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Abstract: The problem of time optimal control design is considered for a chain of integrators.
The suboptimal solution based on Implicit Lyapunov Function (ILF) method is presented in
the form of continuous stabilizing feedback. The Semi-Definite Programming (SDP) problem
with the constraints in the form of Linear Matrix Inequalities (LMI) is obtained for tuning
the optimal parameters. The suboptimal solution is compared with the minimum discontinuous
feedback on numerical example.

1. INTRODUCTION

The control applications frequently asks for algorithms,
which provide terminations of transition processes in a
minimal possible time. Such problem statements usually
appear in robotic systems, aerospace applications, under-
water/surface vehicles control systems, etc. Despite of long
history of the optimal control theory (Pontryagin et al.
[1962], Bellman [1957]) time optimal control problems
are still subjects of intensive researches, see for example,
Lasserre et al. [2005], Chernousko et al. [2008], Dinuzzo
and Ferrara [2009], Boltyanski and Poznyak [2012].

The ”bang-bang” control is usual solution of the mini-
mum time control problem. Sometimes, continuous con-
trol strategies are preferable in practice, see, for example,
Bernstein [1995], Glizer and Turetsky [2012]. Suboptimal
robust control solutions have a great practical interest
(Bertsekas [2005], Bohl and McAvoy [1976]), since they
are usually obtained under additional restrictions to the
control forms, which are required for a practical control
application and robustness of the control strategy.

The present paper considers the problem of time optimal
control synthesis for a chain of integrators controlled by
linear dynamic feedbacks. The design concept is based
on the Implicit Lyapunov Function (ILF) method (Ko-
robov [1979], Adamy and Flemming [2004], Polyakov et al.
[2013]) in order to present the suboptimal solution for
minimum time control problem. This method uses Lya-
punov function defined in the implicit form by means of
an algebraic equation. Convergence and stability analysis
in this case does not require solving of this equation, since
the Implicit function theorem (see, for example, Courant
and John [2000]) helps to provide all required analysis
using the algebraic equation only. The ILF control design
scheme has representation in the form of Linear Matrix
Inequalities (LMI), see Polyakov et al. [2013]. The time
optimization problem in this case becomes SDP (semi-
definite programming) formalization.

The paper is organized as follows. The next section in-
troduces some notations used in the paper. The section 3
presents the problem statement. The section 4 gives some
preliminary remarks about finite-time ILF method. Then
the control design schemes are given and studied. The
aspects of the practical implementation of the developed
control schemes are discussed in the section 6. Finally,
numerical examples and conclusions are presented.

2. NOTATION

Through the paper the following notations will be used:

• R+ = {x ∈ R : x > 0},R− = {x ∈ R : x < 0}, where
R is the set of real number;

• i =
√
−1 is the imaginary unit;

• for a differential equation numbered as (.), the time
derivative of a function V along the solution of (.) is
denoted by dV

dt

∣

∣

(.)
;

• ‖ · ‖ is the Euclidian norm in R
n, i.e. ‖x‖ =

√

x2
1 + . . .+ x2

n for x = (x1, . . . , xn)
T ∈ R

n;
• diag{λi}ni=1 is the diagonal matrix with the elements
λi on the main diagonal;

• a continuous function σ : R+ → R+ belongs to the
class K if it is monotone increasing and σ(0) = 0;

• for a matrix P ∈ R
n×n, which has the real spectrum,

the minimal and maximal eigenvalues are denoted by
λmin(P ) and λmax(P ), respectively;

• if P ∈ R
n×n then the inequality P > 0 (P ≥

0, P < 0, P ≤ 0) means that P is symmetric
and positive definite (positive semidefinite, negative
definite, negative semidefinite).

• C
k
[a,b] is a set of functions defined on [a, b], which are

continuously differentiable at least up to the order k.
• L[a,b] is a set of Lebesgue integrable functions defined
on [a, b].

3. PROBLEM STATEMENT

Let us consider a single input control system of the form



ẋ = Ax+ bu, t ∈ [0, T ], x(0) = x0 ∈ R
n, (1)

where T ∈ R+ is a finite instant of time, x ∈ R
n is the

state vector, u ∈ R is a control input,

A =











0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
0 0 0 ... 0











and b =











0
0
...
0
1











.

The system (1) describes a controlled chain of integrators.
The model of the control system like (1) is motivated by
many mechanical and electromechanical applications, see,
for example, Chernousko et al. [2008], Utkin et al. [2009],
Biagiotti and Zanasi [2010].

Let us consider the time-optimal control problem

T → min (2)

subject to

u(·) ∈ {u(·) ∈ L[0,T ] : |u(t)| ≤ u0, t ∈ [0, T ]},
x(·) ∈ C

1
[0,T ] :

{

ẋ(t) = Ax(t) + bu(t),
x(0) = x0, x(T ) = 0,

(3)

where x0 ∈ R
n and u0 ∈ R+ are given.

The optimization problem (2), (3) is the classical time-
optimal control problem. According to the celebrated
theorem by Feldbaum [1953] the optimal solution of this
problem is the so-called bang-bang control, which is a
piecewise constant function uopt(t) ∈ {−u0, u0} with n
switching instants (including t = 0). This paper addresses
the suboptimal control design to the optimization problem
(2), (3) under some additional assumptions. The first one
is the following:

u(·) ∈ U ,
U =

{

u(·) ∈ C[0,T ] ∩ C
∞

[0,T ) : |u(t)| ≤ u0, t ∈ [0, T ]
}

(4)

where u0 ∈ R+ is some given number. In other words, the
scalar control input u ∈ R is assumed to be bounded and
smooth.

The saturation and smoothness of the input signal are
the natural practical restrictions of control systems con-
sidered in many papers, see for example, Wang et al.
[2012], Tarbouriech and Garcia [1997]. Frequently, these
conditions are necessary for a physical realization of a
control algorithm.

Since the linear feedback strategies may provide a nearly
time-optimal solutions (Bohl and McAvoy [1976]), then let
us restrict additionally admissible control strategies to the
class of linear time-varying feedbacks.

The main aim of this paper is to propose an algorithm for
time suboptimal control design

u(·) = wT (·)x(·) ∈ U ,
w = (w1, w2, ..., wn)

T ∈ R
n, wi(·) ∈ C

∞

[0,T ),
(5)

which admits the simple scheme of parameters tuning
based on LMI formalism. Such approach allows us to re-
duce (relax) the infinite dimensional optimization problem
(2), (3) to a finite dimensional one, which provides a
suboptimal solution.

The last additional assumption is not constructive from
the mathematical point of view. However, it is very impor-

tant for control practice, which frequently looks for simple
solutions for improvement of the control performance.

Another problem, which is discussed in the paper, is the
robustness of the proposed control scheme. Robustification
of the optimal solutions is a very important task (Boltyan-
ski and Poznyak [2012], Chernousko et al. [2008], Dinuzzo
and Ferrara [2009]).

4. FINITE-TIME ANALYSIS USING IMPLICIT
LYAPUNOV FUNCTION

Consider the system of the form

ẋ = f(t, x), x(0) = x0, (6)

where x ∈ R
n is the state vector, f : R+ × R

n → R
n is a

continuous nonlinear vector field, which is locally Lipschitz
outside the origin.

Assume that the origin is an equilibrium point of the
system (6), i.e. f(t, 0) = 0.

Definition 1. (Roxin [1966], Bhat and Bernstein [2000]).
The origin of the system (6) is said to be finite-time
stable if for a set V ⊂ R

n:

(1) Finite-time attractivity: there exists a function T :
V \ {0} → R+, such that for all x0 ∈ V \ {0}, x(t, x0)
is defined on [0, T (x0)) and lim

t→T (x0)
x(t, x0) = 0.

(2) Lyapunov stability: there exists a function δ ∈ K
such that for all x0 ∈ V, ‖x(t, x0)‖ ≤ δ(‖x0‖).

The function T (·) from Definition 1 is called the settling-
time function of the system (6).

If the set V in Definition 1 coincides with R
n then the

origin of the system (6) is globally finite time stable.

The next theorem presents the extension of the ILF
method Adamy and Flemming [2004] for finite-time sta-
bility analysis.

Theorem 2. (Polyakov et al. [2013]). If there exists a con-
tinuous function

Q : R+ × R
n → R

(V, x) 7→ Q(V, x)

such that

C1 ) Q is continuously differentiable ∀x ∈ R
n\{0} and

∀V ∈ R+;

C2 ) for any x ∈ R
n\{0} there exist V − ∈ R+ and

V + ∈ R+ : Q(V −, x) < 0 < Q(V +, x);

C3 ) lim
x→0

(V,x)∈Ω

V = 0+, lim
V →0+

(V,x)∈Ω

‖x‖ = 0, lim
‖x‖→∞

(V,x)∈Ω

V = +∞,

where Ω =
{

(V, x) ∈ R
n+1 : Q(V, x) = 0

}

;

C4 ) the inequality −∞ < ∂Q(V,x)
∂V < 0 holds ∀V ∈ R+ and

∀x ∈ R
n\{0};

C5 ) for ∀t ∈ R+ and ∀(V, x) ∈ Ω;

∂Q(V, x)

∂x
f(t, x) ≤ cV 1−µ ∂Q(V, x)

∂V
where c > 0 and 0 < µ ≤ 1 are some constants, then
the origin of system (6) is globally finite-time stable with

the settling-time estimate T (x0) ≤ V µ
0

cµ , where V0 ∈ R+ :

Q(V0, x0) = 0.



The ILF method defines a Lyapunov function V for the
a system in the implicit form, for instance, as a solution
of the algebraic equation Q(V, x) = 0. Conditions C1 )-
C4 ) of Theorem 2 guarantee the properness (positive
definiteness, radial unboundedness) of the corresponding
solution. Due to the classical implicit function theorem
(see, for example, Courant and John [2000]) the partial
derivative of the Lyapunov function V can be calculated as

follows ∂V
∂x = −

[

∂Q
∂V

]−1
∂Q
∂x . Therefore, the condition C5 )

guarantees negative definiteness of the total derivative of
V and finite-time stability of the system (6).

5. CONTROL DESIGN

5.1 Finite-Time Control

Introduce the Implicit Lyapunov Function

Q(V, x) := x⊤Dµ(V
−1)PDµ(V

−1)x− 1, (7)

where Dµ(λ) is the dilation matrix of the form

Dµ(λ) = diag{λ1+(n−i)µ}ni=1, 0 < µ ≤ 1

and P ∈ R
n×n is a symmetric positive definite matrix, i.e.

P = P⊤ > 0.

The following Theorem presents the main scheme of the
ILF control design. It refines the result of Polyakov et al.
[2013] providing the precise estimate of the settling time.
Denote Hµ := diag{1 + (n− i)µ}ni=1.

Theorem 3. Let X ∈ R
n×n and y ∈ R

1×n satisfy the
following system of LMIs:
{

AX +XA⊤ + by + y⊤b⊤ +HµX +XHµ = 0,
XHµ +HµX > 0, X > 0,

(8)

for some µ ∈ (0, 1]. Then the control of the form

u(V, x) = V 1−µkDµ(V
−1)x, (9)

where k = yX−1,

V ∈ R+ : Q(V, x) = 0

and Q(V, x) is defined by (7) with P = X−1, stabilizes
the system (1) in a finite time with settling-time function
defined as follows

T (x0) =
V µ
0

µ
, (10)

where V0 ∈ R+ : Q(V0, x0) = 0.

Proof. The function Q(V, x) defined by (7) satisfies the
conditions C1 )-C3 ) of Theorem 2. Indeed, it is continu-
ously differentiable for all V ∈ R+ and ∀x ∈ R

n. Since
P > 0 then the following chain of inequalities

λmin(P )‖x‖2
max{V 1+(n−1)µ, V } ≤ Q(V, x) + 1 ≤ λmax(P )‖x‖2

min{V 1+(n−1)µ, V }
implies that for any x ∈ R

n\{0} there exist V − ∈ R+

and V + ∈ R+ : Q(V −, x) < 0 < Q(V +, x). Moreover, if
Q(V, x) = 0 then the same chain of inequalities gives

min{V 1+(n−1)µ, V }
λmax(P )

≤ ‖x‖2 ≤ max{V 1+(n−1)µ, V }
λmin(P )

.

It follows that the condition C3 ) of Theorem 2 holds.

Since
∂Q

∂V
= −V −1x⊤Dµ(V

−1)(HµP + PHµ)Dµ(V
−1)x

then (8) and P := X−1 implies HµP + PHµ > 0 and
∂Q
∂V < 0 for ∀V ∈ R+ and x ∈ R

n\{0}. So the condition
C4 ) of Theorem 2 also holds. In this case we have

∂Q

∂x
(Ax+ bu(x)) = 2x⊤Dr(V

−1)PDµ(V
−1)(Ax+ bu(x)).

Taking into account that Dr(V
−1)AD−1

r (V −1) = V −µA
and Dµ(V

−1)bu(x) = V −µbkDµ(V
−1)x we obtain

∂Q

∂x
(Ax+ bu(x)) =

V −µx⊤Dµ(V
−1)

(

P (A+ bk) + (A+ bk)⊤P
)

Dµ(V
−1)x

Therefore

dV

dt

∣

∣

∣

∣

(1)

= −
[

∂Q

∂V

]−1
∂Q

∂x
(Ax+ bu(x)) =

x⊤Dµ(V
−1)

(

P (A+ bk) + (A+ bk)⊤P
)

Dµ(V
−1)x

x⊤Dµ(V −1)(HµP + PHµ)Dµ(V −1)x
V 1−µ

=
z⊤
(

P (A+ bk) + (A+ bk)⊤P
)

z

z⊤(HµP + PHµ)z
V 1−µ = −V 1−µ

where z := z(V, x) = Dµ(V
−1)x. The last equality

implies the finite-time stability of the system (1) and the
representation (10) for the settling-time function.

The main advantage of the presented control scheme is
the LMI representation of the procedure for parameters
tuning. Any existing LMI solver can be used in order to
select the control parameters.

Proposition 4. (Polyakov et al. [2014]). The LMI system
(8) is feasible for all µ > 0.

A practical implementation of the control (9) admits a
simple realization if the initial state x(0) = x0 ∈ R

n of the
system (1) is given. Indeed, since the function Q(V0, x0)
satisfies the conditions of Theorem 2 then the equation
Q(V0, x0) = 0 has a unique positive solution V0 ∈ R+

for any given x0 ∈ R
n. The corresponding solution can

be found numerically using, for example, the simplest
bisection method.

Since the function V is a solution of (see the proof of

Theorem 3) the Cauchy problem V̇ (t) = −V 1−µ, V (0) =
V0, then it can be found analytically

V (t) = (V µ
0 − µt)

1/µ
, t ∈ [0, V µ

0 /µ]. (11)

If the linear dynamic feedback u(·) has the form (9) with
V = V (t), where V (t) is defined by (11) with V0 satisfying
the equation Q(V0, x0) = 0 for a given x0 ∈ R

n, then
the condition x(V µ

0 /µ) = 0 fulfills on the corresponding
trajectory of the closed system (1).

5.2 Suboptimal Finite-Time Control

The value T = V µ
0 /µ has to be minimized under the

constraint u(·) ∈ U , where u is defined by (9), in order
to obtain a suboptimal solution to the problem (2), (3).
Let us formulate a finite dimensional optimization problem
with the LMI constraints, which provides the required
suboptimal solution.

Corollary 5. If for some µ ∈ (0, 1], x0 ∈ R
n\{0} and

T ∈ R+ the LMI system (8) is feasible together with
(

1 x⊤
0

x0 Dµ

(

(µT )1/µ
)

XDµ

(

(µT )1/µ
)

)

≥ 0, (12)



where X ∈ R
n×n and y ∈ R

1×n, then the ILF control
(9) guarantees that the settling time function T (x0) of
the system (1) satisfies the inequality T (x0) ≤ T , where
x0 ∈ R

n is a given initial state.

Proof. Denote V0 ∈ R+ : Q(V0, x0) = 0.

The LMI (12) implies

Q((µT )1/µ, x0) =

x⊤
0 Dµ

(

1
(µT )1/µ

)

X−1Dµ

(

1
(µT )1/µ

)

x0−1 ≤ 0 = Q(V0, x0).

Since ∂Q(V,x)
∂V < 0 for any x ∈ R

n\{0} then V0 ≤ (µT )1/µ.

According to Theorem 3 we obtain T (x0) =
V µ
0

µ ≤ T.

Minimization of the parameter T ∈ R+ under the LMI
constraints (8), (12) minimizes the settling time of the
closed-loop system (1),(9). If the LMI (8) is feasible then
the settling time T (x0) can be made infinitely small if the
magnitude of the control signal is not bounded. Indeed, let
the (y0, X0) satisfies the LMI (8), then y = αy0, X = αX0

is also satisfies (8) for any α ∈ R+. Since X0 > 0 then for
any T > 0 and any x0 ∈ R

n\{0} there exists α ∈ R+ such
that the LMI (12) holds.

Corollary 6. Let for some µ ∈ (0, 1], T ∈ R+ and u0 ∈ R+

the LMI system (8), (12) is feasible together with




X y⊤

y
u2
0

(µT )
2−2µ

µ



 ≥ 0, (13)

where X ∈ R
n×n and y ∈ R

1×n. Then the ILF control (9)
is bounded by u0 along the generated trajectory x(t) of
the closed-loop system, i.e.

|u(V (t), x(t))| ≤ u0 ∀t ∈ [0, T (x0)].

Proof. Using Shur complement the LMI (13) can be

rewritten in the form (µT )
2−2µ

µ

u2
0

y⊤y ≤ X. Taking into ac-

count X = P−1 and y = kP−1 we obtain (µT )
2−2µ

µ k⊤k ≤
u2
0P and ∀x ∈ R

n\{0}, ∀V ∈ R+

(µT )
2−2µ

µ x⊤Dµ(V
−1)k⊤kDµ(V

−1)x

≤ u2
0x

⊤Dµ(V
−1)PDµ(V

−1)x.

On the one hand, since V (t) ≤ V0 for t ∈ [0, T (x0)] (see,
formula (11)) and T (x0) ≤ T then

u2(t) = V 2−2µ(t)x⊤(t)Dµ(V
−1(t))k⊤kDµ(V

−1(t))x(t)

≤ V 2−2µ
0 x⊤(t)Dµ(V

−1(t))k⊤kDµ(V
−1(t))x(t) ≤

(µT )
2−2µ

µ x⊤Dµ(V
−1(t))k⊤kDµ(V

−1(t))x.

On the other hand, since Q(V, x) = 0 then

u2
0x

⊤Dµ(V
−1)PDµ(V

−1)x = u2
0.

Therefore, u2(V (t), x(t)) ≤ u2
0 for t ∈ [0, T (x0)].

The proven corollary allows designing the ILF control
of the given maximum magnitude. If µ = 1 then the
inequality (13) becomes independent of T and the control
is globally bounded. It is important to remark that the
design procedure is again formulated in the LMI form.

For any fixed µ and T the matrix inequalities (8), (12),
(13) become LMIs, which can be easily solved using any
LMI solver (for example, SeDuMi).

Summarizing the obtained results we can formulate the
following finite dimensional optimization problem for a
fixed µ ∈ (0, 1]:

T → min
X∈Rn,y∈R1×n

subject to (8), (12), (13).
(14)

For the fixed parameter µ the presented optimization
problem can be easily solved using, for example, the
method of intervals (see, for example, Tuan et al. [1999]).
Minimization with respect to µ can be done applying
any derivative free method (for example, the function
fminsearch of MATLAB).

6. ON ROBUST DIGITAL IMPLEMENTATION OF
SUBOPTIMAL ILF CONTROL

As it was remarked above the value of the Lyapunov
function can be calculated along the trajectory as follows

V (t) = (V µ
0 − µt)

1/µ
, t ∈ [0, V µ

0 /µ]. The suboptimal
linear dynamic feedback u(·) can be defined in the form
(9) with V = V (t), where V (t) is defined by (11) and by
the equation Q(V0, x0) = 0 for a given x0 ∈ R

n. In this
case the trajectory of the closed system (1) satisfies the
condition x(V µ

0 /µ) = 0.

In practice the original system (1) has some disturbances
and uncertainties that can reduce the quality of the pre-
sented dynamic control. Therefore, some practical robus-
tification procedures are required for the suboptimal ILF
control scheme.

6.1 Sampled-time realization of the ILF control

The ideas of the sampled-time realization of the ILF
control are discussed in Polyakov et al. [2013]. They are
mainly based on two following corollaries, which can also
be proven for the ILF control defined in Theorem 3.

Corollary 7. (Polyakov et al. [2013]) Let the control
u(V, x) be defined according to Theorem 3 then the control
u0(x) = u(V0, x) is the linear stabilizing feedback control
for the system (1) for any given V0 ∈ R+.

The next corollary will help us to analyze the discrete-time
version of the developed control schemes.

Corollary 8. (Polyakov et al. [2013]) Let {ti}∞i=0 be an
arbitrary strictly increasing sequence of time instants,
0 = t0 < t1 < t2 < .... Let the function u(V, x) is defined
according to Theorem 3 then the origin of the system (1)
with the switching control

u(x) := u(Vi, x) for t ∈ [ti, ti+1), (15)

where Vi > 0 : Q(Vi, x(ti)) = 0, is asymptotically stable.

The last corollary provides that the sampled-time real-
ization of the ILF control keeps the stability property of
the closed-loop system (1) independently on the sampling
period.

Let the control u(V, x) of the form (9) be realized in
a digital device and the parameter V may change its
value at some time instants: t0 = 0, ti > 0, i = 1, 2, ....
Denote Vi := V (ti) and xi := x(ti). On the time interval
[ti, ti+1) the control has the form u(Vi, x), which is a linear
stabilizing feedback for any Vi ∈ R+ (see, Corollary 7).



The simplest scheme for selection of the switching control
parameter Vi is described by the following algorithm.

A L G O R I T H M (Polyakov et al. [2013])

INITIALIZATION:

V0 = 1; a = Vmin; b = 1;
STEP :

If xT
i Dµ(b

−1)PDµ(b
−1)xi > 1 then

a = b; b = 2b;
elseif xT

i Dµ(a
−1)PDµ(a

−1)xi < 1 then

b = a; a = max{a
2 , Vmin};

else

c = a+b
2 ;

If xT
i Dµ(c

−1)PDµ(c
−1)xi < 1 then b = c;

else a = max{Vmin, c};
endif;

endif;

Vi = b;

Remark, STEP of Algorithm 6.1 can be realized just once
in each sampled time instant.

The parameter Vmin defines lower possible value of V . In
practice, this parameter cannot be selected arbitrary small
due to finite numerical precision of digital devices.

6.2 Adaptive scheme

An adaptive scheme can also be presented for practical
implementation of ILF control.

Theorem 3 proves the following dynamic equation for the
ILF V̇ = −V 1−µ.

If this equation is calculated on-line with the initial con-
dition V (0) = V0 > 0 : x(0)TDµ(V

−1
0 )PDµ(V

−1
0 )x(0) = 1

then the corresponding trajectory x(t) of the system (1)
with the control ũ(V (t), x(t)) converges to the origin in a
finite time (see, Theorem 2 and the previous section).

In order to provide some robustness to the presented
control scheme the dynamic equation V̇ = −V 1−µ can
be modified as follows

V̇ (t) = −H[−Q(V (t), x(t))]V 1−µ(t), (16)

where H[ρ] is a Heaviside step function

H[ρ] =

{

1 for ρ ≥ 0
0 for ρ < 0.

The modified dynamic equation (16) guarantees that
the function V (t) will be decreasing only in the case
xT (t)Dr(V

−1(t))PDr(V
−1(t))x(t) ≤ 1, i.e. if s belongs

to the ellipsoidal level set of the ILF. Otherwise, V̇ = 0
and the function V (t) is constant. Since ũ(V, s) is a linear
stabilizing feedback for any fixed V > 0 then the adaptive
scheme (16) of the ILF implementation will guarantee
at least asymptotic stabilization of the system (1). For
the chattering reduction the function V (t) can also be
restricted from below by some minimal value Vmin.

The Heaviside function in the equation (16) can be re-
placed with sign[−Q(V (t), x(t)] providing additional com-
putational robustness of the digital ILF control applica-
tion. A more detailed study of the ILF control implemen-
tation goes out of the scope of this paper. It is suggested
as a topic for future research. The numerical simulations

given below demonstrate an effectiveness of the presented
simplest algorithms of ILF control implementation.

7. NUMERICAL EXAMPLE

Consider the system (1) for n = 2 under control restriction
|u| ≤ 1.

It is well known, see, for example, Chernousko et al. [2008],
that the time optimal feedback law for this case has the
discontinuous form

uopt(x1, x2) = −sign
(

x2 +
√

2|x1|sign[x1]
)

.

The continuous stabilizing feedback (9) designed following
the optimization procedure (14) for µ = 1 and x0 = (1, 0)
has the parameters

P =

(

49.6139 18.8965
18.8965 9.4482

)

, k = (−5.2511 − 3.0000).

The numerical solving of ODE for the closed-loop system
have been done by the Euler method with the fixed
step size and the discrete time application of the finite
time ILF control is realized by the scheme presented in
Algorithm 6.1. The adaptive scheme has also been verified
by numerical simulation. It provides very similar results.

The results of numerical simulations for h = 0.001 and
for Vmin = 0.001 are shown on Fig. 1. It was expectable
that the optimal controller provides the faster transition.
However, if the control will be applied with larger sampling
period, which frequently takes a place in real applications,
then the situation is changing. Fig. 2 depicts the simulation
results for h = 0.05 and Vmin = 0.05. Such defect of the
optimal controller is known as ”chattering phenomenon”
(see, Utkin et al. [2009]), which appears in time-optimal
solutions realized by sliding mode control feedbacks (Din-
uzzo and Ferrara [2009]).

8. CONCLUSIONS

In the paper a new suboptimal control algorithm is pre-
sented. It has the following advantages:

• The control design algorithm is based on solving of
SDP with LMI constrains.

• The suboptimal control algorithm admits several
schemes for robust practical realization: time-varying
linear feedback, linear switching feedback and adap-
tive linear feedback.

and the following disadvantages:

• the algorithm is applicable only for digital controllers;
• the robust practical realization of the developed
finite-time control scheme asks for additional com-
putational power of the digital control device, which
is required for on-line computation of the ILF value
at the current state.
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