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Nested has been introduced by A. George in 1973 ([4]) and is now a well-known and very popular heuristic
for sparse matrix ordering to reduce both the fill-in and the operation count during the numerical factor-
ization. The basic standard idea is to build a ”small separator C” associated with the original matrix in
order to split the remaining vertices in two parts A and B of ”almost equal size”. The vertices of the sep-
arator C are ordered with the largest indices, and then the same method is applied recursively on the two
subgraphs induced by A and B. This method has been implemented by graph partitioners such as METIS
or SCOTCH whose main objectives are to minimize the size of the separator and to equilibrate the size of
the two separated subgraphs. However, if we examine precisely the complexity analysis for the estimation
of asymptotic bounds for fill-in or operation count when using Nested Dissection ordering, we can notice
that the size of the halo of the separated subgraphs (set of external vertices adjacent to the subgraphs and
previously ordered) play a crucial role in the asymptotic behavior achieved.

Moreover, this method based on a divide and conquer approach is also very well suited to maximize
the number of independent computation tasks for parallel implementations. Then, by using the block data
structure induced by the partition of separators of the original graph, very efficient parallel block solvers have
been designed and implemented according to supernodal or multifrontal approaches. To name a few, one
can cite MUMPS, PaStiX and SuperLU. Considering now hybrid methods mixing both direct and iterative
solvers such as HIPS [3], MaPHYS [1, 5], PDSLIN [11] and ShyLU [10], obtaining a domain decomposition
leading to a good balancing of both the size of domain interiors and the size of interfaces is a key point for
load balancing and effciency in a parallel context.

For this purpose, we revisit the algorithm introduced by Lipton, Rose and Tarjan ([8]) in 1977 which per-
formed the recursion in a different manner: at each level, we apply recursively the method to the subgraphs
induced by A ∪ C on one hand, and B ∪ C on the other hand. In these subgraphs, vertices already ordered
(and belonging to the previous separators) are the halo vertices and the partition of these overlapping sub-
graphs is performed with three objectives: balancing of the two new parts A′ and B′, balancing of the halo
vertices in the parts A′ and B′ and minimizing the size of the separator C ′.

Our work is implemented in the Scotch partitioner [9]. By default, Scotch strategy to find a separator
is based on the multilevel method [6, 7]: the (sub-)graph is coarsened multiple times until it becomes small
enough, then an algorithm called greedy graph growing is applied on the coarsest graph to partition it, and
finally the graph is uncoarsened, projecting the coarse separator on finer graph and refining it using the
Fiduccia-Mattheyses algorithm [2].

We have adapted the multilevel framework of Scotch in order to take into account the halo vertices
from orginal to coarsest graph. Moreover, we have worked on two variants of greedy graph growing. The
first one is called double greedy graph growing. Its principle is to pick two seed vertices as far as possible
among the halo, and to make parts A and B grow from them, with attention paid to keep halo balanced
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among the growing parts. The second approach, called halo-first greedy graph growing, works in a first
stage on the sole halo graph, finding a separator of it. Once it is done, it defines the two halo parts Ah

and Bh as two sets of seeds and make these sets grow in the whole graph to build A and B. Finally, we
have also changed the Fiduccia-Mattheyses refinement algorithm in order to preserve the good balancing in
the finer graphs. Our algorithms will be explained more deeply during the presentation, with detailed results.

In addition to this algorithmic work, and especially for the MaPHYS solver, a complexity analysis is
currently carried on regarding the good asymptotic size for the subdomains (in which a sparse direct fac-
torization is performed) in order to have the same asymptotic complexity bound for the computation of the
preconditioner and for the iterative part. This is done by using the same theoretical framework used in [8] for
general families of graph associated with 3D irregular problems for elliptic PDEs where the maximum num-
ber of iterations depends of the number of subdomains. The result is achieved by using balancing properties
for the domain interior sizes and for the halo sizes as expected in the first work presented above.
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