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Abstract. We propose a syntactic possibilistic belief-change

operator, which operates on a belief base of necessity-valued

formulas. Such a base may be regarded as a finite and com-

pact encoding of a possibility distribution over a possibly

infinite set of interpretations. The proposed operator is de-

signed so that it behaves like a semantic possibilistic belief-

change operator for BDI agents recently proposed in the lit-

erature. The equivalence of the semantic and syntactic oper-

ators is then proved. Experimental results are presented. The

aim of these experiments is to demonstrate that the cost of

belief revision (expressed in terms of the number of entail-

ment checks required) as well as the size of the belief base

do not explode as the number of new pieces of information

(formulas) supplied increases.

Keywords: BDI Agents, Belief Change, Possibility Theory.

1. Introduction

This article is an extended version of [9].

When representing uncertainty in logics, it is of-

ten supposed that there exists a set of possible worlds

(models) which are candidates to be the real world.

The uncertainty is due to the fact that we do not know

which among those worlds corresponds to the real

state. Two different situations can be considered:

*Corresponding author. E-mail: celia.pereira@unice.fr.
*Corresponding author. E-mail: celia.pereira@unice.fr.

– we cannot distinguish which world has a greater

chance to be the real state than another — the

non-deterministic case;

– some information is available leading us to sup-

pose that not all these worlds are equally possible

to be the real world state.

These two cases are differently treated depending on

the logic used to represent the uncertainty. If we use

probability theory, in the first case, all the worlds are

associated to an equal probability while, in the second

case, we need to have some evidence allowing us to

associate different probabilities to the different worlds

depending on their “distance” with respect to the real

one. If we use possibility theory, the first case corre-

sponds to total ignorance, and the second case may be

solved by considering the plausbility order associated

to the worlds.

Several approaches have been proposed for repre-

senting uncertainty in the BDI (Beliefs Desires and In-

tentions) components of an agent. The main goal of

such approaches is to extend the traditional BDI model

of agency to make it more suitable to represent real

situations in which uncertainty is omnipresent. There

are essentially two ways for dealing with uncertainty.

By using probabilistic-based models which are suit-

able when information about past experiences is avail-

able, and by using possibilistic-based models which

in their turn are more suitable when we lack statisti-

cal data but a notion of order on the events is avail-

able. This latter uncertainty model for representation

has demonstrated its usefulness in representing uncer-

tainty on beliefs since the seminal work by Dubois and

Prade [13]. In that work, the authors pointed out the

close relationships between the theory of belief revi-

sion developed by Gardenförs based on the notion of

epistemic entrenchment, and possibility theory applied

to automated reasoning under uncertainty.

Other proposals have followed. For example, Dra-

goni and Giorgini [11] presented a model for belief

revision in which they integrate symbolic and numer-
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ical methods into a BDI architecture. Casali and col-

leagues [7] proposed a general model for graded BDI

agents and an architecture for modeling the agent’s

graded mental attitudes. Like Casali, Blee and col-

leagues [6] introduce levels in all the mentalistic no-

tions of BDI, as well as using numeric, possibilistic-

type functions in its semantics. We have presented an

integrated theoretical framework, grounded in possi-

bility theory, to account for all the aspects involved

in representing and changing beliefs for cognitive

agents [8]. In that framework, graded beliefs are rep-

resented by means of a possibility distribution over in-

terpretations, and a belief-change operator is proposed

which obeys a possibilistic formulation of the AGM

revision rationality postulates K∗1–K∗8 [16], and is a

generalization of the possibilistic conditioning opera-

tor of Dubois and colleagues [14]. Such operator is one

of the members of a family of possibilistic condition-

ing operators studied in [5].

Although our framework looks interesting and promis-

ing, the use of a possibility distribution to represent be-

liefs, while allowing us to model most of the intuitive

properties in an elegant and natural way, poses com-

putational problems. Indeed, for a propositional lan-

guage, the interpretations are 2 to the power the num-

ber of atomic propositions; with more than a few dozen

atomic propositions, a direct representation of a possi-

bility distribution would require more memory space

than available on most state-of-the-art computers. For

more expressive languages, the set of interpretations

may even be infinite.

Obviously, equivalent, but less demanding, strate-

gies to encode and manipulate beliefs should be de-

vised if such an approach is to be adopted in a re-

alistic setting. In this paper, we propose one strategy

to work around the direct representation of beliefs as

a possibility distribution, which consists of adopting

a syntactic representation, whereby the beliefs of an

agent are represented by means of a fuzzy set of for-

mulas in the language of choice. However, to achieve

full equivalence with the direct, semantic representa-

tion, the belief-change operator has to be reformulated

in terms of the syntactic representation.

To this aim, we devise a syntactic belief-change op-

erator that works on a belief base, i.e., a fuzzy set of

formulas in the language of choice, where membership

degrees are regarded as necessity degrees, and trans-

forms it to account for the arrival of new information

from a partially trusted source. Then we prove that

the syntactic operator is equivalent to the semantic op-

erator. Experimental results are also presented. They

demonstrate that the cost of belief revision (expressed

in terms of the number of entailment checks required)

as well as the size of the belief base do not explode

as the number of new pieces of information (formulas)

supplied increases.

An alternative and very popular approach to repre-

senting beliefs and revising them with new evidence is

Philippe Smets transferable belief model [20], which

is based on the Dempster-Shafer theory of evidence,

which in turn may be regarded as a generalization of

the theory of probability. As pointed out by [12], the

main problem with the Dempster-Shafer approach is

its computational complexity. One should generate a

frame of 2|Ω| elements, where Ω is the space of events

(or, equivalently, the set of all interpretations)! This

can be contrasted to the (semantic) possibilistic and a

simple probabilistic representation, which “only” re-

quire to explicitly represent a frame of |Ω| elements.

The reason why a direct probabilistic representa-

tion of beliefs is not a viable alternative to the frame-

work we propose is that, unlike the transferable belief

model, it fails to distinguish stochastic uncertainty, re-

sulting from a system behaving in a random way, from

epistemic uncertainty (or ignorance), resulting from a

lack of knowledge about the system. Such confusion

may lead to incorrect results [20].

Furthermore, probabilistic revision does not satisfy

the AGM postulates, especially because it fails to ad-

dress the notion of minimal change [12].

The paper is organized as follows: Section 2 briefly

reviews background notions required to follow the pa-

per. Section 3 discusses the semantic and the syntactic

representation, showing their equivalence. Section 4

reviews the semantic belief-change operator, then pro-

poses a syntactic belief-change operators, and proves

its equivalence. Section 5 provides an empirical study

of the behavior of the proposed operator. Finally, Sec-

tion 6 concludes.

2. Preliminaries

In this section, we briefly review the essential back-

ground and definitions on fuzzy set theory and possi-

bility theory.

2.1. Fuzzy Sets

Fuzzy sets [21] are a generalization of classical

(crisp) sets obtained by replacing the characteristic

function of a setA, χA, which takes up values in {0, 1}
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(χA(x) = 1 iff x ∈ A, χA(x) = 0 otherwise) with a

membership function µA, which can take up any value

in [0, 1]. The value µA(x) or, more simply, A(x) is the

membership degree of element x in A, i.e., the degree

to which x belongs in A.

A fuzzy set is completely defined by its member-

ship function. Therefore, it is useful to define a few

terms describing various features of this function, sum-

marized in Figure 1. Given a fuzzy set A, its core

is the (conventional) set of all elements x such that

A(x) = 1; its support, supp(A), is the set of all x

such that A(x) > 0. A fuzzy set is normal if its core

is nonempty. The set of all elements x of A such that

A(x) ≥ α, for a given α ∈ (0, 1], is called the α-cut of

A, denoted Aα. Sometimes it is convenient to define

also the notion of a strict α-cut, A>α, as the set of all

elements x of A such that A(x) > α.

Fig. 1. Core, support, and α-cuts of a set A of the real line.

A convenient notational convention we will adopt

throughout this paper for fuzzy sets, when the universe

of discourse is discrete is, for fuzzy set A,

A =
A(x1)

x1
+
A(x2)

x2
+ . . . =

∑

i

A(xi)

xi
. (1)

This notation is nothing more than a formal device and

the fractions do not have to be interpreted as divisions

but just as ordered pairs, while the + does not stand for

algebraic sum but rather for a function-theoretic union.

The usual set-theoretic operations of union, inter-

section, and complement can be defined as a gener-

alization of their counterparts on classical sets by in-

troducing two families of operators, called triangular

norms and triangular co-norms. In practice, it is usual

to employ the min norm for intersection and the max

co-norm for union. Given two fuzzy sets A and B, and

an element x,

(A ∪B)(x) = max{A(x), B(x)}; (2)

(A ∩B)(x) = min{A(x), B(x)}; (3)

Ā(x) = 1−A(x). (4)

Finally, given two fuzzy sets A and B, A ⊆ B if and

only if, for all element x, A(x) ≤ B(x).

2.2. Possibility Theory

The membership function of a fuzzy set describes

the more or less possible and mutually exclusive values

of one (or more) variable(s). Such a function can then

be seen as a possibility distribution [22]. Indeed, if F

designates the fuzzy set of possible values of a variable

X , πX = µF is called the possibility distribution asso-

ciated to X . The identity µF (v) = πX(v) means that

the membership degree of v to F is equal to the possi-

bility degree of X being equal to v when all we know

about X is that its value is in F . A possibility distribu-

tion for which there exists a completely possible value

(∃v0;π(v0) = 1) is said to be normalized.

Definition 1 (Possibility and Necessity Measures) A

possibility distribution π induces a possibility measure

and its dual necessity measure, denoted by Π and N

respectively. Both measures apply to a crisp set A and

are defined as follows:

Π(A) = max
s∈A

π(s); (5)

N(A) = 1−Π(Ā) = min
s∈Ā

{1− π(s)}. (6)

In words, the possibility measure of set A corre-

sponds to the greatest of the possibilities associated to

its elements; conversely, the necessity measure of A is

equivalent to the impossibility of its complement Ā.

3. Representing Graded Beliefs

3.1. Language and Interpretations

Information manipulated by a cognitive agent must

be somehow represented. For the sake of simplicity, we

use here perhaps the simplest symbolic representation,

in the form of a classical propositional language.
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Definition 2 (Language) Let A be a finite1 set of

atomic propositions and let L be the propositional lan-

guage such that A ∪ {⊤,⊥} ⊆ L, and, ∀φ, ψ ∈ L,

¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

As usual, one may define additional logical connec-

tives and consider them as useful shorthands for com-

binations of connectives of L, e.g., φ ⊃ ψ ≡ ¬φ ∨ ψ.

We will denote by Ω = {0, 1}A the set of all inter-

pretations on A. An interpretation I ∈ Ω is a function

I : A → {0, 1} assigning a truth value pI to every

atomic proposition p ∈ A and, by extension, a truth

value φI to all formulas φ ∈ L.

Definition 3 The notation [φ] denotes the set of all

models (namely, interpretations satisfying φ) of a for-

mula φ ∈ L:

[φ] = {I ∈ Ω : I |= φ}.

Likewise, if S ⊆ L is a set of formulas,

[S] = {I ∈ Ω : ∀φ ∈ S, I |= φ} =
⋂

φ∈S

[φ].

3.2. Syntactic and Semantic Representations

Two alternative ways for representing graded beliefs

can be obtained by following two distinct lines of rea-

soning.

The first line of reasoning starts from the logical

idea of a belief set, like the one used in the AGM theory

of revision [1]. In the literature on non-graded belief

revision, the agent’s belief state may be represented in

different ways. As belief sets, which are sets of sen-

tences closed under logical consequence, like in [1],

or, alternatively, as belief bases, which are sets of sen-

tences that are not logically closed [18] and contain the

sentences that represent the explicit beliefs from which

all the other beliefs can be derived. The representation

based on belief sets has some advantages, but is not

computationally adequate. On the other hand, a belief

base may be regarded as a finite and compact repre-

sentation of a belief set, and is, therefore, much more

suited to computation.

As for the representation of graded beliefs, one can

allow some formulas of the base to be believed only

1Like in [3], we adopt the restriction to the finite case in order to

use standard definitions of possibilistic logic. Extensions of possi-

bilistic logic to the infinite case are discussed for example in [10].

to a given degree, thus obtaining a fuzzy belief base,

which is a fuzzy set B of formulas. The degree to

which a given formula φ ∈ L is believed can be calcu-

lated as

B(φ) = max{α : Bα ⊢ φ}. (7)

This is the syntactic representation of graded beliefs.

Alternatively, one may regard a belief as a necessity

degree induced by a normalized possibility distribution

π on the possible worlds I ∈ Ω [4]:

π : Ω → [0, 1]; (8)

where π(I) is the possibility degree of interpretation

I. In this case, the degree to which a given formula

φ ∈ L is believed can be calculated as

B(φ) = N([φ]) = 1−max
I6|=φ

π(I), (9)

where N is the necessity measure induced by π. This

is the semantic representation of graded beliefs.

This latter was our choice in the original proposal of

the theoretical framework [8].

3.3. Equivalence

A direct consequence of a fundamental result on the

equivalence between sets of necessity-values formulas

and possibility distributions [15], is that the syntactic

and the semantic representations of graded beliefs are

equivalent. Therefore, they may be used interchange-

ably as convenience demands.

This means that, given a fuzzy belief base B such

that, for all α, Bα is consistent, one can construct a

possibility distribution π such that, for all φ ∈ L,

N([φ]) = max{α : Bα ⊢ φ}, where Bα is the α-cut

of fuzzy belief base B.

In particular, π may be defined as follows: for all

I ∈ Ω,

π(I) = min
φ:I6|=φ

{1−B(φ)} = 1− max
φ:I6|=φ

B(φ), (10)

or, equivalently,

π(I) = 1−max{α : Bα ⊢ ¬φI}, (11)

where φI denotes the minterm of I, i.e., the formula

satisfied by I only.



C. da Costa Pereira et al. / Syntactic Possibilistic Belief Change Operator 5

Notice that π is normalized. Indeed, since, by hy-

pothesis, for all α, Bα is consistent, there exists an

interpretation I∗ ∈ Ω, such that, for all α ∈ (0, 1],
I∗ |= Bα; therefore, π(I∗) = 1, because no formula

φ exists such that I∗ 6|= φ and B(φ) > 0.

3.4. Properties of Graded Beliefs

Straightforward consequences of the properties of

possibility and necessity measures are that B(φ) >

0 ⇒ B(¬φ) = 0, this means that if the agent some-

how believes φ then it cannot believe ¬φ at all; and,

for all φ, ψ ∈ L,

B(⊤) = 1, (12)

B(⊥) = 0, (13)

B(φ ∧ ψ) = min{B(φ),B(ψ)}, (14)

B(φ ∨ ψ) ≥max{B(φ),B(ψ)}. (15)

Another straightforward property is that, for all φ ∈
L, B(φ) ≥ B(φ).

The idea of a syntactic representation of beliefs

is that it should be parsimonious, and ideally mini-

mal with respect to (fuzzy) set inclusion, i.e., the be-

lief base does not need to include explicitly formulas

whose degree of belief can be derived from it. In par-

ticular, this means that if formula φ is already a mem-

ber of B with degree B(φ), then, if α ≤ B(φ),

B ∪
α

φ
= B.

In general, if α ≤ B(φ), which is equivalent to say-

ing that Bα ⊢ φ, adding α
φ

to B would be redundant,

and may be dispensed with. Since all tautologies are

always believed to degree 1, adding a tautology to a be-

lief base is always redundant, and may thus be avoided.

4. Belief Change

In this section we begin by briefly reviewing the se-

mantic belief-change operator proposed in [8], then we

propose a syntactic belief-change operator and prove

its equivalence with the semantic operator.

4.1. Semantic Operator

Agents update their possibility distribution π in light

of new information φ ∈ L coming from a source

trusted to a certain extent τ ∈ [0, 1] by means of the

following belief change operator [8], which is formu-

lated in terms of the semantic representation of beliefs.

Definition 4 (Belief Change Operator) The possibil-

ity distribution π′ which induces the new belief set B′

after receiving information φ from a source trusted to

degree τ is computed from possibility distribution π

relevant to the previous belief set B (B′ = B ∗ τ
φ

,

π′ = π ∗ τ
φ

) as follows: for all interpretation I,

π′(I) =























π(I)

1−B(¬φ)
,

if I |= φ and

B(¬φ) < 1;

1,
if I |= φ and

B(¬φ) = 1;

min{π(I), 1− τ}, if I 6|= φ.

(16)

The first case of Equation 16 is formally equivalent

to the Goguen implication, which is the residuum

Π([φ]) ⇒ π(I) of the t-norm used to condition the

possibility distribution on the models of φ, here the

product2. The condition B(¬φ) < 1 is equivalent to

∃I ′ : I ′ |= φ⇒ π(I ′) > 0, i.e., Π([φ]) > 0; likewise,

the condition B(¬φ) = 1 is equivalent to Π([φ]) = 0,

which implies π(I) = 0 ∀I |= φ. Therefore, The

second case in Equation 16 provides for the revision

of beliefs that contradict φ. In general, the operator

treats new information φ in the negative sense: being

told φ denies the possibility of world situations where

φ is false (third case of Equation 16). The possibility

of world situations where φ is true may only increase

due to the first case in equation 16 or revision (sec-

ond case of Equation 16). If information from a fully

trusted source contradicts an existing proposition that

is fully believed, then revising with the above operator

leads the agent to believe the more recent information

and give up the oldest to restore consistency.

The belief change operator ∗ of Definition 4 is hy-

brid in that it uses different t-norms to condition mod-

els and countermodels of φ. Such hybrid operator have

been studied in [5]. In particular, this operator uses

the product t-norm to condition models and the min t-

norm to condition countermodels. The motivation for

using this particular combination is that using the min

for countermodels is suitable for representing weary or

conservative agents, whereas using product for models

is suitable for representing open-minded or insecure

agents who, if they receive new information which

contradicts one among their old beliefs, start to ques-

2As one would expect, it is possible to generalize this definition

to any other t-norm. However, this is not the focus of this article:

here, we are interested in reformulating this particular definition in

syntactic terms.
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tion also their other beliefs. Of course, we are not

claiming that this operator makes sense in all scenar-

ios: other operators may be more appropriate to deal

with other situations.

It has been proved [8] that the belief change oper-

ator ∗ of Definition 4 obeys a possibilistic formula-

tion of the AGM revision rationality postulates K∗1–

K∗8 [16].

It is easy to verify that the ∗ operator is a gener-

alization of the possibilistic conditioning operator of

Dubois and colleagues [14].

After recalling that the expansion of a crisp set of

formulas K with a formula φ ∈ L is K + φ = {ψ :
K ∪ {φ} ⊢ ψ}, let us define the expansion of a fuzzy

set of formulas B with a formula φ ∈ L from a source

trusted to degree τ , for all ψ ∈ L, as

(

B+
τ

φ

)

(ψ) = max

{

α :

(

B ∪
τ

φ

)

α

⊢ ψ

}

. (17)

In terms of possibility distribution, this corresponds to

(

π +
τ

φ

)

(I) = min{π(I), φI+(1−φI)(1−τ)}.

(18)

4.2. Syntactic Operator

First of all, it is reasonable to require that a syntac-

tic belief change operator produces a new belief base

B′ = B + τ
φ

, starting from B, by using only formulas

that are in supp(B) and φ.

Four examples of increasing difficulty will help us

to better frame the problem of how to express the se-

mantic belief-change operator in terms of the syntactic

representation.

Example 1 Let B = 1
p
+ 0.2

p⊃q , and let us calculate

B′ = B ∗ 0.6
¬q . The α-cuts of B are

Bα =

{

{p}, for 0.2 < α ≤ 1;

{p, p ⊃ q}, for 0 < α ≤ 0.2.
(19)

Since we only know the semantic belief-change opera-

tor, we have to transform the beliefs represented by B

into the corresponding possibility distribution π, by us-

ing Equation 11. The set of interpretations Ω contains

the following four interpretations, listed with their cor-

responding minterms:

I0 = {p 7→ 0, q 7→ 0}, φI0
= ¬p ∧ ¬q,

I1 = {p 7→ 0, q 7→ 1}, φI1
= ¬p ∧ q,

I2 = {p 7→ 1, q 7→ 0}, φI2
= p ∧ ¬q,

I3 = {p 7→ 1, q 7→ 1}, φI3
= p ∧ q.

Therefore,

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 0,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.8,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 1.

Now, we apply the semantic belief-change operator to

obtain π′ = π ∗ 0.6
¬q , by keeping in mind that B(q) =

1− 0.8 = 0.2:

π′(I0) =
π(I0)

1−B(q) =
0
0.8 = 0,

π′(I1) = min{π(I1), 0.4} = 0,

π′(I2) =
π(I2)

1−B(q) =
0.8
0.8 = 1,

π′(I3) = min{π(I3), 0.4} = 0.4.

From possibility distribution π′ we may compute the

degree to which all relevant formulas are now believed:

B
′(p) = 1−maxI6|=p π

′(I) = 1,
B

′(p ⊃ q) = 1−maxI6|=p⊃q π
′(I) = 0,

B
′(¬q) = 1−maxI6|=¬q π

′(I) = 0.6.

Therefore, we may conclude that a reasonable candi-

date for B′ should be the fuzzy set 1
p
+ 0.6

¬q . Indeed, it

is easy to verify that its corresponding possibility dis-

tribution is π′, as expected: the α-cuts of B′ are

B′
α =

{

{p}, for 0.6 < α ≤ 1,

{p,¬q}, for 0 < α ≤ 0.6,
(20)

and applying Equation 11 to compute the correspond-

ing possibility distribution yields π′.

What this example tells us is that, in this case, the

belief base has been changed by removing formula

p ⊃ q, which contradicts the new information ¬q and

was believed to degree 0.2 only, and by adding the new

formula ¬q with membership degree τ = 0.6. ⋆

It is interesting to observe what happens when the

initial belief base contains formulas that have nothing

to do with incoming information. The following exam-

ple is a variation of the previous one, where another

formula using atom r, completely independent of both

p and p ⊃ q, is introduced into the initial belief base.
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Example 2 Let B = 1
p
+ 0.2

p⊃q +
0.3
r

, and let us calcu-

late, just like in the previous example, B′ = B ∗ 0.6
¬q .

The α-cuts of B are now

Bα =







{p}, for 0.3 < α ≤ 1;

{p, r}, for 0.2 < α ≤ 0.3;

{p, p ⊃ q}, for 0 < α ≤ 0.2.

(21)

The set of interpretations Ω contains the following

eight interpretations, listed with their corresponding

minterms:

I0 = {p 7→ 0, q 7→ 0, r 7→ 0}, φI0
= ¬p ∧ ¬q ∧ ¬r,

I1 = {p 7→ 0, q 7→ 1, r 7→ 0}, φI1
= ¬p ∧ q ∧ ¬r,

I2 = {p 7→ 1, q 7→ 0, r 7→ 0}, φI2
= p ∧ ¬q ∧ ¬r,

I3 = {p 7→ 1, q 7→ 1, r 7→ 0}, φI3
= p ∧ q ∧ ¬r,

I4 = {p 7→ 0, q 7→ 0, r 7→ 1}, φI4
= ¬p ∧ ¬q ∧ r,

I5 = {p 7→ 0, q 7→ 1, r 7→ 1}, φI5
= ¬p ∧ q ∧ r,

I6 = {p 7→ 1, q 7→ 0, r 7→ 1}, φI6
= p ∧ ¬q ∧ r,

I7 = {p 7→ 1, q 7→ 1, r 7→ 1}, φI7
= p ∧ q ∧ r.

Applying Equation 11 yields the possibility distribu-

tion π corresponding to belief base B:

π(I0) = 1−max{α : Bα ⊢ p ∨ q ∨ r} = 0,
π(I1) = 1−max{α : Bα ⊢ p ∨ ¬q ∨ r} = 0,
π(I2) = 1−max{α : Bα ⊢ ¬p ∨ q ∨ r} = 0.7,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q ∨ r} = 0.7,
π(I4) = 1−max{α : Bα ⊢ p ∨ q ∨ ¬r} = 0,
π(I5) = 1−max{α : Bα ⊢ p ∨ ¬q ∨ ¬r} = 0,
π(I6) = 1−max{α : Bα ⊢ ¬p ∨ q ∨ ¬r} = 0.8,
π(I7) = 1−max{α : Bα ⊢ ¬p ∨ ¬q ∨ ¬r} = 1.

Now, we apply the semantic belief-change operator to

obtain π′ = π ∗ 0.6
¬q , by keeping in mind that B(q) =

1− 0.8 = 0.2:

π′(I0) =
π(I0)

1−B(q) =
0
0.8 = 0,

π′(I1) = min{π(I1), 0.4} = 0,

π′(I2) =
π(I2)

1−B(q) =
0.7
0.8 = 0.875,

π′(I3) = min{π(I3), 0.4} = 0.4,

π′(I4) =
π(I4)

1−B(q) =
0
0.8 = 0,

π′(I5) = min{π(I5), 0.4} = 0,

π′(I6) =
π(I6)

1−B(q) =
0.8
0.8 = 1,

π′(I7) = min{π(I7), 0.4} = 0.4.

From π′, we compute the degree to which all relevant

formulas are now believed:

B
′(p) = 1−maxI6|=p π

′(I) = 1,
B

′(p ⊃ q) = 1−maxI6|=p⊃q π
′(I) = 0,

B
′(r) = 1−maxI6|=r π

′(I) = 0.125,
B

′(¬q) = 1−maxI6|=¬q π
′(I) = 0.6.

Therefore, we may conclude that B′ must be the fuzzy

set 1
p
+ 0.6

¬q +
0.125
r

. We may verify that its correspond-

ing possibility distribution is π′.

What this example tells us is that formulas like r,

that are believed to a larger degree than the negation of

new information, must be “weakened” to a certain ex-

tent by the arrival of new information that contradicts

current beliefs. The amount of such weakening appears

to be inversely proportional to the degree to which new

information contradicts current beliefs. In the case of

r,

B′(r) = 1−
1−B(r)

1−B(q)
= 1−

1− 0.3

1− 0.2

= 1− 0.875 = 0.125.

⋆

Things get even more complicated with the follow-

ing example, which demonstrates the need of including

“novel” formulas created as a disjunction of previously

held beliefs and incoming information that contradicts

current beliefs, to replace formulas removed from the

initial belief base.

Example 3 Let B = 0.6
¬p + 0.4

q
, and let us calculate

B′ = B ∗ 0.2
p

. The α-cuts of B are

Bα =







∅ for 0.6 < α ≤ 1;

{¬p}, for 0.4 < α ≤ 0.6;

{¬p, q}, for 0 < α ≤ 0.4.

(22)

The set of interpretations Ω contains the following

four interpretations, listed with their corresponding

minterms:

I0 = {p 7→ 0, q 7→ 0}, φI0
= ¬p ∧ ¬q,

I1 = {p 7→ 0, q 7→ 1}, φI1
= ¬p ∧ q,

I2 = {p 7→ 1, q 7→ 0}, φI2
= p ∧ ¬q,

I3 = {p 7→ 1, q 7→ 1}, φI3
= p ∧ q.



8 C. da Costa Pereira et al. / Syntactic Possibilistic Belief Change Operator

Applying Equation 11 yields the possibility distribu-

tion π corresponding to belief base B:

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0.6,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 1,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.4,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 0.4.

Now, we apply the semantic belief-change operator to

obtain π′ = π ∗ 0.2
p

, by keeping in mind that B(¬p) =
0.6:

π′(I0) = min{π(I0), 0.8} = 0.6,
π′(I1) = min{π(I1), 0.8} = 0.8,

π′(I2) =
π(I2)

1−B(¬p) =
0.4
0.4 = 1,

π′(I3) =
π(I3)

1−B(¬p) =
0.4
0.4 = 1.

From π′, we may compute:

B
′(p) = 1−maxI6|=p π

′(I) = 0.2,
B

′(¬p) = 1−maxI6|=¬p π
′(I) = 0,

B
′(q) = 1−maxI6|=q π

′(I) = 0.

However, belief base B′ cannot be 0.2
p

, as one would

expect based on the two previous examples, because

that would give

1−max{α : Bα ⊢ p ∨ q} = 0.8 6= π′(I0).

The only way of obtaining the correct result by using

only formulas that either were in the initial base or in

incoming information is by observing that B′(p∨q) =
0.4 and thus by letting B′ = 0.2

p
+ 0.4

p∨q .

In other words, formula q that had to be given up

because it was not believed more than ¬p must be re-

placed by its disjunction with incoming information p,

giving p∨ q, with the same degree of membership as q

in the initial base.

Why did not this feature show up in the previous

examples? The reason is that the disjunction with in-

coming information would give a tautology, which is

always fully believed: its inclusion in B′ would be re-

dundant and could thus be dispensed with. ⋆

From the last example, it is not completely clear

whether a formula of the form ψ ∨ φ, where φ is the

incoming formula, must be added to replace formulas

that got deleted only, or it must be added for all formu-

las ψ in the initial base. The following example helps

us to clarify this issue.

Example 4 Let us use the same Ω as in the previous

example, and, given

B =
0.9

p ⊃ q
+

0.7

p ∨ q
+

0.7

q
+

0.25

¬(p ∧ q)
+

0.25

p⊕ q
+

0.25

¬p
+

0.25

¬p ∧ q
,

where p ⊕ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q) represents the

“exclusive or” logical operator, let us calculate B′ =
B ∗ 0.6

p
.

The possibility distribution π corresponding to be-

lief base B may be determined as usual, by applying

Equation 11:

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0.3,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 1,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.1,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 0.75.

Now, B(¬p) = 0.25 and the semantic belief change

yields

π′(I0) = min{π(I0), 0.4} = 0.3,
π′(I1) = min{π(I1), 0.4} = 0.4,

π′(I2) =
π(I2)

1−B(¬p) =
0.1
0.75 = 0.1333,

π′(I3) =
π(I3)

1−B(¬p) =
0.75
0.75 = 1,

from which we must infer that

B′ =
0.8667

p ⊃ q
+

0.7

p ∨ q
+

0.6

p
.

Notice that B′ must be obtained by adding formulas

ψ ∨ p for all the formulas originally in B to the con-

tracted belief base. What happens then is that all of

those ψ ∨ p either reduce to p ∨ q or to a tautology:

(p ⊃ q) ∨ p = ¬p ∨ q ∨ p = ⊤ ∨ q = ⊤,

(p ∨ q) ∨ p = p ∨ q,

¬(p ∧ q) ∨ p = ¬p ∨ ¬q ∨ p = ⊤ ∨ ¬q = ⊤,

(p⊕ q) ∨ p = (¬p ∧ q) ∨ (p ∧ ¬q) ∨ p = p ∨ q,

¬p ∨ p = ⊤,

(¬p ∧ q) ∨ p = (¬p ∨ p) ∧ (p ∨ q) = ⊤ ∧ (p ∨ q)

= p ∨ q.

Furthermore, there is no need to include 0.6
q

in B′,

since q may be deduced from p and p ⊃ q, both mem-

bers of B′
0.6.
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Had not 0.7
p∨q been included in B′, the term 0.6

p∨q , re-

sulting from B′(p ∨ q) = 1 − 0.3
0.75 , would have been

there instead, giving

1−max{α : Bα ⊢ p ∨ q} = 0.4 6= π′(I0).

This means that ψ ∨ φ must be included in B′ for all

formulas ψ in B. ⋆

One of the oldest ideas in belief revision theory, due

to Isaac Levi, is that changing your beliefs given some

new information should proceed in two steps: first,

give up old beliefs contradicted by new information;

second, add the new information [19].

The syntactic expansion operator +, equivalent to

the semantic expansion operator of Equation 18 may

be defined as

B +
τ

φ
= B ∪

τ

φ
. (23)

Notice that, if φ is already in B at least to degree τ ,

B ∪ τ
φ
= B.

As for the syntactic contraction operator, it is not

obvious how it should be defined. A first guess at it

might be what we may call simple contraction,

B − φ = B ∩B>B(φ), (24)

i.e., B with all formulas belonging to it up to the de-

gree to which φ is believed removed. However, for rea-

sons that should be clear from our discussion of the ex-

amples, we prefer to resort to the following normalized

contraction operator: for all ψ ∈ L,

(B .− φ)(ψ) =

{

0, if B(ψ) ≤ B(φ),

1− 1−B(ψ)
1−B(φ) , if B(ψ) > B(φ),

(25)

which is almost the same as Equation 24, except that

it redistributes between 0 and 1 the degree of member-

ship of all the formulas that do not get removed.

A syntactic belief-change operator may now be de-

fined as a two-stage operator, which first contracts the

belief base by the negation of the information commu-

nicated by a partially trusted source, and then expands

it with such new information.

Definition 5 (Belief Change Operator) The belief

base B′ which induces the new belief set B′ after re-

Fig. 2. A flow chart of the syntactic belief change operator, showing

how B(ψ), given as input, is changed into B′(ψ).

ceiving information φ from a source trusted to degree

τ is computed from belief base B relevant to the previ-

ous belief set B (B′ = B∗ τ
φ

, B′ = B ∗ τ
φ

) as follows:

B′ = (B .− ¬φ) +
τ

φ
+

∑

ψ

B(ψ)

φ ∨ ψ
. (26)

An interesting feature of the above definition is that

Equation 26 may be regarded as a fuzzy generalization

of the well-known Levi identityK∗φ = (K−¬φ)+φ.

Definition 5 may be translated into the following

procedure:

1. remove from belief base B all formulas ψ such

that B(ψ) ≤ B(¬φ);

2. redistribute the degrees of membership of all

extant formulas ψ, now ranging in (B(¬φ), 1],

by remapping them to the full (0, 1] interval:

B′(ψ) = 1− 1−B(ψ)
1−B(¬φ) ;

3. add formula φ with membership degree τ to the

resulting contracted belief base;

4. finally, for all formula ψ, add φ ∨ ψ with mem-

bership degree B(ψ); of course, only formulas

with a non-zero membership degree in the initial

belief base will have to be considered.

An alternative way of writing Equation 26, which

emphasizes the way individual membership degrees
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change, is, for all ψ ∈ L,

B′(ψ) =



































max{τ,B(φ)}, ψ = φ,

max{B(ξ), B(φ)}, ψ = φ ∨ ξ,

0,
ψ 6= φ, ψ 6= φ∨ ξ,

B(ψ) ≤ B(¬φ),

1−
1−B(ψ)

1−B(¬φ)
,

ψ 6= φ, ψ 6= φ∨ ξ,

B(ψ) > B(¬φ).

(27)

Notice the striking formal symmetry between this

equation and Equation 16. The flow chart shown in

Figure 2 makes it clear how the membership values of

formulas in the belief base change as the consequence

of applying Equation 27.

In the special case where B(¬φ) = 1 and τ = 1,

B ∗ τ
φ
= φ. When B(¬φ) = 0, B ∗ τ

φ
= B + τ

φ
, i.e.,

belief change reduces to simple expansion.

4.3. Equivalence

Equivalence between the semantic and syntactic op-

erators will be proved by showing that the syntactic

operator applied to a belief base B corresponding to

possibility distribution π yields a revised belief base

B′ whose corresponding possibility distribution is ex-

actly the distribution π′ one would obtain by applying

the semantic operator to distribution π. This is summa-

rized in the following commutative diagram:

π ∗sem
τ
φ
→ π′

↑ ↑
B ∗syn

τ
φ
→ B′

, (28)

where ∗sem symbolizes the semantic belief-change op-

erator of Definition 4 and ∗syn stands for the syntactic

belief-change operator of Definition 5.

Theorem 1 Let B be a belief base and πB its corre-

sponding possibility distribution. For all φ ∈ L and

τ ∈ (0, 1], let B′ = B ∗ τ
φ

and πB′ be the possibility

distribution corresponding to B′. Then,

πB′ = πB ∗
τ

φ
. (29)

Proof: According to Equation 10, for all I,

πB(I) = 1− max
ψ:I6|=ψ

B(ψ). (30)

For convenience of notation, let π′
B = πB ∗ τ

φ
. Apply-

ing the semantic belief-change operator to πB yields,

by Definition 4, for all I,

π′
B(I) =



























1−maxψ:I6|=ψ B(ψ)

1−B(¬φ)
,

I |= φ,

B(¬φ) < 1;

1,
I |= φ,

B(¬φ) = 1;

min

{

1− max
ψ:I6|=ψ

B(ψ), 1− τ

}

, I 6|= φ.

(31)

On the other hand, according to Equation 10, for all I,

πB′(I) = 1− max
ψ:I6|=ψ

B′(ψ). (32)

Therefore, in order to prove that π′
B = πB′ , we must

prove the following three theses, corresponding to each

of the three conditions of Equation 31: for all I,

1. if I |= φ and B(¬φ) < 1,

1− max
ψ:I6|=ψ

B′(ψ) =
1−maxψ:I6|=ψ B(ψ)

1−B(¬φ)
; (33)

2. if I |= φ and B(¬φ) = 1,

max
ψ:I6|=ψ

B′(ψ) = 0; (34)

3. finally, if I 6|= φ,

1− max
ψ:I6|=ψ

B′(ψ) = min

{

1− max
ψ:I6|=ψ

B(ψ), 1− τ

}

.

(35)

To prove Thesis 1, it suffices to substitute the left-

hand side of Equation 33 with its definition:

1− max
ψ:I6|=ψ

B′(ψ) = 1− max
ψ:I6|=ψ

{

1−
1−B(ψ)

1−B(¬φ)

}

=

= min
ψ:I6|=ψ

1−B(ψ)

1−B(¬φ)
=

=
1

1−B(¬φ)
min
ψ:I6|=ψ

{1−B(ψ)} =

=
1−maxψ:I6|=ψ B(ψ)

1−B(¬φ)
.

To prove Thesis 2, we simply observe that since, by

hypothesis, B(¬φ) = 1, B(ψ) ≤ B(¬φ) for all ψ;



C. da Costa Pereira et al. / Syntactic Possibilistic Belief Change Operator 11

therefore, for all ψ 6= φ, B′(ψ) = 0 (third case of

Equation 27).

As for Thesis 3, Equation 35 may be rewritten as

1− max
ψ:I6|=ψ

B′(ψ) = 1−max

{

max
ψ:I6|=ψ

B(ψ), τ

}

.

Therefore, we have to prove that, if I 6|= φ,

max
ψ:I6|=ψ

B′(ψ) = max
ψ:I6|=ψ

{B(ψ), τ} . (36)

Notice that φ is among the formulas not satisfied by I

and, by the first case of Equation 27, maxψ:I6|=ψ B
′(ψ) ≥

B′(φ) ≥ τ and maxψ:I6|=ψ B(ψ) ≥ B(φ).

Let us concentrate on the most believed formula ψ∗

among the formulas not satisfied by I,

ψ∗ = arg max
ψ:I6|=ψ

{B(ψ), τ} .

To begin with, we remark that ψ∗ might be φ. How-

ever, if that were the case, we know that B′(φ) =

max{B(φ), τ} (first case of Equation 27).

Now, if ψ∗ 6= φ, either B(ψ∗) ≤ B(¬φ), in which

case it is removed from the belief base, or B(ψ∗) >

B(¬φ), in which case it is kept, but its degree of mem-

bership is decreased by the normalized contraction op-

erator (Step 2 of the procedure). In any case,B′(ψ∗) ≤

B(ψ∗) and, a fortiori, B′(ψ∗) ≤ max{B(ψ∗), τ}.

However, Step 4 of the procedure or, equivalently, the

second case of Equation 27 guarantees that a new for-

mula, namely ψ∗ ∨ φ, is then introduced into the new

belief base B′, with the same membership degree as

ψ∗ in the original base B:

B′(ψ∗ ∨ φ) = B(ψ∗).

Furthermore, it must be B(ψ∗) ≥ τ , otherwise we

could choose ψ∗ = φ (see remark above). Therefore,

B′(ψ∗ ∨ φ) = max{B(ψ∗), τ}.

Since the same happens to all formulas ψ not satisfied

by I, it must be that B′(ψ∗ ∨ φ) = maxψ:I6|=ψ B
′(ψ).

Therefore, Equation 36 must necessarily hold. ✷

Fig. 3. A screenshot of KOBDIG’s user interface: the user is entering

input 0.6
p

to revise the initial belief base B of Example 4.2.

Fig. 4. A screenshot of KOBDIG’s user interface: the belief tab of

the agent’s mental state pane shows the result of revising belief base

B of Example 4.2 by 0.6
p

.

5. Experiments

A Java implementation of the syntactic belief change

operator described in Section 4 is available in the open-

source KOBDIG project, hosted on SourceForge3.

Figure 3 and 4 show two screenshots of KOBDIG’s

user interface while computing Example 4.2 above.

The Java code of method updateBeliefs of

class Agent in KOBDIG, which implements the

belief-change operator, is given in Figure 5. Of all

the operations performed by this method, the most

computation-intensive is by far the calculation of the

degree of belief in a formula, carried out by method

PossibilisticFactBase.necessity, which

implements Equation 7 by checking, for each α ∈
Λ(B), where Λ(B) is the level set of B, i.e., the set

of non-null membership degrees α such that at least

3Project URL: http://sourceforge.net/p/kobdig/.
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public void updateBeliefs(Fact fact, TruthDegree trust) {

// First of all, compute the degree to which the incoming

// fact contradicts the agent’s current beliefs:

TruthDegree contradiction = beliefs.necessity(fact.negated());

PossibilisticFactBase newBeliefs = new PossibilisticFactBase();

// Insert into the revised base only those facts whose degree

// of membership is greater than the "contradiction":

Iterator<Fact> i = beliefs.factIterator();

while(i.hasNext()) {

Fact psi = i.next();

TruthDegree t = beliefs.membership(psi);

if(!contradiction.isAtLeastAsTrueAs(t)) {

// Redistribute the degrees of membership:

TruthDegree tcond = new TruthDegree(1.0 -

t.negated().doubleValue() /

contradiction.negated().doubleValue());

newBeliefs.tell(psi, tcond);

}

}

// For each fact in the base, add a new fact whose formula is

// the disjunction of the existing fact and the incoming fact:

i = beliefs.factIterator();

while(i.hasNext()) {

Fact psi = i.next();

TruthDegree t = beliefs.necessity(psi);

Fact disjunction = new Fact(new PropositionalFormula(

Operator.OR, psi.formula(), fact.formula()));

if(!newBeliefs.necessity(disjunction).isAtLeastAsTrueAs(t))

newBeliefs.tell(disjunction, t);

}

// Add the incoming fact to the base

// with the same membership degree as its degree of trust:

if(!newBeliefs.necessity(fact).isAtLeastAsTrueAs(trust))

newBeliefs.tell(fact, trust);

// Done! Now, replace the original beliefs:

beliefs = newBeliefs;

// Even if we checked not to include redundant facts,

// depending on the order they were inserted, some

// may still be there. Remove them:

beliefs.simplify();

}

Fig. 5. Java code of the belief-change algorithm.

one element belongs in B to degree α, whether Bα
entails the formula. Checking whether a set of for-

mulas entails a given formula is a logical reasoning

problem which may be reduced to the satisfiablility

problem, whose computational complexity varies de-

pending on the specific logic considered, but is in gen-

eral quite high. For instance, satisfiability in propo-

sitional logic (also known as Boolean satisfiability)

is NP-complete [17]; concept satisfiability in descrip-

tion logics goes from polynomial to NEXPTIME-

complete [2]. Therefore, counting the number of en-

tailment checks that have to be performed in order to

apply the proposed syntactic belief change operator

provides a faithful estimate of its computational re-

source requirements.

We study experimentally the performance of the

proposed syntactic belief change operator by the fol-

lowing protocol:

1. given a propositional language Ln with n atomic

proposition, n = 1, 2, . . .;

RND_WFF(β)

– With probability β:

1. randomly choose op ∈ {¬,∧,∨};

2. if op = ¬, return ¬RND_WFF(β);
else return (RND_WFF(β) opRND_WFF(β));

– else, return a random atomic proposition from Ln.

Fig. 6. The algorithm used to generate random propositional formu-

las from Ln.

2. start out with an empty belief base B0 = ∅;

3. generate random formulas φi ∈ Ln, i = 1, 2, . . .,
with the recursive algorithm shown in Figure 6,

which takes a parameter 0 < β < 1 allowing

us to control the expected syntactic depth of the

fomula;

4. generate a random trust degree τi, i = 1, 2, . . .;
5. compute base Bi, i = 1, 2, . . ., as Bi = Bi−1 ∗

τi
φi

, by applying the syntactic belief change oper-

ator.

Figure 7 shows how the number of entailment checks

grows as a function of i for different values of n, while

Figure 8 shows the same for ‖supp(Bi)‖, i.e., the size

of the belief base. The random formulas used to change

beliefs were generated with β = 1
2 . Since the experi-

ments are random in nature, ten independent trials have

been performed for each value of n; each box-and-

whiskers plot in the two figures represents a distribu-

tion over those trials.

It is quite evident, from these diagrams, that both

the number of entailment checks required to perform a

belief change and the size of the belief base grow less

than linearly with respect to the number of formulas

acquired by an agent. In fact, the entailment checks

appear to stabilize around an average after a number

of belief changes, which increases with the size of the

language.

It is interesting to notice that the number of entail-

ment checks required to perform a belief change ap-

pears to be somehow related to n‖supp(B)‖. In fact,

the data plotted in Figure 9 are fitted by the linear

model

#checks ≃ 2n‖supp(B)‖,

shown as a solid line in Figure 9.

This may be taken as evidence that adopting a syn-

tactic possibilistic representation of beliefs together

with the proposed syntactic operator does not increase
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Fig. 7. Number of entailment checks over a number of subsequent applications i of the syntactic belief change operator for different sizes n of

the propositional language.
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the propositional language.
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Fig. 9. Scatter plot of the number of entailment checks required to

perform a belief change against n‖supp(B)‖.

the complexity of belief change with respect to a clas-

sical setting where beliefs are not graded and uncer-

tainty/degree of trust of information sources is not

taken into account.

6. Conclusion

Starting from a possibilistic belief-change opera-

tor proposed in the literature which was defined in

terms of a semantic representation of beliefs, we have

devised its syntactic counterpart, i.e., a possibilistic

belief-change operator that works on a syntactic repre-

sentation of beliefs in the form of a fuzzy belief base,

and that behaves exactly like the semantic operator.

Furthermore, we have performed an empirical study of

the syntatic operator which shows that the cost of per-

forming a revision, as well as the size of the resulting

belief base, remain tractable even after many pieces of

information have been received.

The advantages of being able to work directly on

a syntactic representation should be quite obvious: a

semantic representation of beliefs in terms of a possi-

bility distribution is well-suited to a theoretical treat-

ment of the matter, but does not constitute a serious

candidate for an implementation of any cognitive agent

framework adopting possibility theory for reasoning

about beliefs. Implementations with any ambition to

tackle real-world applications will have necessarily to

resort to a syntactic representation, and thus will have

to use a belief-change operator that works directly on

that representation.
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