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Transformation Pursuit for Image Classification

Mattis Paulin '*  Jérome Revaud'*

! Inria

Abstract

A simple approach to learning invariances in image clas-
sification consists in augmenting the training set with trans-
formed versions of the original images. However, given
a large set of possible transformations, selecting a com-
pact subset is challenging. Indeed, all transformations are
not equally informative and adding uninformative transfor-
mations increases training time with no gain in accuracy.
We propose a principled algorithm — Image Transformation
Pursuit (ITP) — for the automatic selection of a compact set
of transformations. ITP works in a greedy fashion, by se-
lecting at each iteration the one that yields the highest ac-
curacy gain. ITP also allows to efficiently explore complex
transformations, that combine basic transformations. We
report results on two public benchmarks: the CUB dataset
of bird images and the ImageNet 2010 challenge. Using
Fisher Vector representations, we achieve an improvement
from 28.2% to 45.2% in top-1 accuracy on CUB, and an im-
provement from 70.1% to 74.9% in top-5 accuracy on Im-
ageNet. We also show significant improvements for deep
convnet features: from 47.3% to 55.4% on CUB and from
77.9% to 81.4% on ImageNet.

1. Introduction

The focus of this work is image classification. This is a
very challenging problem because objects of the same class
may exhibit large variations in appearance. Such intra-class
variations fall into two categories. The intrinsic variability
corresponds to the fact that two instances of the same ob-
ject class can be visually different, even when viewed under
similar conditions (e.g. different zebras have different pat-
terns). The extrinsic variability refers to those differences in
appearance that are not specific to the object class (e.g. dif-
ferent viewpoints, lighting conditions, image compression).

To learn invariance, the classification system should be
trained with as many variations of the considered objects
as possible. We use here the term “invariant” in a loose
manner, implying that a learning system is invariant if, for
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Figure 1: Illustrations of image transformations, on simple
icons and on an image from the CUB dataset.

a given object, the predicted label remains unchanged for
all possible variations of images of the class. Following
the taxonomy of [3]], there are three approaches to building
invariant learning systems from finite training sets: (i) gen-
erating virtual examples by applying transformations to the
original samples to account for the variations that are ex-
pected at test time [15} 9] [14]); (ii) designing a fea-
ture representation which is inherently invariant to the vari-
ations to be expected [29]; (iii) embedding the invariance
in the structure of the learning system, a popular example
being convolutional nets [3| 28]. Examples of (ii) include
invariant kernels for support vector machines [26]] but are
limited to invariance to transformations satisfying a partic-
ular Lie group structure. On the other hand, examples of
(iii) usually correspond to learning architectures intended
to mimic biological visual systems [3]] that exhibit attrac-
tive invariance properties; it remains unclear however how
to reverse-engineer such architectures to build in relevant
invariances for a particular task.

We propose here to explore virtual example generation
(option (i)), by explicitly generating virtual examples at
training and at test time. While it might be difficult to
generate virtual samples that reflect intrinsic class varia-
tions (except for specific object classes such as pedestri-
ans [22])), it is possible to generate virtual samples that
simulate extrinsic variations by applying simple geometric



and colorimetric transformations. In this work, we focus on
such transformations, as they have been shown to increase
classification accuracy, especially on simple tasks such as
digit recognition [15} 9} 110, 34], and, more recently, on Im-
ageNet [14].

We believe that the selection of an effective set of trans-
formations is essential for the success of the approach. In-
deed, transformations that are too conservative (e.g. remov-
ing the first column of pixels) have little if any impact,
whereas they come with significant computational overhead
both at training and testing time. On the other hand, trans-
formations that are too extreme (e.g. a vertical flip) will lead
to unlikely images and may decrease classification accu-
racy. We are not aware of any approach to selecting a set
of transformations except manually by trial and error. This
might be acceptable when the number of possible transfor-
mations is limited, for instance when dealing with small
(e.g. 256 pixels) black-and-white images of digits. How-
ever, such a manual selection process is not applicable when
there is a large number of possible transformations, a must
when dealing with realistic datasets. In this work, for in-
stance, we consider 40 simple transformations as well as
their combinations which results in >1,000 possible trans-
formations.

We propose a principled approach for selecting a set
of transformations, termed Image Transformation Pur-
suit (ITP). ITP computes a set of optimal transformations
from a large “dictionary” of transformations (see Fig. [I)),
by iteratively and greedily selecting one transformation at
a time. ITP is reminiscent of pursuit algorithms such as
matching pursuit or basis pursuit [19]], which compute a sig-
nal approximation from a dictionary by iteratively selecting
one atomic element at a time from the dictionary. Further-
more, ITP also allows to efficiently explore the set of sec-
ond order transformations (e.g. crop+lip), that correspond
to combinations of basic first order transformations.

We report results for ITP on two public benchmarks: the
CUB dataset of Birds and the ImageNet 2010 challenge. On
both datasets we report significant improvements for Fisher
as well as deep convnet features. One important conclusion
of our work is that it is crucial to apply transformations both
at training and test time for best performance.

2. Related Work

We focus our literature review on those works which
augment the training (and possibly test) set(s) by adding
“virtual examples”. This is a well-known approach to en-
forcing robustness of a learning system to variations of the
input. For image classification and related problems, there
are two ways to apply this approach, either by applying a
transformation directly on the descriptor, or by applying a
transformation on the image and then computing a visual
descriptor.

Virtual examples. The first strategy, equivalent to noise
injection, is itself equivalent in many cases to enforcing
a particular regularization functional. In particular, gener-
ating virtual examples by adding Gaussian noise directly
on the training examples is equivalent to /o-regularization
for quadratic loss functions [4]]; see [} 30} 21} 311 [7, [18]]
for more general equivalence results including drop-out
noise [14}|33]. While the noise injection strategy is simple
to implement, it can be difficult to interpret from a computer
vision point of view. Indeed, the virtual image correspond-
ing to the noise-corrupted visual descriptor is intractable for
several noise distributions, and as a consequence the choice
of relevant noise distributions is unclear.

Virtual images. The second strategy works directly at the
image level. For instance, [15, 10, [14] generate virtual im-
ages from the original ones using plausible transformations
such as crop and flip. In contrast to the virtual examples
strategy, this strategy is more intuitive and easier to inter-
pret, as one can consider realistic transformations. Yet, gen-
erating virtual images and extracting their features is signif-
icantly more expensive than adding noise directly on the
features. An exception is the digit recognition task, where
computing elastic deformation fields can be performed in
an elegant and computationally efficient manner [16]. Our
ITP approach applies the virtual images strategy by greedily
selecting a limited number of transformations from a large
dictionary, hence boosting performance without compro-
mising scalability. Furthermore, it requires potentially no
prior knowledge, as it can work with arbitrarily large sets of
transformations.

Finally, it is worth mentioning that most previous works
only perform transformations on the training set [[15} [10,
14]. A few approaches also considered transforming the
test images [9, [14]. Our approach can benefit from virtual
examples both at training and at testing time.

3. Learning with transformations

We first describe the families of transformations that we
apply to the training and test images (Section[3.1)). We then
explain the proposed Image Transformation Pursuit (ITP)
algorithm (Section[3.2). We finally discuss the score aggre-
gation stage when transformed images are generated at test
time (Section[3.3).

3.1. Image transformations

We considered 7 families of transformations (for a total

for 40 possible transformations) as well as their combina-
tions.
Flip. This transformation horizontally mirrors an image. It
encodes the natural symmetry of most scenes and objects
(digits are an exception). Many approaches use flipping to
increase their training set size without prior knowledge, see
for instance [[14, [12]].
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Figure 2: Four of the eight homographies we use.

Crop. We consider the restriction of an image to a specific
sub-window. We use 10 different crops, defined relatively to
the image size. Prior to training/testing, we randomly draw
10 sub-windows (9, Yo, 21, y1) With (xq,90) € [0,0.25)
and (z1,y1) € [0.75,1]2.

Homography. To model viewpoint changes, we consider
homographic transformations of the initial images. We re-
strict ourselves to horizontal and vertical pannings, and se-
lect 8 homographies (see Fig. [2).

Scale. We scale down images using bilinear interpolation.
We consider 5 downscaling factors, respectively (\/ﬁ)n
withn € {1,...,5}.

Colorimetry. We consider colorimetric transformations.
Similarly to [14], we compute the covariance matrix of
the RGB components on the whole dataset. Denoting
A1, A2, A3 and pq, po, p3 respectively its eigen-values and
-vectors, we add to each pixel p € [0,255] a quantity
€1A1P1 + €2X2p2 + €3A3p3. We generate three different
random triplets (g1, €2, £3) sampled from a normal distribu-
tion A/ (0;0.1).

JPEG Compression. Despite being designed to minimize
the change observable by a human, JPEG compression can
have a dramatic effect on local descriptors. To account for
variations in image encoding, we consider three different
levels of JPEG compression: 30, 50 and 70.

Rotation. To be robust to camera orientation, we rotate
images around their centers. We consider 10 rotations of
{-15,-12,...,-3,43,...,+12,+15} degrees.
Order-K Transformations. By order-K transformations,
we denote all compositions of K of the previously defined
transformations (e.g. for K = 2, crop+flip or crop+JPEG).

3.2. Image Transformation Pursuit (ITP)

In this section we assume that transformations are only
generated on the set of training images D = {z1,...,zp}.
Let T = {Ti,..., 77} denote the set of | T| possible trans-
formations. For simplicity, 77 denotes the identity. Let us
associate with each transformation 7y, a binary variable by
indicating whether 7 (D) should be added to the original
training set 71 (D) (i.e. by default b; = 1). The augmented
training set is:

|T|

D= |J Tu(D). ¢))
k=0

s.t. l; =1

Our goal is to find the binary vector b = [b ... bj|] such
that training with D® yields the best possible accuracy on
the test set. Because the number of possible combinations
of transformations is exponential in |T|, it is impossible
to exhaustively test all combinations. We now propose a
tractable alternative.

Algorithm. Our transformation selection algorithm, called
ITP, relies on a greedy search strategy in the space T. We
start with the identity transformation 77, i.e. with original
images. We then maintain a set of current transformations
and monitor the gain on validation accuracy obtained by
adding a new transformation. For each candidate transfor-
mation 7, we train a classifier on a subset D¢, ;. of D¢,
to which we add T (Diyain). Each classifier is tested on
the remaining part D2,; U T (Dy,1); We use average predic-
tion at test time on the transformed data, as in section 3.3.
The transformation that yields the best validation accuracy
is selected. The process is then iterated with the remaining
transformations. The algorithm stops after selecting a fixed
number of transformations 7' < |T|, or when the gain in val-
idation accuracy obtained by adding a new transformation
drops below a threshold; see Alg. 1.

Algorithm 1 Image Transformation Pursuit (ITP)

INPUTS: Dataset D. Set T of base transformations. Thresh-
old A or number T of transformations.

INITIALIZATION: S = {771 }.

While | S| < T and perf. gain higher than A do

o split D into Diyain and Dy,).
e For7 €T, 7T ¢ Sdo

- Let ST =SuU{T}.
— train on ST (Dirain)
- compute perf. P on ST (D).

o S = SU {argmax; Pr}.

OUTPUT: S

Selecting Order-K Transformations. By order-K trans-
formations, we mean those transformations that combine K
base-level transformations. To select among the increas-
ingly larger amount of order-K transformations, we pro-
pose two sub-optimal methods derived from our ITP algo-
rithm. Both rely on the idea that if some transformations are
beneficial to classification, their composition is also likely
to be.

The first alternative, which we call K-ITP, starts by run-
ning (K — 1)-ITP until convergence of the validation ac-
curacy, or until a fixed number of transformations is cho-
sen. Then, it generates all compositions of order K from
the returned transformations, and continues appending them
greedily in the same fashion as before.

The second alternative, which we call K -ITP-Scratch or



K-ITP-S, starts as before by generating the set S of order-
K — 1 transformations by running (K—1)-ITP-S (1-ITP-S
equals ITP). The set S’ of all order-K transformations is
obtained by combining elements of S. A ITP procedure
is then started from scratch, drawing transformations from
Sus.

Implementation Details. We consider linear SVM classi-
fiers trained with Stochastic Gradient Descent (SGD) [6, 2].
At each main iteration of ITP, we determine the gain offered
by a specific transformation at a low cost using the follow-
ing strategy. Indeed, at iteration k (i.e. k transformations
are already selected), a classifier wy, is learned using SGD
on half of the training set augmented with these k trans-
formations. For each (k+1)-th candidate transformation, an
SGD is run using wy, as a warm start and few epochs. We
determine the initial learning rate 7, following the heuris-
tic given in [6]. We also cross-validate the A regularization
parameter using values around the best parameter selected
at the previous main iteration. In our experiments, however,
this optimal value never changed across the main iterations.
Ranking Alternative. We also propose a simple one-step
alternative to ITP which we refer to as Transformation
Ranking or TR. As is the case for ITP, we start with the
original samples and quantify the gain that we would get by
adding the |T| possible transformations. We rank the trans-
formations based on this gain and select the top T' < |T|
transformations. Note that in this setting, the redundancy
between the transformations is not taken into account (only
the gain with respect to the original images).

3.3. Score aggregation

Virtual samples can also be generated for test images.
In this case, we need to compute for each transformed test
sample a score and to aggregate these scores. We now dis-
cuss possible alternatives for aggregation.

Averaging. We use the scores of all virtual examples as in-
dependent measures and average them to get a consensus
similarly to [[14]. Denoting by sgk) the score given by the
classifier for class k to the t¢-th transformation (¢t < T'), we
define: sg]f,zg = Zthl sgk).

Maximum. We use the transformation that yields the best
score: sgf;x ‘= max sgk). It returns the prediction for
which the classifier is the most confident.

Softmax Aggregation. The previous maximum scheme
can suffer from the presence of outliers, while the averaging
takes into account transformations with low confidence. A
soft-max strategy sgkm)ax = log Zthl exp sgk), provides an
intermediate solution.

4. Experiments

We first describe the datasets and experimental set-up.
We, then, study the impact of different design choices on the

ITP algorithm. We also quantitatively compare the ITP, K-
ITP, K-ITP-S and TR algorithms and several baselines. Fi-
nally, we compare our method against the state-of-the-art on
large-scale and fine-grained image classification datasets.

4.1. Datasets and experimental set-up

We report results on two challenging benchmarks.

CUB. The Caltech-UCSB-Birds-200-2011 dataset [32] is a
fine-grained classification benchmark consisting of 200 bird
species and approximately 12,000 images. We use the pro-
vided training/test split: there are approximately 30 images
per class at both training and test time. The standard metric
on CUB is top-1 accuracy.
ILSVRC 2010. The 2010 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC 2010) dataset consists of
1,000 classes from the ImageNet datasetﬂ It is split into
1.2M images for training, 50K for validation and 150K for
test. Following common practice, we report top-5 accuracy.
As it is expensive to run the transformation selection on the
full training set, we define a subset comprising 30 images
per class (30,000 images in total). In the following, we call
this subset ILSVRC-30. Except when conducting experi-
ments on the full ILSVRC dataset, we report results on the
validation set.

The experimental set-up is as follows.

Image descriptors. We extract SIFT [[17] and color [8] de-
scriptors on a dense grid at multiple scales. Their dimen-
sionality is reduced to 61 dimensions using PCA. Follow-
ing [23], we append the patch location (z,y) and scale o to
the patch descriptors thus resulting in 64-dim descriptors.
This strategy can lead to results on par with spatial pyra-
mids at a lower cost [25]].

To aggregate the per-patch descriptors, we use Fisher
Vectors (FV) with 256 Gaussians, thus leading to 32K-dim
representations. We then use PQ compression [13] which
was shown to yield an almost-negligible loss of perfor-
mance in large-scale classification [24]]. We use their set-
ting and subdivide the FV into sub-vectors of 8 dimensions
and assign 8 bits per sub-vector (1 bit per dimension on av-
erage).

SGD training. The SGD learning algorithm has three
hyper-parameters [2] which we cross-validate: the regular-
ization ), the imbalance between positives and negatives
and the number of SGD epochs. At each ITP iteration, we
evaluate the gain on validation accuracy after a warm start
with 1 epoch on CUB and 2 epochs on ILSVRC10-30. We
found these values to give satisfying results during our pre-
liminary experiments.

Fusion of SIFT and color. Finally, confidence scores ob-
tained independently from SIFT FV and Color FV are sim-
ply averaged to get the final prediction (denoted as “fusion”

Ihttp://www.image-net.org/challenges/LSVRC/
2010/index
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Train on 1 Teston 1 Trainon T Teston 1 Aggregation CUB (top-1) ILSVRC-30 (top-5)
] — |:| 5 —_ | scheme SIFT [ color [ fusion || SIFT [ color | fusion
average 274 | 356 | 420 423 | 37.1 | 487

Train on 1 Teston T Trainon T Teston T max 26.2 | 343 41.0 42.1 | 36.8 48.9
0 — O ] — (mE soft-max 274 1351 | 421 || 426 | 373 | 492

Figure 3: Tllustration of the different training and test strate-
gies. Both training and test can be done either on the origi-
nal single image or on the set of all transformed images.

#transformations CUB ILSVRC-30

#train ‘ #test SIFT ‘ color ‘ fusion || SIFT ‘ color ‘ fusion
1 1 16.5 | 23.5 28.2 34.1 | 28.9 40.4
1 T 17.8 | 249 28.8 36.2 | 30.6 42.5
T 1 20.0 | 264 31.9 38.7 | 31.5 44.4
T T 274 | 35.6 42.0 423 | 371 48.7

Table 1: Comparison of different training and test scenarios
for T' = 6, i.e. T' — 1 corresponds to the number of trans-
formations used for training and test. Score aggregation is
performed by averaging.

in the following).

4.2. Impact of score aggregation

We assume that, after the selection pass, we have T' — 1
transformations per image, in addition to the original one,
so that each image has 7" representatives. We investigate the
following scenarios (Fig[3).

e Train 1/ Test 1: training and test are done only on the
original images (baseline).

e Train 7/ Test 1: training is performed using the origi-
nal as well as the transformed images, and test is done
on original test images.

e Train 1/ TestT': test is done on the transformed images,
and their scores are averaged, while training is done on
the original images.

e Train T/ Test T": training and test are done on the trans-
formed images.

Table[T|shows that the “Train 7/ Test 7" scheme outper-

forms by far the other ones. This demonstrates the impor-
tance of applying transformations at both training and test
time. In what follows, we use this scheme for all experi-
ments unless stated otherwise.
Score aggregation scheme. We compare the different
score aggregation schemes (Section [3.3)) and provide results
in Table[2] We observe that all schemes yield similar results.
We therefore decide to use the simple average in the rest of
the experiments.

4.3. Transformation selection experiments

We now evaluate ITP. At each iteration, the algorithm
evaluates the gain in accuracy obtained for each candidate

Table 2: Comparison of score aggregation schemes.
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Figure 4: Evolution of the validation and test accuracy with
respect to ITP iterations on CUB (left) and ILSVRC-30
(right).

transformation independently on a held-out validation set.
We plot the evolution of this validation score across iter-
ations for the selected transformations, along with the ac-
curacy computed on the full test set, in Fig. ] The val-
idation accuracy, although computed on a smaller set and
without waiting for the SGD to converge, is varying consis-
tently with the full test accuracy in our experiments. This
validates empirically the core of our algorithm.

Next, we compare ITP to several other selection strate-
gies. We first consider the choice of just adding the ’flip’
transformation, a rather common practice [[14[12]. The sec-
ond choice to which we compare is a random selection of
transformations. This is to ensure that we do not get a simi-
lar increase in accuracy with any subset of transformations.
Finally, we compare with the TR variant of our algorithm,
which is a cheaper version of ITP (Section[3.2). Results are
presented in Fig.[5]and[6] As can be observed, the selection
obtained by ITP significantly outperforms the first two base-
lines (flip and random). ITP itself performs at least on par
with the TR variant, and sometimes significantly better (see
SIFT FVs on CUB or color FVs on ILSVRC-30). Overall,
both algorithms yield improvements and ITP outperforms
TR: for the fusion results, ITP and TR yield a relative im-
provement of +49% and +41% respectively on CUB, and
+21% and +19% on ILSVRC-30.

Fig.|7| (Ieft) shows the first five transformations selected
by ITP. We can see that crops are the most frequently se-
lected transformations. We stack in Fig. [7] (right) the se-
lected crops on the CUB dataset, thus leading to a saliency
map. They clearly focus on the center of the image. One
might argue from this observation that, by applying crops
at training and test time, we are just learning a prior on the
object location (i.e. a saliency map). To test this hypothe-
sis, we perform the following experiment: for each train-
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Figure 6: Evolution of the test accuracy on CUB (left) and
ILSVRC-30 (right) as a function of the number of transfor-
mations selected by ITP, or its cheaper TR variant.

CUB CUB ILSVRC-30 | ILSVRC-30
SIFT | Color SIFT Color

1 | crop5 | cropl flip crop2

2 | flip crop5 crop0 colorl

3 | cropl | crop6 homo2 flip

4 | crop6 | crop8 crop6 cropl

5 | crop0 | scale0 cropl color0

Figure 7: First five selected transformations by ITP (left);
overlaying the different crops selected by 2-ITP-S for the
SIFT channel (right).

ing and test image, we extract local descriptors from all its
transformed versions and aggregate them in a single FV.
The patches which are present in multiple croppings are,
therefore, weighted more than patches which occur in few
or no crops. This is equivalent to weighting patches with
the saliency map [25]. On CUB (resp. ILSVRC-30), for
SIFT+color we get 35.9% (resp. 44.6%) which is a signifi-
cant improvement over the 28.2% (resp. 40.4%) baseline —
see Table m Yet, this is only half of the improvement that
we get with ITP (resp. 42.0% and 48.7%). This result con-
firms that our approach is not merely learning a prior on the
object location, but also invariances.

4.4. Transformations of order 2

We refine our selection strategy by incorporating trans-
formations of order 2, i.e., transformations of transforma-
tions (e.g. combining flip and crop). Because the number
of such combinations is huge (> 1,000), we adopt the strat-
egy described in Section [3.2] For both variants K-ITP and

‘ Method [ SIFT | color | fusion

ITP (T'=5) 274 | 35.6 42.0
2-ITP (T' = 10) 322 | 377 45.8
2-ITP-S(T'=5) || 31.8 | 37.7 45.2

Table 3: Comparison of ITP and 2-ITP on CUB.

K-ITP-S, we select the T'—1 = 5 transformations during
a first pass of order-1 ITP. We, then, generate all possible
combinations of order-2 transformations from these. For
2-ITP, we continue the greedy selection for 5 additional it-
erations (i.e. in total, we will select T'—1 = 10 transfor-
mations) while for 2-ITP-S we select in total 5 transforma-
tions, restarting from scratch with a dictionary of transfor-
mations combining the 5 previously selected order-1 trans-
formations with their combinations.

Results for 2-ITP and 2-ITP-S are given in Table [3] for
CUB and in Table [f] for ILSVRC. Interestingly, we ob-
serve an improvement of the performance, compared to us-
ing only order-1 transformations. For instance, +3.5% on
CUB and +1.1% on ILSVRC-30 for 2-ITP-S. Note that
the difference in performance is marginal between the two
variants, while 2-ITP is significantly more computationally
costly than 2-ITP-S—the cost of adding a new transforma-
tion grows quadratically with the number of selections. Ta-
ble @] shows that 2-ITP-S selects more order-2 than order-1
transformations, showing the interest of using higher order
transformations. See Fig. [0] for examples.

CUB CUB ILSVRC-30 | ILSVRC-30
SIFT Color SIFT Color
1 crop5 xflip crop5x crop8 | flipxcrop0 colorl
2 | croplxcrop0 | croplxcrop8 crop6 colorl x cropl
3 | crop5x cropl | croplx scaleO flip flipx color0
4 | flipx crop6 cropl xcrop5 homo2 crop2 xcolorQ
5 | croplx crop6 crop5 flipxcropl crop2 xflip

Table 4: Transformations selected by 2-ITP-S.

4.5. Total training time vs. target accuracy

We plot the test accuracy as a function of the number
of iterations performed by the SGD in Fig. [§] (one SGD it-
eration corresponds to processing a single training image).
Interestingly, we observe that the learning process is faster
for higher numbers of transformations 7. To better exhibit
this phenomenon, we show in Table E] the number of train-
ing samples that the SGD algorithm has to process to reach
a certain accuracy on the test set. It can be observed that it
takes less time to reach a certain accuracy when 7 is larger
(i.e. in spite of a larger training set). For instance, on CUB,
reaching a 35% accuracy is achieved for 7' = 5 transfor-
mations after examining about 2 times less training samples
than for 7" = 2. Similarly, on ILSVRC-30, reaching an ac-
curacy of 45% is achieved about 3 times faster for 7" = 5
than for 7' = 2—it corresponds to 35 epochs for T = 2
and only 5 epochs for 7' = 5. This is an interesting find-



o
&

S S5

< = o —

& 15 8

é - 71 é 30 - 771

2 = +7; (crop5) 2 — +7; (flip)

o . —_— +7; (flip) “ = +73 (crop0)

R —  +7 (cropl S 05 = +73 (homo2)
—  +7; (cropb - = +7; (cropb)

+76(crop0) +76(cropl)

200 400 600 - 200 400 600 800
SGD lterations (in thousands) SGD lterations (in thousands)

Figure 8: Test accuracy as a function of the number of SGD
iterations on CUB (left) and ILSVRC-30 (right), with SIFT.
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Table 5: Number of training samples (in thousands) that the
SGD has to process to reach a given accuracy on the test
set, for a varying number of transformations 7" (here, after
fusion). The "X’ sign means that the target accuracy cannot
be reached at all.

ing towards reducing the training time on large-scale image
classification tasks.

4.6. Comparison to state of the art

CUB. In [23], the authors report results with a similar
pipeline. Using Fisher Vectors with 256 Gaussians, their
baseline yields 28.2% accuracy on the full images, and
31.0% after cropping the images to 90% (value optimized
on the validation set). Note that despite using slightly dif-
ferent descriptors, we obtain the same baseline as they do
(28.2%). Our best results on CUB (using 5 order-2 trans-
formations) are significantly higher (45.2%). Our method
even outperforms their scheme when they use bounding box
annotations for training (42.2% with DPM and 41.9% with
their data-driven approach).

ILSVRC 2010. As itis computationally expensive to apply
ITP on the full ILSVRC dataset, we instead use the same
transformations as those selected on ILSVRC-30. With this
set, we learn a classifier using all images of ILSVRC 2010.
We experiment only with ITP and 2-ITP-S, as 2-ITP re-
quires to replicate the dataset two times more than 2-ITP-S,
which takes too much memory. We report the top-5 accu-
racy on the test set in Table [§ (right). We improve over
our baseline from 70.1% to 74.9% in top-5 accuracy. On
the color channel, the improvement is even larger (+7%).
In comparison, the winning team of the challenge, NEC-
UIUC-Rutgers, achieved 71.8%.

We slightly outperform results in [24]], i.e. 74.3% accu-
racy. Note, that we only use 32K-dim descriptors, while
they used 524K-dim descriptors. Recently, [14] reports an
83.0% accuracy, but with a different classification frame-

work (deep learning); see next paragraph for a comparison
with their features.

Deep convolutional features. We investigate the effect of
ITP on the DeCAF features [L1], to show (i) that our ap-
proach can significantly improve over features with built-in
invariance properties and (ii) that the choice of transforma-
tions heavily depends on the features. These features con-
sist of the output of the seventh layer of a deep convolutional
network, trained on the images of the ImageNet 2012 chal-
lenge. We use the publicly available implementatiorﬂ We
run an ITP pipeline to select five order-one transformations.
On CUB flip, crop5, crop8, rot-12° and rot9° were selected.
On ILSVRC 2010 flip, crop7, rot3°, jpg70% and scale50%
were selected. On CUB, accuracy increases from 47.3% to
55.4% (+8.1), and from 77.9% to 81.4% (+3.5) on ILSVRC
2010. Note that DeCAF features are learned on the images
from the 2012 challenge, which only presents a partial over-
lap with the 2010 one. On CUB, for fair comparison with
the Fisher experiments, our results were conducted on the
full images, with no prior knowledge on the bounding box,
and therefore are lower than [11]].

ILSVRC-30 ILSVRC Full
SIFT [ Color [ Fusion [[ SIFT | Color | Fusion

Original | 34.1 | 289 40.4 64.6 | 57.5 70.1
ITP 41.8 | 37.1 48.4 68.7 | 64.5 74.8
2-ITP-S | 42.6 | 383 49.5 69.2 | 645 74.9

Table 6: Top-5 accuracy for ILSVRCI10. (Left) Training
with 30 images per class and testing on the validation set.
(Right) Training with the full training set and results on the
test set.

5. Conclusion

The proposed Image Transformation Pursuit (ITP) algo-
rithm allows to efficiently select a set of informative trans-
formations while at the same time keeping a moderate train-
ing cost. Furthermore, it gracefully handles complex 2nd
order transformations that combine basic transformations.
ITP achieves significant improvements in terms of classifi-
cation accuracy on both the CUB and the ImageNet 2010
challenge dataset, with only a handful of transformations,
both for Fisher-vector and convnet DeCAF features. An-
other conclusion of our work is that transforming test im-
ages and aggregating the corresponding scores is comple-
mentary to training set augmentation and leads to significant
performance gains.
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