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A New Robust Approach for Highway Traffic Density Estimation

Fabio Morbidi, Luis León Ojeda, Carlos Canudas de Wit, Iker Bellicot

Abstract—In this paper we present a robust mode selector
for the uncertain graph-constrained Switching Mode Model
(SMM), which we use to describe the highway traffic density
evolution. Assuming an uncertain speed of the congestion wave,
the proposed selector relies on a transition digraph suitably
incorporating the present and historical statistical traffic in-
formation, to determine the most probable current mode of
the SMM. Its effectiveness is demonstrated on the problem
of traffic density reconstruction via a switching observer,
in an instrumented 2.2 km highway section of Grenoble south
ring in France.

I. INTRODUCTION

A. Motivation and related work

An informative parameter for describing the level of
congestion in a highway is the traffic density, i.e. the number
of vehicles per kilometer. Unfortunately, there do not exist,
at present, practical and inexpensive ways to measure this
parameter on the field: one should then resort to indirect
measurements, such as vehicle flows and speeds, and to suit-
able dynamic traffic models. The first continuous highway
model was proposed by Lighthill, Whitham and Richards
in the ’50s (the LWR model), and leverages the so-called
“fundamental diagram”, an empirical curve relating observed
vehicle densities to observed flows at a particular road loca-
tion. More recently, the Cell Transmission Model (CTM) [1]
and the related Switching Mode Model (SMM) [2] have
attracted considerable attention in the literature: the SMM
is a piecewise-affine state-dependent discrete-time system
based on the CTM which is well suited for model-based
traffic estimation [2], [3] and control [4], [5].
One of the major obstacles to reliable management of

real traffic systems is the presence of large modeling
uncertainties such as, e.g., uncertainties in the parameters
of the fundamental diagram and in the demand and supply
functions. In order to address this issue, a considerable
effort has been recently devoted towards the design of robust
algorithms for traffic density estimation.
The existing algorithms have primarily dealt with para-

metric uncertainties and can be classified into two main
categories: i) deterministic approaches, in which an interval
or set representation is adopted for the uncertainties, and
ii) stochastic approaches in which the uncertainties are
treated as random variables/processes with known probability
distributions. The approach described in [6] belongs to the
first category. Here, the authors present a CTM-based set-
valued estimator and provide guaranteed bounds on traffic
density evolution. The fundamental diagram is assumed to be
uncertain (i.e. the cell capacity and jam density vary within
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given bounds), and the demand at the origin cells is not
perfectly known. The approach in [6] is general, systematic
and relatively simple to use. However, it depends on the
tuning of a large set of parameters, vehicle densities cannot
be reconstructed when traffic measurements are not available
at cell boundaries, and it is unclear how conservative are the
computed density bounds when the system is not in free flow.
A related line of research [7] has explored the use of set-
valued fundamental diagrams to more reliably capture the
behavior of traffic in the congested regime. Finally, in [8],
a distributed approach has been proposed for determining
fuzzy confidence intervals for traffic density. However, this
heuristic method relies on the identification of a significant
number of parameters from the traffic measurements.
A larger body of literature is available on stochastic

approaches for robust traffic estimation. In [9], a parameter-
adaptive filtering approach based on the extended Kalman
filter (EKF) has been proposed for the METANET model.
The uncertain parameters are determined online by incor-
porating them into the state vector. Noisy flow and speed
measurements at the boundary of two adjacent cells and on-
/off-ramp flow measurements are used in the correction step
of the filter. Although the approach in [9] avoids a time-
consuming offline calibration step and automatically adapts
the parameters according to changing external conditions,
neither an observability analysis is conducted nor a priori
guarantees on the stability of the EKF are given by the
authors. Recently, in [10], the adaptive Kalman filtering
approach proposed in [9] has been tailored to fit the CTM
(inheriting the same pros and cons), and in [11] it has
been compared with the unscented Kalman filter for joint
and dual estimation. A particle filter is designed in [12] to
estimate both speed and traffic density. The particle filter
performs well with a small number of particles in light
traffic conditions, but obtaining accurate estimates in the
presence of severe congestion turns out to be computationally
demanding. Finally, in [13], the authors have developed
the so-called Stochastic Cell Transmission Model (SCTM),
which extends the CTM by considering uncertainties in both
the demand and supply functions. In particular, the SCTM
defines the free-flow speed, jam-density and congestion-wave
speed explicitly as random variables. However, it relies on an
oversimplification of the modes of the SMM and it assumes
a Gaussian distribution for the random parameters of the
fundamental diagram which may be not well explained by
physical data.

B. Original contributions and organization

In this paper, we consider the graph-constrained version of
the SMM recently proposed in [3], and introduce an original
strategy for robust mode selection. This strategy draws some
inspiration from the smooth switching method presented
in [5] for ramp metering, and it can be used, in principle,
to robustify any SMM-based traffic density estimation algo-
rithm. Assuming an uncertain speed for the congestion wave,



we incorporate the currently-available information and the
statistical information by historical record into a suitable
transition digraph or automaton, which supports us in the
selection of the most probable current mode of the system.
The effectiveness and robustness of the proposed mode
selector is demonstrated on the problem of traffic density
reconstruction via a switching observer, in a 2.2 km highway
section of Grenoble south ring for which real-time flow and
mean speed measurements are available through the “Greno-
ble Traffic Lab” (GTL), http://necs.inrialpes.fr
The rest of this paper is organized as follows. Sect. II

presents our macroscopic traffic model. The robust mode
selector is described in Sect. III and its application to the
traffic-density reconstruction problem is detailed in Sect. IV.
In Sect. V, the main contributions of the paper are summa-
rized and possible future research directions are outlined.

II. MACROSCOPIC TRAFFIC MODEL

The traffic behavior is described in this paper by the
modified version of the Cell Transmission Model (CTM)
introduced in [2]. In this model, the density of a cell evolves
according to the conservation law of vehicles, i.e.,

ρi(k + 1) = ρi(k) +
T

Li
(ϕi(k)− ϕi+1(k)), (1)

where ρi(k) is the density of cell i in the road link at time
k ∈ Z≥0, ϕi(k) is the flow between cell i − 1 and cell i
at time k, T is the discrete-time step and Li the length of
cell i where i ∈ {1, . . . , n} (see Fig. 1). By introducing the
demand and supply functions,

Di−1(k) � min{vi−1 ρi−1(k), ϕm, i−1},

Si(k) � min{ϕm,i, wi(ρm,i − ρi(k))},
(2)

the interface flow ϕi(k) can be computed as,

ϕi(k) = min{Di−1(k), Si(k)}, (3)

where vi and wi are respectively the free-flow speed and
the speed of the congestion wave in cell i, ϕm,i is the
maximum flow allowed by the capacity of cell i, and ρm,i

is the jam density (we omitted the effect of possible on-/off-
ramp flows in (1), which however will appear in Sect. IV-B,
in order to keep the presentation simple). For system (1) to be
stable, T must satisfy the Courant-Friedrichs-Lewy condition
T ≤ min i∈{1,...,n} Li/vi. Note that according to Fig. 1,
ϕu = ϕ1 and ϕd = ϕn+1, which are referred to as the
upstream and downstream flows, respectively, and overall as
boundary flows.
Definition 1 (Free and congested cells): The cell i ∈

{1, . . . , n}, is said free and denoted “F” if ρi ≤ ρc,i where
ρc,i is the critical density of that cell. Otherwise, if ρc,i <
ρi ≤ ρm,i the cell is said congested and denoted “C”. ⋄

ϕu

ρ1 ρi−1 ρi

ϕi ϕi+1

ρn

ϕd

Li

ρi+1

Fig. 1. In the CTM, a road link is subdivided into n cells of length L1,
. . ., Ln with densities ρ1, . . . , ρn.

Definition 2 (Ascendant and descendant flows): The cell
interface flow ϕi, i ∈ {1, . . . , n+1}, is said to be ascendant
if ϕi = Si and descendant if ϕi = Di−1. In other words,
ascendant “←” (descendant “→”) flows describe waves
traveling upwards (downwards), through the interface. ⋄
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F · · · FFF

F · · · FFC

F · · · FCC

C · · · CCC

Ascendant
←−

Descendant
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M − 1

M

Control.

Observ.

Control.

Observ.

Fig. 2. Digraph Dn of the admissible mode transitions of the SMM.

In order to avoid the nonlinearities present in (1)-(3),
we will deal with the Switching Mode Model (SMM) in
the graph-constrained version recently proposed in [3]. The
SMM is a piecewise-affine state-dependent system withM =
2(n+1) admissible modes, which switches among different
sets of linear difference equations depending on the position
of the congestion front in the road link and on the transition
digraph Dn. The nodes in the left side of Dn (see Fig. 2)
are relative to the ascendant flows and the nodes in the
right side to the descendant flows: by convention mode 1

corresponds to
−−−−−→
F · · · FF, mode 2 to

←−−−−−
F · · · FF,. . . , mode M

to
←−−−−−−
C · · · CC. We will drop the top arrow when irrelevant to

specify whether a mode is ascendant or descendant. Note
that the SMM relies on the assumption that there exists
only one congestion wave in the road link that appears at
cell n and propagates upstream. The graph-constrained SMM
admits the following compact state-space representation,
⎧
⎪⎨
⎪⎩

ρ(k + 1) = As(k) ρ(k) +Bs(k) ϕ(k) +Es(k) ρm,

s(k) = Σ(ρ(k), ϕ(k), Dn),

y(k) = h(ρ(k), s(k)),

(4)

where ρ = [ρ1, . . . , ρn]
T is the state vector of cell densities,

ϕ = [ϕu, ϕd]
T the input, ρm = [ρm,1, . . . , ρm,n]

T , and

h(ρ(k), s(k)) =

⎧
⎨
⎩

C1 ρ(k) if s(k) = 1,

CM ρ(k) + w1ρm,1 if s(k) = M,

0 otherwise,

being C1 = [0, . . . , 0, vn] and CM = [−w1, 0, . . . , 0].
The mode selector Σ(ρ(k), ϕ(k), Dn), which outputs the
scalar s(k) ∈ {1, . . . ,M}, determines the current mode of
the system according to the state and input vectors, and the
digraph Dn. Note that only modes 1 andM of system (4) are
both controllable and observable [3], and that A2i+1 = A2i,
B2i+1 = B2i, E2i+1 = E2i, i ∈ {1, . . . , n}. The explicit
expression of matrices As, Bs and Es can be found in [14],
the main differences being the total number of modes M ,
their indexing, and the associated digraph Dn.
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(b)

Fig. 3. Ideal case: (a) Four admissible regions (colored) can be identified in the ρiρi+1-plane; (b) Corresponding mode-transition digraph D2 (the switching
conditions for the central modes have been omitted for improving readability).

In the following, we will assume that all parameters of
system (4) are perfectly known, except for the speed of
the congestion wave wi. In fact, it is well known that
in the fundamental diagram, vi can be estimated fairly
accurately from the available flow and speed measurements
and ρm,i can be determined from simple considerations on
the road geometry and vehicles’ average length (in this paper
we assume that the average length of the vehicles, including
the inter-vehicular distance, is 8 meters).

III. ROBUST MODE SELECTOR

Note that because of the constraints imposed by the tran-
sition digraph Dn, in our subsequent analysis we can restrict
ourselves to the two cells in correspondence to the traffic
congestion front, which are henceforth referred to as cell i
and cell i+1. In what follows, we shall proceed in steps and
first analyze the ideal case (i.e. all parameters of system (4)
are perfectly known), and then deal with the uncertain case
in which the speed wi is not exactly known. A graphical
representation of the modes in the density plane ρiρi+1 will
help us to visualize the admissible regions through which
system (4) should transition.

A. Ideal case

In order to simplify the presentation, let us here assume
that the parameters of cells i and i + 1 are identical and
perfectly known, i.e., vi = vi+1, wi = wi+1 and ρm,i =
ρm,i+1. We can then identify four admissible regions in the
ρiρi+1-plane (see Fig. 3(a)):

FF : 0 < ρi ≤ ρc,i and 0 < ρi+1 ≤ ρc,i+1
−→
FC : ρc,i+1 < ρi+1 ≤ − vi

wi+1
ρi + ρm,i+1

←−
FC : 0< ρi ≤ ρc,i and ρm,i+1≥ρi+1>− vi

wi+1
ρi + ρm,i+1

CC : ρc,i < ρi ≤ ρm,i and ρc,i+1 < ρi+1 ≤ ρm,i+1

Note that the lower-right white rectangle in Fig. 3(a), i.e.
mode CF, is not admissible by hypothesis (cf. Sect. II).
Fig. 3(b) shows the restriction of digraph Dn to the two-
cell case studied in this section: here ϕin and ϕout, refer to
the flows entering cell i and exiting cell i+ 1, respectively.

B. Uncertain case

Let us now assume that the speed of the congestion
wave is not exactly known, i.e., wi = wnomi + ξi, where
wnomi denotes the nominal speed and ξi is the associated
uncertainty. Let us also define (see Fig. 4), wmin

i �

wnomi − maxj ∈{1,...,ℓ} |wi,j − wnomi |, wmax
i � wnomi +

maxj ∈{1,...,ℓ} |wi,j − wnomi |, being {wi,j}
ℓ
j=1 a collection

of known historical values for the speed of the congestion
wave. We can then introduce:

ρmin
c,i =

wmax
i

vi + wmax
i

ρm,i, ρmax
c,i =

wmin
i

vi + wmin
i

ρm,i.

As before, let us assume that vi = vi+1, ρm,i = ρm,i+1,
wmin

i = wmin
i+1 , w

max
i = wmax

i+1 , i.e., the parameters of cell i
and i+1 are identical. We can then identify four admissible
deterministic regions in the ρiρi+1-plane (colored in Fig. 5):

FF : 0 < ρi ≤ ρmin
c,i and 0 < ρi+1 ≤ ρmin

c,i+1
−→
FC : ρmax

c,i+1 < ρi+1 ≤ − vi
wmin

i+1

ρi + ρm,i+1

←−
FC : 0 < ρi ≤ ρmin

c,i and

ρm,i+1 ≥ ρi+1 > − vi
wmax

i+1

ρi + ρm,i+1

CC : ρmax
c,i < ρi ≤ ρm,i and ρmax

c,i+1 < ρi+1 ≤ ρm,i+1

ϕi

ρmin
c,i ρmax

c,i
ρm,i ρi

vi

−wmin
i

−wmax
i

−wnomi

ρnomc,i

Fig. 4. Uncertain fundamental diagram: the speed of the congestion wave
wi is not exactly known and ranges between wmin

i
and wmax

i
.
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c,i

wmin
i+1

vi
ρm,i+1

wmax
i+1

vi
ρm,i+1

ρm,i ρi

wnom
i+1

vi
ρm,i+1

U1

U2

U3

U4
U5

U6

U7

U8

Fig. 5. Uncertain case: the speed of the congestion wave is not exactly
known and we can identify four deterministic regions (colored) and six
admissible uncertain regions U1, . . . , U6 (shades of gray).

and eight uncertain regions (shades of gray in Fig. 5):

U1,
−→
FC or

←−
FC :

− vi
wmin

i+1

ρi + ρm,i+1 < ρi+1 ≤ − vi
wmax

i+1

ρi + ρm,i+1

U2,
←−
FC or CC :

ρmin
c,i < ρi ≤ ρmax

c,i and ρm,i+1≥ ρi+1>− vi
wmax

i+1

ρi+ρm,i+1

U3,
−→
FC or FF :

ρi+1 ≤ − vi
wmin

i+1

ρi + ρm,i+1 and ρmin
c,i+1 < ρi+1 ≤ ρmax

c,i+1

U4, FF or
←−
FC :

0 < ρi ≤ ρmin
c,i and ρmax

c,i+1 ≥ ρi+1 > − vi
wmin

i+1

ρi + ρm,i+1

U5, CC or
−→
FC :

ρi ≥ ρmin
c,i and ρmax

c,i+1 < ρi+1 ≤ − vi
wmax

i+1

ρi + ρm,i+1

U6, FF or CC :
ρmin
c,i < ρi ≤ ρmax

c,i and ρmin
c,i+1 < ρi+1 ≤ ρmax

c,i+1

Remark 1: Note that U7 and U8 in Fig. 5 can be actually
regarded as deterministic regions since the mode CF is not
admissible by hypothesis, and they can then be fused into
the regions FF and CC, respectively. ⋄
Note that if the state of the SMM lies in one of the

uncertain regions U1, . . . , U6 shown in Fig. 5, we need
additional information to determine in which one of two pos-
sible modes the system currently is. Indeed, useful statistical
information can be inferred from the historical data relative
to the speed of the congestion wave. Next, we describe an
algorithm to build a robust mode transition digraph D

rob
2

which incorporates the information by historical record.
Without loss of generality, we can restrict our analysis to
region U1 where we shall compute the probability of being

either in
−→
FC or in

←−
FC.

Algorithm 1 (Disambiguation in region U1):

1) Consider cell i and the flow vs. density data rela-
tive to a fixed historical record, consisting of multi-
ple instances of the same day. Determine the point
having maximum ordinate and split the data cloud
using the value of its abscissa. Compute the histor-
ical free-flow speed and the nominal speed of the

congestion wave wnomi via (constrained) least-squares
regression (the jam density is assigned, by hypothesis),
from which the nominal critical density ρnomc,i can be
determined.

2) Take the points {(ρj , ϕj)}
ℓ
j=1 that lie in the congested

side of the uncertain fundamental diagram and com-
pute the set of historical speeds of congestion wave as
wi,j =

ϕj

ρm,i−ρj
, j ∈ {1, . . . , ℓ}.

3) Determine the speed variations with respect to the
nominal value, ∆wi,j = wi,j − wnomi , j ∈ {1, . . . , ℓ}.

4) Compute the empirical cumulative distribution function
(CDF) F (∆wi,j) of ∆wi,j , j ∈ {1, . . . , ℓ}.

5) Approximate F (∆wi,j) with an arctangent function
Fapp(∆wi,j) � a arctan(b∆wi,j + c) + d where a, b,
c, d ∈ IR are parameters to be determined via nonlinear
least-squares fitting.

6) Compute the median F−1
app (1/2) � ∆wmedi =

1
b

[
tan
Ä

1/2−d
a

ä

− c
]
from which one can get wmedi =

∆wmedi + wnomi and ρmedc,i =
wmed

i

vh
i
+wmed

i

ρm,i. ⋄

Parameters wmedi , ρmedc,i can be used to modify the diagram
in Fig. 5 as shown in Fig. 6(a). Fig. 6(b) reports the
corresponding transition digraph DRob

2 that we can utilize
in our robust mode selector: s(k) = Σ(ρ(k),ϕ(k),DRob

2 ).

IV. APPLICATION TO TRAFFIC DENSITY ESTIMATION

Building upon [3], in this section the theory presented
in Sect. III is applied to the problem of traffic density
reconstruction via a switching observer, and validated using
real data from Grenoble south ring.

A. Robust estimation of traffic density

Consider the following robust switching Luenberger
observer of system (4):
⎧
⎪⎨
⎪⎩

ρ̂(k + 1) = Aŝ(k) ρ̂(k) +Bŝ(k) ϕ(k) +Eŝ(k) ρm

+ Kŝ(k)(y(k)− h(ρ̂(k), ŝ(k))),

ŝ(k) = Σ
(
ρ̂(k), ϕ(k), DRob

2

)
,

(5)

C

E

D

A
B

 Libération

 Entrance

Échirolles

                Entrance

North

(a)
650 m550 m450 m400 m

3

     

Échirolles    Etats GénérauxLibération

   Entrance

24
fast 

slow 
1

Libération

   Exit    Entrance

    Etats Généraux

   Exit    Entrance

ϕBon

ϕB, vB

ϕAoff

ϕA, vAϕD, vD

ϕDon

ϕE, vE

ϕEoff

ϕC, vC

ϕCon

(b)

Fig. 7. (a) The section of Grenoble south ring considered in our
experimental study (image source: Google Maps); (b) The section has been
subdivided into four cells whose length ranges from 400 to 650 meters:
the disks indicate pairs of magnetometers spaced 4.5 m apart.



FF

CC

−→
FC

←−
FC

ρi+1

ρm,i+1

ρmedc,i+1

ρmedc,i

wmed
i+1

vi
ρm,i+1

ρm,i ρi
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Fig. 6. (a) Modified mode representation in the ρiρi+1-plane according to the historical record; (b) Corresponding mode-transition digraph DRob
2

used

in the robust selector Σ(ρ(k),ϕ(k),DRob
2

) (the switching conditions for the central modes have been again omitted for improving readability).

where ρ̂ = [ρ̂1, . . . , ρ̂n]
T is the vector of density esti-

mates, Σ(ρ̂(k), ϕ(k), DRob
2 ) is the robust mode selector

which outputs the estimated mode ŝ(k) ∈ {1, . . . ,M},
and Kŝ(k) is the observer gain vector (which is nonzero
only for modes 1 and M ). Following [3], we can select
Kŝ(k), ŝ(k) ∈ {1, M}, using a pole-placement method, such
that sprad(Aŝ(k) −Kŝ(k)Cŝ(k)) ≤ λmin(Aŝ(k)) < 1 where
sprad(·) and λmin(·) denote the spectral radius and small-
est eigenvalue of a matrix, respectively. Note that in (5),
y(k) = ϕd(k) if ŝ(k) = 1 and y(k) = ϕu(k) if ŝ(k) = M ,
and that Aŝ(k) = Aŝ(k)(v,w

med), CM = CM (wmed),

Eŝ(k) = Eŝ(k)(w
med), where wmed � [wmed1 , . . . , wmedn ]T and

v � [v1, . . . , vn]
T , cf. Sec. III-B.

B. Experimental validation

The performance of the robust density estimator (5) has
been tested with real traffic data coming from a section
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Fig. 8. Experimental results for Tuesday, June 25, 2013: Density recon-
struction in the four cells: (top) ground truth; (middle) observer in [3];
(bottom) robust observer (5).

of 2.2 km in the west end of Grenoble south ring, a highway
enclosing the southern part of the city from A41 to A480.
This two-lane section stretches westward from “Échirolles
Entrance” to “Libération Entrance”, includes 3 on-ramps
and 2 off-ramps (see Fig. 7(a)), and it is equipped with 3
pairs of Sensys Networks VDS240 wireless magneto-resistive
sensors embedded in the pavement along the fast/slow lanes
and on-/off-ramps at locations B, A, D, E and C (see
Fig. 7(b)). The sensors provide flow and time-mean speed
measurements every 15 s: the data from the fast and slow
lanes were combined to yield single mainline information
(ϕB, ϕA, . . . , ϕE and vB, vA, . . . , vE). This section of the
south ring was chosen since a significant level of congestion
emanating from point C and propagating backward can be
observed in the weekdays during the morning (7:30-8:15h)
and evening (17:00-19:00h) rush hours: the speed limit is
90 km/h at B, A, D, E, and 70 km/h at C. The segment was
subdivided into four cells whose length is L1 = 650 m,
L2 = 550 m, L3 = 450 m and L4 = 400 m. 24h
traffic data (starting at 2:00 in the morning) collected on
Tuesday June 25, 2013 was utilized in our test. The speed
data has been first corrected by filling possible gaps due
to communication losses (via interpolation), and then the
speed and flow data have been resampled to 1 and 1/2 min
and filtered with a 1st-order low-pass Butterworth filter with
normalized cutoff frequency 0.05. The erratic behavior of the
mainline detectors at B forced us to infer their flow measure-
ments from the corresponding detectors at A: this yielded a
percentage of vehicle losses between B and C of about 0.6%.
The highway section was modeled as (see Fig. 7(b)):

ρ1(k + 1) = ρ1(k) +
T
L1

(ϕB(k) + ϕBon(k)

− min{D1, S2 + ϕAoff(k)}),

ρ2(k + 1) = ρ2(k) +
T
L2

(min{D1 − ϕAoff(k), S2}

− min{D2, S3 − ϕDon(k)}),

ρ3(k + 1) = ρ3(k) +
T
L3

(min{D2 + ϕDon(k), S3}

− min{D3, S4 + ϕEoff(k)}),

ρ4(k + 1) = ρ4(k)+
T
L4

(min{D3 − ϕEoff(k), S4}− ϕC(k)),
(6)

with Di−1, Si, i ∈ {2, 3, 4} defined in (2), yielding
ϕ = [ϕB, ϕBon, ϕAoff, ϕDon, ϕEoff, ϕC]

T and M = 10
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Fig. 9. Experimental results for Tuesday, June 25, 2013: (a)-(b) Density profiles of cells 3 and 4 reconstructed by the observer in [3] (red) and by the
robust observer (5) (blue, subscript “R”) against the ground truth (black); (c) Sequence of modes estimated by the observer in [3] (top) and by (5) (bottom).

for the observer in (5) with n = 4. We set T =
15/3600 h, ρ(0) = [0, 0, 0, 0]T , and imposed the following
eigenvalues of Aŝ − Kŝ Cŝ, ŝ ∈ {1, 10}, for the ob-
server (5) and the observer in [3]: {0.05, 0.1, 0.15, 0.2} and
{0.6, 0.65, 0.7, 0.75}. An automatic procedure (which only
requires the user to provide the jam densities ρm,1, . . . , ρm,4,
fixed to 250 veh/km in this study), has been devised to cal-
ibrate the parameters of system (6). It yielded the following
free-flow speeds: v1 = 83.52, v2 = 84.28, v3 = 79.84,
v4 = 71.36 km/h. Moreover, wmed1 = 24.20, ρmedc,1 = 56.12,
wmed2 = 19.32, ρmedc,2 = 52.28, wmed3 = 18.58, ρmedc,3 = 47.56,
wmed4 = 21.82, ρmedc,4 = 66.94 (in km/h and veh/km), which
were computed from the data of four historical Tuesdays
(May 29, June 5, 12, 18 of 2013) using Algorithm 1. Fig. 8
reports the “measured densities” for the four cells (top), i.e.
the densities directly reconstructed from the flow and mean
speed measurements (our ground truth), and the densities
estimated by the observer in [3] (middle) and by the robust
estimator (5) (bottom). From the figure, we can note that
the proposed observer is able to more accurately capture the
evening congestion. Figs. 9(a)-(b) show in greater detail the
time profiles of the densities of cells 3 and 4 estimated by the
observer in [3] (red) and by the robust observer (5) (blue,
subscript “R”), against the ground truth (black). The den-
sity root-mean-square deviation for the robust estimator,

RMSDi = ( 1
N

∑N−1
k=0 (ρi(k) − ρ̂i,R(k))

2)1/2, i ∈ {1, 2, 3, 4},
N = 5760, is 46.44, 27.74, 24.16 and 24.11 veh/km. Finally,
Fig. 9(c) reports the sequence of modes estimated by the
observer in [3] (top, ŝ) and by (5) (bottom, ŝR), from
which we can notice that the robust estimator switches
between different modes less frequently than the observer
in [3], ultimately leading to steadier and more reliable traffic
density estimates.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a new robust mode
selector for the uncertain graph-constrained SMM which
we have applied to the problem of highway traffic density
estimation via a switching observer. The selector leverages a
suitably-defined transition digraph and makes a judicious use
of the currently-available and historical traffic information
in order to identify the most probable mode of the SMM.
Experimental tests with traffic data from a 2.2 km section of
Grenoble south ring have supported our theoretical findings.

In this work, we have only dealt with an uncertain speed of
the congestion wave: in the future, we aim at including other
sources of uncertainty in the SMM, such as uncertain initial
densities and boundary flows, and at providing guaranteed
bounds on the traffic density evolution. The possibility to
formulate our density-estimation problem in the framework
of Markov jump linear systems as in [4], and the validation
of our robust observer on the overall 10.5 km Grenoble south
ring, are other subjects of on-going research.
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