
HAL Id: hal-00983046
https://hal.inria.fr/hal-00983046

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Prediction-Driven Adaptation Approach for
Self-Adaptive Sensor Networks

Ivan Dario Paez Anaya, Viliam Simko, Johann Bourcier, Noël Plouzeau,
Jean-Marc Jézéquel

To cite this version:
Ivan Dario Paez Anaya, Viliam Simko, Johann Bourcier, Noël Plouzeau, Jean-Marc Jézéquel. A
Prediction-Driven Adaptation Approach for Self-Adaptive Sensor Networks. 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, IEEE/ACM, Jun 2014,
Hyderabad, India. �hal-00983046�

https://hal.inria.fr/hal-00983046
https://hal.archives-ouvertes.fr

A Prediction-Driven Adaptation Approach for Self-Adaptive
Sensor Networks

Ivan Dario Paez Anaya1, Viliam Simko2, Johann Bourcier1, Noël Plouzeau1,
Jean-Marc Jézéquel1

1 IRISA - University of Rennes 1 & INRIA, 35402 Rennes, France
{ivan.paez_anaya, johann.bourcier, noel.plouzeau, jean-marc.jezequel}@irisa.fr

2 Institute for Program Structures and Data Organisation (IPD), Karlsruhe Institute of Technology (KIT),
Am Fasanengarten 5, 76131 Karlsruhe, Germany

viliam.simko@kit.edu

ABSTRACT

Engineering self-adaptive software in unpredictable environ-
ments such as pervasive systems, where network’s ability,
remaining battery power and environmental conditions may
vary over the lifetime of the system is a very challenging
task. Many current software engineering approaches lever-
age run-time architectural models to ease the design of the
autonomic control loop of these self-adaptive systems. While
these approaches perform well in reacting to various evolu-
tions of the runtime environment, implementations based
on reactive paradigms have a limited ability to anticipate
problems, leading to transient unavailability of the system,
useless costly adaptations, or resources waste. In this paper,
we follow a proactive self-adaptation approach that aims at
overcoming the limitation of reactive approaches. Based on
predictive analysis of internal and external context informa-
tion, our approach regulates new architecture reconfigura-
tions and deploys them using models at runtime. We have
evaluated our approach on a case study where we combined
hourly temperature readings provided by National Climatic
Data Center (NCDC) with fire reports from Moderate Res-
olution Imaging Spectroradiometer (MODIS) and simulated
the behavior of multiple systems. The results confirm that
our proactive approach outperforms a typical reactive sys-
tem in scenarios with seasonal behavior.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.11 [Software Engineering]: Miscellaneous -
proactive self-adaptation.

General Terms

Design, Experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’14, May 31-June 07 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2864-7/14/05 ...$15.00.

Keywords

Self-adaptation, predictive analytics, proactive adaptation,
pervasive systems.

1. INTRODUCTION
Nowadays our living environment is gradually filled with

a plethora of electronic devices capable of sensing physical
parameters of their direct surroundings such as temperature,
pressure and humidity. Various application domains such as
environmental monitoring, civil safety and smart cities are
emerging to take benefit of these sensing networks. While
these new applications can provide valuable services to our
society, excessive battery consumption limits their lifetime
and therefore greatly limits their wide adoption.

In this paper, we argue that the lifetime of these sen-
sor networks can be significantly increased by adopting a
proactive adaptation approach that takes into account en-
vironmental conditions. Indeed, having information about
the future environmental condition of a system enables an
autonomous adaptation engine to preventively adapt the
system to meet the future demand, or optimize some sys-
tem metrics. As an example, having precise data about
weather forecast provides the required information to re-
duce the consumption of a fire monitoring sensor network,
because the probability of detecting a fire greatly varies with
the weather.

Predictive Analytics is being embraced at an increasing
rate in different fields to gain actionable and forward-looking
insight from a vast amount of data. Nowadays, simply look-
ing in the rear view mirror to obtain insight and make de-
cisions is not enough to correctly adapt a system in rapidly
changing environments. A better understanding of possi-
ble future situations ensures better decisions in the present.
Predictive analytics is adopted in a wide variety of appli-
cation domains, which includes predicting insurance fraud,
finding patterns in health related data, infrastructure fail-
ures and customer churn analysis.

In this paper we propose an adaptation of techniques com-
ing from the Predictive Analytics domain. Our proactive ad-
aptation approach combines a prediction framework based
on history analysis and a reasoning engine that evaluate the
system state in the future to determine the most appropriate
system configuration. The contributions of this paper are:

1. A predictive component that analyzes external and in-
ternal context information and predicts future changes.

2. A reasoning component that makes use of the predic-
tions to evaluate the likelihood of each potential sit-
uation and decides on the most appropriate system
configuration.

In our approach, system adaptations are performed through
a reasoning engine that looks up for alternate architectural
models, following the models@runtime paradigm [22]. Us-
ing predictive analysis of internal and external context infor-
mation, the reasoning engine chooses an architecture model
that meets functional and non-functional requirements. Then
the models@runtime engine generates reconfiguration instruc-
tions to perform the online adaptation.

Using a pervasive system for risk evaluation and preven-
tion of forest fires, we show that our proactive approach
outperforms a typical reactive approach in scenarios with
transient, intermittent and seasonal behaviors. In our case
study, a forest is equipped with a wireless sensor network,
where each sensor node can host one to three of the fol-
lowing physical sensors: precipitation, humidity and tem-
perature. Each sensor node has a specific sensing rate and
coverage range. Other types of nodes, called data collectors,
are in charge of collecting the raw sensing data transmitted
by the sensor nodes. A data collector has more computa-
tional power than a sensing device, and it acts as a gateway
between sensing devices and our Proactive Autonomic Man-
ager component. The overall goal of our case study is to
provide timeliness adaptations and optimize the power con-
sumption of the system in order to extend its lifetime.

The rest of this paper is organized as follows: Section 2
details our motivating example about forest fire prevention
and recalls predictive analytics fundamentals used in our
approach. Section 3 describes our proactive adaptation ap-
proach and provides implementation details. Section 4 is
dedicated to the evaluation of the approach with an exper-
imental study. Section 5 presents related work. Section 6
concludes and hints at future work.

2. BACKGROUND AND EXAMPLE

2.1 A Fire Monitoring Use Case
In the summer of 2007, more than 80 people died in Greece

and 670,000 acres (2,711 km2) burned because of wild fires1.
More recently, the wild fires caused by the remarkable heat
wave of July and August, 2010 in western Russia engulfed
280,000 acres (1,131 km2) around Moscow and killed at least
60 people2. This illustrates that in the last couple of years,
large wildfires have caused extended damages and catas-
trophic consequences in lost of properties and lives. Apart
from preventive measures, early detection and proactivity
are the only ways to limit damage and casualties. Using a
sensor network to monitor a forest in real time is an efficient
way to achieve early detection.

Let us consider a wireless sensor network, with sensor
nodes deployed geographically at strategic locations. Each
sensor node can host one to three of the following physi-
cal parameter sensors: temperature, humidity and precip-
itation. Each sensor node component is functioning at a

1http://wikipedia.org/wiki/2007_Greek_forest_fires
2http://wikipedia.org/wiki/2010_Russian_wildfires

controllable sampling rate. We define 3 different levels of
sampling rate: LOW, MEDIUM and HIGH sampling rates.

Sensor nodes are equipped with 6lowPan radio for intern-
ode communication. Data collector nodes are in charge of
receiving raw data from the sensor nodes. There is a global
entity that has access to all available information in the data
collectors and maintains a global model of the current state
of the system. In this context, a system configuration is
made of the following information: (1) actual spatial distri-
bution of sensor nodes, (2) a set of data collectors, (3) phys-
ical values related to sensor monitoring and forest status
evolution, (4) communication protocol, (5) remaining bat-
tery life and other technical constraints.

In this kind of critical scenario, reactiveness is not suffi-
cient. Proactive adaptations of the system are required to
anticipate events and to optimize system behavior with re-
spect to its changing environment. For example, in the fire
monitoring use case introducing delay in reporting a fire can
be regarded as a failure of the monitoring system and can
have dramatic consequences. By monitoring the energy con-
sumption we are able to estimate when a sensor node will
fail. Also, a bad configuration of the network configurations
can lead to a premature outage of battery power on a sub-
part of the sensor network. If not proactively detected and
fixed, this problem can introduce delays in fire detection,
and prevent timely fire detection.

A second important concern lies in the cost of system ad-
aptation. Indeed, as mentioned in [8] reconfiguring a system
has a penalty cost on system availability and also in our case
on battery consumption. The use of prediction information
on future operating conditions of the system can provide a
decrease in the number of useless reconfigurations, thereby
saving power and extending system’s lifetime.

In short, in our use case proactive adaptation should pro-
vide a better long term solution to power management when
compared with short term, purely reactive policies.

2.2 Predictive Analytics Background
The concepts of Predictive Analytics are widely applied in

different scientific disciplines, including computer science,
mathematics, statistics, engineering, and physics. As the
term prediction is widely used and heavily overloaded in
computer science research literature, we begin with a clari-
fication.

Predictions can be categorized in many ways [3], for in-
stance: (1) classification, i.e. predicting the outcome from
a set of finite possible values, (2) regression, i.e. predicting
a numerical value, (3) clustering or segmentation, i.e. sum-
marizing data and identifying groups of similar data points,
(4) association analysis, i.e. finding relationships between
attributes, and (5) deviation analysis, i.e. finding exceptions
in major trends or structures.

Other authors, such as [31] categorize the prediction ap-
proaches from a different perspective: (1) linear modeling
and regression, (2) non-linear modeling, (3) time series anal-
ysis. In our case, we focused on classification methods in the
scope of the time series analysis.

Classification Methods. We wanted to find a classifica-
tion model that, when applied on a certain time series, e.g.
hourly temperature readings, would make precise predic-
tions for the next N hours. Here, we could choose from
many existing classification models. In particular, we eval-

uated 8 non-linear models: (1) Multi Layer Perceptron [26],
(2) Fuzzy Rules [4], (3) Probabilistic Neural Network [5],
(4) Logistic Regression3, (5) Support Vector Machine [24,
18], (6) Naive Bayes4, (7) Random Forest [7] and (8) Func-
tional Trees [12, 20].

Time Series Analysis. Time series analysis focuses on de-
scribing the relation between elements of a series. Usually
the next value of the series is highly related to the most
recent values, with a time-decaying importance in this rela-
tionship to previous values [31].

A time series X is a discrete function that represents real-
valued measurements:

X = {x1, x2...xn} : X = {xt : t ∈ T} : T = {t1, t2...tn} (1)

in a set of n equidistant time points, as described in [21].
The elapsed time between two points in the time series is
defined by a value and a time unit.

A useful approach [6] is to decompose the given time se-
ries data into other three components, trend, season and
remainder, as illustrated in the Figure 1.

Temperature(degC)

10
15

20
25

dat
a

−6
−2

0
2

4
6

sea
son

al
14

16
18

20
22

tren
d

−0.
3

−0.
1

0.1

0 20 40 60 80 100 120

rem
ain

der

time (days)

Figure 1: Time series decomposition of temperature
readings of 120 days.

The trend component can be described by a monotoni-
cally increasing or decreasing function (in most cases a linear
function) that can be approximated using common regres-
sion techniques.

The season component captures recurring patterns that
are composed of at least one or more frequencies, e.g. daily,
weekly, monthly or yearly patterns. These frequencies can
be identified by using a Fast Fourier Transformation (FFT)
or by auto-correlation techniques.

The remainder component is an unpredictable overlay
of various frequencies with different amplitudes changing

3http://en.wikipedia.org/wiki/Logistic_regression
4http://en.wikipedia.org/wiki/Naive_Bayes_
classifier

quickly due to random influences on the time series. The
remainder can be reduced by applying smoothing techniques
like weighted moving averages (WMA), by using lower sam-
pling frequency, or by a low-pass filter that eliminates high
frequencies.

3. APPROACH
In this section we present an overview of our proactive

adaptation framework, following the self-adaptive reference
model MAPE-K [19]. Our approach implements the MAPE-
K structure by:

− Monitoring internal and external context variables.
− Introducing predictive analytics to the Analyze com-

ponent.
− Integrating the prediction and reasoning about it in

the Planning module.
− Executing the new target reconfiguration using a mod-

els@runtime approach [23] to manage actual and po-
tential architectural models.

− Exchanging information between these modules through
the Knowledge component.

Our architecture is organized in layers as shown in Fig-
ure 2. It consists of two detachable subsystems, which are
causally connected to each other: the Managed Element and
the Proactive Autonomic Manager. Our main contribution
is the introduction of the predictive analysis module into the
autonomic manager element.

3.1 Monitor Module

Principles. The monitor module is in charge of keeping
continuous record of internal context information. It reads
system state variables that hold information about the op-
erating environment (e.g. transmission rate, battery level).
Regarding external context, the monitoring module also ob-
serve external information relevant to the system (e.g. en-
vironmental conditions).

Application to fire monitoring. In order to obtain real
data about external context information, we used several
existing sources of fire detection data to feed our sensor net-
work. Figure 3 shows all fire detections in the year 2010 for
the geographic area covering the continental USA including
a 50 km buffer around the periphery. The detections were
obtained using the Moderate Resolution Imaging Spectro-
radiometer (MODIS) and processed as a cooperative effort
between the USDA Forest Service Remote Sensing Applica-
tions Center, NASA-Goddard Space Flight Center and the
University of Maryland. We downloaded these datasets from
the USDA website5.

We have then collected hourly weather readings from sta-
tions near spots of fire detections. We chose the Integrated
Surface Hourly (ISH) datasets6 provided by National Cli-
matic Data Center (NCDC). Combining both data sources,
we connected individual fires to weather conditions in space
and time. Obviously, the fires detected by MODIS are not
uniformly distributed throughout the US. Therefore, we have
chosen to focus on a geographical area that contains a large
amount of fires, namely the state of Mississippi (see Figure 4

5http://activefiremaps.fs.fed.us/gisdata.php
6http://www.ncdc.noaa.gov/oa/climate/
surfaceinventories.html

Knowledge
Repository

Runtime
reconfiguration

External
Context

Information

Managed Element

System
state

Adaptation
targets

Predictive Analysis

Knowledge

Plan

Execute

Input Features
Extraction

Monitor

Predictive
Models Architecture

Models

Variability
Model

Prediction

External
variables

Legend

Component

Repository

Derive

Interface

Interaction

Figure 2: The proactive adaptation approach.
c
o
n
fi
d
e
n
c
e

Figure 3: MODIS fire detections in 2010. Over
130,000 fires detected.

and 5) and selected only fires that are within a 50 km radius
from an ISH station (see Figure 6).

3.2 Predictive Analysis Module

Principles. The predictive analysis module receives input
from the current state of the system as well as from external
context information through the monitor module. We use
predictive models and historical information to build the
context and model environmental variability. We then feed
the reasoning engine with this predictions to improve the
decision making process.

Application to fire monitoring. In the forest monitoring
use case we use prediction models to predict the risk of fire
in the future. This prediction is taken into account by the
planning module to take reconfiguration decisions on the
running system.

Area chosen for

evaluation

Figure 4: ISH Stations active in 2010 that provided
hourly temperature readings. Together 2607 US sta-
tions, colors represent states.

To choose good prediction models, we have implemented
the prediction of fire risk with the KNIME7 tool, using the
Predictive Markup Modeling Language (PMML) [14], which
is a standard proposed by the Data Mining Group. In our
use case, given a time series of hourly temperature read-
ings, we want to predict the fire potential value for the next
N hours. This is a classification problem with 13 input at-
tributes: the current and the last 9 hours of temperature
readings, and average temperature from the past day, week
and month. We have selected 8 classification models, as pre-
sented in Table 1. These classifiers produce a prediction for
the level of temperature: High , Medium and Low. This
set of classifiers represents a large panel of existing training-
based techniques for automated classification of items into
categories.

In order to compare the aforementioned classification mod-
els, we needed training and testing data, as well as a scoring
method.

7http://www.knime.com

Figure 5: Fires in Mississippi detected by MODIS
in 2010. Colors represent the nearest ISH station
that would detect the fire. (20 ISH stations)

For the training set we used theMERIDIAN NAS temper-
ature readings and for the testing set the temperatures from
NACHES/HARDY (AWOS) station. The geographical dis-
tance between these two stations is approximately 276 km,
which gives us confidence that the results are unbiased. An-
other reason for choosing these stations is that there are
enough fire detections close to them (for both, approx. 550
fires within the radius of 50 km, see Figure 6), which allows
us to later simulate and evaluate the actual running systems.
However, these classifiers do not care about fire detections,
but rather predict the fire potential based on historical tem-
peratures.

We run the train-test evaluation loop 43 times for each
classifier while changing the number of hours in future for
the fire potential prediction (t + 1, t + 2, . . . , t + 24[1d], t +

Figure 6: Number of fires within 50 km radius from
an ISH station. Together 12330 fire detections.

Table 1: Prediction models (classifiers) evaluated.
Classifier Training Settings
Multi-Layer
Perceptronπ

(0..1) normalization, 3 layers,
max. 30 neurons/layer, 300 iter-
ations

Fuzzy Rules linear sampling (3000 samples),
min/max fuzzy norm

Probabilistic Neural
Net

Z-Score norm., Theta -0.1/+0.9

Logistic Regressionπ –
SVMπ Polynomial kernel, power=0.5
Naive Bayesπ –
Random Forest 100 trees
Functional Trees 30 boosting iterations

π available as a PMML-based model

48[2d], . . . , t + 480[20d])). Each iteration yields several ac-
curacy measures (scores). As commonly accepted in the
machine-learning community, we used the F1-measure to
compare our classifiers (F1 is a harmonic mean of Precision
and Recall). By the end of the evaluation, each classifier
is characterized by a series of F1-measures depicted in the
Figure 7.

+
1

+
2

+
3

+
4

+
5

+
6

+
7

+
8

+
9

+
10

+
11

+
12

+
13

+
14

+
15

+
16

+
17

+
18

+
19

+
20

+
21

+
22

+
23

+
24

+
48

+
72

+
96

+
12

0
+

14
4

+
16

8

Predicted Future [Hours]

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

F
1
-m

ea
su

re
 (h

ig
he

r i
s

be
tte

r)

Multi Layer Perceptron
Probabilistic Neural Network
Fuzzy Rule Model
Support Verctor Machine
Logistic Regression
Naive Bayes
Random Forest
Functional Trees

Training: MERIDIAN NAS, Testing: NATCHEZ/HARDY,

Distance between locations: 276 km

Figure 7: Comparing different classification models
using data from distant stations.

We clearly see that most of our classification models achieve
a pretty high prediction performance. For instance, predict-
ing 5 hours in the future can be achieved with F1 = 85%
accuracy, as depicted in Table 2. Moreover, even 20 days
in future can be predicted with more than 75% F1. In our
experiment, we only used predictions from 1, 2, . . . , 7 hours
in future.

We finally selected the Multi Layer Perceptron (MLP)
model because it gives almost the highest accuracy. In con-
trast to the best performing Random Forest (RF) model,
MLP is available as a PMML model. Training MLP re-
quires more time than RF. However it must be done only
once, and running predictions using MLP is faster than RF.

A trained MLP model consists of 63 neurons organized in 3
layers, with a network of 13 inputs and 3 outputs. The rest
of the text therefore assumes the use of MLP as a classifier.

Table 2: F1-measures of 5 best performing classifi-
cation models predicting fire potential outcome for
1 to 5 hours in future.

MLP PNN LR RF FT
FirePotential(+1) 94% 91% 94% 94% 94%
FirePotential(+2) 91% 89% 90% 91% 89%
FirePotential(+3) 89% 86% 87% 89% 88%
FirePotential(+4) 86% 85% 85% 87% 85%
FirePotential(+5) 85% 84% 83% 85% 83%

3.3 Plan Module

Principles. Most of the current self-adaptive approaches
use decision techniques such as Event Condition Actions
(ECA) [27]. An ECA technique that uses instantaneous
values of context variables is purely reactive. In our case,
we adopt an ECA technique with events based on predic-
tions. These events carry aggregate information of previous
historic data plus the foresight into the prediction horizon.
Conditions remain conceptually the same: they can be as
simple as a threshold. Finally, an action is generated in
reply to a condition.

Application to fire monitoring. To illustrate our proac-
tive adaptation in our fire potential scenario, let us assume
the following constraints in the system:

− time for redeploying a reconfiguration is 1 time unit;
− there are three levels of sensing rates: high (every

hour), medium (every 8 hours), and low (every 24 hours).
Using the temperature prediction, we have implemented

the following ECA rule:
Event: An increase or decrease in temper-

ature.
Condition: If the temperature crosses the

threshold in ascending or descend-
ing manner.

Action: The system will increase or decrease
the sensing rate accordingly.

Let us consider the following scenario that lasts 3 time
units, where we represent the system state with a (sensing-
rate, temperature) tuple as follows:

− 0. (medium sensing rate, medium temperature)
− 1. (medium sensing rate, high temperature)
− 2. (high sensing rate, medium temperature)
− 3. (medium sensing rate, medium temperature)
Following a reactive approach, the system triggers a re-

configuration after 1 time unit, because the previous tem-
perature reading was high. However by the time the re-
configuration has taken place the temperature has dropped
back to medium level, making this reconfiguration useless
and consuming extra energy.

Following our predictive approach, the system does not
take decisions on instantaneous values of environmental vari-
ables, but it considers the trend and the seasonal compo-
nents of the historical data, plus the forecast of the variables,
thus avoiding this useless reconfiguration.

3.4 Execute Module
The goal of this module is to deploy the new system con-

figuration decided by the planning module on the running
system. We use Kevoree [11], a models@rutime tool that
provides a reflection model of the running system, then al-
lows edition of this model and generation of a new target
model. This target model can then be redeployed and syn-
chronized with the running system.

Kevoree targets distributed systems, ranging from sen-
sor networks to cloud systems. It particularly provides dis-
tributed synchronization of models@runtime[10]. In the fire
monitoring scenario, we mainly target sensor network nodes
where reconfigurations have to be disseminated among dis-
tributed nodes. Kevoree addresses the reconfiguration of
these resource constrained nodes by providing two recon-
figuration types: parametric reconfigurations and firmware
updates. Parametric reconfigurations are used when the
change only involves modification of variable values. Firmware
updates are used in all other situations. A firmware update
reconfiguration has a higher cost as it involves flashing the
firmware of the sensor nodes.

Using Kevoree we are able to disseminate reconfigurations
to dynamically update the behavior of the sensor nodes.
Particularly to our case study, these reconfigurations con-
sist in activating or deactivating, changing the sensing rate
or flashing the firmware of the sensor nodes.

3.5 Knowledge Module
In Figure 2, the dotted line between the knowledge el-

ement represent interaction. The purpose of the knowl-
edge repository is the continuous exchange of information
between all the modules.

For the serialization of prediction models we use the Pre-
dictive Model Markup Language language (PMML) [14]. As
previously mentioned, PMML is an XML-based language
that enables the definition and sharing of predictive models
and can be easily integrated in KNIME, which allowed us
to implement classifier and forecast models. These files can
be imported or exported inside a KNIME workflow and are
ready for use within the running nodes.

4. VALIDATION
We performed an experimental study on the fire monitor-

ing scenario to validate our approach. We defined the exper-
imental design of our study using the Goal-Question-Metric
method. The GQM method was defined as a mechanism
for defining and interpreting a set of operation goals, using
measurements [1]. In this experiment, our goal is the follow-
ing:

Purpose: Improve
Issue: the global effectiveness
Object : the system
Context: self-adaptive sensor networks

To fulfill this goal, we will focus on answering the three
following research questions:

1. RQ1: Does a proactive adaptation approach trigger
less reconfigurations than a reactive approach under
seasonal behavior conditions?

2. RQ2: Does a proactive adaptation approach improve
energy consumption compared with a reactive adapta-
tion approach?

3. RQ3: Does a proactive adaptation approach reduce
the delay in transmitting fire alert in comparison to a
reactive approach?

We then defined our experiment type. V. Basili described
two kinds of studies: in-vivo and in-vitro [1]. Later, two
more categories were added: in-virtuo, in-silico [15]. In our
case, we chose to carry in-silico experiments, where subjects
and real world are described as computer models. The en-
vironment is composed entirely of computer models, with
which human interaction is reduced to a minimum. This of-
fers major advantages regarding cost and feasibility of repli-
cating a real-world configuration.

To answer these research questions, we set up an exper-
iment where we simulated 10 baselines and 28 predictive
systems. Our assumptions common to all of these systems
are as follows:

− The shortest time unit is one hour.
− Each system operates in a certain interval that is either

constant or varies over time, depending on the type of
a system. If the interval changes, we consider it as an
adaptation. For each system, we compute the number
A as the number of adaptations in the year.

− In every iteration, the system reads its sensors and
sends the data to the data collector. For each system,
we compute the number T as the number of transmis-
sions in a year.

− When a fire is detected by a system, we compute the
number of hours that the fire should have been re-
ported to the base station. We call this measure “Late
Fire Hours” λi. We compare all systems based on:
L = Σh

i=1λi, where h is the number of all hours in the
year.

− Using the metrics above, we define power consumption
metrics as P = 0.1 ∗ T + 0.5 ∗A.

− We also compute relative versions of the metrics AR,
TR, PR and LR that are relative to the reactive sys-
tem.

Reactive system. This is our first baseline system that adapts
its transmission rate based on the current temperature.

Simple system. This is also a baseline system with a con-
stant transmission rate. We simulated 9 variants with dif-
ferent transmission rates: 1, 2, 3, 4, 5, 6, 7, 8, 12.

Predictive system. This system operates similarly to the
reactive system. However, before each adaptation it uses a
classifier to predict fire potential at time t+ F (t is current
time, F is the number of hours in future). The adaptation
is cancel whenever

FirePotential(t− 1) = FirePotential(t+ F)

There are 4 variants of this system:
− The default variant uses prediction before any adapta-

tion.
− The variant denoted as“D”(slowing down without pre-

diction) runs the prediction only if changing from lower
transmission rate to higher transmission rate.

− The variant denoted as “U” (speeding up without pre-
diction) runs the prediction only if changing from higher
transmission rate to lower transmission rate.

− The variant denoted as“i” (interval check) runs predic-
tion for all hours in the interval t+1, t+2, . . . , t+F , so
that there is a higher chance to cancel the adaptation.

We executed our simulation of the 38 systems on all fires
detected close to the NACHES/HARDY (AWOS) station
and collected the results, which are depicted in Figures 8
Figure 9 and Figure 10. Each figure shows a comparison of
the systems using different metrics.

RQ1: Evaluating reconfigurations.
Figures 8 relates to RQ1 and depicts the number of recon-

figurations for each self adaptive systems. From this result,
we can observe that all 28 systems based on proactive adap-
tations are achieving a smaller number of reconfigurations
than a reactive system. We are able to save up to 20 % of the
number of reconfigurations of the system with the Predic-
tive(1) system. These results highlight that using predictive
information can help to reduce the number of reconfigura-
tions of a system.

RQ2: Evaluating System lifetime.
Figure 9 relates to RQ2 and depicts the total power con-

sumption for each type of a systems. We use this metric to
quantify the lifetime of the system as the lifetime is directly
correlated to total power consumption. For this metric, all
the predictive systems reduced the power consumption with
respect to Reactive system. The lowest power consump-
tion has been measured in the Predictive(*)D and Predic-
tive(*)Di group. In other words, when choosing an adequate
adaptation strategy, these results show that using prediction
information allows for an increase in system lifetime.

RQ3: Evaluating late fire report.
Figures 10 relates to RQ3 and presents the delay intro-

duced in reporting fire alerts for each self adaptive systems.
From these results, we can observe that most of the pre-
dictive techniques show fire detection delays similar to the
reactive approach technique. This result is valuable since
proactive techniques such as Predictive(3)U were able to
decrease the number of system reconfigurations, while pro-
viding a smaller delay for detecting fire. On these results,
we can also observe that the Predictive(*)Di techniques are
exhibiting larger delays than the other approaches. This is
due to the fact that this proactive adaptation strategy tends
to slow down the adaptation process.

We want to emphasize that the three parameters eval-
uated in these three research questions are contradictory.
Indeed, minimizing power consumption and minimizing the
delay for detecting fire are contradictory objectives since one
objective requires minimal sensing rate, where the other ob-
jective requires maximum sensing rate. In our result, the
Predictive(3)U has performed better than the Reactive ap-
proach in all these experiments.

This case study demonstrates how a proactive approach
can be more efficient over a long period of time than a re-
active approach. This conclusion agrees with S.W.Cheng
et al. [8] in that reactive adaptation has two deficient prop-
erties: (1) information used for decision making does not
extend into the future, and (2) the planning horizon of the
strategy is short and does not consider the effect of current
decisions on future utility [8].

Re
ac

tiv
e

Si
m

pl
e(

ev
er

y
1h

)
Si

m
pl

e(
ev

er
y

2h
)

Si
m

pl
e(

ev
er

y
3h

)
Si

m
pl

e(
ev

er
y

4h
)

Si
m

pl
e(

ev
er

y
5h

)
Si

m
pl

e(
ev

er
y

6h
)

Si
m

pl
e(

ev
er

y
7h

)
Si

m
pl

e(
ev

er
y

8h
)

Si
m

pl
e(

ev
er

y
12

h)
Pr

ed
ic

tiv
e(

1)
Pr

ed
ic

tiv
e(

2)
Pr

ed
ic

tiv
e(

3)
Pr

ed
ic

tiv
e(

4)
Pr

ed
ic

tiv
e(

5)
Pr

ed
ic

tiv
e(

6)
Pr

ed
ic

tiv
e(

7)
Pr

ed
ic

tiv
e(

1)
U

Pr
ed

ic
tiv

e(
2)

U
Pr

ed
ic

tiv
e(

3)
U

Pr
ed

ic
tiv

e(
4)

U
Pr

ed
ic

tiv
e(

5)
U

Pr
ed

ic
tiv

e(
6)

U
Pr

ed
ic

tiv
e(

7)
U

Pr
ed

ic
tiv

e(
1)

D
Pr

ed
ic

tiv
e(

2)
D

Pr
ed

ic
tiv

e(
3)

D
Pr

ed
ic

tiv
e(

4)
D

Pr
ed

ic
tiv

e(
5)

D
Pr

ed
ic

tiv
e(

6)
D

Pr
ed

ic
tiv

e(
7)

D
Pr

ed
ic

tiv
e(

1)
Di

Pr
ed

ic
tiv

e(
2)

Di
Pr

ed
ic

tiv
e(

3)
Di

Pr
ed

ic
tiv

e(
4)

Di
Pr

ed
ic

tiv
e(

5)
Di

Pr
ed

ic
tiv

e(
6)

Di
Pr

ed
ic

tiv
e(

7)
Di0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

Fa
ct

or
 re

la
tiv

e
to

 th
e

Re
ac

tiv
e

sy
st

em
(lo

w
er

 is
 b

et
te

r)

1.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
79

0.
82

0.
83

0.
83

0.
83

0.
83

0.
85

0.
87

0.
89

0.
89

0.
89

0.
90

0.
89

0.
92

0.
91

0.
93

0.
93

0.
93

0.
93

0.
92

0.
93

0.
91

0.
89

0.
88

0.
86

0.
83

0.
81

0.
79

Figure 8: Number of needed reconfigurations relative to the reactive system

Re
ac

tiv
e

Si
m

pl
e(

ev
er

y
1h

)
Si

m
pl

e(
ev

er
y

2h
)

Si
m

pl
e(

ev
er

y
3h

)
Si

m
pl

e(
ev

er
y

4h
)

Si
m

pl
e(

ev
er

y
5h

)
Si

m
pl

e(
ev

er
y

6h
)

Si
m

pl
e(

ev
er

y
7h

)
Si

m
pl

e(
ev

er
y

8h
)

Si
m

pl
e(

ev
er

y
12

h)
Pr

ed
ic

tiv
e(

1)
Pr

ed
ic

tiv
e(

2)
Pr

ed
ic

tiv
e(

3)
Pr

ed
ic

tiv
e(

4)
Pr

ed
ic

tiv
e(

5)
Pr

ed
ic

tiv
e(

6)
Pr

ed
ic

tiv
e(

7)
Pr

ed
ic

tiv
e(

1)
U

Pr
ed

ic
tiv

e(
2)

U
Pr

ed
ic

tiv
e(

3)
U

Pr
ed

ic
tiv

e(
4)

U
Pr

ed
ic

tiv
e(

5)
U

Pr
ed

ic
tiv

e(
6)

U
Pr

ed
ic

tiv
e(

7)
U

Pr
ed

ic
tiv

e(
1)

D
Pr

ed
ic

tiv
e(

2)
D

Pr
ed

ic
tiv

e(
3)

D
Pr

ed
ic

tiv
e(

4)
D

Pr
ed

ic
tiv

e(
5)

D
Pr

ed
ic

tiv
e(

6)
D

Pr
ed

ic
tiv

e(
7)

D
Pr

ed
ic

tiv
e(

1)
Di

Pr
ed

ic
tiv

e(
2)

Di
Pr

ed
ic

tiv
e(

3)
Di

Pr
ed

ic
tiv

e(
4)

Di
Pr

ed
ic

tiv
e(

5)
Di

Pr
ed

ic
tiv

e(
6)

Di
Pr

ed
ic

tiv
e(

7)
Di0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

Fa
ct

or
 re

la
tiv

e
to

 th
e

Re
ac

tiv
e

sy
st

em
(lo

w
er

 is
 b

et
te

r)

1.
00

1.
22

0.
61

0.
41

0.
31

0.
24

0.
20

0.
17

0.
15

0.
10

0.
93

0.
94

0.
94

0.
94

0.
95

0.
94

0.
95

0.
98

0.
98

0.
98

0.
97

0.
98

0.
98

0.
98

0.
94

0.
96

0.
97

0.
96

0.
97

0.
96

0.
96

0.
94

0.
93

0.
92

0.
89

0.
88

0.
85

0.
84

Figure 9: Total power consumption relative to the reactive system.

5. RELATED WORK
Since the 70s, software maintenance has been studied from

different perspectives: corrective, adaptive (reactive) and
perfective [29]. In this paper we are focusing in the tem-
poral characteristic of the adaptation. Research efforts in
prediction include a large variety of domains such as: online
failure prediction[28, 32], resource and demand prediction
[2, 16], and user behavior prediction[30], among others.

A key reference work with which we share conceptual sim-
ilarities, is the one done by V. Poladyan [25] and later on
complemented by S.W.Cheng et. al. in [8]. However, as it
was recognized by co-author D.Garlan in [13], their approach
has some limitations such as: a fixed set of reconfiguration
strategies, limitation to repair triggered by constraint vio-
lations, which is a corrective adaptation category. Our ap-
proach differ from this work by using a strategy focused on
aggregate utility rather than instantaneous utility. In the
same keynote D.Garlan pointed out that in many cases it

may be better to do things before the problem occurs, by
using proactivity.

Epifani et. al. argue in [9] that it is possible to detect
or predict if a desired property is, or will be, violated by
the running implementation. They focus on properties such
as reliability and performance, using Discrete Time Markov
Chains (DTMCs) and Queuing Networks (QNs). In our case
we evaluated eight different non-linear prediction models.
Yet we share a clear separation between detection and pre-
diction (failure detection and failure prediction in their case,
fire detection and fire prediction in ours).

In the context of online failure predictions, failures are
the events that trigger adaptation [28, 32]. These events
correspond to failures such application-level exceptions and
infrastructure-level failures, changes in contextual settings
(such as execution environment and usage context), changes
in available services and their characteristics, and modifi-
cations of business-level properties (e.g. key performance

Re
ac

tiv
e

Si
m

pl
e(

ev
er

y
1h

)
Si

m
pl

e(
ev

er
y

2h
)

Si
m

pl
e(

ev
er

y
3h

)
Si

m
pl

e(
ev

er
y

4h
)

Si
m

pl
e(

ev
er

y
5h

)
Si

m
pl

e(
ev

er
y

6h
)

Si
m

pl
e(

ev
er

y
7h

)
Si

m
pl

e(
ev

er
y

8h
)

Si
m

pl
e(

ev
er

y
12

h)
Pr

ed
ic

tiv
e(

1)
Pr

ed
ic

tiv
e(

2)
Pr

ed
ic

tiv
e(

3)
Pr

ed
ic

tiv
e(

4)
Pr

ed
ic

tiv
e(

5)
Pr

ed
ic

tiv
e(

6)
Pr

ed
ic

tiv
e(

7)
Pr

ed
ic

tiv
e(

1)
U

Pr
ed

ic
tiv

e(
2)

U
Pr

ed
ic

tiv
e(

3)
U

Pr
ed

ic
tiv

e(
4)

U
Pr

ed
ic

tiv
e(

5)
U

Pr
ed

ic
tiv

e(
6)

U
Pr

ed
ic

tiv
e(

7)
U

Pr
ed

ic
tiv

e(
1)

D
Pr

ed
ic

tiv
e(

2)
D

Pr
ed

ic
tiv

e(
3)

D
Pr

ed
ic

tiv
e(

4)
D

Pr
ed

ic
tiv

e(
5)

D
Pr

ed
ic

tiv
e(

6)
D

Pr
ed

ic
tiv

e(
7)

D
Pr

ed
ic

tiv
e(

1)
Di

Pr
ed

ic
tiv

e(
2)

Di
Pr

ed
ic

tiv
e(

3)
Di

Pr
ed

ic
tiv

e(
4)

Di
Pr

ed
ic

tiv
e(

5)
Di

Pr
ed

ic
tiv

e(
6)

Di
Pr

ed
ic

tiv
e(

7)
Di0x

2x

4x

6x

8x

10x

12x

14x

16x

Fa
ct

or
 re

la
tiv

e
to

 th
e

Re
ac

tiv
e

sy
st

em
(lo

w
er

 is
 b

et
te

r)

1.
00

0.
00

0.
72

2.
76

12
.3
8

15
.3
4

9.
24

24
.2
8

43
.9
3

43
.8
9

2.
34

1.
72

1.
35

1.
40

1.
40

1.
37

1.
51

1.
02

1.
00

0.
95

0.
99

0.
98

0.
98

0.
98

2.
33

1.
70

1.
39

1.
38

1.
37

1.
39

1.
53

2.
33

2.
64

2.
68

2.
74

2.
81

3.
03

3.
46

Figure 10: Number of hours when a fire detected by the node was waiting for transmission to the data
collector. The number is relative to reactive system.

indicators). Adaptation requests (also known as adaptation
requirements or specifications) specify how the underlying
application should be modified upon the occurrence of the
associated event or situation. Reactiveness to this kind of
failures is necessary yet often insufficient for some domains.
Pro-activeness decreases the aftereffects of changes, or im-
proves control of change propagation (e.g. in environment
monitoring, safety-critical systems) [27, 17].

Resource prediction as conceived by [2, 16, 25] refers to
estimating the available level of a resource in the near future,
(e.g., in the next 10 seconds). Resource demand prediction
refers to the prediction of how much resource an applica-
tion will consume in a particular setting. In our work we
are interested in predicting resource needs and availability
but in predicting changes in internal and external context
information that may trigger adaptations.

Some criticism about predicting human behavior is that
a person can change his mind from one day to another and
does not necessarily take the same decision if is put in the
same conditions. We differ from [30], as we are focusing on
predicting environment behavior based on historical data,
where is it easier to identify trend and seasonal components.

Typical self adaptive systems SAS based on model@runtime
are causally connected self-representations of the associated
system that emphasizes the structure, behavior, or goals of
the system from a problem space perspective [22]. However
they reason on current values of structure properties, be-
havior, or goals. This kind of approach does not take into
consideration previous history data, although it may explain
occurrences of rapidly changing conditions.

Hielscher et al. [17] proposed PROSA, an online testing-
based proactive self-adaptation. Firstly, they aim at predict-
ing new failures from past monitoring data, but their goal
is to detect whether one specific failure that has been un-
covered in on aService-Based Applications (SBA) could also
occur in other SBA instances. Secondly, in [17] the authors
reject past monitoring data after a dynamic adaptation of
the system. In doing this the system may fall into cyclical
adaptations without detecting it.

6. CONCLUSION AND FUTURE WORK
The proposed proactive approach is not restricted to the

case study we have chosen to evaluate but can be applied to
a wide range of applications, namely applications with well
defined input parameters that can be represented as mathe-
matical functions (e.g. forecasts of bandwidth demand and
supply), or critical systems with seasonal behavior (e.g. min-
imizing power consumption when conditions are safe).

In this paper we evaluated the benefits of anticipating a
problem. The validation of our approach on the fire moni-
toring case study have shown interesting results that confirm
the idea that pro-active adaptation based on predictive an-
alytics is a promising research direction.

Indeed, the benefits of predictive analysis combined with
proactive adaptation techniques out weights its overhead
when compared with a purely reactive approach. However,
our approach can be improved in several ways. One of those
ways is to draw more detailed energy consumption models.
of wireless sensor networks. In the near future we would like
to explore the risk associated with the late reporting and its
trade-offs between those risks and the power usage.

We plan to investigate a distributed reasoning engine in
place of its current centralized version.

Another aspect worth considering is back-to-back adapta-
tions, i.e when adapting a component in a system triggers
chain reactions that causes further adaptations in other com-
ponents. Complex problems may result from these chain
reactions like infinite triggering of new adaptations or in-
consistent configurations in different components. In future
work we plan to consider these scenarios.

7. ACKNOWLEDGMENTS
The research presented in this paper is supported by the

European Union within the FP7 Marie Curie Initial Training
Network ”RELATE”under grant agreement number 264840.

8. REFERENCES
[1] V. R. Basili. The role of experimentation in software

engineering: past, current, and future. In Proc. of the
18th international conference on Software engineering,
pages 442–449. IEEE Computer Society, 1996.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[3] M. Berthold, C. Borgelt, and F. Höppner. Guide to
intelligent data analysis, volume 42. Springer, 2010.

[4] M. R. Berthold. Mixed fuzzy rule formation.
International journal of approximate reasoning,
32(2):67–84, 2003.

[5] M. R. Berthold and J. Diamond. Constructive training
of probabilistic neural networks. Neurocomputing,
19(1-3):167–183, 1998.

[6] G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time
series analysis: forecasting and control. Wiley, 2013.

[7] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[8] S.-W. Cheng, V. V. Poladian, D. Garlan, and
B. Schmerl. Improving architecture-based
self-adaptation through resource prediction. In
Software Engineering for Self-Adaptive Systems, pages
71–88. Springer, 2009.

[9] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time
parameter adaptation. In IEEE 31st International
Conference on Software Engineering, pages 111–121.
IEEE, 2009.

[10] F. Fouquet, E. Daubert, N. Plouzeau, O. Barais,
J. Bourcier, and J.-M. Jézéquel. Dissemination of
reconfiguration policies on mesh networks. In
Distributed Applications and Interoperable Systems,
pages 16–30. Springer Berlin Heidelberg, 2012.

[11] F. Fouquet, B. Morin, F. Fleurey, O. Barais,
N. Plouzeau, and J.-M. Jezequel. A dynamic
component model for cyber physical systems. In Proc.
of the 15th ACM SIGSOFT symposium on Component
Based Software Eng., pages 135–144. ACM, 2012.

[12] J. Gama. Functional trees. Machine Learning,
55(3):219–250, 2004.

[13] D. Garlan. A 10-year perspective on software
engineering self-adaptive systems (keynote). In Proc.
of the 8th Int. Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 2–2. IEEE
Press, 2013.

[14] A. Guazzelli, M. Zeller, W. Lin, and G. Williams.
PMML : An Open Standard for Sharing Models. The
R Journal, pages 60–65, 2009.

[15] M. O. B. Guilherme Horta Travassos. Contributions of
in virtuo and in silico experiments for the future of
empirical studies in software engineering. In Proc. of
the ESEIW 2003 Workshop on Empirical Studies in
Software Engineering. IEEE Computer Society, 2004.

[16] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting

for proactive resource provisioning. In Proc. of the
ACM/SPEC International Conference on Performance
Engineering (ICPE), pages 187–198. ACM, 2013.

[17] J. Hielscher, R. Kazhamiakin, A. Metzger, and
M. Pistore. A framework for proactive self-adaptation
of service-based applications based on online testing.
In Towards a Service-Based Internet, pages 122–133.
Springer, 2008.

[18] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. Improvements to platt’s smo
algorithm for svm classifier design. Neural
Computation, 13(3):637–649, 2001.

[19] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[20] N. Landwehr, M. Hall, and E. Frank. Logistic model
trees. Machine Learning, 59(1-2):161–205, 2005.

[21] T. Mitsa. Temporal data mining. CRC Press, 2010.

[22] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and
A. Solberg. Models@ run. time to support dynamic
adaptation. Computer, 42(10):44–51, 2009.

[23] B. Morin, O. Barais, G. Nain, and J.-M. Jezequel.
Taming dynamically adaptive systems using models
and aspects. In Proc. of the 31st International
Conference on Software Engineering, pages 122–132.
IEEE Computer Society, 2009.

[24] J. C. Platt. 12 fast training of support vector
machines using sequential minimal optimization. 1999.

[25] V. Poladyan. Tailoring Configuration to User’s Tasks
under Uncertainty. PhD thesis, Carnegie Mellon
University, 2008.

[26] M. Riedmiller and H. Braun. A direct adaptive
method for faster backpropagation learning: The
rprop algorithm. In IEEE International Conference on
Neural Networks, pages 586–591. IEEE, 1993.

[27] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and Research Challenges. ACM
Transactions on Autonomous and Adaptive Systems,
4(2):1–42, May 2009.

[28] F. Salfner, M. Lenk, and M. Malek. A survey of online
failure prediction methods. ACM Computing Surveys,
42(3):1–42, Mar. 2010.

[29] E. B. Swanson. The dimensions of maintenance. In
Proc. of the 2nd international conference on Software
engineering, pages 492–497. IEEE Computer Society
Press, 1976.

[30] V. S. Tseng and K. W. Lin. Efficient mining and
prediction of user behavior patterns in mobile web
systems. Information and software technology,
48(6):357–369, 2006.

[31] J. Wu and S. Coggeshall. Foundations of Predictive
Analytics. Chapman & Hall/CRC data mining and
knowledge discovery series. CRC PressINC, 2012.

[32] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan. Practical
online failure prediction for blue gene/p: Period-based
vs event-driven. In Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st
International Conference on, pages 259–264. IEEE,
2011.

