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ABSTRACT

In the synthesis model signals are represented as a sparse
combinations of atoms from a dictionary. Dictionary learning
describes the acquisition process of the underlying dictionary
for a given set of training samples. While ideally this would
be achieved by optimizing the expectation of the factors over
the underlying distribution of the training data, in practice the
necessary information about the distribution is not available.
Therefore, in real world applications it is achieved by mini-
mizing an empirical average over the available samples. The
main goal of this paper is to provide a sample complexity es-
timate that controls to what extent the empirical average de-
viates from the cost function. This estimate then provides a
suitable estimate to the accuracy of the representation of the
learned dictionary. The presented approach exemplifies the
general results proposed by the authors in [1] and gives more
concrete bounds of the sample complexity of dictionary learn-
ing. We cover a variety of sparsity measures employed in the
learning procedure.

Index Terms— Dictionary learning, sample complexity,
sparse coding

1. INTRODUCTION

The sparse synthesis model relies on the assumption that sig-
nals x ∈ Rm can be represented as a sparse combination of
columns, or atoms, of a dictionary D ∈ Rm×d. As an equa-
tion this reads as

x = Dα (1)

where α ∈ Rd is the sparse coefficient vector.
The task of dictionary learning focuses on finding the best

dictionary to sparsely represent a set of training samples con-
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catenated in the matrix X = [x1, . . . ,xn]. The correspond-
ing sparse representations are stored in the coefficient matrix
A = [α1, . . . ,αn]. A common learning approach is to find a
solution to the minimization problem

min
D,A

LX(D,A) (2)

LX(D,A) := 1
2n‖X−DA‖2F + 1

n

n∑
i=1

g(αi). (3)

The function g in (3) serves as a measure of sparsity. Con-
cretely, we consider scaled powers of the `p-norm, i.e.

g(α) := ‖α/λ‖qp (4)

for any p, q > 0 and the weighting parameter λ > 0.
In order to avoid trivial solutions, the learned dictionary

D is generally forced to be an element of a constraint set D.
In this paper we will focus on dictionaries with unit `2-norm
atoms, which is a commonly used constraint.
The vast amount of dictionary learning algorithms that take
different approaches to the topic illustrates the popularity of
the synthesis model. A probabilistic method is presented in
[2]. Another famous representative is the K-SVD algorithm
as proposed in [3] which is based on K-means clustering. Fi-
nally, there are learning strategies that aim at learning dictio-
naries with specific structures that enable fast computations,
see e.g. [4, 5].
Assuming that these training samples are drawn according to
some distribution, the goal of dictionary learning is to find a
dictionary D? for which the expected value of the cost func-
tion (3) is minimal. In practice the distribution of the available
training samples is unknown and therefore only an empirical
minimizer D̂ can be obtained. The sample complexity results
which we derive in this paper contribute to understand how
accurately this empirical minimizer approximates D?.

We assume the training signals to be drawn according to
a distribution in the ball with unit radius, i.e. the distribution
is an element of the set

P := {P : P(‖x‖2 ≤ 1) = 1}. (5)



Our results are based on the work [1] where a more gen-
eral framework of matrix factorizations has been considered.
Our stringent setting here allows for more concrete bounds on
the sample complexity.

Previous state of the art sample complexity results are pre-
sented in [6, 7]. These results are restricted to the indicator
function for `0 and `1-norms. These works also cover the
case of fast rates which we will not consider here.

2. PROBLEM STATEMENT & NOTATION

Matrices are denoted by boldface capital letters such as X,
vectors will be represented as boldface small letters, e.g. x.
Scalars will be slanted letters like n,N . The ith entry of a
vector α is denoted by αi. Finally, sets are denoted in black-
letter such as D.

The sparse representation of a given signal x according to
a given dictionary can be found by solving the optimization
problem

arg min
α∈Rd

1
2‖x−Dα‖22 + g(α). (6)

The quality of how well a signal can be sparsely coded for a
dictionary is evaluated via the function

fx(D) := inf
α∈Rd

1
2‖x−Dα‖22 + g(α). (7)

For a set of signals X the overall quality of the sparse repre-
sentation is measured via

FX(D) := inf
A
LX(D,A) (8)

with LX as defined in (3). This measure is equal to the mean
of the quality of all samples, i.e. FX(D) = 1

n

∑
i fxi(D).

Our goal is to provide a bound for the generalization error
of the empirical minimizer, i.e.

sup
D∈D

|FX(D)− Ex∼Pfx(D)| ≤ η(n,m, d, L) (9)

which depends on the number of samples n used in the learn-
ing process, the size of the samples m, the number of dictio-
nary atoms d, and a certain Lipschitz constant L for FX.

3. SAMPLE COMPLEXITY RESULTS

The general strategy will be to first find a Lipschitz constant
for the functions FX and Efx. In combination with the as-
sumed underlying probability distribution and the structure of
the dictionary this will allow us to provide an upper bound for
the sample complexity.

3.1. Lipschitz Property

In this section we provide Lipschitz constants for the function
FX(D). For the `p-penalty function the Hölder inequality

yields

‖α‖1 =

d∑
i=1

|αi| ≤
( d∑
i=1

|αi|p
)1/p( d∑

i=1

11/(1−1/p)
)1−1/p

= d1−1/p · ‖α‖p
for 1 ≤ p < +∞. To cover quasi-norms with 0 < p < 1,
we employ the estimate ‖α‖1 ≤ ‖α‖p which provides the
overall inequality

‖α‖1 ≤ d(1−1/p)+ · ‖α‖p, (10)

where the function (·)+ : R → R+
0 is defined as (t)+ =

max{t, 0}. Thus, we get the two estimates

‖α‖p ≤ t ⇒ ‖α‖1 ≤ d(1−1/p)+ · t, (11)

‖α/λ‖qp ≤ t ⇒ ‖α‖1 ≤ λ · d(1−1/p)+ · t1/q (12)

which will become of use in the following discussion. The
matrix norm ‖A‖1→2 := maxi ‖αi‖2 is used for the rest of
this paper while the subscript is omitted to improve readabil-
ity. We also make use of the corresponding dual norm which
is defined as ‖A‖? := supU,‖U‖≤1〈A,U〉F for an appropri-
ately sized matrix U and the Frobenius inner product 〈·, ·〉F .

For ε > 0 we define the nonempty set of matrices A that
are “ε-near solutions” as

Aε(X,D) := {A : αi ∈ Rd,Lxi(D,αi) ≤ fxi(D) + ε}.

Proposition 1. The set A0 is not empty and is bounded.

Proof. The function ‖·‖qp is non-negative and coercive. Thus,
LX(D,A) is non-negative and limk→∞ LX(D,Ak) = ∞
whenever limk→∞ ‖Ak‖ =∞. Therefore, the function A 7→
LX(D,A) has bounded sublevel sets. Moreover, since pow-
ers of the `p-norm are continuous, then so is A 7→ LX(D,A)
and thus attains its infimum value.

Next, note that for any D′ the inequality

FX(D′)− FX(D)

≤ LX(D)‖D′ −D‖+ CX(D)‖D′ −D‖2
(13)

holds with

LX(D) := inf
ε>0

sup
A∈Aε

1
n‖(X−DA)A>‖?, (14)

CX(D) := inf
ε>0

sup
A∈Aε

1
2n

n∑
i=1

‖αi‖21. (15)

A detailed derivation of these parameters can be found in [1].

Proposition 2. There exist upper bounds for LX(D) and
CX(D) which are independent of the used dictionary.

Proof. For A = [α1, . . . ,αn] ∈ A0 we have
1
2‖xi −Dαi‖22 + ‖αi/λ‖qp ≤ fxi(D)



which immediately results in the estimates

0 ≤ ‖αi/λ‖qp ≤ fxi(D) ≤ L(D,0) = 1
2‖xi‖

2
2, (16)

‖xi −Dαi‖2 ≤
√

2fxi(D) ≤ ‖xi‖2. (17)

Furthermore, the above in combination with (12) lets us
bound the `1-norm of α via

‖α‖1 ≤ λ · d(1−1/p)+
(
1
2‖x‖

2
2

)1/q
. (18)

This yields the upper bound CX(D) ≤ CX with

CX := 1
2n

n∑
i=1

λ · d(1−1/p)+
(
1
2‖xi‖

2
2

)1/q
(19)

for (15). In order to provide an upper bound forLX(D) which
is independent of the dictionary D we first note that

〈(X−DA)A>,U〉 ≤
∑
‖xi −Dαi‖2 · ‖αi‖1 · ‖U‖.

By using the definition of the dual norm and the estimate de-
veloped above, we obtain the upper bound LX(D) ≤ LX

with

LX := 1
n

n∑
i=1

‖xi‖2 · λ · d(1−1/p)+
(
1
2‖xi‖

2
2

)1/q
(20)

which concludes the proof.

Proposition 2 allows us to rewrite (13) as

|FX(D′)− FX(D)|
‖D′ −D‖

≤ LX ·
(

1 + CX

LX
‖D′ −D‖

)
, (21)

which implies that the function FX is uniformly locally Lips-
chitz with constant LX.

Lemma 3. The function FX is globally Lipschitz with con-
stant LX, i.e.

|FX(D′)− FX(D)| ≤ LX‖D′ −D‖ (22)

for any X and any D,D′ ∈ D.

Proof. Let ε > 0 be arbitrary but fixed. For ‖D′ − D‖ ≤
εLX/CX we have

|FX(D′)− FX(D)| ≤ (1 + ε)LX‖D′ −D‖. (23)

If the bound on the distance between D and D′ does not hold,
we construct the sequence Di := D + i

k (D′ − D), i =
0, . . . , k such that ‖Di+1 − Di‖ ≤ εLX/CX. This enables
us to show that the bound (23) holds for any D,D′. Note that
there are no restrictions on D,D′, as the derived Lipschitz
constant LX is independent of the constraint set D. Since
ε > 0 is chosen arbitrarily, (22) follows.

3.2. Probability Distribution

As mentioned in the introduction we consider probability dis-
tributions within the unit ball. In order to obtain meaning-
ful results the distribution according to which the samples are

drawn has to fulfill two properties. First, we need to con-
trol the Lipschitz constant LX for signals drawn according to
the distribution when the number of samples n is large. This
quantity will be measured by the function

Λn(L) := P (LX > L) . (24)

Furthermore, for a given D we need to control the concentra-
tion of the empirical average FX(D) around its expectation.
This is measured via

Γn(γ) := sup
D∈D

P (|FX(D)− Ex∼Pfx (D)| > γ) . (25)

For the considered distribution these quantities are well con-
trolled, as can be seen in the following.

Proposition 4. For P ∈ P as defined in (5) we have Λn(L) =
0 for L ≥ d(1−1/p)+(1/2)1/q , and

Γn

(
τ/
√

8
)
≤ 2 exp(−nτ2), ∀ 0 ≤ τ < +∞. (26)

Proof. The function evaluations yi = fxi(D) are indepen-
dent random variables. For samples drawn according to a dis-
tribution within the unit sphere it immediately follows that
they are bounded by 0 ≤ yi ≤ ‖xi‖22/2 ≤ 1/2. Using Ho-
effding’s Inequality we get

P

[
1
n

(
n∑
i=1

yi − E[yi]

)
≥ cτ

]
≤ exp

(
−8c2nτ2

)
and thus Γn(τ/

√
8) ≤ 2 exp(−nτ2). Furthermore, due to

the chosen set of viable probability distributions P, we have
LX ≤ λ · d(1−1/p)+(1/2)1/q and hence Λn(L) = 0 for L ≥
λ · d(1−1/p)+(1/2)1/q .

3.3. Role of the Constraint Set

In order to provide a sample complexity bound, it is necessary
to take the structure of the set to which the learned dictionary
is constrained into account. Of particular interest is the cov-
ering number of the concerning set. For more information on
covering numbers, the interested reader is referred to [8].

We will confine the discussion to the set of dictionaries
with unit norm atoms, i.e. each dictionary column is an ele-
ment of the sphere. It is well known that the covering number
of the sphere is upper bounded by Nε(Sm−1) ≤

(
1 + 2

ε

)m
.

By using the metric ‖ · ‖1→2 this is readily extended to the
product of unit spheres

Nε (D(m, d)) ≤
(
1 + 2

ε

)md ≤ ( 3ε )md . (27)

3.4. Main Result

Theorem 5. For a given 0≤ t<∞ and the Lipschitz constant
L > λ · d(1−1/p)+(1/2)1/q , we have

sup
D∈D

|FX(D)− Ex∼Pfx(D)| ≤ η(n,m, d, L) (28)



with probability at least 1− 2e−t. The bound is defined as

η(n,m, d, L) := 2

√
β log n

n
+

√
β + t/

√
8

n
(29)

with the driving constant

β := md
8 ·max

{
log
(

6
√

8L
)
, 1
}
. (30)

The parameter controlling the sample complexity is de-
pendent on the size of the dictionary, the determined Lipschitz
constant, and the number of samples. It is also dependent on
the underlying distribution of the samples, which is an arbi-
trary distribution in the unit ball in the examined case. Better
estimates may hold for fixed probability distributions.

Proof. First, note that Efx is Lipschitz with constant L >
LX for the considered case. Let ε, γ > 0 be given. The
constraint set D can be covered by and ε-net withNε elements
Dj . For a fixed dictionary D there exists an index j for which
‖D−Dj‖ ≤ ε and we can write

|FX(D)− Efx(D)| ≤|FX(D)− FX(Dj)|
+ sup

j
|FX(Dj)− Efx(Dj)|

+ |Efx(Dj)− Efx(D)|.

By using the concentration assumption (25) and the Lipschitz
continuity of FX and Efx this implies

sup
D
|FX(D)− Ex∼Pfx(D)| ≤ 2Lε+ γ (31)

except for probability at most Nε · Γn(γ). Since the above
holds for and ε, γ > 0, we specify the constants

ε := 1
2L

√
β logn
n ,

τ := 1√
n

√
md log

(
3
ε

)
+ t

with γ := τ/
√

8 which fulfill the conditions 0 < ε < 1 and
0≤τ <∞. Given these parameters we get

Nε · Γn(τ/
√

8) = 2e−t. (32)

For the final estimate, recall that due to the definition of β the
inequalities

log
(

6L√
β

)
≤ log

(
6
√

8L
)
≤ 8β/(md)

and log n ≥ 1 hold. This allows us to provide the estimate

2Lε+ τ/
√

8 ≤ 2
√

β logn
n +

√
β+t/

√
8

n
(33)

which concludes the proof of Theorem 5.

In order to illustrate the results, we will discuss a short
example.

Example 1. The general assumption is that the learned dic-
tionary is an element of D(m, d) and the training samples

are drawn according to a distribution in the unit ball. Let the
sparsity promoting function be defined as the `p-norm with
0<p<1. Then Theorem 5 holds with the sample complexity
driving constant

β = md
8 · log(3

√
8). (34)

4. CONCLUSION

Based on the general framework introduced in [1] we pro-
vide a sample complexity result for learning dictionaries with
unit `2-norm atoms. Powers of the `p-norm as a penalty in
the learning process while the samples are drawn according
to a distribution within the unit ball. In general, we can say
that the sample complexity bound η exhibits the behavior η ∝√

logn
n with high probability. The sample complexity results

achieved in this paper recover those of [6, 7] for a different
choice of sparsity measure. We suspect that the achieved re-
sults can be further improved by utilizing Rademacher’s com-
plexity. This approach will be discussed in future work.
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