
HAL Id: hal-00980839
https://hal.inria.fr/hal-00980839

Submitted on 22 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming by Feedback
Riad Akrour, Marc Schoenauer, Michèle Sebag, Jean-Christophe Souplet

To cite this version:
Riad Akrour, Marc Schoenauer, Michèle Sebag, Jean-Christophe Souplet. Programming by Feedback.
International Conference on Machine Learning, Jun 2014, Pékin, China. pp.1503-1511. �hal-00980839�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49647472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00980839
https://hal.archives-ouvertes.fr

Programming by Feedback

Riad Akrour RIAD.AKROUR@LRI.FR

Marc Schoenauer MARC.SCHOENAUER@INRIA.FR

Michele Sebag MICHELE.SEBAG@LRI.FR

Jean-Christophe Souplet JCSOUPLET@LRI.FR

TAO, INRIA/CNRS/LRI, Université Paris-Sud, 91405 France

Abstract

This paper advocates a new ML-based program-

ming framework, called Programming by Feed-

back (PF), which involves a sequence of interac-

tions between the active computer and the user.

The latter only provides preference judgments on

pairs of solutions supplied by the active com-

puter. The active computer involves one learn-

ing and one optimization components; the learn-

ing component estimates the user’s utility func-

tion and accounts for the user’s (possibly lim-

ited) competence; the optimization component

explores the search space and returns the most

appropriate candidate solution. A proof of prin-

ciple of the approach is proposed, showing that

PF requires a handful of interactions in order to

solve some discrete and continuous benchmark

problems.

1. Introduction

There is emerging evidence that the art of programming

could be revisited in the light of the current state of the art

in machine learning and optimization. While the notion of

formal specifications is at the core of software sciences for

over three decades, the relevance of ML-based approaches

has been demonstrated in the domain of pattern recogni-

tion since the early 90s. In domains such as e.g. hard com-

binatorial problems, a new trend dubbed Programming by

Optimization advocates algorithm portfolios endowed with

a control layer such that determining what works best in a

given use context [could be] performed automatically, sub-

stituting human labour by computation (Hoos, 2012). In

the domain of e.g. image classification, it is suggested that

the state of the art can be improved by configuring exist-

ing techniques better rather than inventing new learning

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

paradigms (Snoek et al., 2012). In all the above, the ap-

proach relies on learning surrogate models, predicting the

performance yielded by a portfolio algorithm or an algo-

rithm configuration depending on the context, and using

sequential model-based optimization (Lizotte, 2008) to de-

termine the best configuration for the particular problem

instance.

Another trend is investigated in the ML field, specifi-

cally aimed at information retrieval (Viappiani & Boutilier,

2010; Yue & Joachims, 2009; Shivaswamy & Joachims,

2012) and reinforcement learning (Wilson et al., 2012;

Akrour et al., 2012; Knox et al., 2013; Jain et al., 2013)

(more in section 2). This trend, thereafter generally re-

ferred to as Interactive Learning and Optimization (ILO),

implements an iterative 2-step process, with the active com-

puter providing some input to the user, and the user provid-

ing a response (preference judgment, modification or sug-

gestion to the active computer) until getting a satisfactory

solution. In all the above, the user and the active computer

cooperate and achieve some division of labor between the

exploration and the exploitation parts of the search process.

In practice however, ILO faces critical difficulties during

the beginning and the ending phases of a run. In the be-

ginning − the bootstrapping phase − the input provided by

the active computer is hardly much relevant and the user

is easily driven into considering that all active computer

suggestions are equally irrelevant. In the ending phase in-

versely, very relevant suggestions are provided and the user

might easily make judgment errors; according to e.g. the

Plackett-Luce model (Luce, 1959), the probability of mis-

ranking two solutions exponentially increases as their dif-

ference in quality decreases. In both phases, the user might

be deterred by getting insufficient returns, inducing him to

behave in an inconsistent way, and getting even more in-

consistent returns as a result.

It has long been suggested that the cooperation between in-

telligent partners is better supported by each partner having

a model of the other one (e.g. Lörincz et al., 2007). A step

toward such a cooperation between the active computer and

Programming by Feedback

the user is presented in this paper, referred to as Program-

ming by Feedback (PF) framework. PF addresses the above

ILO limitation by adaptively approximating the user’s util-

ity function and accounting for her inconsistencies. Note

that the active computer cannot make any difference be-

tween the user’s competence (her preferences are consis-

tent with her goal) and the user’s consistency (her prefer-

ences are consistent); at any rate, accounting for the user’s

possibly limited competence enables the active computer

to better exploit the user’s instant feedback.

The paper is organized as follows. After discussing related

work (section 2), an overview of PF is presented in sec-

tion 3. Section 4 provides a proof-of-concept of the ap-

proach, showing that PF requires a handful of interactions

to solve state-of-art benchmark problems in simulation, and

to achieve on-board programming of the Nao robot (Alde-

baran, 2013). The paper concludes with perspectives for

further research.

2. Related Work

Interactive Learning and Optimization has mostly been ap-

plied to information retrieval and reinforcement learning.

Still, to our best knowledge the ILO frame was first inves-

tigated by Brochu et al. (2007; 2010) to achieve interactive

optimization.

2.1. ILO for Interactive Optimization

Brochu et al. (2007) are interested in exploring the im-

age synthesis hyper-parameter search space and finding as

quickly as possible a suitable visual rendering. The user

is placed in the loop due to the lack of any computable

function characterizing satisfactory visual rendering1. The

user utility function is learned as a Gaussian process using

a binomial probit regression model, trained from the user’s

ranking of pairs of visual renderings. The optimization

component proceeds by returning the best solution out of a

finite sample of the search space, according to the expected

improvement criterion over the current best solution. While

the authors are content with a satisfactory solution, they

also note that finding the optimal solution, e.g. using the

expected global improvement criterion (Jones et al., 1998)

with a branch-and-bound method, raises technical issues on

large search spaces.

2.2. ILO for Information Retrieval

Two early ILO approaches focussing on information re-

trieval are (Yue & Joachims, 2009) and (Viappiani &

Boutilier, 2010). Yue & Joachims (2009) assume the ex-

istence of a parametric utility function on the information

1See also (Lin et al., 2010) in the domain of interactive text
summarization.

retrieval search space, defined from parameter vector w∗.

Iteratively, the current estimate wt is compared to a pertur-

bation w′
t thereof. The feedback − whether w′

t improves on

wt, i.e. derives a better utility function − is provided via

the interleaving method (Radlinski et al., 2008), thus con-

sidering an ensemble of users. This feedback is interpreted

as an estimate of the performance gradient at wt, with a

sublinear convergence toward w∗ within the so-called du-

eling bandit framework.

In (Viappiani & Boutilier, 2010), the goal is to determine a

basket of items optimally suited to the user. The system it-

eratively provides the user with a choice query, that is a set

of solutions, of which the user selects the one she prefers.

The ranking constraints are used to learn a parametric util-

ity function wt, linear on the search space X = IRD.

Within the Bayesian setting, the uncertainty about the util-

ity function is expressed through a belief θ defining a dis-

tribution over the space of possible utility functions, equiv-

alent to the unit sphere of IRD. The optimal next query

ideally maximizes the Expected Posterior Utility of selec-

tion (EPU); a much cheaper criterion, the Expected Utility

of Selection (EUS) can however be used, at the expense

of a bounded loss (Viappiani & Boutilier, 2010) (more in

Section 3).

2.3. ILO for Reinforcement Learning

RL-ILO resumes the celebrated Inverse Reinforcement

Learning (IRL) approach (Abbeel, 2008; Konidaris et al.,

2010), except for one key difference. In IRL the active part

is the expert’s, demonstrating a few target behaviors. Quite

the contrary, in ILO the behaviors are demonstrated by the

agent and thereafter ranked by the expert, thereby relaxing

the strong expertise requirement of RL and IRL: the expert

is only required to comparatively assess the agent behav-

iors, as opposed to, demonstrate a (near) optimal behavior.

In (Fürnkranz et al., 2012) the motivation is to extend the

RL scope beyond the use of numerical rewards. For in-

stance in medical application domains, a numerical reward

must be associated to events such as the patient death; while

this reward value is admittedly fairly arbitrary, its impact on

the optimal policy is hard to investigate, except by trial and

error. The proposed alternative is to use preference learn-

ing in replacement of classification algorithms in roll out

classification-based policy iteration (RCPI) (Dimitrakakis

& Lagoudakis, 2008), thereby ordering the actions condi-

tionally to a state and a policy. With same motivations, the

TAMER framework (Knox et al., 2013) learns the reward

function on (state action) pairs from the expert’s feedback,

using a credit assignment on the recent state-action pairs to

account for the delays in human evaluation.

In (Wilson et al., 2012; Akrour et al., 2012), an active

preference-based policy learning (PPL) scheme is pro-

Programming by Feedback

posed, exploiting pairwise preferences among trajectories

demonstrated by the agent. While PPL relaxes the strong

expertise requirement of RL and IRL, it still assumes ded-

icated experts, taking the time to look at the agent demon-

strations and reliably rank them. The expert burden is

limited in (Wilson et al., 2012) by only considering short

demonstrations, assuming that the initial states can be sam-

pled after some prior distribution in order to enforce in-

specting interesting regions of the behavioral space. In

(Akrour et al., 2012), an active selection of the demon-

strations is used, by optimizing an expected posterior util-

ity criterion inspired from (Viappiani & Boutilier, 2010),

thereby reducing the number of demonstrations required to

achieve a satisfactory behavior.

Both approaches suffer from different limitations. Wilson

et al. (2012) assume that quite some expertise about the

problem domain is available, through an informative prior

about interesting initial states. Akrour et al. (2012) require

the expert to look at long demonstrations, increasing the

chances of ranking noise.

Another scheme called co-active policy learning (CPL)

is presented by Jain et al. (2013). Like (Wilson et al.,

2012; Akrour et al., 2012), CPL proceeds by asking the

expert to iteratively rank pairs of demonstrations of the

agent. The expert however plays a more active role in CPL

than in PPL, either re-ranking the suggested trajectories

or directly refining the agent demonstrations along the co-

active mechanism (Shivaswamy & Joachims, 2012). For-

mally, the expert is in charge of the exploration part, while

the learning agent does the exploitation part (extracting a

model of the expert’s preferences, a.k.a. utility function,

and optimizing it to the extent permitted by computational

constraints). CPL thus avoids the main bottleneck of in-

teractive optimization, that is, getting trapped into a local

optimum due to insufficient exploration, by delegating the

exploration component to the human expert.

2.4. Discussion

The ILO schemes implemented in IRL, PPL and CPL

achieve different trade-offs among two interdependent is-

sues: the level of expertise required from the expert and

the level of autonomy endowed to the agent. In decreas-

ing expertise order, the expert is required: i) to associate a

reward to any state in the state space (RL); ii) to demon-

strate a solution behavior (IRL); iii) to correct and improve

an agent demonstration (CPL); iv) to rank two demonstra-

tions2 (PPL,CPL).

Meanwhile, in increasing autonomy order, the agent:

2To see that iii) requires more expertise than iv), consider the
following analogy: option iii) provides the direction of the gra-
dient in the demonstration space; option iv) merely indicates the
half space the gradient belongs to.

Solution space X

Demonstration space Y

x x

y = Phi(x)

t t+1

t

OPTIMISATION

EVALUATION

Figure 1. Programming by Feedback: Solution and demonstration

search spaces

i) computes the optimal policy based on the instant re-

wards (RL); ii) imitates verbatim the expert’s demonstra-

tion (IRL); iii) imitates the expert’s demonstrations with

some generalization and variants (IRL); iv) learns the ex-

pert’s utility function and produces a (near) optimal demon-

stration according to this function (CPL); v) learns the ex-

pert’s utility function and produces a (near) optimal demon-

stration in the sense of the information gained about the

utility function and its impact on the overall solution qual-

ity (expected posterior utility) (PPL).

A third issue regards the modelling of the uncertainty and

priors on the expert’s utility function. In (Brochu et al.,

2007), the utility function is learned as a GP, thus provid-

ing both a utility estimate and the confidence thereof. Inter-

estingly however, Brochu et al. (2010) note that ILO being

a ”small data“ problem, does not provide enough evidence

to accurately tune the GP hyper-parameters. The process

thereby suffers a loss of performance due to under-optimal

utility estimate. Additionally, the exploration vs exploita-

tion tradeoff is hardly controlled in a Bayesian setting: the

zero-mean utility function requires non visited regions to

be explored instead of quickly exploiting the most promis-

ing ones (although most regions are uninteresting).

3. Programming by Feedback

This Section presents the general PF framework, introduc-

ing the notations and the overview of the algorithm, before

describing its learning and its optimization components.

3.1. Overview

Two search spaces are distinguished (Fig. 1): the search

space X (analogous to the policy space in the context of re-

inforcement learning), is referred to as solution space. The

evaluation space Y (analogous to the trajectory space in

RL) is referred to as demonstration space. The user only

sees a realization y = Φ(x) of a program x. In contrast with

the direct policy learning setting (e.g. Deisenroth et al.,

2013), no continuity assumption regarding the stochastic

Programming by Feedback

Algorithm 1 Programming by Feedback

Input: prior θ0 on the utility function space W

Init:

Generate x0 in X
Demonstrate y0 = Φ(x0); y∗

0 = y0
Archive Ut= {y0}
repeat

Optimize: Generate xt+1 from θt (Section 3.4

Demonstrate yt+1 = Φ(xt+1)Discussion

Receive the user’s feedback 1y
t+1

≻y∗

t

Update Ut= Ut∪{yt+1, 1y
t+1

≻y∗

t
}

Learn posterior θt+1 from Ut (Section 3.2)

until User stops

Return: Generate x from θ

mapping Φ from the solution to the demonstration space

can be assumed (clearly, small modifications of a program

can result in significantly different behaviors).

The true (unknown) user’s utility function U is a linear

function on demonstration space Y , parameterized as w∗:

U(y) = 〈w∗, y〉

Like ILO, PF is an iterative two-step process. In each step

t, the active computer i) selects a solution xt and demon-

strates yt = Φ(xt); ii) receives the user’s feedback, ranking

yt comparatively to the previous best demonstration3 noted

y∗
t ; iii) updates its model of the user’s utility function.

3.2. Learning the Utility Function

Let W denote the space of normalized linear functions on

Y . Given a uniform prior on W, the active computer learns

by computing its posterior distribution θt from evidence

Ut = {y0, y1, . . . , yt; (yi1 ≻ yi2), i = 1 . . . t} including all

demonstrations and user’s preferences up to the t-th time

step. Given θt, the estimated utility U(θt, y) of a demon-

stration y is defined as:

U(θt, y) = IEθt [〈w, y〉] (1)

As already said, the utility function must account for the

preference noise. Given two demonstrations y and y′, and

w∗ denoting the true (unknown) utility of the user, the ob-

served user’s preference is usually modelled as a pertur-

bation of his true preference 〈w∗, (y − y′)〉, considering a

3Two settings are considered, referred to as oblivious and non-
oblivious. In the oblivious setting, the user is presented with two
demonstrations in each iteration, and ranks them comparatively to
each other. In the non-oblivious setting, the user is presented with
a single demonstration in each iteration, which he ranks compar-
atively to (his memory of) the best former demonstration. The
non-oblivious setting has been considered in the experiments as it
is less demanding for the user.

Gaussian perturbation (Chu & Ghahramani, 2005; Wilson

et al., 2012) or following the Luce-Shepard model (Luce,

1959; Shepard, 1957). In both cases, the noise magnitude is

calibrated using one hyper-parameter, respectively the stan-

dard deviation of the Gaussian perturbation or the temper-

ature of the Luce-Shepard rule.

A ridge noise model is considered in PF, calibrated from a

hyper-parameter δ (δ ∈ IR+). Given the preference margin

z = 〈w∗, (y − y′)〉, the observed preference is bound to

coincide with the true preference if |z| > δ; otherwise the

observed preference y ≻ y′ is set to 1 with probability δ+z
2δ .

P (y ≻ y′ | w∗, δ) =

0 if z < −δ

1 if z > δ
δ+z
2δ otherwise

(2)

The user’s competence is thus modelled through parameter

δ. A first option is to consider that the user’s competence is

characterized by a hidden but fixed δ∗. A second option is

to consider that δ might vary along time. The drawback of

the former option is that one abnormally large mistake can

prevent the robot from identifying an otherwise consistent

utility function. Inversely, the latter option being more cau-

tious could slow down the identification of the user’s utility

function. This latter option is however more appropriate to

accommodate the cases where the task (or the user’s un-

derstanding thereof, or his preferences) might change over

time. Not only can the user change his mind; in the general

case, one PF run might involve several users, responsible

for the successive feedbacks.

Working hypothesis. For the sake of robustness, the noise

parameter δ is assumed to be uniform on [0,M].

Under these assumptions, the posterior distribution θt on

the utility function space can be expressed in closed form.

Lemma 1 Given evidence Ut, the posterior distribution on

the utility function space reads:

θt(w) ∝
∏

i=1,t P (yi1
≻ yi2

| w)

=
∏

i=1,t

(

1
2 + zi(w)

2M

(

1 + log M
|zi(w)|

))

(3)

where zi(w) is set to 〈w, (yi1 − yi2)〉 if it is not greater

(resp. lower) than M (resp. −M) in which case it takes the

value M (resp. −M).

Proof: For a given Ut and w∗, for any y, y′ with z =
〈w, (y − y′)〉, and using the ridge model (2), it comes

∫M

0
P (y ≻ y′ | w∗, δ)dδ

=
∫ |z|

0
P (y ≻ y′ | w∗, δ)dδ +

∫M

|z|
P (y ≻ y′ | w∗, δ)dδ

=
∫ |z|

0
1z>0dδ +

∫M

|z|
(12 + z

2δ)dδ

= |z| · 1z>0 +
1
2 (M − |z|) + z

2 (log(M)− log(|z|))
= 1

2 (M + z) + z
2 log(

M
|z|)

Programming by Feedback

hence the result, normalizing total mass from M to 1. �

Comparatively to the Gaussian or the Luce-Shepard noise

models, the ridge noise model enables a straightforward in-

terpretation and calibration: the upper bound M is homo-

geneous to a utility, as there is no noise when the preference

margin is higher than4 M .

3.3. Optimization Criterion in the Demonstration

Space

Conditionally to Ut, the expected utility of selection of

a pair of demonstrations y, y′ to be demonstrated to the

user is defined as follows, where θ+t (respectively θ−t) de-

notes the posterior distribution on Y based on evidence

Ut ∪ {(y ≻ y′)} (resp Ut ∪ {(y ≺ y′)}):

EUS(y, y′) = IEθt [〈w, y − y′〉 > 0] . U(θ+t , y)
+IEθt [〈w, y − y′〉 < 0] . U(θ−t , y′)

(4)

Viappiani & Boutilier (2010) advocate the use of the ex-

pected posterior utility, defined as the expected utility of

the best behavior y∗ (respectively y′∗) conditionally to the

user preferring y to y′ (resp. y′ to y):

EPU(y, y′) = IEθt [〈w, y − y′〉 > 0] . maxyU(θ+, y)
+IEθt [〈w, y − y′〉 < 0] . maxyU(θ−, y)
= IEθt [〈w, y − y′〉 > 0] . U(θ+, y∗)
+IEθt [〈w, y − y′〉 < 0] . U(θ−, y′∗)

(5)

By construction EUS(y, y′) ≤ EPU(y, y′); and

EPU(y, y′) ≤ EUS(y∗, y′∗) (Viappiani & Boutilier,

2010). The optimization of the highly computationally

demanding EPU criterion (since computing EPU(y,y’) re-

quires solving two optimization problems) can therefore be

replaced with the optimization of the EUS criterion:

max{EUS(y, y′)} = max{EPU(y, y′)}

The proposed noise model has an impact on both the EUS

and the EPU criteria. Let us first bound its impact on the

EUS criterion. In the following, the noiseless, NL (respec-

tively, noisy, N) subscript indicates that y is preferred to y′

for every utility w such that 〈w, y〉 > 〈w, y′〉 (resp. with

probability defined by Eq. 2). Note that in both cases, the

expectation is taken w.r.t. the posterior distribution on the

W utility space given by Eq. 3, thus accounting for the

user’s noise. Then,

Lemma 2 For any pair of demonstrations y, y′, and for any

archive Ut, the difference between their expected utility of

selection under the noisy and noiseless models is bounded

4Setting M to α
√

2Umax where Umax stands for the maxi-
mum utility implies that two demonstrations y and y′ cannot be
mistakingly ordered if their margin is more than α percent of
Umax.

as follows:

EUSNL(y, y′)− L ≤ EUSN (y, y′) ≤ EUSNL(y, y′)

With L = M
2λ (1 − 1+lnλ

λ
), λ = e−

1
2
−W−1(−

1
2
e
−

1
2) and

W−1 is the lower branch of the Lambert W function. Ap-

proximatively, L ≈ M
19.6433 .

Proof: from Lemma 1 and (Viappiani & Boutilier, 2010).

Note that the lower bound is tight; it corresponds to the

adverse case where the preference margin is intermediate:

sufficiently low to entail a high chance of error and suffi-

ciently high to entail a significant loss of utility. The impact

of the noise model on the EPU criterion is finally bounded

as follows. Let EPU
∗,N
t (respectively EUS

∗,N
t) denote

the optimum of the noisy EPU (resp. EUS) criterion condi-

tionally to Ut; let likewise EUS
∗,NL
t denote the optimum

of the noiseless EUS. Then:

Proposition 1

EUS
∗,NL
t − L ≤ EPU

∗,N
t ≤ EUS

∗,NL
t + L

Proof: One first shows using Lemma 1 and adapting the

proof sketch in (Viappiani & Boutilier, 2010), that

EUS
∗,N
t ≤ EPU

∗,N
t ≤ EUS

∗,N
t + L

The result then follows from Lemma 2.

This result will allow us to tackle the optimization of the

noiseless expected utility of selection, with bounded loss

of performance compared to the noisy expected posterior

utility.

3.4. Optimization in the Solution Space

At the t-th time step, PF tackles the optimization problem

defined on X as:

Find argmax Ft(x) = IEΦ[EUSNL
t (Φ(x), y∗

t)] (6)

with EUSNL
t the expected utility of selection under θt

(where the user’s noise is taken into account when updating

the posterior θt) and y∗t the best-so-far demonstration. As

discussed in Section 3.1, this non-oblivious setting is meant

to decrease the computational cost and the user’s cognitive

fatigue. While the performance loss compared to the obliv-

ious setting is limited5, its bounding is left for further work

(Section 5).

A main issue is that Eq. 6 defines a noisy black-box op-

timization problem: On the one hand, Ft(x) is defined as

5Due to the sub-modularity of EUSNL, selecting y
0

with

maximal expected utility and y
1

= argmaxEUSNL(y
0
, y)

would entail a bounded loss compared to the maximization of
EUSNL(y, y′). And by construction y∗

t
has a high expected util-

ity.

Programming by Feedback

an expectation; on the other hand, as Φ is not expressed in

closed form in the general case, the expectation needs be

approximated by an empirical average over demonstrations

drawn from Φ(x).

Two steps are taken to handle this optimization problem.

Firstly, Ft is replaced by a lower bound thereof. The

expected utility of selection of the average demonstration

IE[Φ(x)], noted ȳ in the following, is a lower bound of the

utility of selection expectation on Φ(x), due to the convex-

ity of the max operator on W and the Jensen inequality:

IEΦ[EUSNL(Φ(x), y∗t)] ≥ EUSNL(ȳ, y∗t)

Secondly, a sequence of solutions with increasing

EUSNL
t (ȳ, y∗t) is built as follows. Let x1 be the solution

with optimal expected utility according to some w0 drawn

according to θt:

x1 = argmax G1(x) = 〈w0, ȳ〉

For i ≥ 1, let ȳi denote the average demonstration of xi,

and θi denote the posterior on W from Ut∪{(ȳi ≻ y∗t)};

the i+ 1-th optimization problem is defined as:

xi+1 = argmax Gi+1(x) = 〈IEθi [w], ȳ〉

Proposition 2

The expected utility of selection of (ȳi, y∗t) monotonically

increases with i:

EUSNL
t (ȳi, y∗t) ≤ EUSNL

t (ȳi+1, y∗
t)

Proof: By construction of xi+1,
∫

W,ȳ
i
≻y∗t

〈w, ȳi〉dθt(w) ≤

∫

W,ȳ
i
≻y∗t

〈w, ȳi+1〉dθt(w)

Hence (omitting domain W for clarity)

EUSNL
t (ȳi; y∗t)

=
∫

max(〈w, ȳi〉, 〈w, y∗t 〉)dθt(w)
=

∫

ȳ
i
≻y∗t

〈w, ȳi〉dθt(w) +
∫

ȳ
i
≺y∗t

〈w, y∗t 〉dθt(w)

≤
∫

ȳ
i
≻y∗t

〈w, ȳi+1〉dθt(w) +
∫

ȳ
i
≺y∗t

〈w, y∗t 〉dθt(w)

≤
∫

max(〈w, ȳi+1〉, 〈w, y∗t 〉)dθt(w)
= EUSNL

t (yi+1, y∗t) �

As this sequence of optimization problems leads to a local

optimum of EUSNL
t , multiple restarts are used with dif-

ferent samples w0 and the best solution is retained.

Overall, the elementary optimization component in PF is

concerned with optimizing 〈w̄, ȳ〉 on X . Different imple-

mentations of this optimization component are considered

depending on X (next Section). As w̄ is the average util-

ity function under distribution θt, this requires to integrate

over W once, thus with tractable cost. In the experiments,

less than 10 iterations are needed to find a local optimum,

and the multiple restarts considers 10 starting points.

4. Experimental results

A proof of concept of the PF framework is presented and

discussed comparatively to (Wilson et al., 2012) on well

studied benchmark RL problems, with discrete and contin-

uous solution space X and with a generative model (the bi-

cycle problem) or without (the cartpole, the gridworld, the

Nao robot). The computational time is less than 1 minute

per run on a 2.4Ghz Intel processor for all problems except

the Nao problem (10 mns).

4.1. Discrete Case, no Generative Model

A stochastic grid world problem is considered, with 25

states and 5 actions (up, down, left, right or stay motion-

less). The transition model involves a 50% probability of

staying motionless (100% if the selected action would send

the agent in the wall). It is estimated from 1,000 random

triplets. The reward function (true utility w∗) is shown

in Fig. 2.(a). The core optimization component (Section

3.4) implements a vanilla policy iteration algorithm, with

γ = .95. Time horizon is set to H = 300. Results are

averaged over 21 runs.

A first goal of experiment is to analyse the sensitivity

of the PF framework w.r.t. the hyper-parameters of the

noise model. The user’s feedback is emulated using hyper-

parameter ME (the higher ME , the less competent the

user); MA is the hyper-parameter of the user’s noise model

estimated by the active computer (the higher MA, the more

the active computer underestimates the user’s competence),

with ME and MA ranging in {1, .5, .25} subject to MA ≥
ME .

The performance indicator is the true utility of policy xt in

each PF time step (unknown to the active computer). Fig.

2.(b) shows that the performance primarily depends on the

user’s competence ME , and secondarily on the active com-

puter estimate MA of the user’s competence. However,

Fig. 2.(c) shows that the frequency of the emulated user’s

mistakes most surprisingly increases as the active computer

underestimates the user’s competence (high MA), irrespec-

tive of the user’s true competence ME . This unexpected

finding is explained as the error rate does not only depend

on the user’s competence but also on the relevance of the

demonstrations he is provided with. For MA = .25, the ac-

tive computer learns faster, thus submitting more relevant

demonstrations to the user, thus priming a virtuous educa-

tional process. This also explains the fast decrease of the

error rate for ME = .25,MA = .25 which seems to fol-

low a different regime (empirically faster than linear) than

ME = .25,MA = 1. Fig 2.(c) also supports the claim that

PF most critical stage is the initial one, where the demon-

strated trajectories are of low utility, making them harder to

compare and increasing the probability of user’s mistakes.

The target behavior is reached in 30 PF interactions in a

Programming by Feedback

25-state space. This relatively slow convergence is blamed

on the poor representation of the demonstrations, associat-

ing to a demonstration the time spent in each state and thus

poorly reflecting the adjacency structure of the state space.

A second experiment (discrete space, no simulator) trains

the Nao robot, a 58cm high humanoid robot (Aldebaran,

2013) to reach a target state (e.g., raise hand, see Fig.

2.(g)). The transition matrix is estimated from 1,000 ran-

dom (s, a, s′) triplets. The trajectory length is 10; the initial

state is fixed.

The action space includes 3 actions. The results, averaged

over 5 runs, are depicted on Fig. 2.(h): 10 PF interac-

tions are required to reach a target state in a 13-state space

(the shortest demonstration reaching the target state is 5-

action long), versus 24 interactions for a 20-state space (the

shortest demonstration reaching the target state is 10-action

long).

4.2. Continuous Case, no Generative Model

The cartpole problem is concerned with balancing a pole

fixed to a movable cart (Fig. 2.(d)). Same setting as in

(Lagoudakis & Parr, 2003) is used, with state space IR2

(the angle and angular velocity of the pendulum) and 3 ac-

tions; the demonstration space Y is IR9, where each feature

corresponds to a Gaussian N(µ,Σ) in the IR2 state space.

The transition model is estimated from 33,000 (s, a, s′)
triplets. The user’s feedback is emulated by considering

that the best demonstration is the longest one, subject to

the noise model with hyper-parameter ME . Each represen-

tation y is represented in IR9 by computing for each feature

the discounted sum of
∑

s γ
sp(u(s)|N(µ,Σ)), where u(s)

is the cartpole state at time s. This discounted sum is com-

puted using LSTD (with reward r(u) = p(u|N(µ,Σ)). The

PF core optimization component (Section 3.4) implements

LSPI (Lagoudakis & Parr, 2003).

The demonstration length is 3,000. The true utility is the

fraction of the demonstration where the cartpole is in equi-

librium.

The results show that only two PF interactions are required

on average to solve the cartpole problem, irrespective of the

noise model hyper-parameters MA and ME (Fig. 2.(e)).

These results favorably compare to Wilson et al. (2012),

where ca 15 queries are required to maintain the cartpole

in equilibrium more than 1,400 time steps. Fig. 2.(f), dis-

playing the estimated utility vector in parallel coordinates,

shows that the feature closest to the equilibrium position

gets the highest weight.

4.3. Continuous Case, with Generative Model

The bicycle problem is concerned with riding the bicycle

and preventing it from falling down. The generative model

is the simulator used by Lagoudakis & Parr (2003). The

state space is IR4 (the angle and angular velocity of the bi-

cycle, the angle and angular velocity of the handlebars); the

action space is IR2 (the torque applied to the handlebars and

the displacement of the rider on the saddle). The solution

space X is set to IR210 (weight vector of a 1-layer feedfor-

ward NN with 4 input, 29 hidden neurons and 2 output).

The maximum demonstration length is 30,000 time steps;

however controllers tend to either fall down before 300

time steps, or to maintain the bicycle until the end of the

trajectory. The true utility is 1 - the squared angle of the

bicycle, averaged on the whole demonstration.

The goal of the experiments is to investigate the scalabil-

ity of the approach w.r.t. the dimensionality of the solu-

tion space. The PF core optimization component (Section

3.4) implements the CMA-ES black-box optimization al-

gorithm6 (Hansen & Ostermeier, 2001).

The results show that 15 PF interactions are required on

average to solve the bicycle problem for the low noise set-

ting (ME = MA = 1), and that the results gracefully de-

grade as the noise increases (Fig. 2.(i)). These results can-

not directly be compared to those of Wilson et al. (2012),

who consider a 5-action space and requires ca 20 queries to

reach the equilibrium.

5. Conclusion and Perspectives

The main contribution of the paper is to propose a new pro-

gramming paradigm, where the active computer programs

itself using a few binary feedback from the human user. A

proof of concept of the validity of the PF approach is pro-

vided on the cart-pole, bicycle and grid-world problems.

Compared to (Wilson et al., 2012; Knox et al., 2013), lit-

tle prior knowledge is assumed: the user’s feedback eval-

uates long behavioral sequences, whereas short “interest-

ing“ sequences are considered in (Wilson et al., 2012), and

whereas the user’s feedback is related to the last few state-

action pairs in (Knox et al., 2013). The experiment on the

Nao robot confirms the feasibility of teaching simple be-

haviors in a matter of minutes.

A key feature of the PF approach is to enable the active

computer to account for, and deal with, the unavoidable

user’s mistakes. A most interesting lesson learned from

the experiments concerns the intricate interplay between

the active computer and the user, and specifically, how the

active computer opinion of the user’s competence impacts

the actual user’s consistency. A pessimistic competence es-

6In preliminary experiments, LSPI failed to deliver a decent
controller when using the estimated utility function. This failure
is blamed on the fact that the Q-value is learned using a mean-
square error criterion, whereas the LSPI efficiency depends on
the L∞ error (see discussion in (Munos, 2003)).

Programming by Feedback

1

1/2

1/2

1/4

1/4

1/4

1/64

1/64

1/641/128

1/128

1/256

...

...

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
ru

e
 u

ti
li
ty

#Queries

ME = .25 MA = .25
ME = .25 MA = .5
ME = .25 MA = 1
ME = .5 MA = .5
ME = .5 MA = 1
ME = 1 MA = 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60

E
x
p
e
rt

 e
rr

o
r

ra
te

#Queries

ME = .25 MA = .25
ME = .25 MA = 1
ME = .5 MA = 1
ME = 1 MA = 1

(a) The gridworld and the true utility w∗ (b) True utility of xt (c) Frequency of user’s mistakes

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

T
ru

e
 U

ti
li
ty

#Queries

ME = .25, MA = .25
ME = .25, MA = .5
ME = .25, MA = 1
ME = .5, MA = .5
ME = .5, MA = 1
ME = 1, MA = 1

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10

F
e
a
tu

re
 w

e
ig

h
t

#Queries

Gaussian centered on

the equilibrium state

(d) The cartpole (e) True utility of xt (f) Estimated utility of the cartpole features

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Tr
u
e

U
ti

lit
y

#Queries

13 states
20 states -1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 2 4 6 8 10 12 14 16 18 20

T
ru

e
 U

ti
li
ty

#Queries

ME = 1, MA = 1

(g) The Nao robot (h) Nao: true utility of xt (i) Bicycle: true utility of xt

Figure 2. Programming by Feedback. Top row: the gridworld problem, Influence of the noise hyperparameters MA and ME (averaged

over 21 runs). Medium row: the cartpole problem (averaged over 48 runs). Bottom row: The Nao robot (left, averaged over 5 runs); The

bicycle (right, averaged over 21 runs). All plots are enlarged in the supplementary material.

timate leads the active computer to present the user with

poorly informative queries, thereby increasing the proba-

bility for the user to make errors and be inconsistent. A

cumulative (dis)advantage phenomenon is thus observed,

resulting in low user’s error rate together with increasing

active computer skills when the active computer trusts a

competent user. Overall, the importance of a good educa-

tional start is witnessed, as poor initial demonstrations lead

to a poor utility model, leading itself to poorly informative

queries.

Further experiments focussing on continuous action and

state spaces will be conducted to investigate the limita-

tions of the PF framework, examining for instance whether

the Nao can learn to grasp a plastic glass; the challenge is

whether the user’s feedback together with the Nao camera

can palliate the lack of touch sensors (this will be a chal-

lenge for the user, too).

The PF framework opens several avenues for further re-

search. The instant optimization criterion (section 3.4),

which can be viewed as the ”intrinsic motivation“ of the

active computer, will be extended to take into account the

variance of the demonstration utility, either as a constraint,

or in a multi-objective perspective. The performance loss

between the noisy and noiseless expected utility of selec-

tion will be theoretically and empirically studied, estab-

lishing bounds and directly tackling EUSN using black-

box optimization. Along the same line, the oblivious set-

ting will be investigated and compared to the non-oblivious

one.

Another perspective inspired from (Wilson et al., 2012) is
to identify sub-behaviors in the active computer behavioral
sequences; the motivation is that a negative user’s feedback
is in general related to one or a few sub-behaviors in a pos-
sibly long behavioral sequence. This identification might
allow the active computer to ask direct questions to the
user (e.g., what is it that you don’t you like, my dancing
or my running?), expectedly speeding up the active com-
puter progress. The identification of the behavioral sub-
sequences responsible for the user’s feedback can be for-
malized in terms of multiple instance ranking (Bergeron
et al., 2008), considering a long behavior as a set of sub-
behaviors where a few sub-behaviors are responsible for
the user’s preferences. Furthermore, the multiple instance

Programming by Feedback

setting will mitigate the influence of the initial conditions
of the demonstrations on the PF performances.

References

Abbeel, P. Apprenticeship Learning and Reinforcement Learn-
ing with Application to Robotic Control. PhD thesis, Stanford
University, 2008.

Akrour, R., Schoenauer, M., and Sebag, M. April: Active pref-
erence learning-based reinforcement learning. In Machine
Learning and Knowledge Discovery in Databases (ECML
PKDD), volume 7524, pp. 116–131. Springer LNCS, 2012.

Aldebaran, Ltd. Discover NAO, 2013. URL http://www.

aldebaran-robotics.com/en/.

Bergeron, C., Zaretzki, J., Breneman, C. M., and Bennett, K. P.
Multiple instance ranking. In ICML, pp. 48–55, 2008.

Brochu, E., de Freitas, N., and Ghosh, A. Active preference learn-
ing with discrete choice data. In Platt, J. C., Koller, D., Singer,
Y., and Roweis, S. T. (eds.), NIPS, 2007.

Brochu, E., Brochu, T., and de Freitas, N. A Bayesian interac-
tive optimization approach to procedural animation design. In
Popovic, Z. and Otaduy, M. A. (eds.), Symposium on Computer
Animation, pp. 103–112. Eurographics Association, 2010.

Chu, W. and Ghahramani, Z. Preference learning with Gaussian
processes. In ICML, pp. 137–144, 2005.

Deisenroth, M. P., Neumann, G., and Peters, J. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-
2):1–142, 2013.

Dimitrakakis, C. and Lagoudakis, M. G. Rollout sampling ap-
proximate policy iteration. Machine Learning, 72(3):157–171,
2008.

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-H.
Preference-based reinforcement learning: a formal framework
and a policy iteration algorithm. Machine Learning, 89(1-2):
123–156, 2012.

Hansen, N. and Ostermeier, A. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195, 2001.

Hoos, H. H. Programming by optimization. Commun. ACM, 55
(2):70–80, 2012.

Jain, A., Joachims, T., and Saxena, A. Learning trajectory pref-
erences for manipulators via iterative improvement. In NIPS,
2013.

Jones, D.R., Schonlau, M., and Welch, W.J. Efficient global opti-
mization of expensive black-box functions. Journal of Global
Optimization, 13(4):455–492, 1998.

Knox, W. B., Stone, P., and Breazeal, C. Training a robot via hu-
man feedback: A case study. In Int. Conf. on Social Robotics,
volume 8239 of LNCS, pp. 460–470. Springer, 2013.

Konidaris, G., Kuindersma, S., Barto, A., and Grupen, R. Con-
structing skill trees for reinforcement learning agents from
demonstration trajectories. In NIPS 23, pp. 1162–1170, 2010.

Lagoudakis, M. and Parr, R. Least-squares policy iteration. J.
Machine Learning Research, 4:1107–1149, 2003.

Lin, J., Madnani, N., and Dorr, B. Putting the user in the loop: In-
teractive maximal marginal relevance for query-focused sum-
marization. In NAACL, pp. 305–308. ACL, 2010.

Lizotte, D. Practical Bayesian Optimization. PhD thesis, Univer-
sity of Alberta, 2008.

Lörincz, A., Gyenes, V., Kiszlinger, M., and Szita, I. Mind model
seems necessary for the emergence of communication. Neural
Information Processing - Letters and Reviews, 11(4-6):109–
121, 2007.

Luce, R. D. Individual choice behavior. John Wiley, New York,
1959.

Munos, R. Error bounds for approximate policy iteration. In
ICML, pp. 560–567. AAAI Press, 2003.

Radlinski, F., Kurup, M., and Joachims, T. How does clickthrough
data reflect retrieval quality? In J. G. Shanahan et al. (ed.),
CIKM, pp. 43–52. ACM Int. Conf. Proc. Series, 2008.

Shepard, R. N. Stimulus and response generalization: A stochas-
tic model relating generalization to distance in psychological
space. Psychometrika, 22:325345, 1957.

Shivaswamy, P. and Joachims, T. Online structured prediction via
coactive learning. In ICML, 2012.

Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian op-
timization of machine learning algorithms. In NIPS, pp. 2960–
2968, 2012.

Viappiani, P. and Boutilier, C. Optimal Bayesian recommendation
sets and myopically optimal choice query sets. In NIPS, pp.
2352–2360, 2010.

Wilson, A., Fern, A., and Tadepalli, P. A Bayesian approach for
policy learning from trajectory preference queries. In NIPS,
pp. 1142–1150, 2012.

Yue, Y. and Joachims, T. Interactively optimizing information re-
trieval systems as a dueling bandits problem. In ICML, number
382:151 in ACM Int. Conf. Proc., 2009.

http://www.aldebaran-robotics.com/en/
http://www.aldebaran-robotics.com/en/

