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Auto-Associative models and generalized Principal Component Analysis

Outline

1. Principal Component Analysis, 2 points of view,

2. Generalized PCA, theoretical aspects,
3. Implementation aspects,
4. Illustration on simulated datasets,

5. Mllustration on real datasets.
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1. Principal Component Analysisl

e Background: Multidimensional data analysis
(n observations in a p— dimensional space)

e (Goal: Dimension reduction.

o Data visualization (dimension less than 3),
o To find which variables are important,

o Compression.

e Method: Projection on low d— dimensional linear subspaces.
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PCA: Geometrical interpretationl

Problem
e [.et X be a centered random vector in IRP.
e Estimate the d— dimensional linear subspace d € {0, ..., p} minimizing the mean distance to X.
e Minimize with respect to a', ..., a? (orthonormal):
p 2
E|||X — <X : ak> a”
k=1

Explicit solution
e al,... a? are the eigenvectors associated to the d largest eigenvalues of E [X?X], the covariance
matrix of X.
e The a* ’s are called principal axes, the Y = <X : ak> the principal variables.

e The associated residual is defined by

d
Rl=X — Z <X, ak> a”,
k=1

and 1t can be shown that HR‘ZH < HRd_lﬂ.
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PCA: Projection Pursuit interpretation

Equivalent problem
e Estimate the d— dimensional linear subspace d € {0, ..., p} maximizing the projected variance.

e Maximize iteratively with respect to al, ..., a? (orthonormal):

Var [<X, a1>] ..., Var [<X, ad>] :

Stéphane Girard 4
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Algorithm
e Forj=0,let R = X.
eftorj=1,....d:

Al Estimation of a projection axis.
[ proj
Determine @/ = arg max E [<m, R‘7_1>2} such that HajH = 1 and <aj,ak> =0,1<k<y.

r€RP
[P| Projection.
Compute the principal variable Y/ = <aj R *1>.
[R] Linear regression.
Determine &’ = arg min |E [Hle — Yj:sz] such that <bj,a~7> =1 and <bj,ak> =0,

reRP ‘ _
1 <k < j. The solution is & = a’, and let the regression function be s/(t) = ta’.

U] Residual update.
Compute R/ = R/~ — s/(Y7).

Stéphane Girard 5
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Algorithm output. After d iterations, we have the following expansion:

d
X=> MY"+R", (1)
k=1

with s(t) = ta* and Y* = <ak, X >, or equivalently

d
X = <ak, X> a* 4+ R®.
k=1
This equation can be rewritten as
F(X)= R (2)
where we have defined ]
Flx)=x— Z <ak,x> a”.
k=1
The equation F(z) = 0 defines a d— dimensional linear subspace, spanned by a', ..., a®

Equation (2) defines a d— dimensional linear auto-associative model for X.

Stéphane Girard 6
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Goals of a generalized PCA

1. To keep an expansion similar to (2):
F(X)=R"

but with a non necessarily linear function F', such that the equation F'(x) = 0 could model more
general subspaces.

2. To keep an expansion “principal variables + residual” similar to (1):
X =) v+ R
k=1
but with non necessarily linear functions s*.

3. To benefit from the “nice” theoretical properties of PCA.

4. To keep a simple iterative algorithm.

Stéphane Girard 7
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2. Generalized PCA, theoretical aspectsl

We adopt the Projection Pursuit point of view. The steps [A] and [R] are generalized:

'A] Estimation of a projection axis.
Introduction of an index I which measures the quality of the projection axis. For instance:
e Dispersion,
e Deviation from normality,
e Clusters detection,
e Outliers detection,...
R] Regression.
Estimation of the regression function from R to R? in a given set:
e Linear functions,

e Splines, kernels,...

Stéphane Girard 8
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New algorithm.
o For j =0, let R = X.
eftorj=1,....d:

A| Estimation of a projection axis.
[ j
Determine a/ = argmax](<:c R~ 1>) such that HajH =1 and <aj,ak> =0,1<k<7.

rERP
[P| Projection.
Compute the principal variable Y7 = <a~7 R _1>.
[R] Regression.
Determine s/ = arg min E [HRJ 1 (Yj)‘ﬂ such that P os/ = Idg and P o s’ =0,
seS(R,RP)
1<k <y.
U] Residual update
Compute R/ = R/~ — s/(Y7),.
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Remark: At the end of iteration j, the residual is given by

R = Ri-1_g (Yj)

- R (@ R)

_ Rl _ g P, (Rj—l)

= (Idge — s’ 0 Pj) (R'71)

— (IdRp —so Paj) o (IdRp — s tlo Paj—l) (R‘j_Q)
= (IdRp —so Paj) 0...0 (IdRp —sto Pa1) (RO)
= (Idgp — s’ 0 Pyj) o...0 (Idge — s' 0 P1) (X).

Auto-associative composite model.

Stéphane Girard 10
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Remark: The constraint P,; o s/ = Idg.

e Natural constraint.

e Important consequence: At the end of iteration j, the residual is given by
R = (IdRp —s/o Paj) (Rj_l) . and thus is projection on a’ is

PajRj = <Paj — I,j © s/ o Paj) (Rjil)
— (Paj T Pa-j) (R‘j_l)
= 0.
Thus, iteration (j + 1) can be performed on the linear subspace orthogonal to (a', ..., a’),

which is of dimension (p — 7).

Stéphane Girard 11
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Goal 1. After d iterations:

e One always has an auto-associative model

with
1

F = (IdRp —sto Pad) 0...0 (IdRp —s'o Pa1) = H (IdRp —s"o Pak) :
k=d
and P;(z) = (a’, x).

e The equation F'(z) = 0 defines a d— dimensional manifold.

Stéphane Girard 12
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Goal 2. After d iterations:
e One always as the expansion “principal variables + residual” similar to (1):
d
X = Z Sk(yl{:) 4+ Rd7

k=1

and the functions s*

are non necessarily linear.
e For d = p, the expansion is exact: R = 0.

e We can still define principal axes a* and principal variables Y*.

e The residuals are centered: |E [Rk] =0, k=0,...,d.

Stéphane Girard 13
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Goal 3. After d iterations, we have:

e Some orthogonality properties
ak,aj>:(), 1 <k<y<d,
(a", R7) =0, 1<k<j<d
(a",s'(Y7)) =0, 1 <k <j<d.

e Since the norm of the residuals is decreasing, we can define, similarly to the PCA case, the
information ratio represented by the d— dimensional model as

Qi=1-F [}}RdHQ] /Var [HX\F] |
One can show that Qy =0, @, = 1 and (@) is increasing.

Remark. Except in particular cases, the non-correlation of the principal variables is lost:

E[Y*Y/] 40, 1<k <j<d.

Stéphane Girard 14




Auto-Associative models and generalized Principal Component Analysis August 2006

Goal 4.

e We still have an iterative algorithm. It converges at most in p steps.
e [ts complexity depends on the two steps [A] et [R].

Al Estimation of a projection axis.
[ proj
Determine o/ = argmax](<:c,Rj_1>) such that HajH = 1 and <aj,ak> =0,1<k<y.

reRP

[R] Regression.
Determine s/ = arg min E [Hle — S(Yj)HQ} such that Pjos/ = Idg and Pro s’ =0,
s€S(R,RP)
1<k <y.

e Note that the above theoretical properties do not depend on these steps.

Stéphane Girard 15




Auto-Associative models and generalized Principal Component Analysis August 2006

3. Implementation aspects, step [A]

e Contiguity index. Measure of the neighborhood preservation. Points which are neighbor in
R? should stay neighbor on the axis.

n

o = 5 S

1=1 k=1 (=1

where M = (my) is the contiguity matrix defined by
mye = 1 if Ré_l is the closest neighbor of R‘,Z;_l, mye = 0 otherwise.

e Optimization. Explicit solution.
[A] @’ is the eigenvector associated to the largest eigenvalue of V}*V;-_l, where
Vi=) 'RUR;L Vi =) ) mud (B~ Ry (R~ R

are proportional to the covariance and local covariance matrices of R/~ 1.

Stéphane Girard 16
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Implementation aspects, step [R]I

e Set of L? functions. The regression step reduces to estimating the conditional expectation:
R] &(Y)) = E [R1Y]].
e Estimation of the conditional expectation.

o Classical problem since the constraints Pjo s/ =Id and Pro s’ =1d, 1 < k < j are easily

taken into account in the a” ’s basis. Step [R] reduces to (p — j) independent regressions from
R to R.

o Numerous estimates are available: splines, local polynomials, kernel estimates, ...

o For instance, for the coordinate k € {j +1,...,p}, the kernel estimate of s/(u) can be

written as
n

S(u) = RIKy(u—Y)) ZKhu—Yf

1=1
where h is a smoothing parameter (the bandwidth).

Stéphane Girard 17
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4. First illustration on a simulated dataset

e n = 100 points in R? randomly chosen on the curve x — (z,sinx, cos x).

e One iteration h = 0.3 — Q1 = 99.97%.

-9.4

X Y Y I B |

Theoretical curve Estimated 1— dimensional manifold
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Second illustration on a simulated dataset]

e 1. = 1000 points in R? randomly chosen on the surface
(x,y) — (2,9, cos(my/2? + y?)(1 — exp{—64(z” + y*)})).
e Two iterations: Q1 = 84.1% et Q2 = 97.6%.
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Theoretical surface
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5. First illustration on a real dataset]

e Set of n = 45 images of size 256 x 256.

e Interpretation : n = 45 points in dimension p = 2562

e Rotation : n = 45 points in dimension p = 44.

Stéphane Girard 21




Auto-Associative models and generalized Principal Component Analysis August 2006

e Information ratio Q4 as a function of d (blue: classical PCA, green: generalized PCA).
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e Projection on the 3 first PCA axes of the estimated manifolds
(dimension 1 & dimension 2).
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Second 1llustration on a real dataset

e Dataset I, five types of breast cancer.

e Set of n = 286 samples in dimension p = 17816.

e Rotation : n = 286 points in dimension p = 285.

August 2006

e Forgetting the labels, information ratio Q4 as a function of d (blue: classical PCA, green:

generalized PCA).
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Estimated 1— dimensional manifold projected on the principal plane.
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Estimated 1— dimensional manifolds projected on the principal plane, for each type of cancer.
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