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Abstract

A simple approach to learning invariances in image clas-

sification consists in augmenting the training set with trans-

formed versions of the original images. However, given

a large set of possible transformations, selecting a com-

pact subset is challenging. Indeed, all transformations are

not equally informative and adding uninformative transfor-

mations increases training time with no gain in accuracy.

We propose a principled algorithm – Image Transformation

Pursuit (ITP) – for the automatic selection of a compact set

of transformations. ITP works in a greedy fashion, by se-

lecting at each iteration the one that yields the highest ac-

curacy gain. ITP also allows to efficiently explore complex

transformations, that combine basic transformations. We

report results on two public benchmarks: the CUB dataset

of bird images and the ImageNet 2010 challenge. Using

Fisher Vector representations, we achieve an improvement

from 28.2% to 45.2% in top-1 accuracy on CUB, and an im-

provement from 70.1% to 74.9% in top-5 accuracy on Im-

ageNet. We also show significant improvements for deep

convnet features: from 47.3% to 55.4% on CUB and from

77.9% to 81.4% on ImageNet.

1. Introduction

The focus of this work is image classification. This is a

very challenging problem because objects of the same class

may exhibit large variations in appearance. Such intra-class

variations fall into two categories. The intrinsic variability

corresponds to the fact that two instances of the same ob-

ject class can be visually different, even when viewed under

similar conditions (e.g. different zebras have different pat-

terns). The extrinsic variability refers to those differences in

appearance that are not specific to the object class (e.g. dif-

ferent viewpoints, lighting conditions, image compression).

To learn invariance, the classification system should be

trained with as many variations of the considered objects

as possible. We use here the term “invariant” in a loose

manner, implying that a learning system is invariant if, for
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Figure 1: Illustrations of image transformations, on simple

icons and on an image from the CUB dataset.

a given object, the predicted label remains unchanged for

all possible variations of images of the class. Following

the taxonomy of [5], there are three approaches to building

invariant learning systems from finite training sets: (i) gen-

erating virtual examples by applying transformations to the

original samples to account for the variations that are ex-

pected at test time [15, 9, 10, 27, 14]; (ii) designing a fea-

ture representation which is inherently invariant to the vari-

ations to be expected [29]; (iii) embedding the invariance

in the structure of the learning system, a popular example

being convolutional nets [3, 28]. Examples of (ii) include

invariant kernels for support vector machines [26] but are

limited to invariance to transformations satisfying a partic-

ular Lie group structure. On the other hand, examples of

(iii) usually correspond to learning architectures intended

to mimic biological visual systems [3] that exhibit attrac-

tive invariance properties; it remains unclear however how

to reverse-engineer such architectures to build in relevant

invariances for a particular task.

We propose here to explore virtual example generation

(option (i)), by explicitly generating virtual examples at

training and at test time. While it might be difficult to

generate virtual samples that reflect intrinsic class varia-

tions (except for specific object classes such as pedestri-

ans [20, 22]), it is possible to generate virtual samples that

simulate extrinsic variations by applying simple geometric
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and colorimetric transformations. In this work, we focus on

such transformations, as they have been shown to increase

classification accuracy, especially on simple tasks such as

digit recognition [15, 9, 10, 34], and, more recently, on Im-

ageNet [14].

We believe that the selection of an effective set of trans-

formations is essential for the success of the approach. In-

deed, transformations that are too conservative (e.g. remov-

ing the first column of pixels) have little if any impact,

whereas they come with significant computational overhead

both at training and testing time. On the other hand, trans-

formations that are too extreme (e.g. a vertical flip) will lead

to unlikely images and may decrease classification accu-

racy. We are not aware of any approach to selecting a set

of transformations except manually by trial and error. This

might be acceptable when the number of possible transfor-

mations is limited, for instance when dealing with small

(e.g. 256 pixels) black-and-white images of digits. How-

ever, such a manual selection process is not applicable when

there is a large number of possible transformations, a must

when dealing with realistic datasets. In this work, for in-

stance, we consider 40 simple transformations as well as

their combinations which results in >1,000 possible trans-

formations.

We propose a principled approach for selecting a set

of transformations, termed Image Transformation Pur-

suit (ITP). ITP computes a set of optimal transformations

from a large “dictionary” of transformations (see Fig. 1),

by iteratively and greedily selecting one transformation at

a time. ITP is reminiscent of pursuit algorithms such as

matching pursuit or basis pursuit [19], which compute a sig-

nal approximation from a dictionary by iteratively selecting

one atomic element at a time from the dictionary. Further-

more, ITP also allows to efficiently explore the set of sec-

ond order transformations (e.g. crop+flip), that correspond

to combinations of basic first order transformations.

We report results for ITP on two public benchmarks: the

CUB dataset of Birds and the ImageNet 2010 challenge. On

both datasets we report significant improvements for Fisher

as well as deep convnet features. One important conclusion

of our work is that it is crucial to apply transformations both

at training and test time for best performance.

2. Related Work

We focus our literature review on those works which

augment the training (and possibly test) set(s) by adding

“virtual examples”. This is a well-known approach to en-

forcing robustness of a learning system to variations of the

input. For image classification and related problems, there

are two ways to apply this approach, either by applying a

transformation directly on the descriptor, or by applying a

transformation on the image and then computing a visual

descriptor.

Virtual examples. The first strategy, equivalent to noise

injection, is itself equivalent in many cases to enforcing

a particular regularization functional. In particular, gener-

ating virtual examples by adding Gaussian noise directly

on the training examples is equivalent to ℓ2-regularization

for quadratic loss functions [4]; see [1, 30, 21, 31, 7, 18]

for more general equivalence results including drop-out

noise [14, 33]. While the noise injection strategy is simple

to implement, it can be difficult to interpret from a computer

vision point of view. Indeed, the virtual image correspond-

ing to the noise-corrupted visual descriptor is intractable for

several noise distributions, and as a consequence the choice

of relevant noise distributions is unclear.

Virtual images. The second strategy works directly at the

image level. For instance, [15, 10, 14] generate virtual im-

ages from the original ones using plausible transformations

such as crop and flip. In contrast to the virtual examples

strategy, this strategy is more intuitive and easier to inter-

pret, as one can consider realistic transformations. Yet, gen-

erating virtual images and extracting their features is signif-

icantly more expensive than adding noise directly on the

features. An exception is the digit recognition task, where

computing elastic deformation fields can be performed in

an elegant and computationally efficient manner [16]. Our

ITP approach applies the virtual images strategy by greedily

selecting a limited number of transformations from a large

dictionary, hence boosting performance without compro-

mising scalability. Furthermore, it requires potentially no

prior knowledge, as it can work with arbitrarily large sets of

transformations.

Finally, it is worth mentioning that most previous works

only perform transformations on the training set [15, 10,

14]. A few approaches also considered transforming the

test images [9, 14]. Our approach can benefit from virtual

examples both at training and at testing time.

3. Learning with transformations

We first describe the families of transformations that we

apply to the training and test images (Section 3.1). We then

explain the proposed Image Transformation Pursuit (ITP)

algorithm (Section 3.2). We finally discuss the score aggre-

gation stage when transformed images are generated at test

time (Section 3.3).

3.1. Image transformations

We considered 7 families of transformations (for a total

for 40 possible transformations) as well as their combina-

tions.

Flip. This transformation horizontally mirrors an image. It

encodes the natural symmetry of most scenes and objects

(digits are an exception). Many approaches use flipping to

increase their training set size without prior knowledge, see

for instance [14, 12].
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Figure 2: Four of the eight homographies we use.

Crop. We consider the restriction of an image to a specific

sub-window. We use 10 different crops, defined relatively to

the image size. Prior to training/testing, we randomly draw

10 sub-windows (x0, y0, x1, y1) with (x0, y0) ∈ [0, 0.25]2

and (x1, y1) ∈ [0.75, 1]2.

Homography. To model viewpoint changes, we consider

homographic transformations of the initial images. We re-

strict ourselves to horizontal and vertical pannings, and se-

lect 8 homographies (see Fig. 2).

Scale. We scale down images using bilinear interpolation.

We consider 5 downscaling factors, respectively
(√

1.5
)n

with n ∈ {1, . . . , 5}.

Colorimetry. We consider colorimetric transformations.

Similarly to [14], we compute the covariance matrix of

the RGB components on the whole dataset. Denoting

λ1, λ2, λ3 and p1, p2, p3 respectively its eigen-values and

-vectors, we add to each pixel p ∈ [0, 255]3 a quantity

ε1λ1p1 + ε2λ2p2 + ε3λ3p3. We generate three different

random triplets (ε1, ε2, ε3) sampled from a normal distribu-

tion N (0; 0.1).
JPEG Compression. Despite being designed to minimize

the change observable by a human, JPEG compression can

have a dramatic effect on local descriptors. To account for

variations in image encoding, we consider three different

levels of JPEG compression: 30, 50 and 70.

Rotation. To be robust to camera orientation, we rotate

images around their centers. We consider 10 rotations of

{−15,−12, . . . ,−3,+3, . . . ,+12,+15} degrees.

Order-K Transformations. By order-K transformations,

we denote all compositions of K of the previously defined

transformations (e.g. for K = 2, crop+flip or crop+JPEG).

3.2. Image Transformation Pursuit (ITP)

In this section we assume that transformations are only

generated on the set of training images D = {x1, . . . , xn}.

Let T = {T1, . . . , T|T|} denote the set of |T| possible trans-

formations. For simplicity, T1 denotes the identity. Let us

associate with each transformation Tk a binary variable bk
indicating whether Tk(D) should be added to the original

training set T1(D) (i.e. by default b1 = 1). The augmented

training set is:

Da =

|T|
⋃

k=0
s.t. bk=1

Tk(D). (1)

Our goal is to find the binary vector b = [b1 . . . b|T|] such

that training with Da yields the best possible accuracy on

the test set. Because the number of possible combinations

of transformations is exponential in |T|, it is impossible

to exhaustively test all combinations. We now propose a

tractable alternative.

Algorithm. Our transformation selection algorithm, called

ITP, relies on a greedy search strategy in the space T. We

start with the identity transformation T1, i.e. with original

images. We then maintain a set of current transformations

and monitor the gain on validation accuracy obtained by

adding a new transformation. For each candidate transfor-

mation T , we train a classifier on a subset Da

train of Da,

to which we add T (Dtrain). Each classifier is tested on

the remaining part Da

val ∪ T (Dval); we use average predic-

tion at test time on the transformed data, as in section 3.3.

The transformation that yields the best validation accuracy

is selected. The process is then iterated with the remaining

transformations. The algorithm stops after selecting a fixed

number of transformations T ≤ |T|, or when the gain in val-

idation accuracy obtained by adding a new transformation

drops below a threshold; see Alg. 1.

Algorithm 1 Image Transformation Pursuit (ITP)

INPUTS: Dataset D. Set T of base transformations. Thresh-

old ∆ or number T of transformations.

INITIALIZATION: S = {T1}.

While |S| ≤ T and perf. gain higher than ∆ do

• split D into Dtrain and Dval.

• For T ∈ T, T 6∈ S do

– Let S+ = S ∪ {T }.

– train on S+(Dtrain)
– compute perf. PT on S+(Dval).

• S = S ∪ {argmaxT PT }.

OUTPUT: S

Selecting Order-K Transformations. By order-K trans-

formations, we mean those transformations that combine K

base-level transformations. To select among the increas-

ingly larger amount of order-K transformations, we pro-

pose two sub-optimal methods derived from our ITP algo-

rithm. Both rely on the idea that if some transformations are

beneficial to classification, their composition is also likely

to be.

The first alternative, which we call K-ITP, starts by run-

ning (K− 1)-ITP until convergence of the validation ac-

curacy, or until a fixed number of transformations is cho-

sen. Then, it generates all compositions of order K from

the returned transformations, and continues appending them

greedily in the same fashion as before.

The second alternative, which we call K-ITP-Scratch or
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K-ITP-S, starts as before by generating the set S of order-

K − 1 transformations by running (K−1)-ITP-S (1-ITP-S

equals ITP). The set S′ of all order-K transformations is

obtained by combining elements of S. A ITP procedure

is then started from scratch, drawing transformations from

S ∪ S′.

Implementation Details. We consider linear SVM classi-

fiers trained with Stochastic Gradient Descent (SGD) [6, 2].

At each main iteration of ITP, we determine the gain offered

by a specific transformation at a low cost using the follow-

ing strategy. Indeed, at iteration k (i.e. k transformations

are already selected), a classifier wk is learned using SGD

on half of the training set augmented with these k trans-

formations. For each (k+1)-th candidate transformation, an

SGD is run using wk as a warm start and few epochs. We

determine the initial learning rate η0 following the heuris-

tic given in [6]. We also cross-validate the λ regularization

parameter using values around the best parameter selected

at the previous main iteration. In our experiments, however,

this optimal value never changed across the main iterations.

Ranking Alternative. We also propose a simple one-step

alternative to ITP which we refer to as Transformation

Ranking or TR. As is the case for ITP, we start with the

original samples and quantify the gain that we would get by

adding the |T| possible transformations. We rank the trans-

formations based on this gain and select the top T ≤ |T|
transformations. Note that in this setting, the redundancy

between the transformations is not taken into account (only

the gain with respect to the original images).

3.3. Score aggregation

Virtual samples can also be generated for test images.

In this case, we need to compute for each transformed test

sample a score and to aggregate these scores. We now dis-

cuss possible alternatives for aggregation.

Averaging. We use the scores of all virtual examples as in-

dependent measures and average them to get a consensus

similarly to [14]. Denoting by s
(k)
t the score given by the

classifier for class k to the t-th transformation (t ≤ T ), we

define: s
(k)
avg :=

∑

T

t=1 s
(k)
t .

Maximum. We use the transformation that yields the best

score: s
(k)
max := maxt s

(k)
t . It returns the prediction for

which the classifier is the most confident.

Softmax Aggregation. The previous maximum scheme

can suffer from the presence of outliers, while the averaging

takes into account transformations with low confidence. A

soft-max strategy s
(k)
smax := log

∑

T

t=1 exp s
(k)
t , provides an

intermediate solution.

4. Experiments

We first describe the datasets and experimental set-up.

We, then, study the impact of different design choices on the

ITP algorithm. We also quantitatively compare the ITP, K-

ITP, K-ITP-S and TR algorithms and several baselines. Fi-

nally, we compare our method against the state-of-the-art on

large-scale and fine-grained image classification datasets.

4.1. Datasets and experimental setup

We report results on two challenging benchmarks.

CUB. The Caltech-UCSB-Birds-200-2011 dataset [32] is a

fine-grained classification benchmark consisting of 200 bird

species and approximately 12,000 images. We use the pro-

vided training/test split: there are approximately 30 images

per class at both training and test time. The standard metric

on CUB is top-1 accuracy.

ILSVRC 2010. The 2010 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC 2010) dataset consists of

1,000 classes from the ImageNet dataset1. It is split into

1.2M images for training, 50K for validation and 150K for

test. Following common practice, we report top-5 accuracy.

As it is expensive to run the transformation selection on the

full training set, we define a subset comprising 30 images

per class (30,000 images in total). In the following, we call

this subset ILSVRC-30. Except when conducting experi-

ments on the full ILSVRC dataset, we report results on the

validation set.

The experimental set-up is as follows.

Image descriptors. We extract SIFT [17] and color [8] de-

scriptors on a dense grid at multiple scales. Their dimen-

sionality is reduced to 61 dimensions using PCA. Follow-

ing [25], we append the patch location (x, y) and scale σ to

the patch descriptors thus resulting in 64-dim descriptors.

This strategy can lead to results on par with spatial pyra-

mids at a lower cost [25].

To aggregate the per-patch descriptors, we use Fisher

Vectors (FV) with 256 Gaussians, thus leading to 32K-dim

representations. We then use PQ compression [13] which

was shown to yield an almost-negligible loss of perfor-

mance in large-scale classification [24]. We use their set-

ting and subdivide the FV into sub-vectors of 8 dimensions

and assign 8 bits per sub-vector (1 bit per dimension on av-

erage).

SGD training. The SGD learning algorithm has three

hyper-parameters [2] which we cross-validate: the regular-

ization λ, the imbalance between positives and negatives β

and the number of SGD epochs. At each ITP iteration, we

evaluate the gain on validation accuracy after a warm start

with 1 epoch on CUB and 2 epochs on ILSVRC10-30. We

found these values to give satisfying results during our pre-

liminary experiments.

Fusion of SIFT and color. Finally, confidence scores ob-

tained independently from SIFT FV and Color FV are sim-

ply averaged to get the final prediction (denoted as “fusion”

1http://www.image-net.org/challenges/LSVRC/

2010/index
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Train on T

Train on 1 Test on 1

Train on 1 Test on T

Test on 1Train on T

Test on T

Figure 3: Illustration of the different training and test strate-

gies. Both training and test can be done either on the origi-

nal single image or on the set of all transformed images.

#transformations CUB ILSVRC-30

#train #test SIFT color fusion SIFT color fusion

1 1 16.5 23.5 28.2 34.1 28.9 40.4

1 T 17.8 24.9 28.8 36.2 30.6 42.5

T 1 20.0 26.4 31.9 38.7 31.5 44.4

T T 27.4 35.6 42.0 42.3 37.1 48.7

Table 1: Comparison of different training and test scenarios

for T = 6, i.e. T − 1 corresponds to the number of trans-

formations used for training and test. Score aggregation is

performed by averaging.

in the following).

4.2. Impact of score aggregation

We assume that, after the selection pass, we have T − 1
transformations per image, in addition to the original one,

so that each image has T representatives. We investigate the

following scenarios (Fig 3).

• Train 1/ Test 1: training and test are done only on the

original images (baseline).

• Train T / Test 1: training is performed using the origi-

nal as well as the transformed images, and test is done

on original test images.

• Train 1/ Test T : test is done on the transformed images,

and their scores are averaged, while training is done on

the original images.

• Train T / Test T : training and test are done on the trans-

formed images.

Table 1 shows that the “Train T / Test T ” scheme outper-

forms by far the other ones. This demonstrates the impor-

tance of applying transformations at both training and test

time. In what follows, we use this scheme for all experi-

ments unless stated otherwise.

Score aggregation scheme. We compare the different

score aggregation schemes (Section 3.3) and provide results

in Table 2. We observe that all schemes yield similar results.

We therefore decide to use the simple average in the rest of

the experiments.

4.3. Transformation selection experiments

We now evaluate ITP. At each iteration, the algorithm

evaluates the gain in accuracy obtained for each candidate

Aggregation CUB (top-1) ILSVRC-30 (top-5)

scheme SIFT color fusion SIFT color fusion

average 27.4 35.6 42.0 42.3 37.1 48.7

max 26.2 34.3 41.0 42.1 36.8 48.9

soft-max 27.4 35.1 42.1 42.6 37.3 49.2

Table 2: Comparison of score aggregation schemes.
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Figure 4: Evolution of the validation and test accuracy with

respect to ITP iterations on CUB (left) and ILSVRC-30

(right).

transformation independently on a held-out validation set.

We plot the evolution of this validation score across iter-

ations for the selected transformations, along with the ac-

curacy computed on the full test set, in Fig. 4. The val-

idation accuracy, although computed on a smaller set and

without waiting for the SGD to converge, is varying consis-

tently with the full test accuracy in our experiments. This

validates empirically the core of our algorithm.

Next, we compare ITP to several other selection strate-

gies. We first consider the choice of just adding the ’flip’

transformation, a rather common practice [14, 12]. The sec-

ond choice to which we compare is a random selection of

transformations. This is to ensure that we do not get a simi-

lar increase in accuracy with any subset of transformations.

Finally, we compare with the TR variant of our algorithm,

which is a cheaper version of ITP (Section 3.2). Results are

presented in Fig. 5 and 6. As can be observed, the selection

obtained by ITP significantly outperforms the first two base-

lines (flip and random). ITP itself performs at least on par

with the TR variant, and sometimes significantly better (see

SIFT FVs on CUB or color FVs on ILSVRC-30). Overall,

both algorithms yield improvements and ITP outperforms

TR: for the fusion results, ITP and TR yield a relative im-

provement of +49% and +41% respectively on CUB, and

+21% and +19% on ILSVRC-30.

Fig. 7 (left) shows the first five transformations selected

by ITP. We can see that crops are the most frequently se-

lected transformations. We stack in Fig. 7 (right) the se-

lected crops on the CUB dataset, thus leading to a saliency

map. They clearly focus on the center of the image. One

might argue from this observation that, by applying crops

at training and test time, we are just learning a prior on the

object location (i.e. a saliency map). To test this hypothe-

sis, we perform the following experiment: for each train-
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Figure 5: Accuracy on CUB after adding up to five transfor-

mations with ITP, with random selection (5 trials averaged),

or with just flip in addition to the original images (T1).
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Figure 6: Evolution of the test accuracy on CUB (left) and

ILSVRC-30 (right) as a function of the number of transfor-

mations selected by ITP, or its cheaper TR variant.

CUB CUB ILSVRC-30 ILSVRC-30

SIFT Color SIFT Color

1 crop5 crop1 flip crop2

2 flip crop5 crop0 color1

3 crop1 crop6 homo2 flip

4 crop6 crop8 crop6 crop1

5 crop0 scale0 crop1 color0

Figure 7: First five selected transformations by ITP (left);

overlaying the different crops selected by 2-ITP-S for the

SIFT channel (right).

ing and test image, we extract local descriptors from all its

transformed versions and aggregate them in a single FV.

The patches which are present in multiple croppings are,

therefore, weighted more than patches which occur in few

or no crops. This is equivalent to weighting patches with

the saliency map [25]. On CUB (resp. ILSVRC-30), for

SIFT+color we get 35.9% (resp. 44.6%) which is a signifi-

cant improvement over the 28.2% (resp. 40.4%) baseline –

see Table 1. Yet, this is only half of the improvement that

we get with ITP (resp. 42.0% and 48.7%). This result con-

firms that our approach is not merely learning a prior on the

object location, but also invariances.

4.4. Transformations of order 2

We refine our selection strategy by incorporating trans-

formations of order 2, i.e., transformations of transforma-

tions (e.g. combining flip and crop). Because the number

of such combinations is huge (> 1,000), we adopt the strat-

egy described in Section 3.2. For both variants K-ITP and

Method SIFT color fusion

ITP (T = 5) 27.4 35.6 42.0

2-ITP (T = 10) 32.2 37.7 45.8

2-ITP-S (T = 5) 31.8 37.7 45.2

Table 3: Comparison of ITP and 2-ITP on CUB.

K-ITP-S, we select the T −1 = 5 transformations during

a first pass of order-1 ITP. We, then, generate all possible

combinations of order-2 transformations from these. For

2-ITP, we continue the greedy selection for 5 additional it-

erations (i.e. in total, we will select T −1 = 10 transfor-

mations) while for 2-ITP-S we select in total 5 transforma-

tions, restarting from scratch with a dictionary of transfor-

mations combining the 5 previously selected order-1 trans-

formations with their combinations.

Results for 2-ITP and 2-ITP-S are given in Table 3 for

CUB and in Table 6 for ILSVRC. Interestingly, we ob-

serve an improvement of the performance, compared to us-

ing only order-1 transformations. For instance, +3.5% on

CUB and +1.1% on ILSVRC-30 for 2-ITP-S. Note that

the difference in performance is marginal between the two

variants, while 2-ITP is significantly more computationally

costly than 2-ITP-S—the cost of adding a new transforma-

tion grows quadratically with the number of selections. Ta-

ble 4 shows that 2-ITP-S selects more order-2 than order-1

transformations, showing the interest of using higher order

transformations. See Fig. 9 for examples.

CUB CUB ILSVRC-30 ILSVRC-30

SIFT Color SIFT Color

1 crop5×flip crop5× crop8 flip×crop0 color1

2 crop1×crop0 crop1×crop8 crop6 color1× crop1

3 crop5× crop1 crop1× scale0 flip flip× color0

4 flip× crop6 crop1×crop5 homo2 crop2×color0

5 crop1× crop6 crop5 flip×crop1 crop2×flip

Table 4: Transformations selected by 2-ITP-S.

4.5. Total training time vs. target accuracy

We plot the test accuracy as a function of the number

of iterations performed by the SGD in Fig. 8 (one SGD it-

eration corresponds to processing a single training image).

Interestingly, we observe that the learning process is faster

for higher numbers of transformations T . To better exhibit

this phenomenon, we show in Table 5 the number of train-

ing samples that the SGD algorithm has to process to reach

a certain accuracy on the test set. It can be observed that it

takes less time to reach a certain accuracy when T is larger

(i.e. in spite of a larger training set). For instance, on CUB,

reaching a 35% accuracy is achieved for T = 5 transfor-

mations after examining about 2 times less training samples

than for T = 2. Similarly, on ILSVRC-30, reaching an ac-

curacy of 45% is achieved about 3 times faster for T = 5
than for T = 2—it corresponds to 35 epochs for T = 2
and only 5 epochs for T = 5. This is an interesting find-
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Figure 8: Test accuracy as a function of the number of SGD

iterations on CUB (left) and ILSVRC-30 (right), with SIFT.

CUB - Top-1 acc target

T 25% 30% 35% 40%

1 42 X X X

2 29 48 121 X

3 31 41 79 250

5 33 44 66 141

ILSVRC-30 - Top-5 acc target

T 35% 40% 45% 48%

1 129 683 X X

2 165 344 2104 X

3 215 307 886 7200

5 213 298 782 3508

Table 5: Number of training samples (in thousands) that the

SGD has to process to reach a given accuracy on the test

set, for a varying number of transformations T (here, after

fusion). The ’X’ sign means that the target accuracy cannot

be reached at all.

ing towards reducing the training time on large-scale image

classification tasks.

4.6. Comparison to state of the art

CUB. In [23], the authors report results with a similar

pipeline. Using Fisher Vectors with 256 Gaussians, their

baseline yields 28.2% accuracy on the full images, and

31.0% after cropping the images to 90% (value optimized

on the validation set). Note that despite using slightly dif-

ferent descriptors, we obtain the same baseline as they do

(28.2%). Our best results on CUB (using 5 order-2 trans-

formations) are significantly higher (45.2%). Our method

even outperforms their scheme when they use bounding box

annotations for training (42.2% with DPM and 41.9% with

their data-driven approach).

ILSVRC 2010. As it is computationally expensive to apply

ITP on the full ILSVRC dataset, we instead use the same

transformations as those selected on ILSVRC-30. With this

set, we learn a classifier using all images of ILSVRC 2010.

We experiment only with ITP and 2-ITP-S, as 2-ITP re-

quires to replicate the dataset two times more than 2-ITP-S,

which takes too much memory. We report the top-5 accu-

racy on the test set in Table 6 (right). We improve over

our baseline from 70.1% to 74.9% in top-5 accuracy. On

the color channel, the improvement is even larger (+7%).

In comparison, the winning team of the challenge, NEC-

UIUC-Rutgers, achieved 71.8%.

We slightly outperform results in [24], i.e. 74.3% accu-

racy. Note, that we only use 32K-dim descriptors, while

they used 524K-dim descriptors. Recently, [14] reports an

83.0% accuracy, but with a different classification frame-

work (deep learning); see next paragraph for a comparison

with their features.

Deep convolutional features. We investigate the effect of

ITP on the DeCAF features [11], to show (i) that our ap-

proach can significantly improve over features with built-in

invariance properties and (ii) that the choice of transforma-

tions heavily depends on the features. These features con-

sist of the output of the seventh layer of a deep convolutional

network, trained on the images of the ImageNet 2012 chal-

lenge. We use the publicly available implementation2. We

run an ITP pipeline to select five order-one transformations.

On CUB flip, crop5, crop8, rot-12◦ and rot9◦ were selected.

On ILSVRC 2010 flip, crop7, rot3◦, jpg70% and scale50%

were selected. On CUB, accuracy increases from 47.3% to

55.4% (+8.1), and from 77.9% to 81.4% (+3.5) on ILSVRC

2010. Note that DeCAF features are learned on the images

from the 2012 challenge, which only presents a partial over-

lap with the 2010 one. On CUB, for fair comparison with

the Fisher experiments, our results were conducted on the

full images, with no prior knowledge on the bounding box,

and therefore are lower than [11].

ILSVRC-30 ILSVRC Full

SIFT Color Fusion SIFT Color Fusion

Original 34.1 28.9 40.4 64.6 57.5 70.1

ITP 41.8 37.1 48.4 68.7 64.5 74.8

2-ITP-S 42.6 38.3 49.5 69.2 64.5 74.9

Table 6: Top-5 accuracy for ILSVRC10. (Left) Training

with 30 images per class and testing on the validation set.

(Right) Training with the full training set and results on the

test set.

5. Conclusion

The proposed Image Transformation Pursuit (ITP) algo-

rithm allows to efficiently select a set of informative trans-

formations while at the same time keeping a moderate train-

ing cost. Furthermore, it gracefully handles complex 2nd

order transformations that combine basic transformations.

ITP achieves significant improvements in terms of classifi-

cation accuracy on both the CUB and the ImageNet 2010

challenge dataset, with only a handful of transformations,

both for Fisher-vector and convnet DeCAF features. An-

other conclusion of our work is that transforming test im-

ages and aggregating the corresponding scores is comple-

mentary to training set augmentation and leads to significant

performance gains.
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original flip×crop0 crop6 homo2 flip×crop1 color1×crop1 crop2×color0 crop2×flip

Figure 9: Examples of transformed images on ILSVRC10 (transformations selected by 2-ITP-S, see Table 4).
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