
provided by Kalman filtering is possible.

3.6 Different redistribution schemes

In practice, after a few iterations all but one particle will have negligible weights, and a large computational
effort is devoted to updating particles whose contribution is almost zero. To avoid this phenomenon of
degeneracy of particle weights, we resort to resampling. The basic idea of resampling, and more generally of
redistribution, is to eliminate particles with small weights and to replicate particles with large weights.

3.6.1 Resampling

In the selection step, we want to generate a N-sample {flichl ,i = 1,--- N} with discrete probability
N
distribution Zw};é i . One of the most direct method is based on an inversion method and consists in
k
i=1

generating a uniform r.v. U on [0,1], and if
witwl <U<wh+--wit

then choose fi. The new weigths are reset to 1/N, hence the following algorithm :

Resampling

Let {&;,wi,i=1,---, N} be the particle system we want to resample from.
Construct cumulative distribution function (CDF) :

c1 =0.

Fori=2,---,N,set ¢; = ¢;_1 + wi.
Fori=1,---,N,

U ~Ul0,1].

Find a; so that ¢, < U < cq,41-
The new particle system is given by :

Fori=1,---,N,set &, =& and wy , = 1/N.

Some heuristic measures have been proposed to decide when it is necessary to resample. In this work,
we choose to resample at each time iteration.

Irisa



Particle-based Methods for Parameter Estimation and Tracking 13

3.6.2 Comb method

A more determistic way to resample is to multiply | N w} | times the particle &} . Then, we use a comb method
N

to select Z(N wi — | Nwi|) particles as described in the following algorithm :
i=1

Comb method

Let {&;,wi,i=1,---, N} be the particle system we want to redistribute from.
Let o be a random permutation on {1,---,N}.
Fori=1,---,N, replace i with o (7).

Construct CDF :

o 1 [ea
Set oy = wk(l) N Lka(l)J.

ot 1 o(i
Fori=2,---, N, compute o; = ;_1 +wk( ) N Lka( )J.
The new particle system is given by :

Fori=1,---,N —1, replicate the particle fg(i) a number of times equal to 1+ [N w,‘:(i)J
if a; <i/N < a1, and to | N wZ(Z)J otherwise, and keep the particle «EZ(N).

Fori=1,---,N,set wj,, =1/N.

Notice that the last particle is always selected in this algorithm, and the random permutation is introduced
so as to avoid this undesirable systematic effect.

3.6.3 An alternative comb method

Another deterministic algorithm has been proposed :

PI n1604



14 J. Fichou, F. Le Gland & L. Mevel

Alternative comb method

Let {&;,wi,i=1,---, N} be the particle system we want to redistribute from.
Let o be a random permutation on {1,---,N}.
Fori=1,---,N, replace i with o(7).

Construct CDF :

Set ag = wz(l).

Fori=2,---, N, compute a; = a;_1 + wz(i).
Fori=1,--- N, let §; denote the nearest integer to N «;.
Construct :

Set Y1 = ﬁl-

FOYiZQ,"- 7N7 set ’Yi:ﬁi—ﬁi—l-
The new particle system is given by :

For i = 1,---, N, replicate the particle Ez(i) a number of times equal to ~;, and set
Wiy, = 1/N.

3.6.4 Conclusions

We have seen several methods to redistribute our particle system. The first one seems very natural but is
slower than the two others. In practice, we will use a deterministic method since the particle approximations
produced by all three methods are very similar, as the following experimental results show :

Particle approximation with 500 particles

Method 1 Method 2 Method 3

— Truth
— Particle

— Truth
— Particle

O O1 O
-5 -4 -3 —2 -1 0 i 2 3 4a 5 -5 —4 —3 —2 —1 O a 2 3 4 5 -5 -4 -3 —2 -1 0 i 2 3 4a 5
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Particle approximation with 1000 particles

Method 1 Method 2 Method 3

— Truth
— Particle

— Truth
— Particle

O1 O
-5 -4 -3 —2 -1 0 i 2 3 4a 5 -5 —4 —3 —2 —1 O a 2 3 4 5 -5 -4 -3 —2 -1 0 i 2 3 4a 5

Particle approximation with 5000 particles

Method 1 Method 2 Method 3

— Truth
— Particle

— Truth
— Particle

O1 O
-5 -4 -3 —2 -1 0 i 2 3 4a 5 -5 —4 —3 —2 —1 O a 2 3 4 5 -5 -4 -3 —2 -1 0 i 2 3 4a 5

4 Particle approximation of finite signed measures, with numerical
experiments

The purpose of this section is to obtain as much intuition as possible, through numerical experiments in
simple cases where exact solutions are explicitly available, about the particle approximation of finite signed
measures. A prototypical example of a finite signed measure is the derivative, w.r.t. a parameter of the
model, of some probability distribution related with a Markov chain. This includes prior, prediction, filtering
probability distributions, and the like. Two points of view are considered here, to feel the quality of the
approximation, at least in a qualitative manner :

(i) how accurate is the particle approximation of the finite signed measure, in view of an histogram
representation of the weighted particle system ?

(ii) considering the log-likelihood function and the score function, how close is the approximate expression
provided by the particle approximation to the exact expression ?

These two questions seem closely related, however the numerical experiments presented in this section show
that one of the two particle approximation schemes fails to satisfy the first criteria (quality of the approx-
imation of the finite signed measure), and that both schemes satisfy the second criteria (quality of the
approximation of the statistics). Explanations about the graphical outputs are provided at the end of this
section.

PI n1604



16 J. Fichou, F. Le Gland & L. Mevel

4.1 Part A : AR(1) model

The model considered in this example is the simplest scalar AR(1) model
Xppr=aXp+o Wy, Xo ~ N(Xo, 07) ,
ie.

1 _
po(dz) = P[Xo € dz] = eXP{*ﬁ (x — Xo)?} da
0

1
V2moy

po()

where {Wy, k > 0} is a standard Gaussian white noise sequence, and where only a is considered as an
unknown parameter, i.e. the data Xo and o2 are known and o3 could depend on a. It follows from the model
that

Xip1 | Xp=a ~ N(aaz,aQ) ,
i.e.

1 1
Q(x,dr') =P[Xyi1 €da’ | Xp =12] = Nor s exp{—ﬁ (' —ax)?} da' .

q(z,2")

The goal here is to design a particle approximation scheme for the derivative, with respect to the parameter
a, of the probability distribution of the state.

4.1.1 Exact expressions

Obviously, in such a simple model, an exact expression can easily be obtained. Indeed

Xk ~ N(Xk,di) 5

i.e.
(dr) = P[Xy € da] = ———— exp{—55 (@ — X)?} d
€T) = x| = Xp1— =5 (T — €T
K k \/ﬂak p 20_2 k 5
Pr(T)
where
Xk+1:an and oz+1:a202+02
The log—density of the r.v. Xj is
1 _
log pi(z) = cste — = logoj — — (z — Xi)? |
2 202
hence the logarithmic derivative w.r.t. the parameter a
dlog pi 1 9o 1 9o oo 10Xy _
—_— =————t 4 —— —F(pr_ X ——(r—-X
Oa (z) 207 da = 20} Oa (@ B o da (@ k)
and
8uk 1 (90']3 S \2 2 1 an —
dr) = —(dz) = [ — == - Xi)* — — (- X d
wi(de) = 2= (de) = [5— - = [(@ = Xp)” — 0i ] 7 Ta (x — X&) | pr(dz)
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where
0X ki1 S 0Xy, Qoiﬂ 2 2 8013
=X N — d — =2 —= .
da kta da an da @i ta da
. - . - OX
In the special case where Xy = 0, it holds X3 = 0, ke 0, hence
a
1 8o}
wy(dz) = 207 8—; (2* = op) pw(da)
dwk

and the support of w;, the positive part of wg, is the set {z : d—(m) > 0} = {z : || > ox}. In the
HE

stationary case where |a| < 1 and X, = 0, it holds

2 2 2 2
9 9 o dog  Ooj, 2a0
=2 = d Y% _ 9% _ 299
Tk TI0T T g2 o da da (1 —a?2)2’
hence
a
uk(dz) = po(dzx) and wi(dz) = wo(dx) = o (z% — 03) po(dz) .

4.1.2 Preliminary computations
The transition log—density is

1 1
log q(x,z") = cste — 3 logo? — 757 (' —ax)?,

hence the logarithmic derivative w.r.t. the parameter a

P80, a1y = 20! —ax).
and
oQ T
[(z,dz') = %(Jc,dw’) == (2" —az) Q(z,dz’) .
Differentiating with respect to the parameter a, throughout the recursion
(') = Quun(de') = [ pulde) Qe de') (10)
yields
a,uk_;,_l & a,U/k aQ
n _ YHE+1 N _ Ohk ’ il /
wp (da’) = P (g /_OO[ MU () Qs i)+ () 52 ()]
hence
e x
w1 (dz’) = Quy(dz’) + T py(da’) = / [wy(dz) + = (2 —az) px(dr)] Q(x,dz’) . (11)
Since wg < g, it holds
’ ’ ’ > dwy, < ’ ’
wit1(dz') = Quy(dz') + T pg(da’) = [%(x) + = (2" —ax)] pr(dr) Q(z,dx) ,

i.e. w41 can be interpreted as the marginal of the finite signed measure wy, ;,+1 defined on the product space
R x R by

Wi k41 (dz, dz’) = wi(dz) Q(z,dz") + pi(dx) T'(x, dx’)

dwy, z / (12)
d—uk(z) + s (' —ax)] pr(de) Q(z,dx") .

= |

PI n1604
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4.1.3 A particle approximation scheme

Assuming that the following particle approximations

1 N N
,uk%,ug:ﬁz&&i and wkka = Z Z ,
i=1 i=1

are available at time index k, and plugging these approximations into equations (10) and (11), yields

N
Quy Z (&, da') | (13)

N
and
1 K, , & . _

Qui (dz') + Ty (da') = ;[pi + U—'Z (2" —a&)] Q& da') (14)
which can be interpreted as the marginals of the finite signed measures m = (m‘,i = 1,---,N) and
s=(s",i=1,---,N) defined on the product space EN = {1,--- N} x R by

i €_k I % i i !
s'(da') = [ph+ 25 (@) —a )] 7 Q& da')
r*(a’) mi(dx’)

and the weighted particle approximation

N
1 7_1' .

= — k(&hi1) 0/ i ei ;
N ;r (&) (Th> Ekt1)

where independently for any i = 1,---, N, the pair ({,&} ) is jointly distributed according to the proba-
bility distribution m = (m*, i =1,--- , N), or using systematic sampling alternatively

ri=i and &y ~ QR dd)

and marginalizing, yields

Pt R = Z 5£k+1
and
1 & 1 &
N Qi i
W1 N Weiq = 77 ZT (k1) 0pi =+ Zkarl Opi
N P i1 N P Ehr1
where independently for any i =1,--- | N

Ehpr ~ Q& da’) .
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Notice that the weight

Prr1 =7 (Eks1) = Pk + gk (§k+1 adk) ,

does not depend only on the position of §,i+1, but on the position of the pair (&}, §,i+1). An approximation

of the support of w;:H, the positive part of w1, is provided by the set {§,i+1 , 1€ I,?;Jf} of particles with
positive weight, where

Ik+1 ={i=1,---,N: Pk+ gk (€k+1 agy) >0} .

4.1.4 An alternate particle approximation scheme

Equations (13) and (14) read

1N 1L
Qud(dx') = = QUL ) = [ D algha)] da
1=1 =1
and
1 M i . .
Quil (da) + T i (da') = < D _[ph + 2% (¢ — a )] Q& da')
=1
1 g
=5 > ok + 25 (@' —ag))] (&, 2)]
=1
= Tk+1( )Qﬂk (dz') ,
where
N j
olel+ 2 @ - e aléla)
Tt (2') = N _
> (gl )
j=1
N j ]
Z[ﬂ;ﬁ 2k (' —ag])] exp{—3 (2 —ag&])?}
j=1

N .
Y exp{—3 (2’ —a&))?}

j=1

Using systematic sampling, yields the particle approximation

Qup =~ N 255

k+1
where independently for any i =1,--- | N

€1 ~ Q& da’)
and the weighted particle approximation

Quy + Ty ~wilyy = ZrkJrl Ehy1) 0 Zpkﬂ €

PI n1604
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where the weight

N EJ , _ 4
Z €k+1 agy)] eXp{—% (&1 — afi)Q}
i  _ N i Jj=1
Pr+1 = Tk+1(§k+1) )

Zexp{ (€ —agl)®}

depends only on the position of &/ +1 An approximation of the support of w,:rl, the positive part of wy41,
is provided by the set {&F 4151 € I & +1 of particles with positive weight, where

Ik+1 ={i=1,--,N: 7“1?4—1(‘51@4—1) >0} .

4.2 Part B : HMM situation

Consider now the HMM situation, where the state, still described by the same scalar AR(1) model as above,
is not observed directly and where observations are available instead, which are related to the hidden state
by

Ye=cXp+sVy,

where {V},, k > 0} is a another standard Gaussian white noise sequence, independent of {W},, & > 0}, and
where only « is considered as an unknown parameter, i.e. the data Xy, o, o, ¢ and s are known. It follows
from the model that

Yi| Xp =2~ N(c:c,sQ) ,
i.e.

1
PlY; € dy | X, = 2] = — exp{—

\/ﬂs (yfcz>2} dyv

1
202

g(,y)
and let

\Ilk('r) = g(;L',Yk) ’
denote the likelihood function. The goal here is to design a particle approximation scheme for the derivative,
with respect to the parameter a, of the conditional probability distribution of the hidden state, given the
observations.

4.2.1 Exact expressions (Kalman filter)

In such a simple model, an exact expression can easily be obtained, via the prediction / correction steps of
the Kalman filter framework. Indeed, the prediction step reads

Xi [ Y1, Yior ~ N(Xk\k—hgi\kq) ;

i.e.
1 .
fgph—1(dz) =P[Xy € dz | Y1, Vo] = ———— exp{—5—— (¢ — Xyp_1)*} dz,
| V2T o1 20051 |
pk|k—1(~’0)
where
)A(k‘k,l —aXp and ai‘k% =a’o}_; +0?
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Proceeding exactly as above yields

aukuH 1 6013\1%1 )
Wy k-1 (dz) = 94 (dz) = [m 50 [(@ — Kae1)® — 02ps ]
1 OXppe )
Oklk—1 811 1 (@~ Xk\kfl)] ,uk\k71(d$) ,
where
6Xk k—1 . 6Xk—1 80% - ot
lesz_l—i-a 5a and T‘QZQGUI%—VFGQ#.

The correction step reads

Xklyrh"' 7YkNN(XkaU]%) 3

i.e.
(dr) = P[X¢ € do | Vi, -+, Yi] = —=— exp{—5— (z — Xu)?} d
T) = x = exp{— T — T
Mk k 1, s Lk \/ﬂo'k p 20’]% k )
pr()
where the Kalman gain is defined by
co? 2
K= 5o hence L Kye= g,
€% Olilk—1 + s € Ojh—1 +s
and where
2
A A ; ; COklk—1 ;
X = Xpppo1 + K (Ve —cXppo1) = Xigppor + 55— (Ve — e Xppe—1)
¢ Okj—1 5
and
52 0'2
2 2 k|lk—1
=1-K = .
O ( k C) Uk\k—l c2 0-13|k—1 + )
Therefore
Ok 1 9o} o o, 10X,
dz) = —(dz) = [ —5 —= — Xi)* — — —(z—-X d
wild) = T da) = [ G (o= £ =0 |+ 5 Gk (= Ki) ] n(l)
where
OXp 52 OX ik cs? IR 1 A
o = T2 2 2 8‘ 2 2 2\2 5‘ (Yk*CXkUc—l),
a A oRy s a (c Ohpr t8 ) a
and
doy, st 0071

da (2 Ji“{:il +s2)2  Oa
From the decomposition

Yi = c X1 + I
PI n1604
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where the innovation
Ik:kach‘k_l :c(kaXk‘k_l)JrVkNN(O,si) with sichJilk_qusQ ,
is independent of the past observations Y7, ---, Y. _1, it follows that
Vi [ Yi,- Yio1 ~ N(Ckafl,Si) )

i.e.

1 .
PlY, edy | Yy, -+, Yio1] = GXP{—ﬁ (y — ¢ Xppe—1)?} dy .
i

1
V2T S

9k(y)
Using the straightforward identity

n

PYi €dyr,-- Yo €dyn] = [[ PV €dyx | Yo =y1,-+ Y1 = ypa] = H (ys) dys. ,
k=1

yields the following expression for the (suitably normalized) log-likelihood function

3|>—‘

1 n n 1 ~
l,==1 Y, 1 (Yz) [£ log(2 Vi — e Xppeo1)?],
- ngI:[lgk( k) = Z 0g gk (Vi) ; og(2ms}) 25i( o — ¢ Xgjp—1)"]

and for the score function

1 & 1 0s? 1 0s? . , ¢ OXppo1 .
—:_E — 4+ — —2 (Y — c Xy - —— (Y, —c Xy
n 25k8a+23i aa(k ¢ klkl)JrSi da (Vi — ¢ Xppp—1) ]
k=1
where
s} 260k|k 1
— =c
da da

Notice that in full generality

P[YkEdy|Y1, ;kal] / ]P)Ykedy,XkEd$|Y1, 7Yk71]

o0

8

/ PYy € dy | Xp = 2] P[Xy € dz | V3, -+ , Ye_1]

8

= / g(z,y) Mok | k— 1(dx) ] dy

o0

9k (y)

hence the following equivalent expression for the log—likelihood function

Zloggk (Y) Zlog/ V() pgjp—1(dz) (15)

and for the score function

o Obt|k— e
%) a‘a 1 / \I]k wk|k 1(dx)

NG "
k=1 [ Uyo(2) piyp—1(dx) l; /OO\I’k Hk|k—1(d) |

o0

n

\I/k(x

o,
Oa

:I>—‘

1
n
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4.2.2 Preliminary computations

Differentiating with respect to the parameter a, throughout the recursions

Uy (z) prir—1(da)

pr(dx) = (P, 'Mk|k—1)(d$) = —x ) (17)
/ W (") pggpe—1 (d”)
and
fr11k(dz) = Q pu(da’) =/ pu(dz) Q(z, da') (18)
yields
Wy () 21 /OO ,(a') L )
o k() Da (dx) Oa Ui () o) —1 (d)
wy(dx) = E(dz) = —= = ;
/ (") puggpe—1 (d”) / (") pugpe—1 (d”) / W (2") pggpo—1 (d’)
hence
wy(dr) = (Fg(prjr—1)Wkjk—1)(d)
Uy (2)) wip—q (da’
_ U@ wra(dr) /—oo H(e) wpipa () Wk () prij—1 (d) (19)
[ w@hmpeads) [ @m0 (o)
and
e T
Wip1)k(de’) = Quy(da’) + T px(da’) = / [wy (dz) + = (2 —az) px(dr)] Q(x,dx’) . (20)
Since wyp—1 <K Ppjp—1, it holds Fi(ppjp—1)Wrjk—1 <K Wi - piij—1, with Radon-Nikodym derivative
dwy, d(Fr (b k—1) Wk k—1) dwy|k—1 /°° dwyk—1 , ,
—(z) = ) = ) — —(2") (Vg - _1)(dz")
dﬂk( ) d(‘I’k'Mmk—l) dﬂk\kq —o0 dﬂk|kfl( ) (T Hilk D)(de’)
and
/ / / > dwy, L /
W1k (d2’) = Qi (dz’) + T px(da’) = [m(w) +—5 (@ —a2)] pi(de) Qz, da’) -
4.2.3 A particle approximation scheme
Assuming that the following particle approximations
[ik—1 & Hp| Ziz(si and Wijk—1 ~ W ZLZPi 0pi (21)
[k— klk=1 = e ‘fk\k—1 [k— klk=1 = v klk—1 ‘fk\k—1 )

are available at time index k, and plugging these approximations into equations (17) and (19), yields

N N
P =Yk pgp_ = N
. —
U, (&7 '
PI n1604 Z i k\kfl)
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and

N . .
Z Phlk—1 \Pk(g’;‘k_l) g

kb1
N N N i=1
Wi :Fk(ﬂk\kﬂ)wk\kq = N -

Z\Pk(fiwﬂ)
j=1

Z/ﬂc\k—1 Vi(€pe1) D> Uil 1) 0
1=1

j=1 gl’glk—l

N
Uk (&) Z Iy

1M

N N N
= : wi 6 — J ol ey
;Pkwq k k1 [;Pkuﬁl 7] ; k €
N
- Z[Pi\kﬂ Zpk|k 1 .
=1 §k|k 1

Plugging these expressions into equations (18) and (20), yields

N
Qi (da') = Y wj, Q(€pp—y- da’) | (22)
i=1
and
N g/ Nyt Al §Ii|k—1 ’ i i i ’
Quy (dz’) + T py (da’) = Z pk\k 1 ZPW 1 o2 (' — aék\k—l)] Wi Q(ék\k—pdx) ,(23)
i=1
which can be interpreted as the marginals of the finite signed measures m = (m',i = 1,---,N) and

s=(s',i=1,---,N) defined on the product space EN = {1,--- , N} x R by

. . & , N oo 4 : .
s'(da') = [Phjp—1 + % (2’ — a&pk—1) _[prqu wi ]] wi Q(Sﬂkfl’d‘rl) :
ri(z") ’ mt(dx’)

Notice that

Z/ mJ dx’) Zpk‘k 1wk,

is just a normalizing constant. Introducing the particle approximation
N

1
N
mam’ = — E O/ i pi ,
N i—1 (Tk’gk'f‘l\k)

and the weighted particle approximation

N .
1
Tk 7,7 oo 7
Z (&1) — Z (6141)] (Tk, € ape)
= j—l
where independently for any ¢ = 1,---, N, the pair (77, §k 41 «) 18 jointly distributed according to the prob-
ability distribution m = (m®,i=1,---,N), i.e.
o~ (W, j=1,---,N) and g,@H‘kNQ(% Lda')
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and marginalizing, yields

N
Ptk = Prp1k = 77 E Ogi .
N~ Stk

N 1 N . 1N
N T o j _
W1k = Wi\ = Z §k+1|k ZT §k+1|k 5114:+1 =N ZPZ;HU@ 5&:““{ :
=1 ]:1 1=1
Notice that the weight
Pk+1\k =r k(fk+1|k ZT k §k+1|k )
where
T} (g T €k\k 1 T
r (gk-i-l\k) Prlk—1 + (§k+1\k agk‘k_l) s

i
does not depend only on the position §;<:+1|k:’ but on the position of the pair («flgkk_l,«fiﬂ‘k).

Statistics Plugging any joint particle approximation of the form (21) into equations (15) and (16), yields
the following approximation

1 & 1 Y .
~ " ];log[ﬁ ;‘I’k(%kﬂ)] )

for the log-likelihood function, and the following approximation

N
L& % ZP?\kq ‘I’k(fzmﬂ) T
ﬁkz llN :Ekzzlkucﬂ%,
=1 =1 i=
Z k(Ehpp—1)

for the score function, respectively.

Numerical results

[ Xo| a3 | a]o®] c]|s] N (# particles) |
[0.0]10]05] L0 L0 ] L0 ]| 1000, 5000, 10000, 50000 |
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Log-likelihood Density
O 0.6
—-0.7 — Kalman — Kalman
—0.4 — Particle 0.5 — Particle
—0.4 0.4
—0.§ R R
14 Appoximations made 0.3
14 with 1000 particles ’
—1.4 0.2
—-1.8 0.14
—1.8
—2.
O 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 4 5
Score Derivative of the density w.r.t. the parameter
R 0.4 0.4
~ Kalman 0.3 0.3 T Kalman
0.3 — Particle I\ T INegative part
0.2 0.2 y \\ .
0.2 // \ Positive part
) 0.1 0.1 / \
0.x /\M ° o —/T Ik
o Y —0.3 —0.1
—-0.2 —0.2
—03 -0.3 -0.3
—0. ey -0. : —0.4 !
O 10 20 30 40 50 60 70 80 90100 -5-4-3-2-1 -5-4-3-2-10 1 2 3 4 5
Log—likelihood Density
O 0.6
—0.4 ~ Kalman ~ Kalman
—0.4 ~ Particle 0.5 — Particle
—0.4 0.4
-0.94 . .
1.4 Appoximations made 0.3l
14 with 5000 particles ’
—1.4 0.2
—1.6 0.1
—-1.8
—2. T T T T T T T T T
O 10 20 30 40 50 60 70 80 90100
Score Derivative of the density w.r.t. the parameter
0.3 0.4 0.4
— Kalman 0.3 — Kalman 0.3 T Kalman
0.2 ~ Particle — Particle L T Negative part
0.2 0.2 A .
i \\ Positive part
0.1 0.1 0.1: Jilfnfin
o e /{M
o Y -0.1 —0.3
—0.2 —0.2
—0.3
—0.3 —0.3
—0.2 T T T T T T T T T —0. T T T T T T T T —0. T T T T T T T
O 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5
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Log-likelihood

-0.7
_O.A
—0.6
-0.9
-1.9
-1.7
_1.£
-1.6
-1.8
-2.0

~— Kalman
~ Particle

0 10 20 30 40 50 60 70 80 90100

Score

0.2

0.1

~ Kalman
~ Particle

-0.3

-0

“0 10 20 30 40 50 60 70 80 90100

Log-likelihood

-0.7
_O.A
-0.6
-0.9
-1.9
-1.7
_1.£
-1.6
-1.8

~—Kalman

~ Particle

-2.0

0 10 20 30 40 50 60 70 80 90100

Score

0.2

0.1

~ Kalman
~ Particle

-0.1

-0.

0 10 20 30 40 50 60 70 80 90100

PI n1604

Derivative of the density w.r.t. the parameter

0.4

Appoximations made
with 10000 particles

0.3
0.2
0.14
O
-0.3
-0.3
-0.3

~ Kalman
~ Particle

0. T T T T T
5-4-3-2-10 1 2 3 4

5

Appoximations made
with 50000 particles

Derivative of the density w.r.t. the parameter

0.4

0.3
0.2
0.14

~ Kalman
~ Particle

0.5

0.4

0.3;

0.2

0.1

0.1

0.3
—-0.3

0.3 T Kalman
i T Negative part
0.2 // \\ g . ve p
i \ Positive part
il
04 "W‘H‘

0. T T
-5-4-3-2-10 1 2 3 4 5

0.5
0.4
0.3;
0.2

0.1

o
-5-4-3-2-10 1 2 3 4 5

0.3 " Kalman

ool //,«-\\ Neg'a.tlve part
i \ Positive part

01 //l \

0 ,,.—:(\‘HH

-0.3

0.3

-0.3

0.4 T T

Density

— Kalman

~ Particle

o
-5-4-3-2-10 1 2 3 4 5

A

Density

— Kalman

~ Particle
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4.2.4 An alternate particle approximation scheme

Equations (22) and (23) read

QMk (da') Zkafmk 1d

and

Quy (da') + T py (da’)

N
= Z pk|k 1 Zpk|k 1 v
i=1

2

= [Z pk\k 1

i=1

Zpk\k 1

= () Q i (da')
where
- gi\k 1 J J J /
Z pk\k 1 —2 (2" — a§k|k71)] Wi q(§k|k717x )
(@) = =

N
= [Zwllc Q(qu—l’x/)] dx’
i=1

, G | o
+ 2 @ — 0l )] wh Qo)
é‘]i‘k*l 12 i i i ’ ,

o2 (' — a§k|k—1)] W ‘Z(fk“g_pl’ )] dx

o A& 1)
j=1

klk—1

N I3
Z pk\k 1 —z(zI*

<.
[

a§£|k71)] wi eXp{*% (z

N .
- [§ :pi|k71 w
=1

h— a§i|k71)2}

Z wi exp{—3 (@'
j=1

Resampling yields the particle approximation

- afiw_l)Q}

N
- [Zpiucﬂ wi] -
j=1

1
N N
~ = — E 0 pi ,
Ql’[’k :ukJrl‘k N P §£+1‘k

where independently for any i =1,--- | N

€Iic+1\k ~ Qﬂllcv(dxl) )

which can be achieved for instance by taking

& ~ b (dz)

and

or even more explicitly by taking

T~ (W, =1, N), & £W1

and the weighted particle approximation

2

Z

N N . . N _
Quy +T'wy = wpyq, = §k+1\k

gli+1|k ~ Q(glzmdxl) )

g ~ Q&L da’) |

and

N

§k+1\k N Zpk“‘k Eit 1k

Irisa



Particle-based Methods for Parameter Estimation and Tracking

29

where the weight

N J
, k-1 ‘ , : ,
Z[Piwq + o2 (Eheprpp — a%k—ﬂ] wj, exp{—3 (Skt1pe — a§i|k—1)2}

Jj=1

. N i
P2+1|k = Tk+1(§;<:+1|k:) =

N
Zwi eXP{*% (§;<:+1|k - a{i“ﬁlf}
j=1

N
- [Zpiﬂkfl wi] )

j=1

depends only on the position of 5};““{.

Numerical results

| Xo[od | a [ o® ] ¢ | s® || N (# particles) |

[00]1.0]05]1.0]1.0] 1.0 ] 1000,5000 ]
Log-likelihood Density
o] 0.6
-0.3 —Kalman ~Kalman
—0.4 ~ Particle 0.5 ~ Particle
0.8 0.4
-0.9 . .
oy Appoximations made 03
1', with 1000 particles '
—l1.4
~1.4 0.2
-1 0.1
-1.9
207777 O
0 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 4 5
Score Derivative of the density w.r.t. the parameter
0.3 0.4 0.4
~—Kalman 0.3 — Kalman 0.3l ~ Kalman
0.2 ~ Particle ~ Particle v “Negative part
0.2 0.2 f "
i Positive part
o o of
(o | ‘ ‘ 1| (0 M
vy -0.1 -0.1
-0.3 -0.3
-0.3
-0.3 -0.3
-0.+—T——T————1 04— 04—
0 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 4 5 -5-4-3-2-10 1 2 3 4 5
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Log-likelihood Density
o] 0.6
—0.2 —Kalman ~ Kalman
—0.4 ~ Particle 0.5 ~ Particle
0.4 0.4
-0.9 . .
by Appoximations made 03
1', with 5000 particles '
—1.4
_1.4 0.2
-1 0.1
-1.9
2.0~ 0
0 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 45
Score Derivative of the density w.r.t. the parameter
0.3 0.4 4
~ Kalman 0.3 — Kalman 0.3l — Kalman
0.2 ~ Particle ~ Particle i ~Negative part
0.2 0.2 f "
f Positive part
0.1 0.14 0.1 //
01 0 e
y ¥ -0.1 -0.1
-0.7 -0.7
-0.1
-0.3 -0.3
-0.2————— T 0.4~ 1111 -0.4—~—T——T—TTT T T
0 10 20 30 40 50 60 70 80 90100 -5-4-3-2-10 1 2 3 45 -5-4-3-2-10 1 2 3 45

4.3 Part C : 2—dimensional case

We consider now the following model :

{Xk-i-l = FX,+W;

Y, = HXp+ Vi, (24)

where {Wy, k > 0} and {Vi, k > 0} are standard Gaussian independent white noise sequences, with
covariance matrix ¥ and S respectively. Here

(1)
is considered as an unknown parameter and Xo ~ N(Xg, Xg). It follows from the model that
Xit1 | Xp =2z ~NFz,X),
ie.

1
z,dz’) = P[X cdr' | Xp=1]= ——— ex
Q( ) [ k+1 | k ] QW\/M

and
Yk|Xk:$NN(H.Z‘,S),
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i.e.

! L y—H2y s (- H)} dy,

PlYr edy | X = 2] = ——F—— exp{—
Yeedyl == o Uaas

g(,y)
and let
lIj}’c('r) = g(ZC,Yk) B

denote the likelihood function. The goal here is to design a particle approximation scheme for the derivative,
with respect to the parameters fi1, fi2, fo1, fo2, of the conditional probability distribution of the hidden
state, given the observations.

4.3.1 Exact expressions (Kalman filter)

In such a simple model, an exact expression can easily be obtained, via the prediction / correction steps of
the Kalman filter framework. Indeed, the prediction step reads

X [ Y1, Y ~ N(Xk|k:flazk|kfl) ;

i.e.
pije—1(dz) = P[X} € dw [ Y1, -, Yi 1]
1 1 . R
- — (= Xpp1)* 20 — Xupo1)} do
27 /det g1 exp{=3 (& = Kjp—1)" By (@ = Xigpea)} do
pk|k71(1‘)

where

X1 = F X1 and Shpor = F S FF+ X

The log—density of the r.v. X | Y7,---,Y;_1 is
log pjk—1(x) = cste — % log det Xj,—1 — % (x — )A(k‘k,l)* Zl;\}c—l (x — )A(k‘k,l) ,

hence the logarithmic derivative w.r.t. the parameter § where 6 € {fi1, fi2, fo1, fo2}

91 ddet Zk|k—1 aX
08 Dk |k—1 1] o0 Elk—1\x w—1 9
89 (ZC) - 2 det Ek\k—l +( 89 ) Ek|k71 (.Z' Xklk*l)
) 0% X . OX 1
— (2 = Xpjp—1)" L (2 — Xppp—1) + (@ — Xgppo1)" Sipy L ,
00 | 00
and
Ot - 0log pyx—
wk|k—1(d$) = 8|9 . (dz) = %(w)ﬂklkfl(dx) )
where
OXpp1  OF X )1
—_— = — X_ F
BT, 90 kT e
82k|k_1 oF 00Xk _1 oF
—_— = — Y. "4+ F F*+FYe 1 (—)"
B gg T T = F A PR ()
0 det Zk|k—1
00 klk=1 -1
N o/ )
det Spp_s tracel —55— k-]
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and

azl;\k 1 _ g1 OXgk—1 y-1
o0 - k|lk—1 o0 klk—1 -~

The last equality comes from the differentiation of X, _; Zk‘ w—1 = 1. We have used the following result :

Proposition. If U is an invertible d x d matriz, then

Odet U
00 _U -1
det U - trace[ 50 U—].

Proof. Writing U = (dy,- - ,1g), we have

TN ANig=det U (EL A A&Ey),

where (€1, - ,€y) is the canonical basis. Differentiating w.r.t. the parameter yields
8(_,/\ A i) 8detU(#/\ nED)
J— u DR u P —_— e DR e
a9\ d 90 1 d
= i U N N1 N — Oty ANtjg1 AN+ AT
- - 1 A i—1 90 i+1 d -
o0

n
' — v;; @;, hence
9 ij Wj,
B J,Zzl

d
0, . .
— (U N Nilg) = E Vi (UL A ANTimg AN AU AN Uipr A=+ ANty
ij=1

vii] det U (1A -~ ANEg)

I
M3

=1

and it follows that

6dtU -
° ZU” ] det U .

d d
Writing u; = ZUij €, and €}, = Zukj @, with U= (Ukj)lgj,kgd. we have
k=1 =1
d d d
Ot Oui OUik piy -
= - AT
90 > a0 " Z[ a0 "1
k=1 j=1 k=1
hence
d n d
Quij 1 Uik 1 ou
Vi = u™d and Vii = 2 M = trace[ — U] .
PP 2t 2 G

The correction step reads

Xy | Vi, Vi ~ N(Xg, 2
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i.e.

1 1 X X
- ——(z—Xp)* S Yz — X))t d
PN exp{—5 (z — Xp)" By (z — Xp)} dz

pr(x)

pi(de) =P[X, € dx | Y1, -, Y]

where the Kalman gain is defined by

* * -1
Ky = Spp—1 H* [H Sy—1 H* + X

and where
Xk: = Xk“c—l + K. (Yk - HXk\k—l)
and
Y= - K H) g1 -
Therefore
Odet Xy, .
dlog pk ! a0 OXk s -1 2
= = — E _X
89 (.I') 2 det Zk +( 89 ) k (:E k)
N ) St . N 0X},
(g — Xy Y2k _X — X ) 28
(&= Xi)" 5= (r = Xi) + (2 = X0)" B 57|
and
_ Opk o Ologpk
wy(dx) = 50 (dv) = 20 (%) px(de)
where
0X}. 6Xk\k71 0K, 5
——2 = (I-KyH) —— 4+ " (WWwW—-HX
54 ( w H) 20 + 20 (Yi klk—1) s
o) > S
R T
Odet Xy,
0 _ %k 1
s trace| 50 .,
) O%k|k—1
— = (I-K,H
and
0K, 0%k 1 O kk—1 1
el A bl D) > H .
90 [ 90 klk—1 T 2k 90 ]

-1

The last equality is obvious since ¥ Ek‘ o1

=1 — K}, H, and we have used the following result :
Proposition. If Q and R are two symmetric, square and positive definite matrices, then

(H*R'"H+Q ")'=Q-QH*(H'QH+R) "HQ .
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Proof. We have
H*QH+R>R and H*R'H+Q t'>Q!
hence H*Q H + R and H* R~' H + Q! are invertible. It is now easy to check that

Q-QH"(H*QH+R)™ HQ[H" R H+Q]

QH*R'H+IT-QH" (HQH+R) ' (H*QH+R-RR'H-QH*(H'QH+R)™'H

We have

Sk =Skt — Skpp—1 H* (H Syt H* + S) 7 H Sy

hence
—1 * g—1 —1
X, =H"S H—"_Ek\k—l’
and
_ -1
oz Oy -1 O kk—1 -1
960 - o0 - k|lk—1 o0 klk—1 *

It follows from

-1
Sk Sphoy =1~ Ke H

that
% = (I - K, H) azgg,l (I - Ky H)" .
From the decomposition
Vi = H Xppor + I,
where the innovation
Iy =Y), — HXppo1 = H (Xy, — Xgpp—1) + Vi ~ N(0, Sy) with Sy =HSpp 1 H +5,
is independent of the past observations Y7, ---,Y;,_1, it follows that

Yi | Y1, Yioq ~ N(HXk\k—hSk) ;

i.e.
1 N .
PY,edy| Yy, - ,Yio1] = ———— exp{—2 (y — H Xpo_1)* Si* (y — H Xgp_1)} dy .
Y edy | V1 h—1] 5r Vet 5, xp{—3 (¥ kie—1)" S, (y klk—1)} dy
9k(y)
Using the straightforward identity
PYi €dyr,-