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Abstract

We consider the problem of characterizing isomorphisms of types,
or, equivalently, constructive cardinality of sets, in the simultaneous
presence of disjoint unions, Cartesian products, and exponentials.
Mostly relying on results about polynomials with exponentiation
that have not been used in our context, we derive: that the usual
finite axiomatization known as High-School Identities (HSI) is
complete for a significant subclass of types; that it is decidable for
that subclass when two types are isomorphic; that, for the whole of
the set of types, a recursive extension of the axioms of HSI exists
that is complete; and that, for the whole of the set of types, the
question as to whether two types are isomorphic is decidable when
base types are to be interpreted as finite sets. We also point out
certain related open problems.

Categories and Subject Descriptors [Logic]: Type theory; [Logic]:
Constructive mathematics; [Semantics and reasoning]: Type
structures

General Terms Theory

Keywords Type isomorphism, Sum types, Completeness of ax-
ioms, Decidability

1. Introduction

The class of types built from Cartesian products (τ × σ), disjoint
unions (τ + σ) and function spaces (τ → σ) lies at the core of
type systems for programming languages and constructive systems
of Logic. How useful could a programming language be if it did
not include pairing, enumeration and functions? Likewise, how
useful would a constructive logic be, if it did not have conjunction,
disjunction, and implication?

It is then a strange state of affairs that we still have open
questions regarding general properties of this basic class of types.
In this article, we revisit the problem of when two types can be
considered to be isomorphic and we show that this problem can be
tackled using existing results from Mathematical Logic.

Let us be more precise. The language of polynomials with expo-
nentiation and with positive coefficients is defined inductively by

E ∋ f, g ::= 1 | xi | f + g | fg | gf ,

[Copyright notice will appear here once ’preprint’ option is removed.]

where xi is a variable for i ∈ N. This language determines the class
of types that we are interested in, by the simple translation,

J1K = 1

JxiK = xi

JgfK = JfK → JgK

JfgK = JfK × JgK

Jf + gK = JfK + JgK,

where 1 denotes the singleton type and xi denotes a type variable
(that can be instantiated during an interpretation in a concrete
setting). By abuse of language, we will say that a type τ belongs
to E (τ ∈ E ) when a polynomial with exponentiation f ∈ E exists
such that τ = JfK. Throughout the paper, we use the plain equality
symbol “=” to stand for identity i.e. definitional equality.

The types of E are inhabited by terms of a lambda calculus, in
the usual way, following the typing system shown in Figure 5. The
equality between two typed terms is the relation =βη given by the
usual axioms in Figure 7.

Two types τ and σ are called isomorphic (notation τ ∼= σ) when
there is a pair of lambda terms φτ→σ and ψσ→τ that are mutually
inverse, that is, λx.φ(ψx) =βη λx.x and λy.ψ(φy) =βη λy.y.
The importance of this notion in “practice” is as follows.

In typed programming languages, to be able to say when two
types are isomorphic amounts to being able to say when two pro-
grams implement essentially the same type signature: a program of
type τ can be coerced back and forth to type σ without loss of in-
formation. One can use this, for example, to search over a library
of routines for a routine of a type coercible to the type needed by
the programmer [5, 22].

In propositional logic, knowing that two types are isomorphic
implies that the corresponding formulas (built from ∧,∨ and →)
are intuitionistically equivalent.

In Constructive Mathematics, type isomorphism coincides with
the notion of constructive cardinality [17, 20] that says that two sets
(i.e., types) are isomorphic if they have indistinguishable structure,
which is stronger than the classical notion of cardinality relying on
“number of elements”.

What is known about the isomorphism of types of E , in general,
are the following facts, both proved in [8].

Theorem 1 (Soundness of HSI). If HSI ⊢ f
.
= g, then JfK ∼= JgK.

In fact, we have:

HSI ⊢ f
.
= g ⇒ JfK ∼= JgK ⇒ N

+
� f ≡ g.

Theorem 2 (Martin-Wilkie-Gurevič-Fiore-DiCosmo-Balat [8, 11,
19, 28]). Isomorphism is not finitely axiomatizable, that is, for no
finite set of axioms T can we show that JfK ∼= JgK always implies
T ⊢ f

.
= g.
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The notation T ⊢ f
.
= g means that there is a formal derivation

of the equation f
.
= g in the derivation system shown in part (b)

of Figure 3, from the axioms of the set T; therefore, HSI ⊢ f
.
= g

means that the equation is derivable from the finite set of axioms
shown in part (a) of Figure 3 (HSI stands for “High-School Identi-
ties”, see Subsection 1.1 below).

Having only Theorem 1 and Theorem 2 is surprisingly little if
we compare to what is known for the fragments of E that do not

mix gf and g+ f simultaneously. For those fragments, we have, as
shown in [8, 25, 26], soundness and completeness with respect to
the suitable restriction of HSI, we have moreover equivalence with
truth in the standard model of positive natural numbers N+ (see
Subsection 1.1 for definition of truth in N+),

JfK ∼= JgK ⇔ N
+
� f ≡ g,

and, consequently, the decidability of τ ∼= σ for any τ and σ of
those fragments.

In this paper, we will address both the questions of completeness

and decidability for E , in simultaneous presence of gf and g + f .
In Section 2, we will bring up the relevance of certain subclasses
of types going back to Levitz, and explain how results of Henson,
Rubel, Gurevič, Richardson, and Macintyre, allow to show that
type isomorphism for those subclasses are complete with respect to
HSI, and decidable. In Section 3, using Wilkie’s positive solution
of Tarski’s High-School Algebra Problem (see next subsection), we
will establish the same properties for the whole of E (decidability
is proved for base types interpreted as finite sets). In Section 4,
we will mention related open problems, in particular about having
efficient means of deciding the type isomorphisms.

1.1 Tarski’s High-School Algebra Problem

The questions that we are interested in are related to questions
regarding polynomials with exponentiation from the class E , posed
by Skolem [24] and Tarski [19] in the 1960’s. Especially relevant is

the question known as Tarski’s High-School Algebra Problem1: can
all equations that are true in the standard model of positive natural
numbers (N+

� f ≡ g) be derived inside the derivation system of
HSI from parts (a) and (b) of Figure 3 (HSI ⊢ f

.
= g)? This is a

completeness question.
The meaning of N+

� f ≡ g is the standard model theoretic
one: for any replacement of the variables of f and g by elements of
N+, one computes the same positive natural number. The converse
(soundness),

HSI ⊢ f
.
= g ⇒ N

+
� f ≡ g,

can easily be proved.
Martin [19] was the first to show that, if we exclude the axioms

mentioning the constant 1 from HSI, the derivation system is in-
complete, since it can not derive the equality

(xz + xz)w(yw + yw)z = (xw + xw)z(yz + yz)w.

Wilkie [28] generalized Martin’s equality to the whole of HSI,
giving the equation

(Ax +Bx)y(Cy +Dy)x = (Ay +By)x(Cx +Dx)y , (1)

whereA = 1+x,B = 1+x+x2, C = 1+x3, D = 1+x2+x4.
He showed (1) to be non-derivable in HSI, even though it is true in
N+. We thus have

∀f, g ∈ E(HSI ⊢ f
.
= g ⇒ N

+
� f ≡ g),

but

∀f, g ∈ E(N+
� f ≡ g 6⇒ HSI ⊢ f

.
= g),

1 For various results around this problem, please look at the survey articles
[2] and [3].

which constitutes a negative solution to Tarski’s original question.
Gurevič [11] further showed that one can not “repair” HSI by

extending it with any finite list of axioms. He generalized Wilkie’s
(1) to the infinite sequence of equations

(A2x+B2x

n )x(Cx
n+D

x
n)

2x = (Ax+Bx
n)

2x(C2x

n +D2x

n )x, (Gn)

where A = x + 1, Bn = 1 + x + x2 + · · · + xn−1, Cn =
1 + xn, Dn = 1 + x2 + x4 + · · · + x2(n−1), and showed that
for any finite extension T of HSI there is an odd n > 3 such that T
can not prove the equality (Gn) although N+

� Gn.
Fiore, Di Cosmo and Balat [8] showed that Gurevič’s equations

can be interpreted as type isomorphisms, establishing the men-
tioned Theorem 2.

1.2 Decidability of Arithmetic Equality for E

A separate question of more general interest is that of the decid-
ability of equality between polynomials with exponentiation, that
is, whether there is a procedure for deciding if N+

� f ≡ g holds
or not, for any f, g ∈ E . It was first addressed by Richardson [21],
who proved decidability for the univariate case (expressions of E
in one variable). Later, Macintyre [18] showed the decidability for
the multivariate case i.e. for the whole of E .

Theorem 3 (Richardson-Macintyre [18, 21]). There is a recursive

procedure that decides, for any f, g ∈ E , whether N+
� f ≡ g

holds or not.

However, we cannot use the decidability result for N+ to con-
clude decidability of type isomorphisms for E , because, although
we do have that (by Theorem 1)

HSI ⊢ f
.
= g ⇒ JfK ∼= JgK ⇒ N

+
� f ≡ g,

a proof of

JfK ∼= JgK ⇐ N
+
� f ≡ g

is not known, and HSI is not complete:

HSI ⊢ f
.
= g 6⇐ N

+
� f ≡ g.

2. Subclasses of E Complete for HSI

One of the things that has not been exploited in the literature on
type isomorphism is the line of research on subclasses of polyno-
mials with exponentiation for which the axioms of HSI are com-
plete.

In [16], while studying the relation of eventual dominance for
polynomials with exponentiation, Levitz isolated the class of ex-
pressions in one variable, built by the inductive definition

S ∋ f, g ::= 1 | x | f + g | fg | xf | nf ,

where n is a numeral. Henson and Rubel [14] extended it to the
multivariate class defined by

L(S) ∋ f, g ::= s | xi | f + g | fg | s′
f
| xf

i | (xs′

i )f ,

where S is an arbitrary set of positive real constants, s, s′ ∈ S,
s′ > 1, and they proved all true equalities between expressions
from L(S) to be derivable from HSI. They also conjectured that
the result could be extended to the class defined by

R(S) ∋ f, g ::= s | xi | f + g | fg | pf ,

where p is an ordinary polynomial with coefficients in S, and they
remarked that Wilkie’s counterexample lies “just outside” the class
R(S).
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f
.
= f

f + g
.
= g + f

(f + g) + h
.
= f + (g + h)

fg
.
= gf

(fg)h
.
= f(gh)

f(g + h)
.
= fg + fh

1f
.
= f

f1 .
= f

1f
.
= 1

fg+h .
= fgfh

(fg)h
.
= fhgh

(fg)h
.
= fgh

(a) Axioms of HSI

f
.
= g

g
.
= f

f
.
= g g

.
= h

f
.
= h

f1
.
= g1 f2

.
= g2

ff2
1

.
= gg21

f1
.
= g1 f2

.
= g2

f1 + f2
.
= g1 + g2

f1
.
= g1 f2

.
= g2

f1f2
.
= g1g2

(a) Equality and congruence rules

t1
.
= 1

txi

.
= xi

tzu
.
= tztu

tz+u
.
= tz + tu

tz
.
= tu (when N

+
� z ≡ u)

(b) Additional axioms of HSI*

Notation: f, g, h denote polynomials with exponentiation (possibly containing tz terms in the congruence and equality rules), while z, u
denote ordinary polynomials (i.e., without non-constant exponents) with possibly negative monomial coefficients.

Figure 3: The derivation system of (Extended) High-School Identities

Finally, Gurevič [12] showed that HSI are complete for the

proper extension L of R(S) defined by2

L ∋ f, g ::= s | xi | f + g | fg | lf ,

where l ∈ Λ is defined by

Λ ∋ f, g ::= s | xi | f + g | fg | lf0 ,

and l0 ∈ Λ has no variables.

Theorem 4 (Levitz-Henson-Rubel-Gurevič [12, 14, 16]). For all
f, g ∈ L,

N
+
� f ≡ g ⇒ HSI ⊢ f

.
= g.

For our purposes, it suffices to take S = {1}, and we will
henceforth use L specialized to this S.

Example 1. Wilkie’s equation (1) deals with terms that do not
belong to the class L. Although A,B,C,D ∈ Λ ⊂ L, and
hence Ax, Bx, Cx, Dx, Ax + Bx, Cx + Dx ∈ L \ Λ, we have
(Ax + Bx)y, (Cx + Dx)y /∈ L, because bases of exponentiation
are not allowed to contain bases of exponentiation that contain
variables.

Example 2. The term3

(y + z)x(y+z)(y+z)x(y+z)

∈ L, (2)

but
(

((y + z)x)((y+z)y+z)x
)y+z

/∈ L, (3)

although the two terms are inter-derivable using the HSI axioms.
This means that, even though HSI is complete for L, there is room
for extension of L to subclasses that are still finitely axiomatizable
by HSI. In other words, L is not closed under HSI-derivability.

2 We stick to the original notations L(S) and L, although the latter also
depends on the set S and we have L(S) ( R(S) ( L.
3 These terms correspond to simply typed versions of an induction axiom
for decidable predicates, in “curried” and “uncurried” variant.

Theorems 1, 3 and 4 allow us to conclude the following.

Corollary 1 (Completeness for L). For all f, g ∈ L, if JfK ∼= JgK
then HSI ⊢ f

.
= g.

Corollary 2 (Decidability for L). There is an algorithm that de-
cides, for all f, g ∈ L, whether JfK ∼= JgK or not.

3. The Extended High-School Identities

As explained in Subsection 1.1, Wilkie’s negative solution of
Tarski’s problem, together with the generalization of Gurevič, was
used by Fiore, Di Cosmo, and Balat, to show the incompleteness
of HSI, and the impossibility of a finite axiomatization, for type
isomorphism over E .

However, in the paper [28], a positive solution to Tarski’s prob-
lem was also given. Namely, Wilkie showed that HSI is almost
complete: by extending it with all equations that hold between ordi-

nary positive polynomials4 — that is, positive polynomials without
exponents containing variables, but possibly with negative mono-
mial coefficients — one obtains an axiomatization (HSI* from Fig-
ure 3) which is complete for all true equations in N+ between ex-
pressions of E . Since equality of ordinary (positive) polynomials
is decidable, we have a recursive procedure for determining if an
equation belongs to the set of axioms, and therefore equality be-
tween terms of E — although not finitely axiomatizable — is re-
cursively axiomatizable.

To be more precise, let E∗ be the language extending E with a
constant tz for every ordinary positive polynomial z:

E∗ ∋ f, g ::= tz | 1 | xi | g
f | fg | f + g.

The system of axioms of HSI* is the extension of the system HSI
— that applies only to expressions of the original language E —
with the axioms given in part (c) of Figure 3 — that apply to a
strict subset of the extended language E∗. The two types of axioms

4 A polynomial is positive if it computes to a positive natural number for
every replacement of variables by positive natural numbers.
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can “interact” through the derivation system of part (b) of Figure 3,
thus making possible equalities between expressions of the full
language E∗.

The left-hand side of the new axioms is always an expression
of form tz , while the right hand side can either be an expression
tu — whenever z and u are equal polynomials (which can be
decided by bringing them into canonical form) — or an expression
reflecting the structure of z when possible: when z has no negative
coefficients (we use in that case letters p, q instead of z, u), we can
fully reflect it into the language, that is, one can prove HSI* ⊢
tp

.
= p. This representation of the axioms is inspired from the one

of Asatryan [1]. Note that, for any tz, there are infinitely many
axioms having tz on the left hand side that can be used.

We can now state Wilkie’s result.

Theorem 5 (Completeness of HSI* (Wilkie [28])). For all f, g ∈
E (that is, all f, g of E∗ that do not contain tz-symbols), we have
that N+

� f ≡ g implies HSI* ⊢ f
.
= g.

This is a statement concerning terms of E (the original lan-
guage), in the proof of which terms of E∗ (the extended language)
are used. In this respect, it is reminiscent of meta-mathematical
statements like Hilbert’s ǫ-elimination theorems [15] or Henkin’s
version of Gödel’s completeness theorem [13].

Using theorems 1 and 5, we immediately obtain the complete-
ness of HSI* for type isomorphism over E .

Corollary 3. Given f, g ∈ E such that JfK ∼= JgK, we have that
HSI* ⊢ f

.
= g.

We now move on to the decidability question. We will show that
derivations of HSI* can be interpreted as type isomorphisms, which
suffices, since then the circuit

JfK ∼= JgK ⇒ N
+
� f ≡ g ⇒ HSI* ⊢ f

.
= g ⇒ JfK ∼= JgK

allows one to use Macintyre’s decidability results for N+ (Theo-
rem 3) to conclude decidability of type isomorphism over E .

At first thought, interpreting the new tz symbols might seem
problematic, since negative monomial coefficients in z would im-
ply the use of some kind of negative types. However, we also have
the additional property that z is positive, which means that if we in-
stantiate its variables with positive natural numbers (positive types),
we will obtain a positive natural number (positive type).

In this paper, we will work with the restriction that base types
are finite sets. Although the method does work for base types

isomorphic to ordinals in Cantor normal form5, that requires a
careful constructive treatment of ordinals beyond the scope of this
paper.

For HSI, one can keep the interpretation of base types implicit:
soundness of HSI equations as type isomorphisms is proved uni-
formly, regardless of the actual interpretations of base types. For
HSI*, we will need to be explicit about interpretation, that is, we
will prove the soundness theorem point-wise. We will thus intro-
duce an explicit environment ρ mapping variables to types and ex-

5 Subtraction α − β between two such ordinals can be defined when we
know that α < β. Since we can always rewrite tz as tp − tq , and we know
p < q, an ordinal in Cantor normal form can always be computed for tz
whenever ones for p and q are given.

tend the interpretation J·K for the extra tz-terms.

J1Kρ = 1

JxiKρ = ρ(xi)

JgfKρ = JfKρ → JgKρ

JfgKρ = JfKρ × JgKρ

Jf + gKρ = JfKρ + JgKρ

JtzKρ = 1 + 1 + · · ·+ 1
︸ ︷︷ ︸

k-times

= k where k = eval(tz, ρ)

The number eval(tz, ρ) is the result of evaluating z for the variables
interpreted in ρ by positive natural numbers. We also denote the
type

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

k-times

with bold-face k.

Theorem 6. Let f, g ∈ E∗. If HSI* ⊢ f
.
= g then JfKρ ∼= JgKρ for

any ρ that interprets variables by types of form k.

Proof. The proof is by induction on the derivation. We first give
explicit isomorphisms for the axioms of HSI:

• f
.
= f is interpreted with the identity lambda term λx.x in both

directions;

• f + g
.
= g + f is interpreted by λx.δ[x|x1.ι2x1|x2.ι2x2] in

both directions;
• (f + g) + h

.
= f + (g + h) is interpreted by

δ[x|x1.ι1ι1x|x2.δ[x2|x21.ι1ι2x2|x22.ι2x22]]

and

δ[x|x1.δ[x1|x11.ι1x11|x12.ι2ι1x12]|x2.ι2ι2x2];

• fg
.
= gf is interpreted by λx.〈π2x, π1x〉 in both directions;

• (fg)h
.
= f(gh) is interpreted by

λx.〈〈π1x, π1π2x〉, π2π2x〉

and

λx.〈π1π1x, 〈π2π1x, π2x〉〉;

• f(g + h)
.
= fg + fh is interpreted by

λx.δ[π2x|x1.ι1〈π1x, x1〉|x2.ι2〈π1x1, ι2π2x1〉]

and

λx.δ[x|x1.〈π1x1, ι1π2x1〉|x2.〈π1x2, ι2π2x2〉];

• f1
.
= f is interpreted by λx.π1x and λx.〈x, ⋆〉;

• f1 .
= f is interpreted by λx.x⋆ and λxy.x;

• 1f
.
= 1 is interpreted by λx.⋆ and λxy.⋆;

• fg+h .
= fgfh is interpreted by

λx.〈λy.x(ι1y), λy.x(ι2y)〉

and

λxy.δ[y|y1.(π1x)y1|y2.(π2x)y2];

• (fg)h
.
= fhgh is interpreted by λx.〈λy.π1xy, λy.π2xy〉 and

λxy.〈(π1x)y, (π2x)y〉;
• (fg)h

.
= fgh is interpreted by λxy.x(π1y)(π2y) and λxyz.

x〈z, y〉.

The congruence and equality rules are handled using the induc-
tion hypotheses:
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Λ+ ∋M,N,P ::= x | ⋆ | λx.M |MN | ι1M | ι2M | δ[M |x.N |x.P ] | 〈M,N〉 | π1M | π2M

(a) Raw language of lambda terms

xτ ∈ Γ

Γ  xτ Γ  ⋆1
Γ ∪ xτ

Mσ

Γ  (λx.M)τ→σ

Γ Mτ→σ Γ  Nτ

Γ  (MN)σ

Γ Mτ

Γ  (ι1M)τ+σ

Γ Mσ

Γ  (ι2M)τ+σ

Γ  Mτ+σ Γ ∪ xτ
 Nρ Γ ∪ xσ

 P ρ

Γ  δ[M |x.N |x.P ]ρ

Γ Mσ Γ  Nτ

Γ  〈M,N〉σ×τ

Γ Mσ×τ

Γ  (π1M)σ
Γ Mσ×τ

Γ  (π2M)τ

(b) Typing system (well-formed lambda terms)

Figure 5: Inhabitation of types of E with lambda terms

M =βη ⋆ for any term M of type 1

(λx.M)N =βη M{N/x} where x is not a variable of N

M =βη λx.Mx where x is not a variable of M

δ[ι1M |x.N |y.P ] =βη N{M/x} where x is not a variable of M

δ[ι2M |x.N |y.P ] =βη P{M/y} where y is not a variable of M

N{M/z} =βη δ[M |x.N{ι1x/z}|y.N{ι2y/z}] where z is not a variable of M

π1〈M,N〉 =βη M

π2〈M,N〉 =βη N

M =βη 〈π1M,π2M〉

The full relation =βη is the reflexive, symmetric, transitive, and congruent closure of the above.

Figure 7: Beta-eta equality between lambda terms of the same type

• Given an interpretation of f
.
= g, i.e. Φ : JfKρ → JgKρ and

Ψ : JgKρ → JfKρ such that

λx.Φ(Ψx) =βη λx.x

λy.Ψ(Φy) =βη λy.y,

we just swap the order of the two equations in order to interpret
g
.
= f .

• Given interpretations of f
.
= g and g

.
= h by four terms

Φ1 : JfKρ → JgKρ Φ2 : JgKρ → JhKρ

Ψ1 : JgKρ → JfKρ Ψ2 : JhKρ → JgKρ,

we interpret f
.
= h by composing Φ1 and Φ2, and Ψ1 and Ψ2.

• Given interpretations of f1
.
= g1 and f2

.
= g2 by four terms

Φ1 : Jf1Kρ → Jg1Kρ Φ2 : Jf2Kρ → Jg2Kρ

Ψ1 : Jg1Kρ → Jf1Kρ Ψ2 : Jg2Kρ → Jf2Kρ,

we interpret ff2
1

.
= gg21 by using the terms

Φ = λx.λy.Φ1(x(Ψ2y))

Ψ = λx.λy.Ψ1(x(Φ2y)).

The fact that Φ and Ψ are mutually inverse w.r.t. =βη is proved
by using the η-axiom

λx.λy.xy =βη λx.x.

• Given interpretations of f1
.
= g1 and f2

.
= g2 by four terms

Φ1 : Jf1Kρ → Jg1Kρ Φ2 : Jf2Kρ → Jg2Kρ

Ψ1 : Jg1Kρ → Jf1Kρ Ψ2 : Jg2Kρ → Jf2Kρ,

we interpret f1f2
.
= g1g2 by using the terms

Φ = λx.〈Φ1(π1x),Φ2(π2x)〉

Ψ = λy.〈Ψ1(π1y),Ψ2(π2y)〉.

The fact that Φ and Ψ are mutually inverse w.r.t. =βη is proved
by using the η-axiom

λy.〈π1y, π2y〉 =βη λy.y.

• Given interpretations of f1
.
= g1 and f2

.
= g2 by four terms

Φ1 : Jf1Kρ → Jg1Kρ Φ2 : Jf2Kρ → Jg2Kρ

Ψ1 : Jg1Kρ → Jf1Kρ Ψ2 : Jg2Kρ → Jf2Kρ,

we interpret f1 + f2
.
= g1 + g2 by using the terms

Φ = λx.δ[x|x1.ι1(Φ1x1)|x2.ι2(Φ2x2)]

Ψ = λy.δ[y|y1.ι1(Ψ1y1)|y2.ι2(Ψ2y2)].
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The fact that Φ and Ψ are mutually inverse w.r.t. =βη is proved
by using the η-axiom for sums twice. Once we use it with

M :=y

N :=δ[
(
δ[z|y1.ι1(Ψ1y1)|y2.ι2(Ψ2y2)]

)

|x1.ι1(Φ1x1)

|x2.ι2(Φ2x2)],

and the second time with M := y, N := z.

It remains to interpret the rest of the axioms of HSI*, those that
involve tz-terms.

• t1
.
= 1 is interpreted as the isomorphism 1 ∼= J1Kρ i.e. 1 ∼= 1

using the lambda term λx.x in both directions;
• txi

.
= xi is interpreted as k ∼= k, for k = eval(xi, ρ), by the

lambda term λx.x in both directions;

• tzu
.
= tztu is interpreted as k ∼= k1×k2, for k = eval(tzu, ρ),

k1 = eval(tz, ρ), and k2 = eval(tu, ρ), by the lambda term of
Lemma 1;

• tz+u
.
= tz + tu is interpreted as k ∼= k1 + k2, for k =

eval(tzu, ρ), k1 = eval(tz, ρ), and k2 = eval(tu, ρ), by the
lambda term of Lemma 1;

• tz
.
= tu is interpreted as k ∼= k, for k = eval(z, ρ) =

eval(u, ρ), by the lambda term λx.x in both directions.

Lemma 1. Let p ∈ E∗ be an ordinary polynomial with positive
coefficients (possibly containing tz-terms), k ∈ N+, and ρ be an
interpretation such that k = eval(p, ρ). Then, k ∼= JpKρ.

Proof. We do induction on p.

• When p = 1, we have eval(1, ρ) = 1 = k, so k = 1 ∼= 1 =
J1Kρ is established by using λx.x in both directions.

• When p = xi, we have eval(xi, ρ) = ρ(xi) = k, so k ∼= JxiKρ
by λx.x in both directions.

• When p = tz , we have eval(tz, ρ) = k, so k ∼= JtzKρ by λx.x
in both directions.

• When p = p1 + p2, we have

k = eval(p, ρ) = eval(p1 + p2, ρ) =

= eval(p1, ρ) + eval(p2, ρ) = k1 + k2

for some k1, k2 ∈ N+. By applying the induction hypothesis
twice, we obtain k1

∼= Jp1Kρ and k2
∼= Jp2Kρ, therefore,

k ∼= k1 + k2
∼= Jp1Kρ + Jp2Kρ = JpKρ

using the obvious isomorphism k ∼= k1 + k2, that holds when
k = k1 + k2 and the lambda terms interpreting congurence for
“+” from the proof of the previous theorem.

• When p = p1p2, we have

k = eval(p, ρ) = eval(p1p2, ρ) =

= eval(p1, ρ) eval(p2, ρ) = k1k2

for some k1, k2 ∈ N+. By applying the induction hypothesis
twice, we obtain k1

∼= Jp1Kρ and k2
∼= Jp2Kρ, therefore,

k ∼= k1 × k2
∼= Jp1Kρ × Jp2Kρ = JpKρ

using the obvious isomorphism k ∼= k1 + k2 that holds when
k = k1k2, and the lambda terms interpreting congurence for
“×” from the proof of the previous theorem.

Corollary 4. Given two types f, g ∈ E , one can decide whether
JfKρ ∼= JgKρ or not, and this holds whenever ρ interprets variable
by types of form k.

4. Conclusion

We showed that existing results from Mathematical Logic allow us
to conclude that type isomorphism over E is recursively axioma-
tizable, and that a subclass L of types can be isolated for which
type isomorphism is even finitely axiomatizable by the well known
High-School Identities and decidable. Our Theorem 6 allows us to
conclude decidability for the whole of E when base types are finite
sets.

These results also apply to questions of cardinality of sets in
Constructive Mathematics, and to isomorphism of objects in the
corresponding category. However, further work is needed to under-
stand fully their implications in practice.

4.1 Future Work (Open Questions)

4.1.1 Extensions and Practical Importance of the Levitz
Class

We saw that the class L of Gurevič is a generalization of the
classes R(S) and L(S) of Henson and Rubel, which are in turn
generalizations of Levitz’s class S . We also saw in Example 1 that
there are two HSI-equal types, one of which is in L while the other
is not.

Therefore, it does not seem unlikely that the class L can be fur-
ther extended. For example, cannot we allow the bases of exponen-
tiation to contain variables in their bases of exponentiation up to
a fixed (but arbitrary) height n? Would not such a theory also be
finitely axiomatizable by HSI?

Another interesting thing to investigate would be what the prac-
tical interest of these subclasses is. For example, how many pro-
grams of a standard library for functional programming or theorem
proving would fall outside (extensions of) L?

4.1.2 Simpler Completeness Proof for HSI*

Wilkie’s proof of completeness of HSI* relies on two components.
In Theorem 2.8 of [28], it is shown that each polynomial with

exponentiation f can be proved to be equal in HSI* to a posi-
tive polynomial with positive coefficients, but with extra variables,
some of which are instantiated with witnessing terms τi of the
form pqii . The proof of this theorem proceeds by induction on

the construction of f , the difficult case being when f = ff2
1 ;

here, the induction hypothesis is used together with the fact that
each positive polynomial can be factored as a monomial and irre-
ducible polynomial. In fact, an enumeration of all possible pairs
〈 irreducible , monomial 〉 with the right properties is used, and
then, when constructing the representative for f one need only look
up in the enumeration. A large number of extra variables will gen-
erally be added to the representing “polynomial”.

The second component of Wilkie’s proof uses Differential Al-
gebra to show that the representation from Theorem 2.8 is unique.

If we could obtain a simpler version of Wilkie’s proof of The-
orem 2.8, that avoids an ad hoc enumeration, it would be easier to
interpret Corollary 3 as a program that given a concrete proof of
JfK ∼= JgK builds a concrete derivation of HSI* ⊢ f

.
= g.

4.1.3 Efficient Decision Procedures

It is not clear what is the computational complexity of Macintyre’s
decision procedute [18], although some authors suggests that it is
exponential [6].

On the other hand, we know that equality between ordinary
polynomials can be decided inO(n log(n)) [23], and in the context
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of type isomorphisms decision algorithms with similar complexity
have been given by Considine, Gil and Zibin [4, 9, 10].

Is to possible to obtain a practical decision algorithm for type
isomorphism over E? Is it at least possible to do so for some
subclass of terms like L?

4.2 Other Related Work

Although there is a rich literature on type isomorphisms in the
absence of sum types (see [5, 6] for a survey), the only work
covering sums types that we are aware of is the mentioned article
of Fiore, Di Cosmo, and Balat, [8].

Di Cosmo and Dufour consider the extension of Tarski’s origi-
nal question to the structure N+ ∪ {0}, for which they manage to
show that decidability and non-finite-axiomatizability still hold. It
is not clear what the implications for type isomorphism are in the
presence of both sums and the empty type, since it is known that
there are true arithmetical equalities concerning 0 that do not hold
as type isomorphisms when 0 is interpreted as the empty type (an
observation attributed to Alex Simpson in [8]).

Soloviev [27], and later Došen and Petrić [7], show type iso-
morphism in the context of symmetric monoidal closed categories
is finitely axiomatizable and decidable.
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