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ABSTRACT

In this work, a coupling of vortex methods with penalization

methods is proposed in order to accurately and easily handle

solid-fluid-porous media. This immersed boundary approach in-

deed maintains the efficiency and the robustness of vortex meth-

ods and allows to model the three different media without pre-

scribing any boundary condition. In this paper, we propose an

application of this immersed boundary method to passive flow

control around a semi-circular cylinder, realized adding a porous

sheath on the obstacle surface in order to smooth the flow dynam-

ics.

NOMENCLATURE

CD drag coefficient

D computational domain

F , S fluid domain and solid domain

FD drag force

Re Reynolds number

Z enstrophy

d non-dimensional diameter

h reference mesh size

k intrinsic permeability

lre f height of the obstacle

ure f reference velocity

u = (u,v) velocity field

us body rigid motion

ū mean velocity magnitude

u∞ free stream velocity

ΓD computational domain boundaries

∆t time step

Φ porosity

λ penalization parameter

µ dynamic viscosity

ν kinematic viscosity

ρ density of the fluid

τ porous layer thickness

χS characteristic function

ω vorticity field

INTRODUCTION

Vortex methods and penalization methods have been sepa-

rately used to simulate high Reynolds number recirculating flows

around obstacles. In this work, a hybrid particle-penalization

technique is proposed in order to cover the advantages of both

approaches. Here, the vortex method is used to approximate the

penalized Vorticity Transport Equations (VTE). On one hand this

technique maintains the efficiency and the robustness of vortex

methods for turbulent Reynolds numbers focusing the computa-

tional task on the rotational zones and solving the flow equations

in a fast Lagrangian way. On the other hand the penalization

technique overcomes the difficulty of the vortex methods to sat-

isfy accurately the no-slip boundary conditions. Here, the idea is
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to extend the fluid velocity inside the solid body and to solve the

flow equations with a penalization term, depending on the intrin-

sic permeability, to enforce rigid motion inside the solid using

a vorticity formulation. Moreover, this method eases numeri-

cal implementation since it enables to consider the governing

equations in the whole computational domain allowing the use

of structural grids and avoiding the overhead and the complexity

typical of body fitted grids. Finally, and this is the main issue

of this paper, the penalization approach allows to handle solid-

fluid-porous media where the differentiation between the three

different media is easily performed defining the value of the pe-

nalization parameter without prescribing a boundary condition

at the solid boundary or a condition at the porous-fluid interface.

Here, the solid-porous-fluid configuration is applied to cover a

semi-circular cylinder geometry with a porous coating in order

to perform passive flow control. After performing convergence

studies, a parametric study is carried out to determine the most

efficient permeabilities in terms of flow control at transitional

(Re = 550) and highly transitional regime (Re = 3000).

VORTICITY FORMULATION AND VORTEX METHODS

In this work, flow simulations are based on particle meth-

ods. The fluid particles which are displaced by convection and

diffusion are characterized by their position and their vorticity.

The vorticity transport is expressed by the Helmholtz equation

(or Vorticity Transport Equation), obtained taking the curl of the

incompressible Navier-Stokes equations and given in 2D by

∂ω

∂ t
+u.∇ω =

1

Re
∆ω in D, (1)

where ω , u and Re respectively denote the vorticity, the velocity

and the Reynolds number. The Poisson equation

∇
2
u =−∇×ω, (2)

obtained from continuity equation, enables to recover velocity

field once the vorticity field is known. The previous equations

are approximated using a Vortex method [1, 2]. These methods

are very robust and low-cost to simulate high Reynolds number

recirculating flows (see for example [3, 4]). In this kind of ap-

proach, the VTE equation (Eq. 1) is solved using a two-fractional

step (or viscous splitting) method. It relies on approximating sep-

arately the diffusion and convection terms at each time step. The

convective part is solved using a ”Vortex-In-Cell (VIC)” method

(see e.g. [2]) with a semi-Lagrangian resolution. In this fractional

step a convective velocity is associated to each finite vortex ele-

ment through a high order interpolation procedure, and the dis-

placement is achieved using a Runge-Kutta method. In order to

avoid Lagrangian distortion, particles are then remeshed on the

original grid using the same interpolation kernel as the one used

previously to interpolate grid velocity values onto the particles.

Finally, for computational efficiency and accuracy, diffusion and

Poisson equation are solved on the grid using Fast Fourier Trans-

forms (FFT).

VORTEX PENALIZATION METHOD IN VORTICITY FOR-
MULATION

Before all, we show how the penalization method can be

used successfully to model the flow of an incompressible fluid

around an obstacle [5]. In the penalization technique the system

is considered as a single flow, subject to the Navier-Stokes equa-

tion with a penalization term that enforces continuity at the solid-

fluid interface and rigid motion inside the solid. In this work, the

penalization term is expressed using vorticity formulation. The

main interest of the penalized vorticity formulation is that it re-

places the usual vorticity creation algorithm in order to satisfy the

no-slip boundary condition for vortex methods. This new tech-

nique avoids the convergence difficulties due to the particle cre-

ation on the solid boundaries (see [6] and [7]). We solve simul-

taneously the Brinkman equations in the solid and the Navier-

Stokes equations in the fluid, considering whole the domain as a

porous medium with zero (solid) or infinite permeabilities (fluid).

Thus, defining the Reynolds number as Re= ure f lre f /ν , the non-

dimensional penalized vorticity equation (or Brinkman-Navier-

Stokes equation) reads

∂ω

∂ t
+(u.∇)ω =

1

Re
∆ω +∇× [λ χS(us −u)], (3)

where χS denotes the characteristic function that yields 0 in

the fluid and 1 in the solid, us indicates the rigid body veloc-

ity which is zero in all this work since the body is fixed and

λ = µΦ lre f /ρk ure f is the non-dimensional penalization pa-

rameter, in inverse proportion to the permeability of the medium

(with k the intrinsic permeability, µ the viscosity, Φ the porosity

of the porous material, lre f the height of the obstacle, ρ the den-

sity and ure f the reference velocity). The main advantage of this

method is that it needs neither the mesh to fit the boundaries nor

to specify no-slip boundary conditions. In addition it allows to

compute the pressure as a continuous field on the whole domain

including the solids.

The zone variation is realized changing the penalization

coefficient that defines the permeability of each region. Nu-

merically, the fluid is considered as a porous medium with a

very high permeability (λ = 0) and the bodies are considered as

porous media with a very small permeability (λ = 108).

To discretize the penalized vorticity equation (Eq. 3) in a

vortex method, the equation is split in substeps. At each time

2 Copyright c© 2013 by ASME



step, one successively solves the following equations

∂ω

∂ t
= ∇×(λ χS(us −u)) (4)

∂ω

∂ t
+(u ·∇)ω = 0 (5)

∂ω

∂ t
=

1

Re
∆ω (6)

To solve Eq. 4 we use an implicit scheme ( [6]) and we set

ω̃
n+1 = ∇×

[
u

n +λ∆tχSus
n

1+λ∆tχS

]
. (7)

where ∆t is the time step. The right hand side above is evaluated

by second order centered finite differences.

At this stage, grid vorticity above a certain cut-off is used

to create particle at grid point locations and Eq. 5 is solved by

a classical vortex-in-cell method [2]. Particles are pushed with

a RK4 time-stepping and are then remeshed on the original grid

using the third order interpolation kernel M′
4 [8]. Then, diffusion

(Eq. 6) and Poisson equation (Eq. 2) are solved on the grid us-

ing FFT-based evaluations as described in [9]. Grid values for

vorticity and velocity are now available for time tn+1 and a new

cycle of iterations can start. Moreover, the no-slip boundary con-

ditions are naturally satisfied penalizing the vorticity transport

equations.

This hybrid vortex penalization method has already been

successfully used to simulate transitional and turbulent flows past

bluff bodies [10, 11].

VORTEX PENALIZATION METHOD FOR SOLID-
POROUS-FLUID MEDIA

This section is devoted to the study of flows in solid-porous-

fluid media and aims to highlight the efficiency of the vortex pe-

nalization method to solve such problems. For three different

solid, porous and fluid media configurations, it is of great impor-

tance to clearly understand the flow behavior at the fluid-porous

interface in order to model the physics correctly. As described

in [12], we can consider five different flow regions from the solid

to the free flow in the fluid. The first one is the boundary layer in-

side the porous medium, close to the solid wall. This one is very

thin compared to the second region which is characterized by the

homogeneous porous flow with Darcy velocity (numbers 1 and 2

in Fig. 1). In the vicinity of the porous-fluid interface, two tran-

sient layers can be recognized (numbers 3 and 4 in Fig. 1). The

first one corresponds to the increase of the porous layer velocity

reaching ui value at the interface and the second one to the fluid

boundary layer standing from the interface to the free flow. The

uD

ui

u0

x

y

2

1

3

4

5

Solid body

Porous medium

Fluid domain

FIGURE 1: VELOCITY PROFILE IN THE VICINITY OF A

POROUS MEDIUM.

fluid boundary layer growth is then determined by u0 −ui where

u0 denotes the velocity of the main fluid flow (number 5 in Fig.

1). The aim is thus to find out a way to solve the flow both in

the porous medium, the fluid region and at the interface between

the two media. Several approaches have already been proposed

to handle this problem like avoiding to solve the porous flow

enforcing appropriate porous-fluid boundary conditions [13] or

solving the governing equations of each region coupling Darcy

equations and Navier-Stokes equations with a right treatment at

the interface [14, 15]. Nevertheless, these two approaches are

not satisfactory since the first one neglects the porous medium

physics and does not permit to have overall view of the prob-

lem and the second one is particularly difficult to handle espe-

cially because of the interface problem. The method presented

here, based on the vortex-penalization technique, thus appears as

a very good alternative since it involves a unique equation (Eq. 3)

for the whole domain and ensures an accurate modeling of each

of the different regions thanks to the dimensionless penalization

factor λ . As mentioned in the previous section, λ is expressed as

λ = µΦ lre f /ρk ure f where lre f ,ρ,ure f = 1 in this study and the

porosity Φ is close to 1 as imposed by Brinkman equations [16].

Therefore λ essentially depends, in the inverse proportion, on the

intrinsic permeability k of the medium. Varying the λ value thus

directly defines the different media according to the following

equation obtained using implicit Euler scheme for the penaliza-

tion velocity discretization

ũ
n+1 =

u
n

1+λ∆tχS

. (8)
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Indeed, in the fluid, the intrinsic permeability coefficient k goes

to infinity, thus the fluid can be considered numerically as a

porous media with a very high permeability. We set λ = 0 in

this region. As a consequence, according to Eq. 8, the velocity

in the fluid is not penalized (ũn+1 = u
n) and since λ = 0, the pe-

nalization term vanishes in Eq. 3, and we naturally recover the

Vorticity Transport Equation (Eq. 1). On the contrary, the solid

has a permeability coefficient k which goes to zero, it can be con-

sequently modeled setting the penalization parameter λ to a very

high value. In this study λ equals 108 in the solid, which vanishes

the flow velocity in this region according to Eq. 8 (ũn+1 → 0) .

It was proved in [5] that solving Eq. 3 with such a value of

λ was equivalent to solve Darcy’s law in the solid. Furthermore,

setting the λ parameter to an intermediate value, reasonably cho-

sen between these two extreme values (λ = 0 and λ = 108),

would model a porous medium in which the flow has a Darcy

velocity uD (Fig. 1). As a conclusion, the variation of λ cor-

responds to the variation of k that specifies the intrinsic porous

material permeability. The accuracy and efficiency of the pe-

nalization method come from its capability to take into account

these variations of λ and to capture the induced steep velocity

variations at the different interfaces with a minimum number of

discretization points.

APPLICATION TO PASSIVE FLOW CONTROL
Modeling the physics of three different regions enables one

to deal with engineering problems involving porous media. In the

following, this approach is validated for a simple but significant

passive flow control problem.

Here, the solid-porous-fluid configuration is applied to cover

a semi-circular cylinder geometry with a porous coating. The

latter is settled on the obstacle external surface in order to mod-

ify the vorticity generation of the boundary layer and the vor-

tex shedding. In fact, the presence of a porous medium at the

solid-fluid interface imposes a kind of mixed boundary condition

intermediate between the no-slip and the slip one on the solid

boundary [17]. As a result, the shear forces are decreased and the

flow dynamics is smoothed [12, 18–20]. This technique, which

allows to keep the obstacle geometry unchanged, should reduce

drag forces and vortex induced vibrations improving the aerody-

namic properties of the obstacle. The semi-circular cylinder can

be considered as a simplified section of an outside rear-view mir-

ror of a car or a motor cycle. The mirrors, due to their spanwise

position, indeed generate a non-negligible wake which interferes

with the flow past vehicle sides. This accounts for a good motiva-

tion to perform flow control past such obstacles. As it was shown

in [21, 22], a flow past a square back obstacle is not dominated

by longitudinal and hairpin three-dimensional vortical structures,

therefore a preliminary two-dimensional study can be useful to

supply information on general trends for a control.

The subsequent flow control simulations are performed at

-4
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-4 -2  0  2  4  6  8
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D

d

ΓD

y

x

FIGURE 2: COMPUTATIONAL DOMAIN.

transitional (Re = 550) and highly transitional regime (Re =
3000). As at these two regimes the flow is not turbulent, Di-

rect Numerical Simulations (DNS) are performed to numerically

solve Eq. 3. The semi-circular cylinder has a total dimension-

less diameter of d = 1 including a porous layer of thickness τ
and whose back wall is centered at (x,y) = (0, 0) in the com-

putational domain D = [−4, 8]× [−5, 5] (Fig. 2). The whole

computational domain is meshed by an equispaced Cartesian or-

thogonal grid. As we use FFT-based evaluations to solve dif-

fusion and Poisson equation, periodic boundary conditions are

considered on the box walls ΓD and a correction of velocity is

performed at each time step in order to satisfy the free stream

velocity u∞ = (ure f ,0) = (1,0) imposed at the inlet.

Grid convergence

First of all we perform a grid convergence study of the

vortex-penalization method for flow past a solid semi-circular

cylinder at Re=550 and Re=3000. This grid convergence is per-

formed on three grid levels from res=1200×1000 to res=4800×
4000 in computational domain D. The results are reported in

Table 1, giving the mean values of drag and enstrophy Z =∫
D |ω|2 dx. At Re=550, as the results on the two finest con-

secutive grids are very close (Table 1), the resolution there-

fore adopted for the further flow control simulations is 2400×
2000 (h = 0.005). The finest grid resolution 4800× 4000 (h =
0.0025) is retained for the Re=3000 case.

Variation of the penalization parameter λ for medium
definition

In this section, a λ -convergence study is carried out in or-

der to determine the values of the penalization parameter cor-

responding to permeabilities at Re = 550 and Re = 3000. This

study is performed ranging the value of λ inside the whole semi-

4 Copyright c© 2013 by ASME



TABLE 1: MEAN VALUES OF DRAG COEFFICIENT

(CD) AND ENSTROPHY (Z) FOR FLOW PAST A SEMI-

CIRCULAR CYLINDER AT Re=550 AND Re=3000.

Re = 550 Re = 3000

Grid CD Z CD Z

1200×1000 (h = 0.01) 1.49 122 1.39 216

2400×2000 (h = 0.005) 1.91 158 1.64 294

4800×4000 (h = 0.0025) 1.98 161 1.86 301
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FIGURE 3: λ -CONVERGENCE STUDY FOR FLOW PAST

A SEMI-CIRCULAR CYLINDER : THE ERRORS eL∞ , eL1

AND eL2 ARE PLOTTED AGAINST λ VALUES AT Re = 550

(LEFT) AND Re = 3000 (RIGHT)

circular cylinder from 1 to 106 with 108 as reference case (solid

case). In Fig. 3 the L1, L2 and L∞ norms of the error e(y) of the

mean velocity magnitude profile ¯|u| (at x = 0) with respect to the

solid case are plotted.

e(y)L1 =
∫ y=5

y=−5

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣ dy (9)

e(y)L2 =

(∫ y=5

y=−5

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣2 dy

)1/2

(10)

e(y)L∞ = sup
y∈[−5,5]

∣∣ ¯|u|λ=108(y)− ¯|u|(y)
∣∣ (11)

As Fig. 3 shows, the method has a first order convergence.

This result is in agreement with our numerics since the penaliza-

tion term (Eq. 4) is integrated using an implicit Euler scheme

(Eq. 7 and 8). Moreover, we can see on this figure that for both

regimes the semi-cylinder reaches the solid state from λ = 105,

where e(y) ≤ 10−4. Thus, a porous area can be defined with

λ -values between 1 and 104 with very low permeability for the

latter one. We will respectively refer to the solid case and to the

fluid case when λ = 108 and λ = 0 inside the layer.

d

τ

d d

τ τ

λ =10 8
λ =01 ≤ λ ≤ 103

FIGURE 4: (LEFT) UNCONTROLLED/SOLID CASE, (CEN-

TER) POROUS CASE, (RIGHT) FLUID CASE.

Numerical results

This section relies on the influence of the added porous layer

permeability on the flow control behaviour and the efficiency of

such a passive control. This parametric study is performed at

Re = 550 and Re = 3000 considering four consecutive values

of the porous permeability inside the layer, namely λ = 1 (high

permeability), 10, 102, 103 (low permeability) and comparing

the results to the solid (λ = 108) and fluid (λ = 0) cases. The

thickness of the coating is set to τ = 10%d = 0.1 in each case

(Fig. 4). According to the grid convergence (Table 1), the nu-

merical simulations carried out at Re = 550 and Re = 3000 are

respectively performed on grid 2400×2000 (h = 0.005) and grid

4800×4000 (h = 0.0025) in computational domain D.

In order to analyze the effects of our control approach we

compare global flow quantities like the drag force (FD), com-

puted according to the momentum equation [23] and the enstro-

phy (Z), expressed as the integral of the square of the vorticity,

allowing to measure the dissipation effects in the flow as well as

the delay of transition to turbulence. Note that in this study we

consider drag force (FD) instead of drag coefficient (CD) since the

computation of the latter involves the diameter d of the obstacle

which is not clearly defined because of the porous coating.

As can be seen in Fig. 5, which represents dimensionless

time history of global flow quantities at Re=550, setting λ = 1

inside the layer clearly appears as the best solution in terms of

flow regularization. Indeed, the mean value of drag force (Fig. 5

(up)) reaches for λ = 1 an optimum value close to the one of the

fluid case, showing a drag reduction of about 30% compared to

uncontrolled case. For all the other values of porous λ , the drag

reduction effects are nearly nonexistent. Results of enstrophy

evolution (Fig. 5 (bottom)) show a progressive reduction of the

dissipation effects and the delay to transition with the decrease of

the λ -value. Furthermore, we note that the result obtained with

λ = 1 is even better than the one of fluid case and represents

an improvement of nearly 40% compared to uncontrolled case.

These quantitative results are confirmed by the mean vorticity

and velocity fields showing the smoothing of wake dynamics

generated by the presence of the highly permeable layer. Indeed,

with λ = 1 the transversal dimension of the wake is smaller, the
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FIGURE 7: FIELDS AND ISOLINES OF MEAN VELOCITY

MAGNITUDE FOR THE FLOW PAST A SEMI-CIRCULAR

CYLINDER AT Re = 550.

back recirculation zone is sharply reduced (Fig. 6) and the vor-

tices swirl with lower velocity (Fig. 7).

At Re= 3000 the best solution for global flow regularization

is also achieved setting the λ parameter to 1 inside the porous

coating. This configuration leads to a drag and enstrophy reduc-

tion of respectively 21% and 44% compared to the uncontrolled

case (Fig. 8) and shows a drastic decrease of the flow particles

velocity (Fig. 10). In terms of control effects, the main differ-

ence one can notice here in comparison to the parameter study

performed at transitional regime concerns the flow behaviour ob-

served when λ = 10 inside the layer. Contrary to the other λ -

values, the flow obtained with the latter is non-periodic (Fig. 8).

This flow irregularity impacts the mean drag value, which is in-

creased of about 10% compared to the uncontrolled case. Figure

10 also confirms the negative effects of the non-periodicity of the

flow showing high particles velocity with a chaotic distribution

of the vortices as well as an extension of the transversal dimen-

sion of the wake (Fig. 9).

CONCLUSION

In this work, a hybrid vortex-penalization method was pro-

posed in order to easily handle solid-fluid-porous media. The

differentiation between the three different media is indeed per-

formed defining the value of the penalization parameter in the

Brinkman-Navier-Stokes equations without prescribing a bound-

ary condition at the solid boundary or a condition at the porous-

fluid interface. An application to passive flow control past a

semi-circular cylinder was performed at transitional and highly

transitional regimes, consisting in adding a porous sheath on the

obstacle surface in order to smooth the flow dynamics. The para-

6 Copyright c© 2013 by ASME
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metric study carried out in the last part of this paper, shown that

the best results in terms of passive flow control were achieved us-

ing highly porous layers. The presence of a very permeable coat-

ing at the solid-fluid interface is indeed responsible for a decrease

of the shear forces and the vorticity generation of the boundary

layer and was shown to lead to drag reductions of about 30% at

Re = 550 and 20% at Re = 3000. Further studies will entail a

passive control for high Reynolds flows (closer to real problems)

and 3D cases.
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