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(e-mail: {amoussaa, zhang}@irisa.fr)

Abstract
Some engineering systems are naturally described by differential-algebraic equations (DAE),
whereas it may be difficult or impossible to model them with ordinary differential equations
(ODE). This paper proposes an approach to fault diagnosis for systems described by DAEs.
Through a particular discretization method and under realistic assumptions, the considered
continuous time DAE model is transformed to an explicit state space model in discrete time.
An adaptive observer is then applied to the discretized system for monitoring faults possibly
affecting the system and represented by changes in model parameters. As an illustrative example,
the diagnosis of faults in a heat exchanger modeled by nonlinear DAEs is studied by numerical
simulations.

Keywords: fault diagnosis, nonlinear systems, differential-algebraic equations, adaptive
observer, extended Kalman filter.

1. INTRODUCTION

Many modern engineering systems can be modeled by an
explicit Ordinary Differential Equation (ODE) of the form

ẋ = f(x, u, t) (1)

where x and u represent respectively the (vectorial) state
and input of the system, and the dot over x denotes the
derivative in the time t. This equation has a long-term
mathematical history, and a large number of analytical
and numerical tools have been developed for its study.

However, in some cases such an explicit state space model
for the dynamics of a given system is not available. The
system may instead be described by an implicit differential
equation of the form

F (ẋ, x, u, t) = 0 (2)

This class of systems includes and is broader than state
space systems in the ODE form (1). Some of the relations
within this implicit model may not involve at all the time
derivative ẋ, hence being purely algebraic equations. This
motivates calling (2) a Differential-Algebraic Equation
(DAE), a descriptor or singular system.

The theory on DAEs goes back a long time ago. The
origins of this theory can be traced back to the work
of K. Weierstrass (Weierstrass (1868)) and L. Kronecker
(Kronecker (1891)) on parameterized families of bilinear
forms. The term algebraic-differential system was used in
the circuit context by Brown (Brown (1963)).

Some DAEs can be simply regarded as implicitly written
ODEs, this is the case of DAEs in which the matrix
of partial derivatives ∂F/∂ẋ has full column rank. In
principle, the theory developed in the framework of ODEs
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can be applied in this case. However, after repeated
failure of numerical integration methods on certain DAEs,
researchers initiated discussions on treatment of DAEs
(Petzold (1982), Lewis (1986)).

In contrast to systems modeled by ODEs, where the
theory for fault diagnosis is well-established (Ding (2008),
Isermann (2006) and references therein), for DAE systems
such study is not as well developed. The few existing
studies on fault diagnosis of DAE systems deal with linear
case (Benveniste et al. (1993), Duan et al. (2002)), a
certain class of nonlinearities (Shields (1997), Zhang et al.
(1998)) or systems with all states measurable (Polycarpou
et al. (1997), Vemuri et al. (2001)).

This paper considers the problem of nonlinear fault di-
agnosis for a large class of systems modeled by nonlin-
ear DAEs. The main idea used in this paper for dealing
with DAEs is based on a particular method for the dis-
cretization of DAEs (Milne (1949), Petzold (1982)). This
discretization method results in explicit discrete time state
space equations. The proposed fault diagnosis methodol-
ogy is then based on an adaptive observer applied to the
discrete time state space system. This adaptive observer
based approach is an integration and extension of the
observer based and parameter estimation approaches. The
core of such fault diagnosis methods consists of an adaptive
observer which is used both to estimate the monitored
faults and to improve the robustness against model uncer-
tainty due to parameter changes.

The paper is organized as follows. Different assumptions
on the system and the fault are needed to solve the fault
diagnosis problem. Section 2 is devoted to the outline
of the approach discussed in this paper. We detail the
assumptions made and the motivations of this contribution



and explain how adaptive observer based approach is
used for the generation of features, and applied to the
detection and diagnosis of faults. Section 3 presents a
simulation model of a heat exchanger by discarding flow
approximations in favor of one-dimensional solutions of the
Navier-Stokes in a device with flow ports in the ends such
as a pipe. Then, in section 4 the proposed model is used
to illustrate the proposed approach.

2. FAULT DIAGNOSIS OF NONLINEAR DAE
SYSTEMS

Consider the DAE system

0 = Fc(ẋ, x, u, θ) (3a)

y(t) = h(x, θ) (3b)

where x ∈ R
n is the state vector, u ∈ R

m is the known
variables vector (typically the control input vector), y ∈
R

p is the output vector, Fc and h are known smooth
vector-valued functions (linear or nonlinear) respectively
in R

n and R
p. The parameter vector θ represents some

characteristics of the system subject to changes caused by
faults possibly affecting the system. When the system is
operating normally, θ is at its nominal value θ0.

With the above formulation, the diagnosis of fault can
be achieved by estimating the parameter vector θ. For
this purpose, the input u and the output y are the only
available signals. The hidden variable vector x has to be
dealt with in some manner during the estimation of the
parameter vector θ.

The first difficulty of the problem formulated in this
section is the implicit form of the state equation, or rather
the DAE, in (3). This difficulty is dealt with by adopting a
particular discretization of the DAE leading to a discrete
time explicit state equation.

After discretizing the continuous time t to the discrete
instants (tk = k∆)k=0,1,2···, the continuous time state
vector x(t) is discretized accordingly as xk = x(tk),
and the derivative ẋ(tk) at time tk is approximated by
a backward difference of x(t). The resulting discretized
system equations write

Fd(xk, xk−1, uk, θ) , Fc

(

xk − xk−1

∆
, xk, uk, θ

)

= 0 (4)

yk = h(xk, θ) (5)

Assume that the matrix of partial derivatives ∂Fd

∂xk

is non

singular, equation (4) implicitly defines a function (Krantz
and Parks (2002))

xk = fd(xk−1, uk, θ) (6)

This non singular ∂Fd

∂xk

assumption is equivalent to assume

that
1

∆

∂Fc

∂ẋ
+
∂Fc

∂x
(7)

is non singular, with ∂Fc

∂ẋ
denoting the matrix of par-

tial derivatives of Fc with respect to its first argument.
Alternatively, to directly transform the DAE (3) to an
explicit continuous time state equation, a non singular
matrix of partial derivatives ∂Fc/∂ẋ would be required.
This condition is different from the one on (7), which

concerns two matrices of partial derivatives of Fc and is
more likely to be satisfied in practice. For example, if some
of the equations in (3a) are purely algebraic, or in other
words, some components of Fc, say grouped in F̌c, do not
include ẋ, then matrix ∂F̌c/∂ẋ is clearly zero. As F̌c must
contain x (otherwise the corresponding equations would
not contain any information about the state vector x), the
matrix of partial derivatives ∂F̌c/∂x is not generally zero.

The implicitly defined function fd(x, u, θ) can rarely be
found analytically and one usually implements an quasi-
Newton iterative method (Dennis and Morée (1977)) to
compute xk from xk−1, uk and θ, by solving equation (4)
for xk. If the implicit function value defined by (4) is
not unique, the value the closest to the value of xk−1 is
chosen. This choice should correspond to the true system
trajectory if the discretization step size ∆ is small enough
and if the system trajectory is continuous in time.

The partial derivatives of xk with respect to xk−1 and θ
can be computed by the implicit function theorem

∂xk
∂xk−1

=
∂fd
∂x

=
[∂Fc

∂ẋ
+∆

∂Fc

∂x

]

−1 ∂Fc

∂ẋ
(8)

∂xk
∂θ

=
∂fd
∂θ

= −
[ 1

∆

∂Fc

∂ẋ
+
∂Fc

∂x

]

−1 ∂Fc

∂θ
(9)

where the matrices of partial derivatives are evaluated at

the point
(

xk−xk−1

∆ , xk, uk, θ
)

.

From the relation (6), one commonly used method to solve
the problem of diagnosis is to augment the state xk with
the parameter vector θ and to implement an extended
Kalman filter (EKF) (Cox (1964)). While this approach
has proved effective in some applications, at least in the
case of state space systems, it has also some well known
drawbacks. In particular, the fact of treating equally the
state vector xk and the parameter vector θ as if they
had similar dynamics may make the tuning of the EKF
delicate.

The approach proposed in this section relies on an adaptive
observer. Conceptually similar to the EKF applied to
the augmented system, the adaptive observer has the
advantage of being able to designed in two steps:

• first a state estimator by assuming that the parameter
vector θ is known,

• then the parameter estimator, which is coupled with
the state estimator.

In the case of linear time varying systems, a comparison
in some other aspects between the EKF applied to the
augmented system and the adaptive observer can be found
in the Appendix A of (Li et al. (2011)).

2.1 Adaptive observer

After the previously presented discretization, the continu-
ous time DAE system (3) becomes the discrete time state
space system

xk = fd(xk−1, uk, θ) + wk (10a)

yk = h(xk, θ) + vk (10b)

where wk and vk represent errors caused by discretization
and modeling/measurement errors ignored in the contin-
uous time model. The purpose of this subsection is to



propose an adaptive observer for joint estimation of the
state x and the parameter θ in this discrete time state
space system. Though adaptive observers with formally
proved convergence have been developed through a con-
structive approach for some particular class of nonlin-
ear systems (Xu and Zhang (2004), Zhang and Besançon
(2008), Farza et al. (2009)), the design of such algorithms
for wider classes of nonlinear systems remains a difficult
task. Here we propose to follow an approach in the spirit of
the EKF, in the sense that we apply an adaptive observer
originally designed for linear systems to the nonlinear
system (10) by linearizing it around the last values of
the state and parameter estimates. While the convergence
of this adaptive observer applied to linear systems has
been proved formally (Guyader and Zhang (2003),Li et al.
(2011)), the study on its convergence for general nonlin-
ear systems, like the convergence of the EKF in general,
remains an open problem, except in the particular cases
studied in (Xu and Zhang (2004), Zhang and Besançon
(2008), Farza et al. (2009)).

The main idea for designing this adaptive observer, as
originally proposed in Zhang (2002) and for its nonlinear
generalizations, consists of a two-step procedure: first
design a state estimator by assuming that the parameter
vector θ is known, then modify and associate the state
estimator with an parameter estimation algorithm. In this
design procedure the difference between the dynamics
of the state variables (varying and governed by state
equations) and of the parameters (typically constant) is
explicitly taken into account.

Following this procedure, it is first assumed that the
parameter vector θ is known in (10). A classical state
estimator for general nonlinear systems of this form is the
EKF, that can be formulated as follows:

{

x̂k = fd(x̂k−1 +Kk−1(yk−1 − ŷk−1), uk, θ)

ŷk = h(x̂k, θ)
(11)

where x̂k is the state estimate, ŷk is the output estimate,
the computation of the Kalman gain Kk will be detailed
later.

Remark that here the term EKF is in the sense that the
Kalman filter is applied to the nonlinear system (10) by
linearizing the system, at each time instant tk, around the
last state estimate x̂k−1. This is a widely used practice,
though in general no convergence proof is formally es-
tablished. The EKF in this sense is to be distinguished
from the application of the (extended) Kalman filter to
the augmented system by viewing the parameter vector
θ as extra states. For the moment θ is simply assumed
known.

Now let us consider the estimation of the parameter
vector θ. Again inspired by the adaptive observer for linear
systems (Guyader and Zhang (2003), Li et al. (2011)),

the parameter estimate θ̂k is recursively updated from the
output error of the current model:

θ̂k = θ̂k−1 +Θk (yk − ŷk)

where Θk is a gain matrix to be specified. At the same
time, the parameter vector θ in the state estimation equa-

tion (11) should be replaced by θ̂k−1. After this substitu-
tion, the state estimate becomes somehow biased because

of the difference between θ̂k−1 and the true θ. It is shown
in (Guyader and Zhang (2003), Li et al. (2011)) that, in
the case of linear systems, this bias should be compensated
by an additional term in the state estimation equation in
order to establish the convergence proof of the adaptive
observer. Similarly, an additional term will be added to
the modified state estimation equation (11). The resulting
state and parameter estimation equations constitute the
adaptive observer for the nonlinear system (10):

θ̂k = θ̂k−1 +Θk (yk − ŷk) (12a)

x̂k = fd(x̂k−1 +Kk−1(yk−1 − h(x̂k−1, θ̂k−1)), uk, θ̂k−1)

+ Υk(θ̂k − θ̂k−1) (12b)

ŷk = h(x̂k, θ̂k−1) (12c)

with the gain matrices Θk, Kk and Υk computed from the
following equations:

Pk = Fk[(I −Kk−1Hk−1)Pk−1]F
T
k +Qk−1 (13)

Kk = PkH
T
k (HkPkH

T
k +Rk)

−1 (14)

Υk = Fk(I −Kk−1Hk−1)Υk−1 +Nk−1 (15)

Ωk =HkΥk + Lk (16)

Sk =
1

λ
Sk−1 −

1

λ
Sk−1Ω

T
k−1Γk−1Ωk−1Sk−1 (17)

Γk =
(

λRk +ΩkSkΩ
T
k

)−1
(18)

Θk = SkΩ
T
k Γk (19)

Fk ,
∂fd
∂x

(x̂k−1) (20)

Gk ,
∂fd
∂θ

(x̂k−1) (21)

Hk ,
∂h

∂x

(

x̂k, θ̂k

)

(22)

Lk ,
∂h

∂θ

(

x̂k, θ̂k

)

(23)

where
λ > 0 is a forgetting factor, Qk ∈ R

n×n and Rk ∈ R
p×p

are symmetric positive definite matrices corresponding to
the covariance matrices of wk, vk when they are modeled
as random noises and in (20) and (21),

x̂k−1 , (x̂k−1 +Kk−1(yk−1 − h(x̂k−1, θ̂k−1)), uk, θ̂k−1).

Notice that, compared to (11), the term Υk(θ̂k − θ̂k−1)
has been added to the state estimation equation (12b) to

compensate the difference between θ and θ̂k−1.

Let us remark again that the formulation of this nonlinear
adaptive observer has been in the same spirit as the
EKF, by applying the adaptive observer initially designed
for linear systems (Guyader and Zhang (2003), Li et al.
(2011)) to the nonlinear system(10) linearized around the
last state and parameter estimates at each time instant tk.

For the convenience of the reader, we recall the outline
of the convergence proof in the linear case. Necessary
conditions for the existence of the observer are the asymp-
totical convergence to zero of the state and the parameter



estimation errors, respectivily defined by x̃k = xk− x̂k and

θ̃k = θ − θ̂k in the noise-free case (wk = 0 and vk = 0).

The dynamics of the error x̃k in the linear case is as follows

x̃k = Fk (I −Kk−1Hk−1) x̃k−1 + (Gk − FkKk−1Lk) θ̃k−1

−Υk(θ̂k − θ̂k−1) (24)

Define the variable zk = x̃k −Υkθ̃k. From the above rela-
tions, the dynamics of zk is simplified to an exponentially
stable system

zk = Fk (I −Kk−1Hk−1) z̃k−1 (25)

and from (17)-(19), the homogeneous part of the parame-
ter estimation error governed by

θ̃k = (I −ΘkΩk) θ̃k−1 −ΘkHkzk (26)

tends exponentially to zero under some persistent excita-
tion condition (Guyader and Zhang (2003),Narendra and
Annaswamy (2005)). Thus, by construction, we have







lim
k→+∞

zk = 0

lim
k→+∞

θ̃k = 0
⇒ lim

k→+∞

x̃k = 0

It is also possible to apply the EKF to the augmented
system (treating θ as extra states) for joint estimation of
x and θ. The proposed adaptive observer has two practical
advantages. The gains Kk for state estimation and Θk

for parameter estimation can be tuned in two steps in
simulation studies. In the first step the parameter θ is
assumed known, hence the tuning of Kk is like in the case
of the classical EKF for state estimation and afterward,
in the second step, Θk is tuned while the tuning of Kk is
fixed. Another advantage of the adaptive observer is that
the recursive computations of Kk and Θk are separated,
implying a lower numerical cost, compared to the fully
coupled gain matrix computation in the EKF applied to
the augmented system.

3. HEAT EXCHANGER MODEL EQUATIONS

ṁ2 in

T2 in

ṁ1 in

T1 in

ṁ1 out

T1 out

ṁ2 out

T2 out

Figure 1. A heat exchanger

To illustrate the fault diagnosis method presented in this
paper, the monitoring of a heat exchanger is considered in
this section. Heat exchangers are typical devices for heat-
ing, cooling, refrigeration and air conditioning. Their task
is to transfer energy in the form of heat from one medium
(e.g, a gas or liquid) to another. The heat transfer is from
a hot stream with entering and exiting temperatures T1 in

and T1 out and incoming and outgoing mass flow rates
ṁ1 in and ṁ1 out, to a cold stream with entering and
exiting temperatures T2 in and T2 out and incoming and
outgoing mass flow rates ṁ2 in and ṁ2 out. A schematic of

a heat exchanger with these temperatures and mass flow
rates is shown on figure 1. The mathematical model of
heat exchanger used in this study has been developed in
the CSDL (Complex Systems Design Lab) project 1

The actual heat transfer rate is given by the equalities

Q̇=Ch(T1 in − T1 out) (27)

=−Cc(T2 in − T2 out) (28)

where Ch and Cc denote respectively the heat capacity
rates (product of specific heat capacity and incoming mass
flow rate) of the hot and cold stream.

If the heat exchanger effectiveness, specific heat capacities
and incoming temperatures are known, the exit tempera-
tures can be obtained as following :

T1 out = T1 in − ǫ
min{Ch, Cc}

Ch

(T1 in − T2 in) (29)

T2 out = T2 in + ǫ
min{Ch, Cc}

Cc

(T1 in − T2 in) (30)

where ǫ is the heat exchanger effectiveness coefficient.

A heat exchanger can be described mathematically in
terms of Navier-Stokes and heat transfer equations that
are partial differential equations. We consider the hot fluid
as working fluid with a quasi-one dimensional flow along
a cylindrical tube of length L and lateral area A.

Following the finite-volume method, the computational
domain is approximated by two cells of volumes v1 and
v2, each one characterized at fixed t by a temperature Ti
and pressure pi (i = 1, 2). Using the well-known ideal gas
law ρ = p

RT
, we obtain the thermodynamic heat exchanger

model given by the following DAEs :



































































0 =
v1
R

ṗ1T1 − p1Ṫ1
T 2
1

+
v2
R

ṗ2T2 − p2Ṫ2
T 2
2

− ṁ1 + ṁ2

0 = v1

[

ṗ1

(h(T1)

RT1
− 1

)

+
p1Ṫ1
R

(

∂h(T1)
∂T

T1 − h(T1)

T 2
1

)]

+ v2

[

ṗ2

(h(T2)

RT2
− 1

)

+
p2Ṫ2
R

(

∂h(T2)
∂T

T2 − h(T2)

T 2
2

)]

− ṁ1h(T1 in) + ṁ2h(T2) + Q̇

0 = ṁ2
1

T1
p1

− ṁ2
2

T2
p2

−
AL

2R
(m̈1 + m̈2)

(31)

where h(T ) is the specific enthalpy of a fluid with tem-
perature T , R is the specific gas constant, ṁ1 and ṁ2

are respectivily incoming and outgoing mass flow rate of
working fluid.

By assuming known the following variable

• the mass flow rates ṁ1, ṁ2

• incoming temperatures T1 in, T2 in

• outgoing temperature T1 out = T2

1 The CSDL (Complex Systems Design Lab) project funded by FUI
(2009-2012) is for the purpose of developing a collaborative platform
for the design of complex systems.
http://www.systematic-paris-region.org/fr/projets/csdl



and supposing the pressure p2 (in the cell 2) measured,
the model used for the diagnosis is given by system (32)
below

{

0 = Fc(ẋ, x, u, φ)

y =
[

0 1 0
]

x+ ψ
(32)

where the state x ∈ R
3 and the output y ∈ R are

x =

[

p1
p2
T1

]

, y = p2,

the input vector u contains all known variables i.e. ṁ1,2,

m̈1,2, T1,2 in, T2, Q̇, the scalar values φ and ψ represent
respectively the eventual efficiency loss and the pressor
sensor bias. The parameters φ and ψ are written in the
vectorial form as

θ =

[

φ
ψ

]

.

The function Fc is defined by

Fc(ẋ, x, u, φ) =

[

f1(ẋ, x, u, φ)
f2(ẋ, x, u, φ)
f3(ẋ, x, u, φ)

]

with

f1(z, x, u, φ) =
v1
R

z1x3 − x1z3
x23

+
v2
R

z2T2 − x2Ṫ2
T2

−ṁ1+ṁ2

f2(z, x, u, φ) = v1

[

z1

(h(x3)

Rx3
−1

)

+
x1z3
R

(

∂h(x3)
∂T

x3 − h(x3)

x23

)]

+v2

[

z2

(h(T2)

RT2
− 1

)

+
x2Ṫ2
R

(

∂h(T2)
∂T

T2 − h(T2)

T 2
2

)]

−ṁ1h(T1 in) + ṁ2h(T2) + φQ̇

f3(z, x, u, φ) = ṁ2
1

x3
x1

− ṁ2
2

T2
x2

−
AL

2R
(m̈1 + m̈2)

When the process operates under normal operating condi-
tions, the nominal parameter value

θ = θ0 ,

[

1
0

]

.

In the presence of a a loss of efficiency (i.e 0 < φ < 1)
and/or a sensor bias (i.e ψ 6= 0), the parameters vector θ
will deviate from the nominal value θ0.

4. SIMULATION EXAMPLE

In this section, we use the adaptive observer to monitor
faults in a heat exchanger modeled by (32). The simulated
faults are

• a degradation of the efficiency coefficient,
• a sensor bias.

The sampling period for the discretize time model is 1s
and the simulation is performed during 1000s. Centered
gaussian white noise is added to the input and output to
satisfy the condition of persistent excitation required by
the adaptive observer.

The recursively estimated values of φ and ψ are respec-
tively illustrated in figures 2 and 3, where the dotted lines
represent the true simulated parameter values, and the
solid lines represent the estimated values.

The estimated states are compared with the simulated
states in figures 4, 5 and 6, where dotted lines represent the
true simulated state variables, and the solid lines represent
the estimated values.
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φ

Figure 2. Graphical representations of the simulated pa-

rameter φ in dotted line and its estimate φ̂ in solid
line, over time (unit : second).
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Figure 3. Graphical representations of the simulated pa-
rameter ψ (unit : pascal) in dotted line and its esti-

mate ψ̂ in solid line, over time (unit : second).
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Figure 4. Graphical representations of the simulated state
p1 (unit : pascal) in dotted line and its estimate in
solid line, over time (unit : second).
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Figure 5. Graphical representations of the simulated state
p2 (unit : pascal) in dotted line and its estimate in
solid line, over time (unit : second).



These results show that, after the transient time of about
100s corresponding to the transient time (unmodelled
part) of the bias ψ, the parameter estimates follow closely
the evolution of the simulated parameters. It is then
possible to detect the simulated faults and estimate their
severity.
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T̂1

T1

Figure 6. Graphical representations of the simulated state
T1 (unit : kelvin) in dotted line and its estimate in
solid line, over time (unit : second).

5. CONCLUSION

This paper has dealt with fault diagnosis in DAE systems.
We have focused our study on the diagnosis of faults mod-
eled as parameter changes in a class of dynamic systems
modeled by implicit nonlinear DAEs. The adaptive ob-
server technique is used to accomplish the fault diagnosis
task. We have shown that the method initially developed
for linear systems based on adaptive observers can be
extended to general nonlinear systems. The decision for
fault diagnosis is based on the time evolution of parameter
estimates. Simulation results are produced to illustrate the
ability of the proposed approach to detect faults in a heat
exchanger between two streams of dry air treated as an
ideal gas. Like EKF-based methods, further studies should
be made on the robustness of the proposed method to the
severity of nonlinearities.
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