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SIR : Goal

[Li, 1991]

Infer the conditional distribution of a response r.v. Y ∈ R

given a predictor X ∈ R
p.

When p is large, curse of dimensionality.

Sufficient dimension reduction aims at replacing X by its
projection onto a subspace of smaller dimension without loss
of information on the distribution of Y given X.

The central subspace is the smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.

How to estimate a basis of the central subspace ?
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SIR : Basic principle

Assume dim(S) = 1 for the sake of simplicity, i.e. S =span(b),
with b ∈ R

p =⇒ Single index model :

Y = g(btX) + ξ where ξ is independent of X.

Idea :

Find the direction b such that btX best explains Y .

Conversely, when Y is fixed, btX should not vary.

Find the direction b minimizing the variations of btX given Y .

In practice :

The range of Y is partitioned into h slices Sj .

Minimize the within slice variance of btX under the
normalization constraint var(btX) = 1.

Equivalent to maximizing the between slice variance under the
same constraint.
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SIR : Illustration
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SIR : Estimation procedure

Given a sample {(X1, Y1), . . . , (Xn, Yn)}, the direction b is
estimated by

b̂ = argmax
b
btΓ̂b u.c. btΣ̂b = 1. (1)

where Σ̂ is the estimated covariance matrix and Γ̂ is the between
slice covariance matrix defined by

Γ̂ =
h∑

j=1

nj
n

(X̄j − X̄)(X̄j − X̄)t, X̄j =
1

nj

∑

Yi∈Sj

Xi,

with nj is proportion of observations in slice Sj . The optimization
problem (1) has an explicit solution : b̂ is the eigenvector of Σ̂−1Γ̂
associated to its largest eigenvalue.
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SIR : Limitations

Problem : Σ̂ can be singular, or at least ill-conditioned, in several
situations.

Since rank(Σ̂) ≤ min(n− 1, p), if n ≤ p then Σ̂ is singular.

Even when n and p are of the same order, Σ̂ is ill-conditioned,
and its inversion introduces numerical instabilities in the
estimation of the central subspace.

Similar phenomena occur when the coordinates of X are
highly correlated.
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SIR : Numerical experiment (1/2)

Experimental set-up.

A sample {(X1, Y1), . . . , (Xn, Yn)} of size n = 100 where
Xi ∈ R

p with p = 50 and Yi ∈ R, for i = 1, . . . , n.

Xi ∼ Np(0,Σ) with Σ = Q∆Qt where

∆ =diag(pθ, . . . , 2θ, 1θ),
Q is a matrix drawn from the uniform distribution on the set
of orthogonal matrices.

=⇒ The condition number of Σ is pθ. (Here, θ = 2).

Yi = g(btXi) + ξ where

g is the link function g(t) = sin(πt/2),
b is the true direction b = 5−1/2Q(1, 1, 1, 1, 1, 0, . . . , 0)t,
ξ ∼ N1(0, 9.10−4)
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SIR : Numerical experiment (2/2)

Blue : Projections btXi on the
true direction b versus Yi,
Red : Projections b̂tXi on
the estimated direction b̂ ver-
sus Yi,
Green : btXi versus b̂tXi.
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Single-index inverse regression model

Model introduced in [Cook, 2007].

X = µ+ c(Y )V b+ ε, (2)

where

µ and b are non-random R
p− vectors,

ε ∼ Np(0, V ), independent of Y ,

c : R→ R is a nonrandom coordinate function.

Consequence : The conditional expectation of X − µ given Y is a
degenerated random vector located in the direction V b.
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Maximum Likelihood estimation (1/3)

Projection estimator of the coordinate function. c(.) is
expanded as a linear combination of h basis functions sj(.),

c(.) =
h∑

j=1

cjsj(.) = st(.)c,

where c = (c1, . . . , ch)
t is unknown and

s(.) = (s1(.), . . . , sh(.))
t. Model (2) can be rewritten as

X = µ+ st(Y )cV b+ ε, ε ∼ Np(0, V ),

Definition : Signal to Noise Ratio in the direction b.

ρ =
btΣb− btV b

btV b
,

where Σ =cov(X).



14

Maximum Likelihood estimation (2/3)

Notations

W : the h× h empirical covariance matrix of s(Y ) defined by

W =
1

n

n∑

i=1

(s(Yi)− s̄)(s(Yi)− s̄)
t with s̄ =

1

n

n∑

i=1

s(Yi).

M : the h× p matrix defined by

M =
1

n

n∑

i=1

(s(Yi)− s̄)(Xi − X̄)t,
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Maximum Likelihood estimation (3/3)

If W and Σ̂ are regular, then the ML estimators are :

Direction : b̂ is the eigenvector associated to the largest
eigenvalue λ̂ of Σ̂−1M tW−1M ,

Coordinate : ĉ =W−1Mb̂/b̂tV̂ b̂,

Location parameter : µ̂ = X̄ − s̄tĉV̂ b̂,

Covariance matrix : V̂ = Σ̂− λ̂Σ̂b̂b̂tΣ̂/b̂tΣ̂b̂,

Signal to Noise Ratio : ρ̂ = λ̂/(1− λ̂).

The inversion of Σ̂ is still necessary.
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SIR : A particular case

In the particular case of piecewise constant basis functions

sj(.) = I{. ∈ Sj}, j = 1, . . . , h,

standard calculations show that

M tW−1M = Γ̂

and thus the ML estimator b̂ of b is the eigenvector associated to
the largest eigenvalue of Σ̂−1Γ̂.

=⇒ SIR method.
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Gaussian prior

Introduction of a prior information on the projection of X on b
appearing in the inverse regression model

(1 + ρ)−1/2 (s(Y )− s̄)tcb ∼ N (0,Ω).

(1 + ρ)−1/2 is introduced for normalization purposes,
permitting to preserve the interpretation of the eigenvalue in
terms of signal to noise ratio.

Ω describes which directions in R
p are the most likely to

contain b.
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Gaussian regularized estimators

If W and ΩΣ̂ + Ip are regular, the ML estimators are

Direction : b̂ is the eigenvector associated to the largest
eigenvalue λ̂ of (ΩΣ̂ + Ip)

−1ΩM tW−1M ,

Coordinate : ĉ =W−1Mb̂/((1 + η(b̂))b̂tV̂ b̂), with
η(b̂) = b̂tΩ−1b̂/b̂tΣ̂b̂,

µ̂, V̂ and ρ̂ are unchanged.

=⇒The inversion of Σ̂ is replaced by the inversion of ΩΣ̂ + Ip.
=⇒ For a properly chosen prior matrix Ω, the numerical
instabilities in the estimation of b disappear.
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Gaussian regularized SIR (1/2)

GRSIR : In the particular case of piecewise constant basis
functions, the ML estimator b̂ of b is the eigenvector associated to
the largest eigenvalue of (ΩΣ̂ + Ip)

−1ΩΓ̂.

Links with existing methods

Ridge [Zhong et al, 2005] : Ω = τ−1Ip. No privileged direction
for b in R

p. τ > 0 is the regularization parameter.

PCA+SIR [Chiaromonte et al, 2002] :

Ω =
d∑

j=1

1

δ̂j
q̂j q̂
t
j ,

where d ∈ {1, . . . , p} is fixed, δ̂1 ≥ · · · ≥ δ̂d are the d largest
eigenvalues of Σ̂ and q̂1, . . . , q̂d are the associated
eigenvectors.
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Gaussian regularized SIR (2/2)

Three new methods

PCA+ridge :

Ω =
1

τ

d∑

j=1

q̂j q̂
t
j .

No privileged direction in the d-dimensional eigenspace.

Tikhonov : Ω = τ−1Σ̂. Directions with large variance are most
likely.

PCA+Tikhonov :

Ω =
1

τ

d∑

j=1

δ̂j q̂j q̂
t
j .

In the d-dimensional eigenspace, directions with large
variance are most likely.
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Validation on simulations

Experimental set-up : Same as previously.
Proximity criterion between the true direction b and the
estimated ones b̂(r) on N = 100 replications :

PC =
1

N

N∑

r=1

(btb̂(r))2

0 ≤ PC≤ 1,

a value close to 0 implies a low proximity : The b̂(r) are nearly
orthogonal to b,

a value close to 1 implies a high proximity : The b̂(r) are
approximatively collinear with b.
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Influence of the regularization parameter

log τ versus PC. The “cut-off” dimension and the condition
number are fixed (d = 20 and θ = 2).

Ridge and Tikhonov : significant improvement if τ is large,

PCA+SIR : reasonable results compared to SIR,

PCA+ridge and PCA+Tikhonov : small sensitivity to τ .
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Sensitivity with respect to the condition number of
the covariance matrix

θ versus PC. The “cut-off” dimension is fixed to d = 20. The
optimal regularization parameter is used for each value of θ.

Only SIR is very sensitive to the ill-conditioning,

ridge and Tikhonov : similar results,

PCA+ridge and PCA+Tikhonov : similar results.
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Sensitivity with respect to the “cut-off” dimension

d versus PC. The condition number is fixed (θ = 2) The optimal
regularization parameter is used for each value of d.

PCA+SIR : very sensitive to d.

PCA+ridge and PCA+Tikhonov : stable as d increases.
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Estimation of Mars surface physical properties from
hyperspectral images

Context :

Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.

3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.

This portion of Mars mainly contains water ice, CO2 and dust.

Goal : For each spectra X ∈ R
p, estimate the corresponding

physical parameter Y ∈ R (grain size of CO2).
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An inverse problem

Forward problem.

Physical modeling of individual spectra with a surface
reflectance model.

Starting from a physical parameter Y , simulate X = F (Y ).

Generation of n = 12, 000 synthetic spectra with the
corresponding parameters.

=⇒ Learning database.

Inverse problem.

Estimate the fonctional relationship Y = G(X).

Dimension reduction assumption G(X) = g(btX).

b is estimated by SIR/GRSIR, g is estimated by a
nonparametric one-dimensional regression.
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Estimated functional relationship

Functional relationship between reduced spectra b̂tX on the first
GRSIR (PCA+ridge prior) direction and Y , the grain size of CO2.
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Estimated CO2 maps

Grain size of CO2 estimated by SIR (left) and GRSIR (right) on an
hyperspectral image observed on Mars during orbit 61.
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